
Cryptographic Function Detection in Obfuscated
Binaries via Bit-precise Symbolic Loop Mapping

Dongpeng Xu

The Pennsylvania State University

University Park, USA

Email: dux103@ist.psu.edu

Jiang Ming

The University of Texas at Arlington

Arlington, USA

Email: jiang.ming@uta.edu

Dinghao Wu

The Pennsylvania State University

University Park, USA

Email: dwu@ist.psu.edu

Abstract—Cryptographic functions have been commonly
abused by malware developers to hide malicious behaviors,
disguise destructive payloads, and bypass network-based fire-
walls. Now-infamous crypto-ransomware even encrypts victim’s
computer documents until a ransom is paid. Therefore, de-
tecting cryptographic functions in binary code is an appealing
approach to complement existing malware defense and forensics.
However, pervasive control and data obfuscation schemes make
cryptographic function identification a challenging work. Existing
detection methods are either brittle to work on obfuscated
binaries or ad hoc in that they can only identify specific cryp-
tographic functions. In this paper, we propose a novel technique
called bit-precise symbolic loop mapping to identify cryptographic
functions in obfuscated binary code. Our trace-based approach
captures the semantics of possible cryptographic algorithms
with bit-precise symbolic execution in a loop. Then we perform
guided fuzzing to efficiently match boolean formulas with known
reference implementations. We have developed a prototype called
CryptoHunt and evaluated it with a set of obfuscated synthetic
examples, well-known cryptographic libraries, and malware.
Compared with the existing tools, CryptoHunt is a general
approach to detecting commonly used cryptographic functions
such as TEA, AES, RC4, MD5, and RSA under different control
and data obfuscation scheme combinations.

Keywords-Cryptographic Function Detection; Obfuscated Bi-
naries; Symbolic Execution.

I. INTRODUCTION

The benefits of cryptographic functions have led to their

broad adoption by malicious software (malware) developers.

For example, malware developers actively encrypt protocols

to bypass network-based firewalls or filters [1], [2], [3]; ma-

licious payloads are often encrypted to impede anti-malware

scanning [4], [5]. Recently, crypto-ransomware (e.g., Cryp-

toLocker and CryptoWall) have become an emerging threat

that they encrypt infected users’ personal files, and victims

are forced to pay a ransom to recover their data [6], [7].

Easily accessed cryptographic libraries such as OpenSSL and

Microsoft Cryptography API also make reusing cryptographic

functions a trivial task [8], [9], [10].

On the other side, to investigate malicious intents and

design corresponding defensive solutions, security analysts try

to figure out the particular cryptographic functions used in

malware binary code [11], [12], [13], [14], [15]. In general,

cryptographic function detection facilitates malware analysis

and forensics [16] in three ways. First, cryptographic function

provides a starting point for analysis. By analyzing or moni-

toring the execution of the cryptographic functions, security

analysts can get access to the plain text and discover the

real malicious payloads [17]. Second, cryptographic function

identification can save time for analysts to perform binary

analysis. If one code section is detected as an implementation

of some specific cryptographic algorithm, analysts can skip

that section and focus on other parts [18]. Finally, the using

of similar cryptographic functions provides valuable clues

about malware lineage inference [19], [20]. For example,

the same buggy TEA implementation found in both Storm

Worm and Silent Banker malware reveals that they are very

likely originated from the same authors [11]. However, skilled

malware developers can easily apply various code obfuscation

techniques to camouflage the telltale signs of cryptographic

algorithm implementations [21]. As a result, detecting cryp-

tographic functions in obfuscated binaries has become an

important but also challenging work.

A notable difference of cryptographic algorithms from other

applications is that they involve a large number of arith-

metic computations, which in turn reveals many data related

specifications, such as “magic” constant values, excessive use

of bitwise operations, stable data flow graphs, and unique

input-output relationship. Existing methods for cryptographic

function identification in binaries have fully utilized these

specific features as detection heuristics. One category is to

search and identify static signatures (e.g., instruction chains

and mnemonic-const values) inside the binary program [1],

[14], [22], [23], [24]. More recent work identifies symmet-

ric cryptographic algorithms by measuring data flow graph

isomorphism [15]. Due to the fundamental limitations of

static analysis [25], [26], [27], the effects of static detection

are severely restricted when analyzing obfuscated binaries.

In contrast, dynamic detection captures runtime characteris-

tics [11], [12], [13], [18], [28], [29], which are more resilient

to many obfuscation methods. Especially, some advanced

detection signatures are only visible at run time, such as

the avalanche effect of input-output dependencies [13], [18]

and unique input-output relations [11], [12], [29]. However,

current dynamic approaches have two major limitations: 1)

they are not general enough to detect all commonly used

cryptographic functions (e.g., stream or asymmetric ciphers);

2) since many solutions need to recover input and output

2017 IEEE Symposium on Security and Privacy

© 2017, Dongpeng Xu. Under license to IEEE.

DOI 10.1109/SP.2017.56

921

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

parameters from memory, they still suffer from simple data

obfuscation schemes (e.g., data encoding [30], [31]).
In this paper, we continue dynamic cryptographic function

detection study and present a novel approach, CryptoHunt,
to address the limitations of existing work. Our key idea is

to capture the fine-grained semantics of the principal cryp-

tographic transformation iterations along an execution trace.

The execution trace is further split into segments according

to an enhanced loop abstraction. We then perform bit-precise

symbolic execution inside a loop body, and the generated

boolean formulas are later used as signatures to efficiently

match cryptographic algorithms in obfuscated binaries. Our

core technique, bit-precise symbolic loop mapping, is effective
to revert various data and control obfuscation effects, and also

with a much broader detection scope.
In particular, CryptoHunt’s detection includes the follow-

ing main steps. First, we automatically represent the core

transformations of a reference cryptographic algorithm (i.e.,

golden implementation) using boolean formulas. Then, we

run the target obfuscated program and record an execution

trace. Our enhanced loop abstraction can accurately identify

loop structures inside the trace. After that, we run bit-precise

symbolic execution to translate the loop bodies into boolean

formulas, which are later compared with the reference im-

plementations. However, bit-wise symbolic formula equivalent

matching using theorem prover is computationally expensive

and impractical. To ameliorate this performance bottleneck,

we propose a guided fuzzing method to filter out most of the

impossible symbolic variable mappings, leaving only about

5% for further verification.
We have evaluated CryptoHunt on a set of synthetic ex-

amples collected from GitHub, well-known cryptographic li-

braries, and malware. We compared CryptoHunt with other six

representative tools, and the experiment results are encourag-

ing. In all cases, only CryptoHunt is able to detect commonly

used cryptographic functions (e.g., TEA, AES, RC4, MD5,

and RSA) under different control and data obfuscation scheme

combinations. In addition to obfuscation, skilled malware

developers would customize cryptographic algorithms to evade

detection [32]. We indeed identified such a non-standard

XTEA implementation that reveals a different key schedule

constant [33]. Our evaluation shows CryptoHunt is a general

and obfuscation-resilient approach, and can be applied to real-

word malware analysis and forensics. In summary, we make

the following contributions:

• We have proposed a novel approach, CryptoHunt, to

detect cryptographic functions in obfuscated binaries.

Our key solution is to match the principal cryptographic

transformation iterations with bit-precise symbolic loop

mapping. CryptoHunt exhibits stronger resilience to code

obfuscation techniques and a wider detection range.

• We have designed a guided fuzzing method to solve the

scalability issue of bit-wise symbolic formula equivalence

checking. Our approach greatly reduces the number of

possible matches, and can be applied to speed up other

semantics-based binary difference analysis methods.

• We have implemented a prototype of CryptoHunt. The

source code is publicly available at https://github.com/

s3team/CryptoHunt.

The rest of the paper is organized as follows. Section II

introduces background and related work. Section III presents

an overview of CryptoHunt. Section IV to IX discuss the

details of each step in our method. Section X describes

our implementation details. We present our evaluation results

in Section XI. Discussions and limitations are presented in

Section XII. We conclude the paper in Section XIII.

II. RELATED WORK

In this section, we first introduce different code obfusca-

tion techniques that can be used to obfuscate cryptographic

function in binaries. These obfuscation schemes are exactly

what our study attempts to solve. We then present existing

cryptographic function detection work, which can be divided

into two categories, static and dynamic methods. The draw-

backs of previous work inspire our proposed solution. Next,

we introduce literature on symbolic execution and binary

difference analysis, which are the most related research work

to CryptoHunt.

A. Code Obfuscation

Code obfuscation techniques, which are first designed to

protect software intellectual property [34], deliberately trans-

form code to make it more difficult to understand. Nowadays

malware authors also heavily rely on code obfuscation to evade

detection [21]. One frequently used obfuscation technique in

malware is binary packing [5], which first compresses or

encrypts an executable binary into data and then recover the

original code when the packed program starts running. Since

a packing tool typically transforms whole binary code, it may

not be suited to obfuscate code snippet such as cryptographic

function. In this paper, we focus on defeating another two

pervasive obfuscation methods: control obfuscation and data

obfuscation. Control obfuscation, such as control flow flatten-

ing [35] and opaque predicate [36], greatly changes control

flow information to impede reverse engineering. Therefore,

cryptographic functions’ intra-procedural control flow graphs

can be heavily cluttered. Data obfuscation is intended to

conceal data value and usage. For example, data encoding

schemes [30], [31] convert a variable representation to an

obscure one, while data aggregation [37] changes how a

variable or array is aggregated. Recovering high-level data

abstractions and types from binary code is already pretty

hard [38], [39], and data obfuscation will make it more

challenging. Since cryptographic algorithms exhibit many

specific integer constants and arithmetic computations, data

obfuscation becomes particularly fit to hide those attributes of

cryptographic function.

B. Static Cryptographic Function Detection

Static crypto detection methods detect cryptographic func-

tions in binaries prior to execution. They perform static

analysis to recognize code/data features. Lutz’s work [14]

922

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Since F has the same input-output mapping with

TEA algorithm, we can recognize F as TEA with an over-

whelming probability.

recognizes cryptographic code via three heuristics, such as

the presence of loops, entropy, and a high ratio of bitwise

operations. Wang et al. [1] utilize a similar method to identify

the message decryption phase so as to locate the encrypted

data. Matenaar et al. [24] apply multiple detection heuristics

such as entropy, constant value, and crypto API. Lestringant

et al. [15] utilize data flow graph as the signature to identify

symmetric cryptographic algorithms. Static detection has no

runtime overhead and is sufficient for unobfuscated programs.

However, static visible signatures can be easily camouflaged

by code obfuscation techniques [26]. Calvet et al. [11] have

demonstrated a very lightweight data obfuscation scheme

(splitting a const value into two smaller numbers) can fail

static detection.

C. Dynamic Cryptographic Function Detection

Dynamic detection searches visible cryptographic algorithm

features at run time. Compared with the pre-execution tools,

dynamic approaches are more accurate since it follows the

real execution path and knows the actual dynamic state.

Therefore, dynamic detection is widely applied to analyze

obfuscated malware. CipherXRay [13] detects cryptographic

operations by observing data avalanche effect, which refers

to a property of cryptographic algorithms such that a slight

change in the input would cause significant changes in the

output. However, CipherXRay is still based on some intuitive

observations, which cannot detect the exact cryptographic

algorithm used. Furthermore, stream ciphers neither show such

avalanche effect. Gröbert et al. [12] first propose a reliable

dynamic approach by mapping cryptographic function input-

output (I/O) relations. They first aggregate contiguous memory

accesses to form input and output parameters and then find

whether there is an exactly the same I/O mapping with a

known cryptographic function (see Figure 1). Aligot [11]

extends this idea by automatically identifying and extracting

parameters at a loop boundary. It also performs an inter-

loop data flow analysis so as to better catch the parameter

candidates. Then, Aligot also checks whether there exist a

perfect match between loop I/O mapping and a reference

implementation.

Since all the methods that rely on identifying unique input-

output relations [11], [12], [29] treat a series of cryptographic

operations as a “black box”, they can tolerate code obfuscation

and different implementations that happen within the “black

box”. Their detection effects ultimately depend on three key

assumptions: 1) accurately locate the boundary where they

want to compare I/O mappings with golden implementations

(e.g., identify the scope of F in Figure 1); 2) precisely

recover I/O parameters from memory (e.g., extract the input

and output values); 3) F in Figure 1 must have a perfect

match. However, a skilled attacker can easily break down these

assumptions. For example, the smallest parameter size the

current approaches extract is one byte. Any data obfuscation

scheme that aggregates a non one-byte multiples variable (e.g.,

a 15-bit length variable in Figure 6) can complicate parameter

extraction. Also, Base64 encoding is commonly found in

malware to disguise their malicious payloads [31], which can

convert I/O parameter values to different ones and fail the

I/O mapping eventually. And even worse, malware authors

have already customized non-standard cryptographic algorithm

implementations [32], [33] so that F in Figure 1 produces a

different output. In contrast, our approach inherits dynamic

analysis advantages and take F as a “gray box” by represent-

ing I/O mappings with bit-precise symbolic execution, which

is effective to beat both code obfuscation and non-standard

implementations.

D. Symbolic Execution

Being first proposed by King [40], symbolic execution is

an effective technique in the program analysis field. Briefly

speaking, symbolic execution replaces concrete values in a

program with symbolic values and simulates the execution of

the program so that all variables hold symbolic expressions.

Symbolic execution has emerged as a fundamental approach

for reasoning software security problems [41], [42], [43].

EXE [44] automatically detects bugs in C code. KLEE [45]

is capable of automatically generating test cases that achieve

high path coverage. BAP platform [46], the successor of

BitBlaze [47], provides binary code symbolic execution and

verification functions. We also perform symbolic execution to

model the semantics of a loop body. However, our approach

reveals a distinct design choice: CryptoHunt’s symbolic execu-

tion contains only one atomic data type, boolean. CryptoHunt
substitutes each loop input variable as a set of bit-symbols

and represents loop input-output relations as multiple boolean

formulas. Suppose we want to find whether two 32-bit sym-

bolic variables are equivalent, instead of matching two whole

32-bit vectors, we compare them bit-by-bit. In this way, we

can find the fact that, for example, the low 15-bit of these

two variables are matched. Our solution ensures that we can

accurately capture data obfuscation effects.

E. Binary Difference Analysis

Another related field to our work is automatically finding

semantic differences/similarities in binaries [19], [48], [49],

[50], [51], [52], [20], [53], which has a wide application

in practice, such as malware lineage inference [19], [20],

software plagiarism detection [49], [53] and cross-architecture

923

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

Figure 2: An overview of CryptoHunt’s workflow. The words in italics represents CryptoHunt’s key components, and “Bit-SE”
stands for bit-precise symbolic execution.

bug search [51], [52]. CryptoHunt differs from this previous

work in a number of ways. First, CryptoHunt is specifically

designed to detect cryptographic function reusing in obfus-

cated binaries, and a cryptographic function typically occupies

a small fraction of binary code. Most of the previous work

more or less relies on static features, such as control flow

graph [48], [49], [51], [52], [53] and identifying function

in stripped binaries [50], which make them not competent

to our task. Second, much previous work also compares

binaries with symbolic execution and constraint solving [19],

[48], [49], [20], [53]. But they suffer from high performance

penalty due to excessive symbolic variable mapping. To relieve

this performance bottleneck, we propose a guided fuzzing

approach to filter out large numbers of impossible matches.

III. OVERVIEW

The shortcomings of existing work inspire us to design

a new general solution to detect cryptographic algorithms

and variations in obfuscated binaries. Instead of searching

syntactical signatures, we attempt to capture the fine-grained

semantics of the principal cryptographic transformations. Fig-

ure 2 illustrates CryptoHunt’s workflow, which contains the

following key steps.

1) Execution trace generation. Since dynamic analysis

has previously been demonstrated to be effective in

control flow de-obfuscation [54], [55] and analyzing

self-modifying code [56], our study continues dynamic

detection direction. We first run the target binary code

and record the execution trace, which contains detailed

runtime information.

2) Loop body identification. Like many dynamic detection

methods [11], [12], we identify loop structures to narrow

down search scope. The reason is cryptographic algo-

rithms consist of a large of repeated transformations,

which are typically implemented as loops.

3) Bit-precise symbolic execution. Attackers can impede

further analysis by transforming (I/O) parameters with

1 void encrypt (uint32_t* v, uint32_t* k) {
2
3 /* v: plain text, k: key */
4 uint32_t v0 = v[0], v1 = v[1], sum = 0, i;
5 uint32_t k0 = k[0], k1 = k[1], k2 = k[2], k3 = k[3];
6
7 /* delta: a key schedule constant */
8 uint32_t delta = 0x9e3779b9;
9

10 for (i = 0; i < 32; i++) { /* main loop */
11 sum += delta;
12 v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
13 v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
14 }
15
16 v[0] = v0; v[1] = v1; /* cipher text */
17 }

Figure 3: A reference implementation of TEA.

data obfuscation schemes. To revert data obfuscation ef-

fects, our key idea is to represent loop I/O relations with

bit-precise symbolic execution. In this way, loop input

parameters are expressed as boolean variables, which is

the only atomic data type. The output parameters are

represented as a set of boolean formulas.

4) Variable mapping and comparison. We propose a guided

fuzzing approach to efficiently find whether a symbolic

formula is equivalent to a reference implementation.

Only a small portion of symbolic formulas need to be

further verified by a theorem prover.

We will present the details of each step in the following

sections.

IV. REFERENCE FORMULA GENERATION

We compare boolean formulas from the target execu-

tion trace with those from the reference implementation. In

this section, we describe how to generate boolean formu-

las from the reference implementation. We choose standard

cryptographic algorithm implementations (e.g, widely-used

OpenSSL crypto library) as the reference. Since we have

924

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

access to the C source code of the reference implementation,

we first iterate C code structures to identify the principal cryp-

tographic transformation iterations with CIL [57]. The main

loop in Figure 3 shows such a key transformation iterations in

TEA cipher. Section XI-A4 will provide more details about

the key transformation that we capture in commonly used

cryptographic algorithms.

Next, we compile the source code into an executable and

run it to record a trace. Then we perform bit-precise symbolic

execution for the loop body and generate a set of boolean

formulas, which will be used as semantic detection signatures

later. More details about trace recording and bit-precise sym-

bolic execution will be presented in Section V and VII. The

reference formulas usually have two attributes. One is that they

are compact to describe the most representative feature of a

given cryptographic algorithm. It is not necessary to depict

the whole transformation of the algorithm in the reference

formula. The other attribute is abstraction, which means the

formulas are independent of a specific implementation. Se-

curity analysts can generate the reference formulas by just

reading the algorithm description. The feature described by

the formula should be encoded into all implementations of the

algorithms. Taking TEA as an example, the reference formulas

are as follows:

y = ((x1 << 4) + x2)⊕ (x1 + x3)⊕ ((x1 >> 5) + x4) + x5

Here we group a set of bit symbols as x1, ..., x5 for the

easy presentation purpose. Note that the concrete variable

sum in Figure 3 is represented as a symbolic variable x3.

It is because the value of sum derives from a key schedule

constant, delta. Skilled malware authors can customize this

constant value to produce implementation variations, which

will bypass our detection. To make the reference formula

more flexible, we substitute sum as a symbol as well. We

will discuss such a non-standard XTEA implementation we

identify in Section XI-B.

V. EXECUTION TRACE RECORDING

When analyzing a target binary program, we first record its

execution trace. CryptoHunt’s trace record component is built

based on Pin, a dynamic binary instrumentation framework

developed by Intel [58]. All instructions except system call are

recorded during the run time. The trace includes the following

information.

1) The memory address of each instruction

2) The machine instruction name (opcode) which describes

its operation, such as load or mov
3) The source and destination operands of the instruction,

which could be an immediate value, a register name, or

a memory address

Malware authors commonly apply various binary packing

tools to hide the real code and then recover the real malicious

code during execution. Recording binary unpacking routine

will bring many useless instructions. Our purpose is to detect

the cryptographic algorithm inside obfuscated binaries. To this

end, we utilize generic runtime unpacking techniques [59],

[56] to renew trace recording when the execution flow returns

to the original entry point.

VI. LOOP BODY IDENTIFICATION

From the previous step, we obtain an execution trace of

the target program. As mentioned before, CryptoHunt detects

cryptographic code inside loop structures. In this section, we

present how to identify loop bodies inside a trace. Our method

extends Calvet’s loop detection algorithm [11] so as to detect

more categories of loops.

First, we clarify the loop definition in this paper. A loop

is a sequence of instructions that meets one of the following

requirements.

1) The opcode of the sequence of instructions repeat at

least one time.

2) The instruction sequence ends with a conditional or

unconditional jump instruction jumping to the beginning

of the instruction sequence.

Figure 4 shows two trace examples according to the loop

definition. In Figure 4(a), the instruction sequence [1,2,3,4]
repeat at least two times, which meets the first loop definition.

This loop form is usually corresponding to an unrolled loop by

compiler optimization. In Figure 4(b), the trace contains a con-

ditional jump instruction jne 8048100, which jumps to an

instruction that has been executed. So it meets the second rule

in our loop definition. Notice that although the control flow

jumps back to a previously executed instruction, the following

instruction sequence is not as same as the previous one. This

is because there might be conditional branches inside a loop

body, which leads to execution of different instructions in each

loop iteration. In practice, many loops in an execution trace

fall into the second category. One example in cryptographic

algorithm is the modular exponentiation implementation in

RSA. It is typically implemented as a loop containing two

branches. One branch is a multiplication and the other one is a

squaring and a multiplication. In every iteration, the execution

flow takes one branch based on the bit of the exponent being

referenced so the iterations of the same loop could be different.

Calvet’s loop detection algorithm [11] only detects the case in

Figure 4(a). Our loop identification method covers both cases

in Figure 4.

We provide a brief description of the loop identification

algorithm. First, when scanning the first category of loops in

a trace, we reuse the loop detection algorithm in Calvet’s work

[11]. One extension in our loop identification algorithm is

matching function call/return instructions pairs. Function calls

could break the loop definition in Figure 4(a). For example,

calling the same function with different parameters could result

in different control flow in the function. Therefore, we need to

eliminate the function calls’ interference inside the execution

trace. We try to match the function call and return instruction

during the loop identification. The matching procedure is one

scanning pass on the execution trace. We maintain a stack

to simulate nested function calls inside the trace. During

the matching process, when a call instruction is seen in the

scanning procedure, we push it to the stack and record the

925

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

1
2
3
4
1
2
3
4
...

1
2
3
4

jne 8048100

1
5
6
...

(a) (b)

Figure 4: Loop identification in an execution trace.

entrance address. When a return instruction is seen, we pop the

call instruction from the stack and replace the whole function

body with the call instruction and its entrance address. In this

way, during the loop identification, function calls with the

same entrance address are recognized as the same instructions,

which prevent the function calls’ interference in the loop

identification algorithm.

In order to identify the second category of loops, we seek

for the jump instructions whose destination instruction has

been executed in the trace. When such a jump instruction

is identified, we mark the address range between the jump

instruction and its destination. If the instruction following the

jump is the destination instruction, we identify the range as

a loop. The process is repeated until the next instruction of

the jump is not its destination. Note that we could identify

different iterations of the same loop in this category. For

example, in Figure 4(b), [1,2,3,4] and [1,5,6] are two

iterations of the same loop. By computing the hash value

of each loop iteration, we can distinguish and only record

the different iterations for future analysis. For the sake of

efficiency, the identification of the second loop category is

processed together with the first category.

Moreover, we also identify nested loops by folding all

detected loop body iterations. Figure 5 shows the folding

procedure. In Figure 5(a), we identify the repeated instruction

sequence [2,3] as the innermost loop L1. Then we fold all

iterations of L1 and replace them with a pseudo instruction

named L1 and continue the loop identification as shown in

Figure 5(b). In the folded trace, we identify the repeated in-

struction sequence [1,L1,4] as the outer loop L2. Similarly,

all iterations of L2 are folded and replaced by the pseudo

instruction L2. The final folded trace is shown in Figure 5(c).

After all, the output of loop identification is a set of different

loop iterations. Since the number of candidates could be

very large, we apply some crypto algorithm specific heuris-

tic methods to filter out non-related loop iterations. Since

cryptographic algorithms usually contain intensive bitwise

operations, one heuristic method is counting the number of

bitwise instructions inside a loop [2]. Another heuristic method

is using the absolute entropy of the memory regions accessed

in the loop body. It is because that encrypted data is considered

Figure 5: Nested loops identification.

to have a high information entropy [14]. The loop iterations

after filtering are passed to the following phases for future

analysis.

VII. BIT-PRECISE SYMBOLIC EXECUTION IN LOOP

After identifying loops in the execution trace, we extract

each loop body and perform bit-precise symbolic execution

to transform them into boolean formulas. In our method, we

analyze the loop body, which is only one iteration of the loop.

We first identify the free output variables in the loop body and

then perform backward slicing from each output variable. In

each slice, we can backtrack to the input variables of the loop

body. We claim the input variables which meet the following

conditions as free input variables and mark them as symbols.

1) The variable is loaded from memory.

2) The variable is not a loop invariant. Since the execution

trace includes all run-time information, we can check

whether a variable is a loop invariant by comparing

different loop iterations.

After that, we symbolically run each slice so as to transform

them into a boolean formula, which is composed of a series

of boolean functions. Each function is a transformation which

takes multiple input variables and generates one output. Partic-

ularly, we transform each free variable into boolean variables.

For example, if a free variable is in a 32-bit register, it is trans-

formed to 32 boolean individual variables. Therefore, with

bit-precise symbolic execution, we transform the operations

associated with the output variables into a boolean formula,

which accurately describes the semantics of the instructions

inside a loop body.

One benefit of bit-precise symbolic execution is it reveals

the fine-grained semantic meaning of the operations inside a

loop body so as to resist obfuscation techniques. This feature

makes our method outperforms lots of previous work. For

example, the current research work Aligot [11] utilize the

input/output relation to identify cryptographic functions. One

926

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

int a = f();
int b = g();
...
while (...) {
m = a << 4;
n = b * 5;

...
}

(a) Normal program.

struct {
int a : 15;
int b : 17;

} X;

/* aggregate a,b to X */
X.a = f();
X.b = g();
...
while (...) {
m = X.a << 4;
n = X.b * 5;

...
}

(b) Data aggregation.

a = f();
b = g();

/* split a to a1, a2 */
short a1 = a & 000fffff;
short a2 = a >> 20 & 00000fff;
...
while (...) {
int aa = (int) a2 << 20 | a1;
m = aa << 4;
n = b * 5;

...
}

(c) Data split.

Figure 6: An example of data obfuscation.

limitation of this category of research is that the parameters

in the target program must be exactly same as the parameters

in the reference implementation. It is because that they treat

the whole loop body as a “black box” without looking into

the details inside. In practice, simple data obfuscation such as

data aggregation and data split can easily work around Aligot.

We present an example in Figure 6.

Figure 6(a) shows the normal program before the data

obfuscation. Variables a and b are two input variables for the

while loop. If we already know a and b are small integers,

which will not use the higher bits of the 32 bits, we can

aggregate the two variables into 32 bits variable X as shown

in Figure 6(b). Therefore, the while loop only has one input

variable X. Notice that X is not equivalent to either a or

b. As a result, cryptographic detection tools based on input

and output relation such as Aligot cannot identify those two

programs are semantically equivalent. Similarly, we can also

split the variable a into two variables a1 and a2 as shown in

Figure 6(c) and the input and output data of the while loop

is also obfuscated. What’s more, there are plenty of encoding

obfuscation in this category, such as the obfuscation using

homomorphic functions [60] and variable merging [37].

On the other hand, bit-precise symbolic execution provides

a perfect and final solution for this problem. By translating

the operations into boolean formulas, we can compare the

fine-grained semantics of different loop bodies. For instance,

if we translate the while loops in Figure 6(a) and (b) into

boolean formulas, we will find that the two sets of formulas

are essentially doing the same task.

VIII. GUIDED SYMBOLIC VARIABLE MAPPING

The bit-precise symbolic execution in the last section output

a group of boolean formulas. In this section, we compare these

formulas with the reference formulas so as to decide whether

they are equivalent. Since each input and output variable is

transformed into boolean variables, typically there are dozens

of input and output variables. When comparing those formulas,

the key problem is mapping the input variables in target

formulas to those in the reference formulas. In previous related

work, the mapping is mainly done by permutation and then

using a theorem prover to check them one by one.

However, the number of variables in our work is sig-

nificantly larger so simple permutation will cause serious

performance issue. Therefore, we propose a new method to

quickly find the possible variable mappings and filter out the

impossible ones. In another word, the mapping procedure itself

can partially verify the formula’s semantics before applying

the theorem prover.

A. Motivation

Before describing the detail matching algorithm, first we

provide an example to show why we need a mapping algo-

rithm. Suppose we are comparing two loop bodies. One is

from the target program and the other one comes from the

reference program. The operations in both loop bodies have

been translated to two sets of boolean functions as shown in

function set (1) and (2). Here we call a set of boolean functions

as a formula. In this example, we suppose that the target and

reference program both include three input boolean variables

and two output variables. Particularly, formula F is extracted

from loop bodies in the target execution trace and G is from

the reference program. In formula F , x1, x2, and x3 are input

variables, u1 and u2 are output variables, and f1 and f2 are

the boolean functions that compute the output variable value

based on the inputs. Similarly, formula G shows input/output

variables and functions in the reference program. Notice that

here we use x and y to distinguish the input variables in the

target program and the reference program.

F =

{
u1 = f1(x1, x2, x3) = x1 ∧ x2 ∨ x3

u2 = f2(x1, x2, x3) = ¬x1 ∨ ¬x3 ∧ x2
(1)

G =

{
v1 = g1(y1, y2, y3) = ¬(y1 ∧ y2) ∧ y3
v2 = g2(y1, y2, y3) = y1 ∨ (y2 ∧ y3)

(2)

In order to check whether the two formulas are semantically

equivalent, we need to find out which input variable in formula

F is identical to the input variable in G, and also the output

variables. In another word, we need to find two variable

mappings as shown in Figure 7.

Assuming the mappings in Figure 7 have been found, we

can build a boolean equation set (3) to check whether F and

G are equivalent. Multiple methods such as fuzz testing and

theorem proving can be applied to verify the equation set. If

every equation in the set always holds, it proves that formula F
and G are equivalent, which means the loop body in the target

927

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

x1

x2

x3

y1
y2
y3

(a) Input mapping.

u1

u2

v1
v2

(b) Output mapping.

Figure 7: Variable mapping.

program is equivalent to the reference. As a result, the target

program includes a cryptographic function implementation.

We check all loop bodies and report finding a cryptographic

algorithm when one loop body matches.

{
x1 ∧ x2 ∨ x3 = ¬(x2 ∧ x3) ∧ x1

¬x1 ∨ ¬x3 ∧ x2 = x2 ∨ (x3 ∧ x1)
(3)

B. Definitions

Starting from this section, we present the formal mapping

algorithm. First, we introduce the formal definitions of the

concepts used in our algorithm.

Definition 1: We define a boolean function

f(x1, x2, . . . , xn) as a mathematical function that takes

n boolean arguments (inputs) and returns one boolean result

(output).

Definition 2: We define a boolean formula Fn,m which has

n inputs and m outputs as a function set that includes m
boolean functions, each of which has n inputs:

Fn,m =

⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

. . .
fm(x1, x2, . . . , xn)

Definition 3: Given a boolean function f(x1, x2, . . . , xn),
we define its Input Identity Matrix as a n× n matrix:

In,n =

⎛
⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
�xT
1

�xT
2
...

�xT
n

⎞
⎟⎟⎟⎠

where �xT
i is the ith row vector.

In an input identity matrix, each row vector �xT
i represents

one combination of setting only one input variable to 1 and

the remainder to 0. An input identity matrix enumerates all

possible input combinations following this rule.

Definition 4: Given a boolean formula Fn,m, we define its

Output Matrix as an n×m matrix:

MO
n,m =

⎛
⎜⎜⎜⎝
a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm

⎞
⎟⎟⎟⎠

where

aij = fj(�x
T
i), i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

In an output matrix, each row is the outputs by feeding

the corresponding row vector in the input identity matrix

into every boolean function. The insight is that, each row

of the output matrix corresponds to one input variable and

each column corresponds to one output variable. Therefore,

the mapping problem is essentially equivalent to the following

problem:

Can we transform one output matrix to the other by only
swapping rows and columns?
This is the key idea in our mapping algorithm. Notice that

swapping rows and columns still keep the sum of each row or

column unchanged. This feature provides a hint for mapping

the rows and columns, which correspond to the input and

output variables. So we go ahead to define the row sum vector
and column sum vector in an output matrix.

Definition 5: The row sum vector �rv and column sum
vector �cv of an output matrix MO

n,m are defined as follows.

�rv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
j=1

a1j

m∑
j=1

a2j

...
m∑
j=1

anj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �cv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

ai1

n∑
i=1

ai2

...
n∑

i=1

aim

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Each element of the row sum vector is the sum of each

row in MO
n,m. Essentially it describes the fact that how many

outputs is evaluated to 1 when setting a specific input to 1
and leave the remainder to 0. Similarly, a column sum vector

describes how many times each output variable is set to 1 in

MO
n,m. �rv and �cv are used to compute the mapping in a given

output matrix.

For example, given an output matrix MO
2,3, its �rv and �cv

are shown as follows.

MO
2,3 =

(
1 0 1
0 0 1

)
, �rv =

(
2
1

)
, �cv =

⎛
⎝1
0
2

⎞
⎠

So far we have defined all concepts related to the formulas

in this paper. Since our objective is to find the mapping

between two formulas’ inputs and outputs, we need to clarify

the concept of mapping in this paper. There are two kinds

of mapping, full mapping and partial mapping. As shown in

Figure 8(a), a full mapping means every element in one set has

been mapped to a unique element in the other set. A partial
mapping means we only find mappings for partial elements

in one set. Taking Figure 8(b) as an example, we have found

mappings for the elements a1, a3 and a4 in S′. However, the
mapping for a2 and a5 is still not decided. Possible mappings

are a2 �→ b3, a5 �→ b5 or a2 �→ b5, a5 �→ b3.

C. Algorithm Description

So far we have introduced the basic concepts that are

needed to formalize the algorithm. As mentioned above, we

928

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

a1
a2
a3
a4
a5

b1
b2
b3
b4
b5

S T

(a) A full mapping.

a1
a2, a5
a3
a4

b1
b2

b3, b5
b4

S′ T ′

(b) A partial mapping.

Figure 8: Mapping examples.

transform the variable mapping problem to the output matrix

mapping problem; that is, given an input identity matrix, a

variable mapping exists if and only if one output matrix can be

transformed to the other by only swapping rows and columns.

Based on this idea, we propose the variable mapping al-

gorithm which is described in Algorithm 1. Briefly speaking,

our mapping algorithm is seeking for all possible mappings

given a series of specific inputs, which are generated based

on already mapped inputs. The method is complete, which

means if a mapping exists, it must appear in the result. It

is probable that the mapping algorithm generates some false

positive mappings and they will be checked by the following

verification steps.

Given two boolean formulas F1 and F2, the high-level

panorama of the mapping algorithm can be viewed as follows.

We provide an example to show the mapping algorithm step

by step in the following section.

1) Feed the Input Identity Matrix I into F1 and F2 respec-

tively and generate two output matrix MO
1 and MO

2 .

2) Create the row and column sum vectors for MO
1 and

MO
2 and check them using heuristic constraints.

3) Create mappings based on the row and column map-

pings. Check whether the mappings are consistency.

4) If one variable is mapped, add it to the mapped list.

Otherwise permute building mappings for the elements.

5) Randomly create new inputs based on the mapped

variables.

6) Recursively call VarMapping to map the remaining

inputs and outputs.

D. Example

In the last section, we have described the formal definition

of the mapping algorithm. Now we provide an example to

show the whole procedure. We still use F and G as shown in

formula (1) and (2). We initiate the partial mapping list L set

as follows. Min and Mout are initiated as empty.

{x1, x2, x3} �→ {y1, y2, y3}
{u1, u2} �→ {v1, v2}

First, since Min is empty, there is no mapped variable. We

generate the input identity matrix for all input variables. After

that we create the output matrix accordingly. For the ease of

Algorithm 1 Mapping I/O Variables

1: Parameters:
2: �uT = F1(�x

T), �vT = F2(�y
T): Boolean formulas

3: L: Current partial mapping list.

4: Min: Full mapping of input.

5: Mout: Full mapping of output.

6: function VARMAPPING(F1, F2, L, Min, Mout)

7: if L is empty then
8: return (Min,Mout)
9: end if
10: I ← CreateIdentityMatrix(L)
11: R ← RandomInput(Min)

12: M I
1 ← CreateInputMatrix(I, R, F1)

13: M I
2 ← CreateInputMatrix(I, R, F2)

14: MO
1 ← CreateOM(F1,M

I
1)

15: MO
2 ← CreateOM(F2,M

I
2)

16: �rv1 ← CreateRowVector(MO
1)

17: �cv1 ← CreateColumnVector(MO
1)

18: �rv2 ← CreateRowVector(MO
2)

19: �cv2 ← CreateColumnVector(MO
2)

20: if Sort(�rv1) �= Sort(�rv2) || Sort(�cv1) �= Sort(�cv2) then
21: return False

22: end if
23: UpdateMapping(L, �rv1, �rv2)
24: UpdateMapping(L, �cv1, �cv2)
25: Reduce(L)
26: if L is not a partial mapping then
27: return False

28: end if
29: if ∃s �→ t ∈ L then
30: Remove s �→ t from L
31: Add s �→ t to Min or Mout

32: VarMapping(F1, F2, L,Min,Mout)

33: else
34: for Permute the set connection s′ �→ t′ ∈ L do
35: Remove s′ �→ t′ from L
36: Add the permutation to Min or Mout

37: VarMapping(F1, F2, L,Min,Mout)

38: end for
39: end if
40: end function

understanding, we show the procedure in equation (4) and the

matrix in (5).

⎧⎨
⎩
{x1 = 1, x2 = 0, x3 = 0} ⇒ {u1 = 0, u2 = 0}
{x1 = 0, x2 = 1, x3 = 0} ⇒ {u1 = 0, u2 = 1}
{x1 = 0, x2 = 0, x3 = 1} ⇒ {u1 = 1, u2 = 0}

(4)

M I
1 =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ,MO

1 =

⎛
⎝0 0
0 1
1 0

⎞
⎠ (5)

Following the same method, we feed the inputs into G and

the result is shown in (6) and (7).

929

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

⎧⎨
⎩
{y1 = 1, y2 = 0, y3 = 0} ⇒ {v1 = 1, v2 = 0}
{y1 = 0, y2 = 1, y3 = 0} ⇒ {v1 = 0, v2 = 0}
{y1 = 0, y2 = 0, y3 = 1} ⇒ {v1 = 0, v2 = 1}

(6)

M I
2 =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ,MO

2 =

⎛
⎝1 0
0 0
0 1

⎞
⎠ (7)

Based on MO
1 and MO

2 , we create the row and column sum

vectors as follows.

�rv1 =

⎛
⎝0
1
1

⎞
⎠ , �cv1 =

(
1
1

)
, �rv2 =

⎛
⎝1
0
1

⎞
⎠ , �cv2 =

(
1
1

)

The sorting result of �rv1 and �rv2 shows they are equivalent

and so do �cv1 and �cv2. Therefore, we move on to the next step

to connect the rows that have the same number in row sum

vectors. So x1 �→ y2 and {x2, x3} �→ {y1, y3} is created and

added to L. Similarly, we create connections between columns.

As a result, L is updated as follows.

{x1, x2, x3} �→ {y1, y2, y3}
x1 �→ y2

{x2, x3} �→ {y1, y3}
{u1, u2} �→ {v1, v2}

We reduce the connections in L by intersection operations.

L can be normalized to the following form.

x1 �→ y2
{x2, x3} �→ {y1, y3}
{u1, u2} �→ {v1, v2}

After that, in Line 27 of the mapping algorithm, we find

a mapping x1 �→ y2. So we remove it form L and add it to

Min since it is a connection of the input variables. Then we

recursively call VarMapping again using the updated L and

Min.

In the second call of VarMapping, we generate random input

for variables in Min. Notice that the connected variables must

have the same value. For example, we generate x1 = 1, y2 =
1. We still generate input identity matrix for the remaining

input variables in L. Therefore, the input and output matrix

are as follows.

M I
1 =

(
1 1 0
1 0 1

)
,MO

1 =

(
1 0
1 1

)

M I
2 =

(
1 1 0
0 1 1

)
,MO

2 =

(
1 1
0 1

)

Similarly, we create the row and column sum vectors for

MO
1 and MO

2 .

�rv1 =

(
1
2

)
, �cv1 =

(
2
1

)
, �rv2 =

(
2
1

)
, �cv2 =

(
1
2

)

The vectors pass the sorting check as before. By updating

and reducing L, the result is as follows.

x2 �→ y3
x3 �→ y1
u1 �→ v2
u2 �→ v1

After moving the mapping in L to Min and Mout, L is

empty. So the final result will be returned in Min and Mout

when calling VarMapping next time. The final mapping result

is shown in Figure 9.

x1

x2

x3

y1
y2
y3

(a) Input mapping.

u1

u2

v1
v2

(b) Output mapping.

Figure 9: Final result of variable mapping.

Based on the variable mapping information, we can produce

the equation set for the following verification procedure.

{
x1 ∧ x2 ∨ x3 = x3 ∨ (x1 ∧ x2)

¬x1 ∨ ¬x3 ∧ x2 = ¬(x3 ∧ x1) ∧ x2
(8)

In this example, our mapping algorithm generates one

candidate variable mapping. Being compared with the permu-

tation, which will generate 3! × 2! = 12 inputs and outputs

combinations, our method reduces the number of candidates.

Notice that in our example we only show three input variables

and two output variables. Since permutation is a factorial

function, when the number of variables increases, the number

of permutation will grow very fast. Our mapping algorithm

can filter out unmapped formulas and significantly reduce the

number of candidates.

IX. VERIFICATION

In this section, we present the method to verify the boolean

equations generated by the previous step. Basically, we use

two methods, fuzz testing and theorem proving. Fuzz testing

is quick but the result is not sound; that is, passing fuzz testing

does not mean the equations always hold. Theorem proving is

slow but the result is sound. Therefore, we use fuzz testing as

the first round to filter out some candidates and apply theorem

proving to the remains.

We randomly generate some inputs and feed them into the

boolean equation set to test whether they hold. In our practical

experience, this is an easy and quick way to get rid of many

wrong mappings and give a partial equivalence checking. For

example, if all mapping candidates do not pass fuzz testing,

we can safely decide the two sets of formulas are semantically

different.

After the equation sets pass fuzz testing, we utilize a

theorem prover to prove the formulas. If the formulas hold,

we claim that the target program and the reference program

are semantically equivalent; otherwise they are different.

930

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

Table I: Cryptographic algorithm categories.

Category Algorithm
Block cipher TEA and AES
Stream cipher RC4

Hashing algorithm MD5
Asymmetric cipher RSA

X. IMPLEMENTATION

We build a tool named CryptoHunt as an implementation

of the idea in this paper. The trace logging component is built

based on Intel’s Pin DBI framework [58] (version 2.12) with

945 lines of code in C/C++. The loop identification component

is implemented with 374 lines of Perl code. CryptoHunt’s bit-

precise symbolic execution is built based on BAP [46] (version

0.8), which is used to lift x86 instructions to the BAP IL and

further into boolean formulas in CVC format. We also built

a framework to implement the formula mapping algorithm,

fuzz testing, and other formula analysis, which includes 1700

lines of C/C++ code. Moreover, we adopt STP [61] as the

theorem prover. For the convenience of future research, we

have released CryptoHunt source code at https://github.com/

s3team/CryptoHunt.

XI. EVALUATION

In this section, we evaluate CryptoHunt from two main as-

pects: effectiveness and performance. Particularly, we conduct

our experiments to answer the following research questions

(RQs).

1) RQ1: Is CryptoHunt effective to detect widely used

cryptographic algorithms in obfuscated binaries? (effec-
tiveness)

2) RQ2: How many false positives can CryptoHunt pro-

duce? (effectiveness)
3) RQ3: How much overhead can CryptoHunt’s dynamic

detection approach introduce? (performance)
As the answer to RQ1, we compare CryptoHunt with other

peer tools using crypto projects collected from GitHub with

different obfuscation techniques. We also evaluate them on

malware samples. In RQ2, we use normal programs such as

core utilities, compression tools, and server programs to test

the false positives. In response to RQ3, we report CryptoHunt’s

performance data such as running time, number of identi-

fied loops, and number of STP queries. We also report the

performance improvement introduced by our guided fuzzing

approach.

A. Answer to RQ1: Crypto Libraries

1) Dataset: We first test CryptoHunt with commonly used

cryptographic algorithms from four categories (see Table I).

We choose TEA and AES as block cipher examples. Tiny

Encryption Algorithm (TEA) [62] is a simple block cipher,

which is frequently adopted by malware authors to hide

malicious intent; while the Advanced Encryption Standard

(AES) [63] is a more complicated block cipher, which has been

used by crypto-ransomware to encrypt victim’s documents.

RC4 is chosen as the stream cipher candidate. It is used

by standards such as IEEE 802.11 within WEP (Wireless

Encryption Protocol) using 40 and 128-bit keys. We choose

MD5 [64] as the hashing algorithm since it is widely used

on the Internet for software integrity checking. At last, we

use RSA [65] as the asymmetric cipher candidate. RSA is

one of the first practical asymmetric ciphers in the world

and is widely used for secure data transmissions. In practice,

programmers usually take advantage of existing cryptographic

libraries when they need encryption/decryption function. This

is due to two reasons. First, cryptographic algorithms are

highly standardized. Many cryptographic libraries such as

OpenSSL and Libgcrypt already have correct implementations,

so there is no need for normal programmers to re-implement

them. The other reason is that cryptographic algorithms are

complicated and difficult to implement. It is common that user-

implemented cryptographic algorithms are buggy. Therefore,

as one common scenario of using cryptographic algorithms, we

evaluate CryptoHunt on popular cryptographic libraries. In our

evaluation, we test two open source libraries: OpenSSL1 and

Libgcrypt2. OpenSSL and Libgcrypt are both widely used in

real world software systems such as web server, email client

and web browser. Our purpose is to detect commonly used

cryptographic algorithms provided by standard libraries. To

this end, we collect 25 open source projects from GitHub3.

For each crypto algorithm in Table I, we collect 5 projects.

All the 25 projects reuse cryptographic functions from either

OpenSSL or Libgcrypt. The configuration of our testbed

machine is shown as follows.

• CPU: Intel Core i7-3770 processor (Quad Core with

3.40GHz)

• Memory: 8GB

• OS: Ubuntu Linux 14.04 LTS

• Compiler: GCC 4.8.4

• Crypto Libraries: OpenSSL 1.1.0-pre3, Libgcrypt 1.6.4

2) Peer Tools: We compare CryptoHunt with six cryp-

tographic code detection tools: CryptoSearcher, Findcrypto2,

Signsrch, DFGIsom, Kerchkhoffs, and Aligot. These six tools

represent both static and dynamic detection directions. Cryp-

toSearcher [66] is an assembly tool that identifies crypto-

graphic programs by static signatures. Similarly, both Find-

crypto2 [67] and Signsrch [23] are IDA [68] plug-in tools and

search static signatures for cryptographic function detection.

DFGIsom [15] statically identify symmetric cryptographic

algorithms and their parameters inside binary code based on

Data Flow Graph (DFG) isomorphism4. Kerchkhoffs [12] is

a trace analysis tool, which provides methods to reconstruct

high-level information from a trace, for example control flow

graphs or loops, to detect cryptographic algorithms and their

1https://www.openssl.org/
2https://www.gnu.org/software/libgcrypt/
3https://github.com
4Since this tool is not publicly available, we simulate the approach by BAP’s

built-in feature to generate DFGs. We implement DFGIsom’s normalization
rules to simplify DFGs, which are then matched by Ullman’s subgraph
isomorphism algorithm [69].

931

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

parameters. The advanced detection tool, Aligot [11], relies

on identifying unique input-output relations at loop boundary.
3) Obfuscation Options: To obfuscate cryptographic algo-

rithm implementations, we rely on a state-of-the-art compile-

time obfuscation tool, Obfuscator-LLVM [70], which supports

popular obfuscation transformations [34], [71]. We have ex-

tended Obfuscator-LLVM to include three obfuscation options,

N, O1, and O2, which specify different obfuscation levels. The

details of the obfuscations included in each option are listed

as follows.

1) N: The obfuscator does not perform any obfuscation.

2) O1: The obfuscator performs simple instruction-level

obfuscation and control flow obfuscation, including dead

code insertion, instruction substitution, opaque predi-

cate, control flow flattening, loop unrolling and subrou-

tine reordering.

3) O2: In addition to O1, the obfuscator performs data

obfuscations including variables encoding, data split

and data aggregation. O2 contains both control and

data obfuscations. Therefore, O2 has a much stronger

obfuscation effect that O1.
We use the source code in OpenSSL as the reference im-

plementation. Since OpenSSL does not include the TEA

algorithm, we use the code shown in Wheeler’s paper [62] as

TEA’s reference implementation. First we compile the crypto

libraries with different obfuscation options. Then we compile

and statically link the 25 collected cryptographic projects to

the crypto libraries. At last, we run CryptoHunt and other

crypto detection tools to detect them. We evaluate CryptoHunt

in two scenarios. First, the testing library is same as the

reference library. In this case, we use OpenSSL as both the

reference and testing library. The other scenario is that the

testing library is different from the reference library. In this

case, we use OpenSSL as the reference library and Libgcrypt

as the testing library. One exception is that TEA is not included

in Libgcrypt, we select another implementation TEA∗ [72].
4) Evaluation Result: The evaluation result is shown in Ta-

ble II5. Basically, only CryptoHunt is able to detect commonly

used cryptographic functions in all cases, while other tools are

severely restricted under different obfuscation combinations

and algorithm implementations. For example, the advanced

dynamic detection tool, Aligot, fails in all of the tasks with the

O2 obfuscation option. Next, we provide more details behind

the results.
a) TEA: TEA is a 64-bit cipher which uses 128-bit key.

It is usually implemented as 64 rounds of Feistel structure

[62]. In CryptoHunt, we use the transformations inside one

Feistel structure loop as the reference implementation (see

Figure 3). As shown in Table II, all tools except Findcrypto2

successfully identify the TEA algorithm in the unobfuscated

code in both OpenSSL and Libgcrypt. The reason is Find-

crypto2 does not contain TEA’s static signature. In the O1

5We find that the crypto detection tools either detect all the five projects in
one algorithm category, or detect none of them. Therefore, for simplicity we
use the check mark � to indicate that the tool detects all five samples and
blank showing it detect none of them.

Table II: Evaluation result on crypto libraries.

Crypto Lib Algo Obf F
in
d
cr
y
p
to
2

S
ig
n
sr
ch

C
ry
p
to
S
ea
rc
h
er

D
F
G
Is
o
m

K
er
ch
k
h
o
ff
s

A
li
g
o
t

C
ry
p
to
H
u
n
t

TEA
N � � � � � �
O1 � � � � �
O2 �

OpenSSL

AES
N � � � � � �
O1 � � � � �
O2 �

RC4
N � �
O1 � �
O2 �

MD5
N � � � �
O1 � � �
O2 �

RSA
N �
O1 �
O2 �

TEA∗
N � � � � � �
O1 � � � � �
O2 �

Libgcrypt

AES
N � � � �
O1 � � �
O2 �

RC4
N � �
O1 � �
O2 �

MD5
N � � � �
O1 � � �
O2 �

RSA
N �
O1 �
O2 �

version, DFGIsom fails to detect TEA because data flow

graph is obfuscated. Signsrch and CryptoSearcher rely on the

magic number 0x9e3779b9 as the static signature. This num-

ber cannot be obfuscated by control obfuscation techniques,

so Signsrch and CryptoSearcher still work in O1 version.

Aligot and Kerchkhoffs are resilient to the control obfuscation

techniques. With data obfuscation added in the O2 version,

only CryptoHunt is able to detect the highly obfuscated TEA

algorithm. In another implementation TEA∗, the result is the

same.

b) AES: The AES design is based on substitution-

permutation network [63], which is stronger than the Feistel

structure in TEA. We use the core transformation in the

innermost loop in OpenSSL’s implementation as the refer-

ence. Most tools successfully identify AES algorithm in the

OpenSSL experiment without obfuscation. We attribute this

to AES’s distinct feature such as the lookup table. With O1

obfuscation, DFGIsom fails due to the same reason as in TEA.

Particularly, we notice that Aligot fails to detect unobfuscated

AES algorithm in Ligcrypt when using OpenSSL as the

reference. We looked into the source code and binary code

and find it is because of the different implementations between

OpenSSL and Libgcrypt. The input and out variables in the

innermost loop of OpenSSL’s implementation is different from

those in Libgcrypt. Since Aligot views the loop body as a black

932

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

box without checking the details inside, it cannot perform

more fine-grained detection as CryptoHunt.

c) RC4: RC4, a classical steam cipher, generates a

random stream of bits as a key stream. The key stream is

used to encrypt or decrypt by performing an XOR operation

on the input. Typically, the encryption procedure in RC4 is

a simple XOR operation. It cannot be used as the reference

to recognize RC4 algorithm because it will cause lots of

false positives. Instead, we use the transformation in the key

generation algorithm as the reference implementation. Table II

shows only Aligot and CryptoHunt successfully detect the

RC4 algorithm in the unobfuscated program and O1 version.

The reason is, unlike TEA and AES, RC4 lacks obvious

features that can be used as detection signatures. However,

Aligot fails in the O2 version again.

d) MD5: MD5 algorithm [64] is a widely used cryp-

tographic hash function to generate message digest. It pro-

duces a 128-bit hash value for any input message. The input

message is split into chunks of 512-bit and then processed

in a main loop. We use the transformations in the main loop

as the reference implementation. CryptoSearcher, Aligot, and

CryptoHunt successfully detect the clean version of MD5.

Typically, there is an initial value for the digest variable in

a MD5 implementation, such as 0x67452301 in OpenSSL.

Therefore, CryptoSearcher detects MD5 by searching for this

constant value in binaries. Since control obfuscation does not

change these constants and the input/output variables in a loop

body, CryptoSearcher and Aligot is still able to detect MD5

in O1 option. However, after adding data obfuscation with O2

option, only CryptHunt detects MD5 algorithm.

e) RSA: The RSA cryptographic algorithm [65] is one of

the most widely used public-key cryptosystems. RSA achieves

this asymmetric goal based on the computation difficulty of

factoring the product of two large prime numbers. Therefore,

typically a RSA implementation includes a specific method

to represent large integer numbers. Due to the difference

between varieties of implementations, this representation can

be viewed as an encoding of inputs and outputs. So this “built-

in” data encoding makes detection of RSA more difficult than

of other cryptographic algorithms. Table II shows that all of

the peer tools fail to identify the RSA algorithm. We find

out three reasons contributing to the poor detection result.

First, RSA reveals no evident static features and therefore the

tools such as CryptoSearcher and Findcrypto2 are not able

to detect it. Second, for Aligot, the big number encoding

in OpenSSL causes the extracted loop I/O parameters from

binary code cannot be directly matched to the reference

implementation. In contrast, CryptoHunt takes advantage of bit

precise formulas so as to accurately identify the semantically

equivalent operations. At last, RSA’s modular exponentiation

implementation usually contains a main loop which matches

the model in Figure 4(b). Each iteration of the loop could goes

into two branches, either one multiplication or one squaring

and a multiplication. Aligot’s incomplete loop model causes

it to miss the main loop and to fail to detect RSA.

1 void decipher(uint32_t v[2], uint32_t const key[4],
2 unsigned int num_rounds) {
3 unsigned int i;
4
5 uint32_t v0=v[0], v1=v[1];
6 uint32_t delta=0x9E3779B9, sum=delta*num_rounds;
7
8 for (i=0; i < num_rounds; i++) {
9 v1 -= (((v0<<4)^(v0>>5))+v0) ^ (sum+key[(sum>>11) & 3]);

10 sum -= delta;
11 v0 -= (((v1<<4)^(v1>>5))+v1) ^ (sum+key[sum & 3]);
12 }
13 v[0] = v0; v[1] = v1;
14 }

Figure 10: A reference implementation of XTEA’s decryption.

1 unsigned int num_rounds = 11, i;
2
3 uint32_t v0, v1;
4 uint32_t delta = 0x61C88647, sum = 0xCC623AF3;
5
6 for (i=0; i < num_rounds; i++) {
7 v1 -= (((v0<<4)^(v0>>5))+v0) ^ (sum+key[(sum>>11) & 3]);
8 sum -= delta;
9 v0 -= (((v1<<4)^(v1>>5))+v1) ^ (sum+key[sum & 3]);

10 }

Figure 11: The decryption function in an Apache Module

injection malware.

B. Answer to RQ1: Individual Implementations

In addition to the standard implementation, some crypto-

graphic algorithms allow users to customize some key values

to generate a new version. XTEA is such an example. XTEA

is the extended version of TEA. One important enhancement is

that the number of rounds is not fixed in XTEA, but 64 rounds

is suggested. Figure 10 shows a reference implementation

of the decryption procedure in XTEA. However, malware

authors have already abused such flexibility to produce new

variations to evade detection. A recent study [33] reports that a

variant of XTEA is used in an Apache module injection attack.

We reverse engineer the Apache module’s binary code and

manually recover the new XTEA version. Figure 11 presents

the core part of the new XTEA in C code.

In Figure 11, we can observe that the malware author

modified XTEA algorithm by replacing the original magic

number 0x9E3779B9 with 0x61C88647. He also used 11

rounds of transformation rather than the suggested 64 rounds.

In order to show whether CryptoHunt can detect this modified

version of XTEA, we implement the function in Figure 11 as

a C program. The source code shown in Figure 10 is used

as the reference implementation. Similar to the evaluation on

crypto libraries, we compile the testing program with different

obfuscation options N, O1, and O2. We also run other detection

tools to compare with CryptoHunt. The result is shown in

Table III.

From the result, we can see that only CryptoHunt detected

the modified XTEA in all three versions. Because the malware

author changes the magic number and rounds, all static tools

based on these signatures fail to detect it. Particularly, due

933

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

Table III: Evaluation result on an XTEA variant from malware.

Algo Obf F
in
d
cr
y
p
to
2

S
ig
n
sr
ch

C
ry
p
to
S
ea
rc
h
er

D
F
G
Is
o
m

K
er
ch
k
h
o
ff
s

A
li
g
o
t

C
ry
p
to
H
u
n
t

Modified XTEA
N � �
O1 �
O2 �

to the new magic number, the computation in the loop body

changes. Therefore, input and output values in the modified

version do not match the reference implementation, which

causes Aligot to deliver a poor detection result. DFGIsom

correctly extracts and match the DFG so it can identify

the modified XTEA in the unobfuscated version. This case

study shows that CryptoHunt is able to catch the crucial

transformations related to cryptographic functions and ignore

the differences introduced by obfuscation and modification to

the original algorithm.

C. Answer to RQ1: Malware Samples

Table IV shows the evaluation results on malware samples

we collect from the Internet, including now-infamous crypto-

ransomware. RansomCrypt is a ransomware sample. When

first run on a system, it iterates all files and encrypts them

using TEA. Another ransomware sample, Locky, utilizes AES

to encrypt files in victim’s computer. Sality malware code

has two sections; the first section decrypts the second section

using RC4 and redirects the execution to the beginning of

the second section. Waledac malware sample runs MD5 to

generate a unique ID for every bot. The notorious CryptoWall

ransomware encrypts a wide variety of files in the compro-

mised computer using RSA.

From Table IV, we can see that many detection tools are

able to identify TEA in RansomCrypt. It’s because Ran-

somCrypt uses the standard TEA algorithm with only slight

obfuscation. However, in other crypto algorithms, most of

the detection tools fail. One reason is that usually malware

authors call Windows Crypto API in the malware and apply

obfuscation methods to hide the API call address. The malware

itself does not include the crypto algorithm implementation.

Therefore, signature-based tools fail to detect the crypto al-

gorithms. Aligot fails to detect AES in Locky due to the

implementation difference between OpenSSL and Windows

crypto API. It also fails to detect RSA for the similar reasons

we discussed in Section XI-A4: 1) big-integer encoding; 2)

incomplete loop identification.

D. Answer to RQ2: Normal Programs

Too many false positives limit cryptographic function de-

tection’s application in practice. In this section, we test

CryptoHunt with a set of normal programs to evaluate its

false positives. As shown in Table V, our dataset includes

GNU core utilities, compression tools, and lightweight server

programs. We choose compression tools because they also

Table IV: Evaluation result on malware samples.

Malware Algo F
in
d
cr
y
p
to
2

S
ig
n
sr
ch

C
ry
p
to
S
ea
rc
h
er

D
F
G
Is
o
m

K
er
ch
k
h
o
ff
s

A
li
g
o
t

C
ry
p
to
H
u
n
t

RansomCrypt TEA � � � � �
Locky AES �
Sality RC4 � �

Waledac MD5 � �
CryptoWall RSA �

Table V: False positive evaluation dataset.

Category Programs
Core Utilities ls, cp, mv, cat, head

Compression tools Gzip, bzip2, 7-zip
Server thttpd, lighttpd

Table VI: CryptoHunt’s offline analysis performance on

OpenSSL.

Time (min) TEA AES RC4 MD5 RSA
Loop identification 12.7 23.1 21.5 24.8 33.2
Variable mapping 0.7 2.6 1.9 2.1 3.4
Verification 2.3 4.1 4.5 5.2 6.7
Total 15.7 30.8 27.9 32.1 43.3

contain intensive bitwise operations, and server programs

contain a large number of loops. Our test dataset includes two

groups. The first is the original programs without any change.

In the other group, we inject magic numbers which could

be used by crypto detection tools such as 0x9E3779B9. The
second group mimics possible malware attacks. They are likely

to insert known signatures into benign programs to mislead

detection tools. However, our result shows that CryptoHunt

reports no cryptographic function detected in all cases. That

means CryptoHunt has no false positive in our test dataset.

E. Answer to RQ3: Overall Performance

In this section, we provide the answer to RQ3 about Cryp-

toHunt’s performance. There are two phases when analyzing

using CryptoHunt, trace logging and offline analysis. We take

advantage of Pin [58] to record the execution trace. The online

trace logging overhead is typically 5-6X slowdown. Table VI

presents the offline analysis performance of CryptoHunt. We

record the running time of different components in Crypto-

Hunt. The most time-consuming part is loop identification

since it goes over the whole trace multiple times and tries

to identify nested loops. Based on our observation, the nested

loop level significantly increases the loop identification time.

Another factor that affects the performance is the number of

input and output variables of the loops. More variables will

cause the variable mapping algorithm generate more mapping

candidates, which potentially raise the chance of launching a

theorem prover. Compared with Aligot’s result, which usually

takes more than 6 hours to analyze one execution trace,

CryptoHunt delivers much better performance.

934

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

Table VII: Evaluation of the Mapping Algorithm. The second

column shows the number of loops. The third column shows

the number of mapping variable candidates. “NM” stands

for “No mapping”, which means the number of STP queries

without the mapping algorithm. Similarly, the column “M”

shows the number of STP queries with the mapping algorithm.

Algorithms Loops Vars
of STP Queries

NM M Ratio (%)
TEA 7 41 2825 173 6.1
AES 13 96 7138 351 4.9
RC4 9 73 6055 337 5.6
MD5 8 77 8301 429 5.2
RSA 15 89 15521 803 5.2

F. Answer to RQ3: Mapping Algorithm

In this section, we present the experimental data to show the

performance improvement introduced by our guided fuzzing

approach, which aims to reduce the number of symbolic vari-

ables to be verified by a theorem solver. The data is collected

in the OpenSSL evaluation in Table II. We collect the number

of identified loops, number of mapping variables candidates,

and number of STP queries. The result is shown in Table VII.

In order to compare with the mapping algorithm, we also

implement a naive mapping procedure, which generates every

possible combination. However, the naive mapping outputs

too many candidates. Thus we add some simple heuristics to

reduce the candidate number. The reduced number is shown

in the “NM” row. From the data, we can see that our mapping

algorithm reduce about 95% STP queries on average.

XII. DISCUSSION

Since CryptoHunt works with adversaries, we have to

consider how a skilled attacker could circumvent CryptoHunt

once our approach is known. In this section, we discuss Cryp-

toHunt’s limitations, possible attacks, and countermeasures,

which also light up our future work. First, like any binary

dynamic analysis approach, one limitation of CryptoHunt

is its incomplete path coverage. Typically, CryptoHunt can

detect cryptographic functions exhibiting during run time. One

way to increase the path coverage is to leverage automatic

input generation techniques [41], [73]. The static analysis

may consider multiple paths. However, the various obfuscation

methods adopted by malware authors will undoubtedly impede

the accurate static analysis [26]. The best way to reconcile such

tradeoff is still a hot subject of research in security analysis.

We believe CryptoHunt is practical in analyzing obfuscated

malware.

Second, our prototype is not well optimized for perfor-

mance. For example, CryptoHunt’s online logging imposes

5-6X slowdown on average. We can rely on pervasive multi-

core architectures to parallelize dynamic instrumentation [74]

for better runtime performance. Meanwhile, the performance

of CryptoHunt’s offline analysis depends on the trace size. The

loop detection will become performance bottleneck when the

trace size is too large. We leave addressing the performance

issue as our future work.

Another threat to CryptoHunt is environment-sensitive mal-

ware [75], [76], [77]. Since we run malware with Pin, a

malware sample can detect itself running in Pin instead of

the physical machine and then quit immediately. A possible

countermeasure to such sandbox environment check is analyz-

ing malware in a transparent analysis platform via hardware

virtualization (e.g., Ether [78]).

Our symbolic variable mapping depends on the output of

our backward slicing, which already filters out irrelevant in-

structions. However, attackers can defeat it by adding artificial

dependencies between normal data flow and redundant code.

In an extreme case, the sliced segment could contain all the

executed instructions. While such an attack could reduce the

efficacy of CryptoHunt, at the same time it also requires

extensive efforts and high cost for attackers. In summary,

CryptoHunt significantly raises the bar for skilled cybercrim-

inals to defeat our approach.

XIII. CONCLUSION

Nowadays cryptographic functions have been widely

adopted by malware developers to disguise their payloads,

escape from network analysis, and in general, hide their ma-

licious behaviors. Detecting cryptographic functions in binary

code can help security analysts to figure out malicious intents

and design defensive solutions. However, due to the prevalence

of code obfuscation techniques, cryptographic function detec-

tion has become a very challenging work. Existing detection

methods are far from mature. Their effects are restricted when

handling obfuscated binary code. In this paper, we propose a

new technique called bit-precise symbolic loop mapping to first
capture the specific features of cryptographic algorithms with

boolean formulas, which are later used as signatures to effi-

ciently match possible cryptographic algorithms in obfuscated

binary code. We have implemented our approach called Cryp-

toHunt and evaluated it with a set of cryptographic algorithms

under different obfuscation schemes and combinations. Our

comparative experiments show that CryptoHunt outperforms

existing work in terms of better obfuscation resilience and

broader detection scope.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable

feedback. This research was supported in part by the Na-

tional Science Foundation (NSF) grants CNS-1223710 and

CCF-1320605, and the Office of Naval Research (ONR)

grants N00014-13-1-0175, N00014-16-1-2265, and N00014-

16-1-2912. Ming was also supported by the University of

Texas System Rising STARs Program.

REFERENCES

[1] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat:
Automatic reverse engineering of encrypted messages,” in Proceedings
of the 14th European Conference on Research in Computer Security
(ESORICS’09), 2009.

[2] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS’09), 2009.

935

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

[3] J. Calvet, C. R. Davis, and P.-M. Bureau, “Malware authors don’t learn,
and that’s good!” in Proceedings of the 4th International Conference on
Malicious and Unwanted Software (MALWARE’09), 2009.

[4] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in Proceedings of the 36th IEEE Symposium on Security
& Privacy, 2015.

[5] K. A. Roundy and B. P. Miller, “Binary-code obfuscations in prevalent
packer tools,” ACM Computing Surveys, vol. 46, no. 1, 2013.

[6] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the Gordian Knot: A Look Under the Hood of Ransomware Attacks,”
in Proceedings of the 12th International Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA’15), 2015.

[7] Bromium Labs, “Understanding Crypto-Ransomware,” http://www.
bromium.com/sites/default/files/bromium-report-ransomware.pdf.

[8] F. Leder and T. Werner, “Know your enemy: Containing conficker,” The
Honeynet Project, Tech. Rep., 2009.

[9] P. Porras, H. Saidi, and V. Yegneswaran, “Conficker C P2P Protocol and
Implementation, September 2009.”

[10] G. Tenebro, “Waledac–an overview,” https://www.symantec.com/
connect/blogs/waledac-overview, 2009, Symantec Official Blog.

[11] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: Cryptographic
function identification in obfuscated binary programs,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security
(CCS’12), 2012.

[12] F. Gröbert, C. Willems, and T. Holz, “Automated identification of
cryptographic primitives in binary programs,” in Proceedings of the 14th
International Conference on Recent Advances in Intrusion Detection
(RAID’11), 2011.

[13] X. Li, X. Wang, and W. Chang, “CipherXRay: Exposing cryptographic
operations and transient secrets from monitored binary execution,” IEEE
Transactions on Dependable and Secure Computing, vol. 11, no. 2,
March 2014.

[14] N. Lutz, “Towards revealing attacker’s intent by automatically decrypt-
ing network traffic,” Mémoire de maıtrise, ETH Zürich, Switzerland,
2008.

[15] P. Lestringant, F. Guihéry, and P.-A. Fouque, “Automated identification
of cryptographic primitives in binary code with data flow graph isomor-
phism,” in Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’15), 2015.

[16] C. H. Malin, E. Casey, and J. M. Aquilina, Malware Forensics: Inves-
tigating and Analyzing Malicious Code. Syngress, 2008.

[17] W. Yan, Z. Zhang, and N. Ansari, “Revealing packed malware,” IEEE
Security & Privacy, vol. 6, no. 5, pp. 65–69, 2008.

[18] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć, and D. Song,
“Input generation via decomposition and re-stitching: Finding bugs in
malware,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS’10), 2010.

[19] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing
with application to malware lineage inference,” in Proceedings of the
30th IFIP SEC 2015 International Information Security and Privacy
Conference (IFIP SEC’15), 2015.

[20] ——, “MalwareHunt: semantics-based malware diffing speedup by
normalized basic block memoization,” Journal of Computer Virology
and Hacking Techniques, 2016.

[21] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security and Privacy, vol. 9, no. 5, 2011.

[22] I. Levin, “Draft Crypto Analyzer (DRACA),” http://www.literatecode.
com/draca.

[23] L. Auriemma, “Signsrch tool,” http://aluigi.altervista.org/mytoolz.htm,
tool for searching signatures inside files.

[24] F. Matenaar, A. Wichmann, F. Leder, and E. Gerhards-Padilla, “CIS:
The crypto intelligence system for automatic detection and localization
of cryptographic functions in current malware,” in Proceedings of the
7th International Conference on Malicious and Unwanted Software
(MALWARE’12), 2012.

[25] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS’03), 2003.

[26] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC’07), 2007.

[27] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals,” in Proceedings of the 16th USENIX Security Symposium
(USENIX Security’07), 2007.

[28] D. D. Hosfelt, “Automated detection and classification of cryptographic
algorithms in binary programs through machine learning,” Master’s
thesis, Johns Hopkins University, March 2015.

[29] R. Zhao, D. Gu, J. Li, and R. Yu, “Detection and analysis of crypto-
graphic data inside software,” in Proceedings of the 14th International
Conference on Information Security (ISC’11), 2011.

[30] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, 2009, ch. 4.4, pp. 258–276.

[31] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, 2012, ch. 13,
pp. 269–296.

[32] P. Schmitt, “A Different Kind of Crypto: Crypto Algorithms Designed
for Payload Obfuscation,” BlackHat 2014.

[33] J. Grunzweig, “Digging into the new apache injection
module,” https://www.trustwave.com/Resources/SpiderLabs-Blog/
Digging-Into-the-New-Apache-Injection-Module/, 2013, SpiderLabs
Blog.

[34] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” The University of Auckland, Tech. Rep., 1997.

[35] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proceedings of International Con-
ference on Dependable Systems and Networks (DSN’01), 2001.

[36] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-
silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL’98), 1998.

[37] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella,
and R. Tiella, “Assessment of source code obfuscation techniques,” in
Proceedings of the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM’16), 2016.

[38] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 17th Network
and Distributed System Security Symposium (NDSS’10), 2010.

[39] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse engineer-
ing of types in binary programs,” in Proceedings of the 18th Network
and Distributed System Security Symposium (NDSS’11), 2011.

[40] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[41] P. Godefroid, M. Y. Levin, and D. Molnar., “Automated whitebox fuzz
testing,” in Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), 2008.

[42] J. Vanegue, S. Heelan, and R. Rolles, “SMT solvers for software
security,” in Proceedings of the 6th USENIX Conference on Offensive
Technologies (WOOT’12), 2012.

[43] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proceedings of the
International Conference on Software Engineering (ICSE’13), 2013.

[44] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.,
“EXE:automatically generating inputs of death,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS’06),
2006.

[45] C. Cadar, D. Dunbar, and D. Engler., “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI’08), 2008.

[46] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Proceedings of the 23rd international conference
on computer aided verification (CAV’11), 2011.

[47] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in 4th International
Conference on Information Systems Security. Keynote invited paper,
2008.

[48] D. Gao, M. Reiter, and D. Song, “BinHunt: Automatically finding
semantic differences in binary programs,” in Proceedings of the 10th
International Conference on Information and Communications Security
(ICICS’08), 2008.

[49] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE’14), 2014.

936

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

[50] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
23rd USENIX Security Symposium (USENIX Security’14), 2014.

[51] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P’15), 2015.

[52] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and T. H. B. Kuan,
“BinGo: Cross-architecture cross-os binary search,” in Proceedings of
the 2016 ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE’16), 2016.

[53] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, 2017.

[54] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse
engineering obfuscated code,” in Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE’05), 2005.

[55] J. Ming, D. Xu, L. Wang, and D. Wu, “LOOP: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15), 2015.

[56] L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack: Fast,
generic, and safe unpacking of malware,” in Proceedings of the 23rd
Annual Computer Security Applications Conference(ACSAC’07), 2007.

[57] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: In-
termediate language and tools for analysis and transformation of C
programs,” in Proceedings of the 11th International Conference on
Compiler Construction (CC’02), 2002.

[58] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI’05), 2005.

[59] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUnpack:
Automating the hidden-code extraction of unpack-executing malware,”
in Proceedings of the 2006 Annual Computer Security Applications
Conference (ACSAC’06), 2006.

[60] W. Zhu, C. Thomborson, and F.-Y. Wang, “Applications of homomorphic
functions to software obfuscation,” in Proceedings of the 2006 Inter-
national Workshop on Intelligence and Security Informatics (WISI’06),
2006.

[61] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Proceedings of the International Conference on Computer
Aided Verification (CAV’07), 2007.

[62] D. J. Wheeler and R. M. Needham, “Tea, a tiny encryption algorithm,”
in Fast Software Encryption. Springer, 1994, pp. 363–366.

[63] J. Daemen and V. Rijmen, The design of Rijndael: AES–the advanced
encryption standard. Springer Science & Business Media, 2013.

[64] R. Rivest, “The MD5 Message-Digest Algorithm,” http://www.rfc-base.
org/txt/rfc-1321.txt.

[65] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[66] Chun, “x3chun’s cryptosearcher,” http://x3chun.reteam.org/, 2004.
[67] I. Guilfanov, “Ida-pro/plugins/findcrypt2,” https://www.aldeid.com/wiki/

IDA-Pro/plugins/FindCrypt2, 2015, aldeid.
[68] C. Eagle, The IDA pro book: the unofficial guide to the world’s most

popular disassembler. No Starch Press, 2011.
[69] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of

the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.
[70] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM

– software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, 2015.

[71] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Proceedings of the 2010 International Conference on Broadband,
Wireless Computing, Communication and Applications, 2010.

[72] D. Williams, “The tiny encryption algorithm (tea),” Network Security,
pp. 1–14, 2008.

[73] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proceedings of the 2007 IEEE Symposium of
Security and Privacy, 2007.

[74] Q. Zhao, I. Cutcutache, and W.-F. Wong, “PiPA: Pipelined profiling and
analysis on multicore systems,” ACM Transactions on Architecture and
Code Optimization, vol. 7, no. 3, Dec. 2010.

[75] D. Kirat and G. Vigna, “MalGene: Automatic extraction of malware
analysis evasion signature,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS’15), 2015.

[76] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in Proceedings of the 14th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID
2011), Menlo Park, CA, USA, September 2011.

[77] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal analysis-
based evasive malware detection,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, 2014.

[78] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2008.

937

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 27,2024 at 14:40:36 UTC from IEEE Xplore. Restrictions apply.

