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Abstract—Programs that take highly-structured files as inputs
normally process inputs in stages: syntax parsing, semantic check-
ing, and application execution. Deep bugs are often hidden in the
application execution stage, and it is non-trivial to automatically
generate test inputs to trigger them. Mutation-based fuzzing gen-
erates test inputs by modifying well-formed seed inputs randomly
or heuristically. Most inputs are rejected at the early syntax pars-
ing stage. Differently, generation-based fuzzing generates inputs
from a specification (e.g., grammar). They can quickly carry the
fuzzing beyond the syntax parsing stage. However, most inputs
fail to pass the semantic checking (e.g., violating semantic rules),
which restricts their capability of discovering deep bugs.
In this paper, we propose a novel data-driven seed generation

approach, named Skyfire, which leverages the knowledge in the
vast amount of existing samples to generate well-distributed seed
inputs for fuzzing programs that process highly-structured inputs.
Skyfire takes as inputs a corpus and a grammar, and consists of
two steps. The first step of Skyfire learns a probabilistic context-
sensitive grammar (PCSG) to specify both syntax features and
semantic rules, and then the second step leverages the learned
PCSG to generate seed inputs.
We fed the collected samples and the inputs generated by

Skyfire as seeds of AFL to fuzz several open-source XSLT and
XML engines (i.e., Sablotron, libxslt, and libxml2). The results
have demonstrated that Skyfire can generate well-distributed
inputs and thus significantly improve the code coverage (i.e., 20%
for line coverage and 15% for function coverage on average)
and the bug-finding capability of fuzzers. We also used the
inputs generated by Skyfire to fuzz the closed-source JavaScript
and rendering engine of Internet Explorer 11. Altogether, we
discovered 19 new memory corruption bugs (among which there
are 16 new vulnerabilities) and 32 denial-of-service bugs.

I. INTRODUCTION

Fuzzing is an automatic random testing technique, which was

first introduced in early 1990s to analyze the reliability of UNIX

utilities [1]. Since then, it has become one of the most effective

and scalable testing techniques to find vulnerabilities or crashes

in commercial off-the-shelf (COTS) software, and hence has

been widely used by mainstream software companies such as

Microsoft [2], Google [3], and Adobe [4] to ensure the quality

of their software products.

Fuzzing feeds a large amount of test inputs to the target

program in the hope of triggering unintended program behaviors

and finding bugs. The quality of the test inputs is one of the

most important factors that influence the effectiveness and

efficiency of fuzzers [5, 6]. Inputs are usually constructed in

mutation-based and/or generation-based methods. Mutation-

based method generates inputs by modifying well-formed seed

inputs (e.g., bit flipping and token insertion). Such modifications

can be totally random [1], or guided by code coverage [7], taint
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Fig. 1: Stages of Processing Highly-Structured Inputs

analysis [8, 9] that identifies those interesting bytes to mutate,

symbolic execution [10, 11, 12] that relies on constraint solving

to systematically explore execution paths, or a combination of

taint analysis and symbolic execution [13, 14].

These guided mutation-based methods can effectively fuzz

programs that process compact and unstructured data formats

(e.g., images and videos). However, they are less suitable for

programs that process highly-structured inputs (e.g., XSL and

JavaScript). Such programs often process the inputs in stages,

as shown in Fig. 1, i.e., syntax parsing, semantic checking,

and application execution. Most malformed inputs generated

by mutation-based fuzzing fail to pass the syntax parsing and

thus rejected at an early stage of processing, which makes the

fuzzers spend a large amount of time struggling with syntax

correctness and heavily limits them to find deep bugs.

On the other hand, generation-based fuzzing constructs inputs

from a specification, e.g., input models [15, 16, 17] that specify

the format of data chunks and integrity constraints, and context-

free grammars [18, 19, 20, 21] that describe the syntax features.

Naturally, these model-based or grammar-based fuzzing can

generate inputs that easily pass integrity checking (e.g., check-

sum) or grammatical checking, quickly carrying the fuzzing

exploration beyond the syntax parsing stage. In that sense, these

approaches can significantly narrow down the search space of

fuzzing than those mutation-based fuzzing approaches.

However, for simple application of generic generational

fuzzing, majority of the test cases are usually unable to pass

the semantic checking. Meanwhile, it is often prohibitively

expensive to systematically generate semantic valid test cases.

This is a well-known problem of implementing a smart

fuzzer. For example, an XSLT engine often checks whether

an attribute can be applied on an element. If this semantic

rule is violated, an “unexpected attribute name” message will

be prompted, and the program will abort further execution.

Such semantic rules are in fact implemented on a element-
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Fig. 2: The Overview of Our Approach

specific basis. As a result, only a small portion of the inputs

generated from generic generation-based fuzzing can reach

the application execution stage, where the deep bugs normally

hide; and a large part of the application code is unreached.

To further generate semantically-valid inputs, some grammar-

based fuzzing approaches [22, 23, 24] have been proposed to

use hard-coded or manually-specified generation rules to ex-

press semantic rules the inputs generated should satisfy. How-

ever, different programs often implement different sets of se-

mantic rules (e.g., for XSLT 1.0 and 2.0); and it is daunting and

labor-intensive, or even impossible to manually express all the

required semantic rules.

In this paper, we propose a novel data-driven seed generation

approach, named Skyfire1. It leverages the vast amount of sam-

ples (i.e., corpus) to automatically extract the knowledge of

grammar and semantic rules, and utilizes such knowledge to

generate well-distributed seed inputs for fuzzing programs that

process highly-structured inputs. In that sense, Skyfire is or-

thogonal to mutation-based fuzzing approaches, providing high-

quality seed inputs for them and improving their efficiency and

effectiveness for programs that process highly-structured inputs.

Besides, Skyfire advances the existing generation-based fuzzing

approaches, i.e., carrying the fuzzing exploration beyond the

semantic checking stage to reach the application execution

stage to find deep bugs without any manual specification tasks.

Basically, Skyfire takes as inputs a corpus and a grammar,

and generates seed inputs in two steps, as shown in Fig. 2. The

first step parses the collected samples (i.e., the corpus) based

on the grammar into abstract syntax trees (ASTs), and learns

a probabilistic context-sensitive grammar (PCSG), which

specifies both syntax features and semantic rules. Different from

a context-free grammar that is widely used in generation-based

fuzzing, each production rule in PCSG is associated with the

context where the production rule can be applied as well as the

probability that the production rule is applied under the context.

In the second step, Skyfire first generates seed inputs by iter-

atively selecting and applying a production rule, satisfying the

context, on a non-terminal symbol until there is no non-terminal

1An Autobot scientist in the film Transformers.

symbol in the resulting string. During this process, we prefer

low-probability production rules to high-probability production

rules for producing uncommon inputs with diverse grammar

structures. Skyfire then conducts seed selection to filter out the

seeds that have the same code coverage to reduce redundancy.

Finally, Skyfire mutates the remaining seed inputs by randomly

replacing a leaf-level node in the AST with the same type of

nodes based on the production rules, which introduces semantic

changes in a diverse way while maintaining grammar structures.

To evaluate the effectiveness and generality of our approach,

we collected the samples of XSL, XML, and JavaScript. Then,

we fed the collected samples and the inputs generated by

Skyfire as seeds to the AFL [7] to fuzz several open-source

XSLT and XML engines (i.e., Sablotron, libxslt, and libxml2).

We also used the inputs generated by Skyfire to fuzz the closed-

source JavaScript and rendering engine in Internet Explorer 11.

Evaluation results have indicated that, i) Skyfire can generate

well-distributed inputs, and hence effectively improve the code

coverage of fuzzers (i.e., 20% for line coverage and 15% for

function coverage on average); and ii) Skyfire can significantly

improve the capability of fuzzers to find bugs. We found 19

new memory corruption bugs (among which we discovered

16 new vulnerabilities), and 32 new denial of service bugs

(including stack exhaustion, NULL pointer dereference, and

assertion failure).

This work makes the following main contributions.

• We propose to learn a probabilistic context-sensitive gram-

mar (PCSG) from existing samples to describe syntax

features and semantic rules for highly-structured inputs.

• We propose to leverage PCSG to generate seed inputs with

diverse grammar structures, apply seed selection to reduce

seed redundancy, and perform seed mutation to introduce

semantic changes diversely, which aims to generate correct,

diverse, and uncommon seeds for fuzzing programs that

process highly-structured inputs.

• We evaluated Skyfire by using the inputs generated to fuzz

several XSLT, XML, and JavaScript/rendering engines,

and greatly improved the code coverage and discovered

16 new vulnerabilities.

The rest of this paper is structured as follows. Section II gives
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N = document, prolog, content, element, reference, attribute, chardata, misc, entityRef name
= comment, cdata, charRef, string, text, sea_ws pi

R = document  prolog misc element misc ,
prolog  '<?xml' attribute '?>',
element  '<' name attribute '/>' | '<' name attribute '>' content '</' name '>',
attribute  name = string,
content  chardata element reference cdata pi comment chardata ,
reference  entityRef charRef
chardata  text sea_ws,
misc  comment pi sea_ws, 

s = document

Fig. 3: Part of the Context-Free Grammar of XSL

the overview of our approach. Section III and IV respectively

elaborate the details of PCSG learning and seed generation.

Section V presents the implementation details and evaluates

our approach. Section VI discusses the related work before

Section VII draws the conclusions.

II. APPROACH OVERVIEW

In this section, we first clarify the target programs of our seed

generation approach with a running example of XSL, and then

present the overview of our approach.

A. Target Programs

In this work, we generate seeds for fuzzing programs that

process highly-structured inputs such as XSL, XML, JavaScript,

and HTML. Such programs usually exist in operating systems,

system libraries, and web browsers, where certain inputs use a

grammar to describe their syntax features. In particular, context-

free grammars are widely used for this purpose.

Definition 1. A context-free grammar (CFG) is a 4-tuple Gcf

= (N,Σ, R, s), where

• N is a finite set of non-terminal symbols,

• Σ is a finite set of terminal symbols,

• R is a finite set of production rules of the form α →
β1β2...βn, where α ∈ N,n ≥ 1, and βi ∈ (N ∪ Σ) for

i = 1...n,

• and s ∈ N is a distinguished start symbol.

Example 1. Fig. 3 reports part of the context-free grammar of

XSL. The start symbol is a document, which can be composed

of a prolog followed by an element. A prolog contains zero

or more attributes, which are pairs of attribute name and

value (e.g., version = “1.0”). An element has an element

name, zero or more attributes, and a content. The content
could be empty, text, element, reference, etc. Here we only

introduce the basic grammars of XSL that will be used in the

rest of the paper. A complete CFG of XSL can be found at [25].

On the other hand, highly-structured inputs need to satisfy

semantic rules. Such rules check the semantic validity of those

syntactically valid inputs, and prevent unexpected inputs from

getting executed.

Example 2. An XSLT engine often checks whether an

attribute can be applied on an element. If this semantic

rule is violated, an “unexpected attribute name” message will

be prompted, and the program will abort further execution.

B. Overview of Skyfire

To ensure the breadth and depth of the fuzzing exploration on

programs that process highly-structured inputs, our seed genera-

tion approach has three main goals. The first goal is to generate

correct seeds, which guarantees that most inputs generated are

syntactically and semantically valid. Such inputs can prevent

the fuzzing exploration from being stuck at the syntax parsing

and semantic checking stages and help to quickly make progress

towards the application execution stage.

The second goal is to generate diverse seeds, which ensures

the diversity of inputs with respect to grammars and semantic

rules. Such diversity can help to quickly cover different func-

tion modules, which are often difficult to reach by traditional

mutation-based fuzzing approaches.

The third goal is to generate uncommon seeds, which ensures

that inputs are uncommon enough to reach less-fuzzed program

code and trigger unintended program behaviors. Such inputs

often have a higher possibility to reveal new bugs than common

ones, and can be served as good seeds for fuzzers to mutate and

explore unexplored program behaviors.

Following these three main goals, we propose a data-driven

seed generation approach, named Skyfire. Fig. 2 presents the

overview of our approach, which takes as inputs a corpus and a

grammar, and generates seed inputs in two steps: learning and

generation. The output of Skyfire can be fed as seeds to a fuzzer

(e.g., AFL [7]) to start the fuzzing exploration. The corpus

contains a large amount of samples crawled from the Internet.

The grammar refers to a context-free grammar of samples,

which is often publicly available (e.g., grammars of different

languages can be found in the ANTLR community [26]).

The first step of Skyfire parses the samples according to the

given grammar into abstract syntax trees (ASTs), and learns a

probabilistic context-sensitive grammar (PCSG), which has a

pool of production rules. We propose PCSG to specify both

syntax features and semantic rules, while a CFG only describes

syntax features. In particular, each production rule in a PCSG

is associated with a context, where the production rule can be
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<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl=
"http://www.w3.org/1999/XSL/Transform">
<xsl:output xsl:use-attribute-sets=""/>

</xsl:stylesheet>

(a) A Sample XSL File (b) The Abstract Syntax Tree of the Sample XSL File

Fig. 4: A Running Example: A Sample XSL File (4a) and its Corresponding Abstract Syntax Tree (4b)

applied, to express semantic rules. Each production rule is also

associated with the probability that the production rule is

applied under the given context.
Based on the pool of extracted production rules, in the second

step, Skyfire first generates seed inputs in an iterative process,

where a production rule, whose context is satisfied, is applied

on a non-terminal symbol until there is no non-terminal symbol

in the resulting string. In this process, we prefer low-probability

production rules to high-probability ones to produce uncommon

inputs with diverse grammar structures. Then Skyfire performs

seed selection to filter out the seeds that have the same code

coverage to reduce seed redundancy. Finally, Skyfire mutates

the remaining seed inputs by randomly replacing a leaf-level

node in the AST with the same type of nodes according to the

production rules, which aims at introducing semantic changes in

a diverse way while maintaining the grammar structures.
In the following two sections, we will first elaborate how to

learn a PCSG to describe both syntax features and semantic

rules (Section III), and then we will explain how to generate

seed inputs based on the learned PCSG (Section IV).

III. PCSG LEARNING

In this section, we first introduce the probabilistic context-

sensitive grammar (PCSG), and then elaborate how to learn a

PCSG.

A. Probabilistic Context-Sensitive Grammar
Programs that process highly-structured inputs usually imple-

ment a set of semantic rules to check the semantic validity of the

inputs. Normally, due to the complexity of various semantic

rules, only a subset of the complete semantic rules are imple-

mented. In that sense, we need to model those implemented

semantic rules, and generate inputs most of which satisfy the

implemented semantic rules such that these inputs can have

the possibility to further challenge the application execution

implementation and the unimplemented semantic rules.

Example 3. Fig. 4a shows a sample XSL file, which is used

to illustrate some semantic rules. For clarity, we also give its

AST in Fig. 4b.

TABLE I: Examples of Semantic Rules

# Error Messages of Violating Semantic Rules Context

1. XML declaration not well-formed parent

2.
The root element that declares the document to be

an XSL style sheet is xsl:stylesheet or xsl:transform
parent and first sibling

3. Unexpected attribute {...} first sibling

4. Unbound prefix first sibling

5.
XSL element xsl:stylesheet can only contain XSL

elements
great-grandparent

6. Required attribute {...} is missing
first sibling and all

mandatory attributes

7. Duplicate attribute all siblings

• The two attribute nodes 5 and 6 in Fig. 4b can be either

version or encoding as their parent is a prolog node. If

they are other attributes, the error message “XML decla-

ration not well-formed” will be thrown by XSLT engines.

• The element node 3 can only be xsl : stylesheet or xsl :
transform because its parent is a document node and its

sibling is a prolog node. It reflects the semantic rule that

“the root element that declares the document to be an XSL

style sheet is xsl : stylesheet or xsl : transform”.

• The two attribute nodes 9 and 10 can only be version or

xmlns : xsl since their parent is an element node of type

xsl : stylesheet. Otherwise, the error message “unex-

pected attribute {...}” will be reported.

• The attribute node 10 can only be set to xmlns : xsl =
“http : //www.w3.org/1999/XSL/Transform” once

the attribute node 9 is set to version = “1.0” since its

parent is an element node of type xsl : stylesheet and

these two attributes are mandatory. Otherwise, the error

message “required attribute {...} is missing” is reported.

As shown in Example 3, semantic rules determine whether a

production rule can be applied on a non-terminal symbol, i.e.,

the application context of a production rule; and the context is

usually related to the non-terminal symbol’s parent, grandparent,

great-grandparent, and siblings. Table I reports several common

semantic rules (i.e., the error message of their violation and the

required context information), including the semantic rules il-

582

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 22,2024 at 23:04:16 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Part of the Learned Production Rules of XSL

ID Context Production Rule Probability

1 <null, null, null, null> document → prolog element 0.82

2 → element 0.18

3 <null, null, document, null> prolog → <?xml attribute attribute?> 0.646

4 → <?xml attribute?> 0.347

5 → ...

6 <null, null, document, prolog> element → <xsl:stylesheet attribute attribute attribute>content</xsl:stylesheet> 0.0034

7 → <xsl:transform attribute attribute>content</xsl:transform> 0.0001

8 → ...

9 <document, element, content, element> element → <xsl:template attribute>content</xsl:template> 0.0282

10 → <xsl:variable attribute>content</xsl:variable> 0.0035

11 → <xsl:include attribute/> 0.0026

12 → ...

13 <null, document, prolog, <?xml > attribute → version=“1.0” 0.0056

14 → encoding=“utf-8” 0.0021

15 → ...

16 <null, document, element, <xsl:stylesheet> attribute → xmlns:xsl=“http://www.w3.org/1999/XSL/Transform” 0.0068

17 → version=“1.0” 0.0052

18 → ...

19 <element, content, element, <xsl:text> content → chardata 0.0750

20 → reference 0.0073

21 → ...

lustrated in Example 3. Based on this understanding, we define

a context-sensitive grammar (CSG) to incorporate semantic

rules in the grammar.

Definition 2. Similar to CFG, a context-sensitive grammar

(CSG) is a 4-tuple Gcs = (N,Σ, R, s), where

• N is a finite set of non-terminal symbols,

• Σ is a finite set of terminal symbols,

• R is a finite set of context-aware production rules of the

form [c]α → β1β2...βn, where c is the context in the form

of 〈type of α’s great-grandparent, type of α’s grandparent,

type of α’s parent, value of α’s first sibling or type of

α’s first sibling if the value is null〉, α ∈ N,n ≥ 1, and

βi ∈ (N ∪ Σ) for i = 1...n,

• and s ∈ N is a distinguished start symbol.

Instead of capturing all kinds of semantic rules, we de-

fine the context in such a way that most semantic rules

can be expressed and they can be efficiently learned in the

learning step and efficiently checked in the generation step.

Notice that the first five semantic rules in Table I can be

captured, but the last two cannot be expressed due to the large

amount of information required to model the context. Currently

we think such hierarchical relations are sufficient in capturing

the diversity of the semantic rules, while keeping redundancy

low. However, the context can be extended (e.g., by using more

than one sibling and/or by using more or fewer ancestors) to

incorporate such semantic rules.

On the other hand, we need to generate inputs that are uncom-

mon enough to trigger exceptional program behaviors. Thus, we

define a probabilistic context-sensitive grammar (PCSG) to cap-

ture the frequency of a production rule in the corpus.

Definition 3. A probabilistic context-sensitive grammar

(PCSG) is a tuple Gp = (Gcs, q), where

• Gcs = (N,Σ, R, s) is a CSG,

• and q : R → R
+ assigns each production rule with a prob-

ability so that ∀α ∈ N :
∑

[c]α→β1β2...βn∈R

q([c]α → β1β2...βn) = 1.

Here R+ denotes the set of non-negative real numbers. Defi-

nition 3 ensures that for a given non-terminal symbol, the proba-

bility of the applicable production rules for all contexts sums to

one. In summary, by integrating both context and probability of

a production rule, a PCSG is more expressive than a CFG or a

CSG, which summarizes the knowledge of the samples in a

single data structure.

B. Learning a Probabilistic Context-Sensitive Grammar

Considering the vast amount of available samples on the In-

ternet, we propose to extract the knowledge inside the samples

to automatically and efficiently learn a PCSG. Our learning step

requires two inputs: samples and their grammar.

Given the grammar, we parse the samples into abstract syntax

trees (ASTs). Then, we traverse the ASTs to extract every

parent-children pair and the corresponding context information

(as defined in Definition 2), which correspond to the application

of a production rule α → β1β2...βn under a context c.

Example 4. In Fig. 4b, node 1 is the parent of nodes 2 and 3,

which forms a parent-children pair. This pair corresponds to the

application of document → prolog element under the context

〈null, null, null, null〉 as document is the root node. Nodes

4, 5, 6, and 7 are the children of node 2, which corresponds to

the application of prolog → <?xml attribute attribute ?>
under the context 〈null, null, document, null〉. Besides, node
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9 and node 16 correspond to the application of attribute →
version = “1.0” under context 〈null, document, element,
<xsl:stylesheet〉 where <xsl:stylesheet is the value of node

9’s first sibling.

Through counting the occurrence of each parent-children pair

under different contexts in the corpus, we can get the maximum

likelihood estimation for the probability of each production

rule under a context, i.e.,

q([c]α → β1β2...βn) =
count([c]α → β1β2...βn)

count(α)

where count([c]α → β1β2...βn) is the number of times that the

rule α → β1β2...βn is seen in all ASTs under the context c, and

count(α) is the number of times that α is seen in all ASTs.

Example 5. Table II shows part of the learned production rules

of XSL. We can see that, there are only two production rules (1

and 2) whose left-side is a document. Their context can only be

〈null, null, null, null〉, which is consistent with the fact that

document is the root node; and their probability is respectively

0.82 and 0.18. Besides, production rules 13 and 14 capture the

first semantic rule in Table I, while production rules 6, 7, and 8

reflect the second semantic rule in Table I. It is worth noting that

the probability of the production rules for element, attribute,

and content is very low because there are many different types

of elements, attributes, and contents in the corpus.

All the learned production rules are saved in a pool. They will

be used during the generation step to generate well-distributed

inputs, as will be introduced in Section IV. Notice that here we

adopt a simple learning method for the sake of efficiency, and

we will investigate the possibility to apply advanced learning

algorithms (e.g., deep learning [27]).

IV. SEED GENERATION

In this section, we elaborate how to generate seeds based on

the learned PCSG.

A. Seed Generation

Given the learned PCSG, we can generate a set of seed inputs

through left-most derivation (see Definition 4). Specifically, for

generating an input t, we can initially set t to the start symbol of

PCSG, and iteratively apply the following steps until there is no

non-terminal symbol in t: i) get the left-most non-terminal sym-

bol l in t and the corresponding context c, ii) randomly choose

a production rule r from Rl whose left-side is l given c, and iii)

apply r on l in t. This generation method, based on random left-
most derivation, is terminated when the time budget is reached,

or a predefined number of seed inputs are generated. Due to the

nature of PCSG, most inputs generated are correct with respect

to grammars and semantic rules. Notice that t is discarded if it

still contains non-terminals when the time budget is hit.

Definition 4. Given a PCSG Gp = ((N,Σ, R, s), q), a left-

most derivation is a sequence of symbols t0, ..., tn, where

• t0 = s, i.e., t0 contains only the start symbol,

Algorithm 1 Generating Seed Inputs from a PCSG

Input: the PCSG Gp = ((N,Σ, R, s), q)
Output: the set of seeds generated T
1: T := ∅
2: repeat
3: t := s // set the seed input to the start symbol
4: c := null // set the context to null
5: num := 0 // set the times of applying rules to 0
6: repeat
7: l := the left-most non-terminal symbol in t
8: update c according to l
9: Rl := the set of rules in R whose left-side is l given c

10: if random() < 0.9 then
11: heuristically choose a less-frequently applied and less-

complexity rule r from low-probability rules in Rl

12: else
13: heuristically choose a less-frequently applied and less-

complexity rule r from high-probability rules in Rl

14: end if
15: replace l in t with the right side of r
16: num := num+ 1
17: until there is no non-terminal symbol in t, or num == 200
18: T := T ∪ {t}
19: until time budget is reached, or enough seed inputs are generated

• tn ∈ Σ∗, i.e., tn is made up of terminal symbols, and Σ∗

denotes the set of all possible strings made up of sequences

of words taken from Σ,

• ti for i = 1, ..., n is derived from ti−1 by replacing the

left-most non-terminal symbol α (with context c) in ti−1

with certain β where [c]α → β is a production rule in R.

However, due to the randomness of choosing production rules

in the above generation method, some problems may arise. First,

the generation might become non-terminating since production

rules can be recursive. Hence, expanding a non-terminal symbol

by applying a recursive production rule can lead to a string

that includes the same non-terminal symbol again. For instance,

an element in XSL can contain a content, and the content
can contain another element. Further, this problem becomes

amplified when a production rule can contain many non-

terminal symbols. For example, a content can contain hundreds

of elements.

Second, the inputs generated might become unnecessarily

complex because of the production rules that are recursive (i.e.,

increasing the complexity in depth), or have many non-terminal

symbols (i.e., increasing the complexity in breadth). As a result,

the inputs generated can be very large in size, which might be

directly rejected by fuzzers (e.g., AFL [7] refuses to take inputs

that are larger than 1 MB by default).

To address these problems and follow our three main goals,

we propose a generation method based on heuristic left-most
derivation. Algorithm 1 describes the procedure of our method.

The key difference from the previous random generation method

is that, we design several heuristics into the left-most derivation

(Line 10, 11, 13, and 17) to heuristically choose a rule r
from Rl, whose left-side is l given the context c (Line 7–9).

Heuristic 1: Favor low-probability production rules. To gen-

erate uncommon inputs that have a relatively high chance to trig-

ger unintended program behaviors, we leverage the probability
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Fig. 5: An Example of the Seed Generating Procedure by Heuristically Applying the Left-Most Derivation

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl=
"http://www.w3.org/1999/XSL/Transform">
<xsl:output omit-xml-declaration="yes"/>

</xsl:stylesheet>

Fig. 6: The Input Mutated from Fig. 4a

of each rule to first partition Rl into high-probability rules RH
l

and low-probability rules RL
l , and then choose a rule according

to Heuristics 2 and 3 from RL
l with higher probability (i.e., 0.9)

than from RH
l (Line 10–13). Here we established 0.9 as a good

threshold value empirically. Notice that the partition is achieved

by sorting the rules based on the probability and finding the two

neighbor rules that have the maximum probability difference.

Heuristic 2: Favor low-frequency production rules, and re-
strict the application number of the same production rule.
To prevent rules from being densely or sparsely applied and thus

generate expressive inputs that have diverse grammar structures,

we record the history information about the application of a rule,

i.e., the frequency that a rule has been applied in the generation

of an input. In particular, we first trim those rules that have been

applied for 3 times (which is empirically established), and then

prefer the low-frequency rules to high-frequency rules.

Heuristic 3: Favor low-complexity production rules. To re-

duce the unnecessary complexity in breadth of inputs generated,

we use the number of non-terminal symbols in a rule to measure

the complexity of a rule, and favor low-complexity rules. With

Heuristic 2, we prefer low-frequency and low-complexity rules

when choosing a rule from RL
l or RH

l at Line 11 or 13.

Heuristic 4: Restrict the total number of rule applications.
To reduce the unnecessary complexity in depth of inputs gener-

ated, we empirically limit the total number of rule applications

to be 200 in the generation of an input (Line 17). With Heuristic

3, we also partially resolve the non-terminating problem so that

the generation step can quickly converge.

Example 6. Fig. 5 shows an example of our input generation by

heuristically applying left-most derivation to XSL. ti represents

the result string after applying a production rule. t0 is initialized

with the start symbol document. The generation is conducted

until no more non-terminal symbol is left, which is successfully

completed in 10 rule applications. In fact, this simple input is

the same one to Fig. 4; and it crashed the XSLT engine

Sablotron 1.0.3 [28]. Specifically, it triggers a buffer underflow

TABLE III: Statistics of Samples Crawled and Generated

Language XSL XML JavaScript

# of Unique Samples Crawled 18,686 19,324 525,647

# of Distinct Samples Crawled 671 732 NA

# of Distinct Seeds Generated by Skyfire 5,017 5,923 NA

that can be exploited to code execution.

B. Seed Selection

Our seed generation method can generate many inputs. How-

ever, not all inputs generated are unique and important. To select

unique inputs and reduce the seed redundancy, we use the code

coverage as the criterion to perform seed selection, which is also

the commonly-used criterion in fuzzers to keep a seed. Instead

of relying on fuzzers to reactively keep unique seeds through a

time-consuming procedure of mutation and execution, we select

the seeds in a proactive way before feeding them to fuzzers. In

particular, we use gcov [29] to obtain line coverage and function

coverage for open-source programs, and static analysis and

coverage tools built on PIN [30] to get basic block coverage

for closed-source programs. If one input triggers new block

coverage, we keep it as a seed.

C. Seed Mutation

After seed generation and selection, the inputs generated have

the diversity of grammar structures. To further ensure their se-

mantic diversity, we slightly mutate each input generated

by randomly replacing a leaf-level node in the AST with

the same type of nodes according to the production rules, to

provide an ad-hoc disturbance on leaf nodes distribution. In

other words, only the production rules whose right sides contain

only terminal symbols will be used in this mutation procedure.

Compared to those small-step mutations (e.g., byte flipping)

in fuzzers, ours can be seen as big-step mutations that can

hardly be achieved by fuzzers’ small-step mutations. It is very

difficult to get from version = “1.0” to encoding = “utf -8”
by randomly flipping bits. Finally, the inputs after mutation

can be fed to a fuzzer.

Example 7. Considering the input as shown in Fig. 4, we can

replace node 22 with another value of attribute type from the

pool of production rules. Fig. 6 shows such an input, mutated

from Fig. 4a by replacing node 22 with omit-xml-declaration
= “yes”.

585

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 22,2024 at 23:04:16 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Unique Bugs Found in Different XSLT and XML Engines

XSL XML

Unique Bugs (#) Sablotron 1.0.3 libxslt 1.1.29 libxml2 2.9.2/2.9.3/2.9.4

Crawl+AFL Skyfire Skyfire+AFL Crawl+AFL Skyfire Skyfire+AFL Crawl+AFL Skyfire Skyfire+AFL

Memory Corruptions (New) 1 5 8§ 0 0 0 6 3 11¶

Memory Corruptions (Known) 0 1 2† 0 0 0 4 0 4‡

Denial of Service (New) 8 7 15 0 2 3 2 1 3⊕

Total 9 13 25 0 2 3 12 4 18
§ CVE-2016-6969, CVE-2016-6978, CVE-2017-2949, CVE-2017-2970, and one pending report.
¶ CVE-2015-7115, CVE-2015-7116, CVE-2016-1835, CVE-2016-1836, CVE-2016-1837, CVE-2016-1762, and CVE-2016-4447; pending reports include

GNOME bugzilla 766956, 769185, 769186, and 769187. After Feb 9, 2017, it was communicated via GNOME bugzilla by Apple libxml2 maintainer
that the latter three reports will be addressed by a ’combined patch’ to report 764615 and 765468.

† CVE-2012-1530, CVE-2012-1525.
‡ CVE-2015-7497, CVE-2015-7941, CVE-2016-1839, and CVE-2016-2073.
⊕ GNOME bugzilla 759579, 759495, and 759675.

V. IMPLEMENTATION AND EVALUATION

We implemented Skyfire in Java with 3.1k lines of code. In

particular, we use Heritrix [31], an open-source, extensible, and

web-scale crawler project, to collect samples and establish

the corpus. For a given grammar, we use ANTLR [32] to

automatically generate the corresponding lexer and parser. The

lexer and parser generated can parse the collected samples into

ASTs to facilitate the learning and generation steps.

A. Evaluation Setup

To evaluate the effectiveness and generality of our approach,

we choose XSL, XML, as well as JavaScript, as the target lan-

guages for seed generation. The grammars of these languages

are available in the ANTLR community [26]. Note that XSL

and XML share the same grammar but have different semantic

rules.

Sample Collection. To collect samples, we conducted a

three-month crawling. During this period, we downloaded 5.3

TB of 21,507,025 web pages in total, including XSL files, XML

files, JavaScript files, HTML files, images, etc. We only

kept XSL, XML, and JavaScript files. After crawling, we

removed duplicated samples through computing their hash

values and removed invalid samples through parsing them

using ANTLR [32]. As reported in the first row in Table III,

we collected 18,686, 19,324, and 525,647 unique XSL, XML,

and JavaScript samples. Compared with JavaScript, XSL, and

XML are relatively rare resources, and thus the number of

XSL and XML samples are relatively small.

Target Programs. We used two open-source XSLT engines

Sablotron 1.0.3 [28] and libxslt 1.1.29 [33], the open-source

XML engine libxml2 2.9.2, 2.9.3, and 2.9.4 [34], and the

closed-source JavaScript/rendering engine in Internet Explorer

11 as the target programs for fuzzing. For open-source

projects, we compiled them with AddressSanitizer [35], and for

closed-source project, we enabled Page Heap and Application

Verifier [36].

• Sablotron is a efficient, compact, and portable XSL toolkit,

which implements XSLT 1.0, DOM Level 2, and XPath

1.0. It is an open-source project and subject to the Mozilla

Public License or the General Public License, and uses

Expat by James Clark as the XML parser. It is adopted

into Adobe PDF Reader and Adobe Acrobat.

• libxslt is the XSLT C library developed for the GNOME

project, which is based on libxml2. libxslt is used in

a variety of products such as Chrome browser, Safari

browser, and PHP 5.

• libxml2 is the XML C parser and toolkit developed for

the GNOME project, available open-source under the MIT

License. It is also widely used outside GNOME due to

its excellent portability and existence of various bindings.

It is used in Linux, Apple iOS/OS X, and tvOS. The

Google Patch Reward Program lists libxml2 as a core

infrastructure data parser [37].

• Internet Explorer is a discontinued series of graphical web

browsers developed by Microsoft and included as part of

the Microsoft Windows line of operating systems, starting

from 1995. Internet Explorer is one of the most widely

used web browsers.

AFL. In the experiments, we used AFL [7] as the fuzzer as it

is designed to be practical: it has modest performance overhead,

applies a variety of highly-effective fuzzing strategies and effort

minimization tricks, requires almost no configuration and scales

well to real-world programs. In particular, it uses a novel type of

compile-time instrumentation to discover interesting test inputs

that can trigger new internal states in the fuzzed program, which

substantially improves the coverage of the fuzzed program.

Fuzzing Approaches. First, we directly applied the sam-

ples crawled as well as the inputs generated by Skyfire to

fuzz several XSLT and XML engines. These approaches are

respectively referred to as Crawl and Skyfire. Then, we fed

the samples crawled and the inputs generated by Skyfire as

two sets of seeds to AFL [7] to fuzz the same XSLT and

XML engines. These approaches are referred as Crawl+AFL
and Skyfire+AFL. In the experiments, we compared these four

approaches. Note that, for JavaScript, we could not use AFL

since it is closed-source, and it is too large and slow for our

native port of Windows-AFL to fuzz. Instead, we applied the

inputs generated by Skyfire directly to fuzz Internet Explorer.
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TABLE V: New Vulnerabilities and Types

Vulnerability Type

CVE-2016-6978 Out-of-bound read

CVE-2016-6969 Use-after-free

Pending advisory 1 Double-free / UAF

CVE-2017-2949 Out-of-bound write

CVE-2017-2970 Out-of-bound write

CVE-2015-7115 Out-of-bound read

CVE-2015-7116 Out-of-bound read

CVE-2016-1762 Out-of-bound read

CVE-2016-1835 Use-after-free

CVE-2016-1836 Use-after-free

CVE-2016-1837 Use-after-free

CVE-2016-4447 Out-of-bound read

Pending advisory 2 OOB read / UAF

Pending advisory 3 Out-of-bound read

Pending advisory 4 Use-after-free

Pending advisory 5 Out-of-bound read

Seed Generation. Based on the guidelines in AFL, we need

to use the afl-cmin utility to identify a set of functionally distinct

seeds that exercise different code paths in the target program

when a large amount of seeds are available, which was the case

in our experiments. After using afl-cmin on the samples crawled,

we had 671 and 732 distinct XSL and XML samples, as shown

in the second row in Table III. For a fair comparison, we used

Skyfire to generate the same number of inputs to the samples

crawled for XSL, XML, and JavaScript. After using afl-cmin
on these inputs generated, we had 5,017 and 5,923 distinct

XSL and XML seeds, as shown in the last row in Table III.

Research Questions. Using the previous experiments setup,

we aim to answer the following research questions through the

experiments:

• RQ1: Can Skyfire generate good seeds for a fuzzer to

find bugs? (Section V-B)

• RQ2: Can Skyfire improve the code coverage of target

programs? (Section V-C)

• RQ3: Are the proposed PCSG and the four heuristics used

in Skyfire effective in generating seeds? (Section V-D)

• RQ4: How efficient is Skyfire? (Section V-E)

We ran the experiments with eight VirtualBox 5.0.4 [38] vir-

tual machines, each of which was configured with 8 CPUs

and 3GB RAM. Six of them ran Ubuntu 14.04, which were

used for fuzzing Sablotron, libxslt, and libxml2; and two

of them ran Windows 7, which were used for fuzzing Internet

Explorer 11. We have fuzzed XSLT and XML engines for

a span of 15 months, but we have just started to fuzz the

JavaScript and rendering engine in Internet Explorer 11 for

two months. For the ease of presentation, we will separately

discuss the preliminary results for JavaScript in Section V-G.

B. Vulnerabilities and Bugs Discovered (RQ1)

Table IV shows the unique bugs that were found in Sablotron,

libxslt, and libxml2 by Crawl+AFL, Skyfire, and Skyfire+AFL

Fig. 7: The Cumulative Number of Unique Bugs over Time

respectively. Notice that the Crawl approach used the well-

formed samples crawled and thus did not trigger any bugs.

Bug Results. Skyfire+AFL discovered 19 previously un-

known memory corruption bugs. However, Skyfire only found

eight of them, while Crawl+AFL only found seven of them.

Moreover, Skyfire+AFL discovered six known memory corrup-

tion bugs, but using Skyfire alone, we only found one of them

and Crawl+AFL found four of them. Further, Skyfire+AFL

found 21 new denial of service bugs (including stack exhaustion,

NULL pointer dereference, and assertion failure). Among them,

both Skyfire and Crawl+AFL only found ten. Notice that all the

bugs were found at the application execution stage (see Fig. 1).

To sum up, all the bugs discovered by Skyfire and Crawl+AFL

were also found by Skyfire+AFL, while Skyfire+AFL found

bugs that were not found by Skyfire or Crawl+AFL. These

results indicates that, Skyfire can provide good seed inputs

for a fuzzer, hence releasing the burden of finding good seeds

through continuous execution and mutation from the fuzzer, and

significantly improving the capability of the fuzzer to discover

bugs for programs that process highly-structured inputs.

Vulnerability Results. From the 19 previously unknown

memory corruption bugs, we successfully discovered 16 new

vulnerabilities whose types are shown in Table V. Ten of them

are out-of-bound read/write vulnerabilities, while seven of them

are user-after-free vulnerabilities; In total 11 CVE identifiers

are assigned, and five reports are still unresolved. For the

other three previously unknown memory corruption bugs in

Sablotron, they are not reproducible in the latest Adobe Reader.

Two of them have been internally fixed by Adobe since the

adoption of Sablotron 1.0.2, and one is no longer exploitable

due to code refactoring by Adobe. In addition, there are 21

new denial of service bugs, which are not exploitable. For

Sablotron, we did not send the bug reports to Adobe due to

low severity; for libxml2, we submitted three stack overflow

(i.e., stack exhaustion due to infinite recursion) reports at the

time of writing.

Capability to Keep Finding Bugs. Fig. 7 presents the cumu-

lative number of unique bugs over the whole fuzzing time. The

X axis denotes the number of days fuzzing was conducted, and

the Y axis denotes the cumulative number of unique bugs. It can

be seen that, both Skyfire+AFL and Crawl+AFL kept detecting

unique bugs in the first eight months, but Skyfire+AFL found
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TABLE VI: Line and Function Coverage of Sablotron, libxslt, and libxml2

Program Line Coverage (%) Function Coverage (%)

Name Lines Functions Crawl Crawl+AFL Skyfire Skyfire+AFL Crawl Crawl+AFL Skyfire Skyfire+AFL

Sablotron 1.0.3 10,561 2,230 34.0 39.0 65.2 69.8 29.8 32.6 48.1 50.1

libxslt 1.1.29 14,418 778 29.6 38.1 57.4 62.5 30.0 34.2 51.9 53.1

libxml2 2.9.4 67,420 3,235 13.5 15.3 22.0 23.8 15.7 16.3 24.1 25.9

TABLE VII: Detailed Code Coverage of Sablotron 1.0.3

File (.cpp)
#Bug Line Coverage (%) Function Coverage (%)

25 Crawl
Crawl

+AFL
Skyfire

Skyfire

+AFL
Crawl

Crawl

+AFL
Skyfire

Skyfire

+AFL

arena 0 86.8 92.1 92.1 92.1 85.7 85.7 85.7 85.7

base 0 45.7 45.7 92.6 92.6 61.5 61.5 84.6 84.6

context 1 31.8 44.9 79.6 90.6 41.0 51.3 84.6 87.2
datastr 2 69.5 70.3 79.1 82.4 68.5 69.4 79.3 81.1
decimal 3 8.9 8.9 66.5 91.1 28.0 28.0 72.0 72.0

domprovider 0 14.1 19.8 40.2 40.8 20.7 27.6 50.0 50.0

encoding 0 38.1 50.4 52.2 53.1 61.5 69.2 76.9 76.9

error 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

expr 1 31,4 52.6 87.0 90.3 38.1 61.9 79.4 80.4
hash 0 60.5 60.5 83.2 83.2 61.5 61.5 69.2 69.2

key 0 4.3 4.3 78.4 79.9 12.0 12.0 72.0 72.0

numbering 0 0.0 0.0 65.2 93.5 0.0 0.0 84.6 100.0

output 6 51.8 52.0 86.9 89.3 53.8 53.8 80.8 80.8
parser 0 67.8 69.1 81.8 94.9 45.7 45.7 82.9 97.1

platform 0 68.4 89.5 100.0 100.0 50.0 83.3 100.0 100.0

proc 0 41.2 42.7 67.9 68.7 36.2 40.0 66.2 66.2

sablot 0 23.3 23.3 23.3 23.3 19.0 19.0 19.0 19.0

sdom 0 0.2 0.2 0.2 0.2 1.4 1.4 1.4 1.4

situa 0 59.5 60.7 64.6 65.4 45.0 45.0 52.5 55.0

sxpath 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

tree 4 36.5 38.4 72.4 83.6 41.7 42.7 68.0 75.7
uri 0 48.3 48.3 70.8 72.9 60.0 60.0 75.0 75.0

utf8 4 34.3 34.3 62.7 64.9 38.9 38.9 66.7 66.7
vars 1 11.5 15.3 86.6 89.8 22.2 29.6 92.6 92.6
verts 3 30.9 31.7 72.0 76.5 38.3 39.5 57.5 62.3

bugs more effectively and more efficiently than Crawl+AFL. In

the next seven months, Crawl+AFL became extremely slow in

detecting unique bugs. Differently, Skyfire+AFL, on the other

hand, still continuously found unique bugs, although becoming

less efficient.

Based on the bug and vulnerability results from Table IV and

V and Fig. 7, we can positively answer RQ1 that Skyfire can

generate high-quality seed inputs for a fuzzer, hence making

the fuzzer keep detecting bugs and significantly improving

the fuzzer’s capability to discover bugs and vulnerabilities.

C. Code Coverage (RQ2)

Table VI reports the line and function coverage of Sablotron,

libxslt, and libxml2 before and after the 15-month fuzzing. The

first three columns report the lines of code and the number of

functions for each program. The other columns show the line

and function coverage achieved by the four approaches. Here

we only show the results for libxml2 2.9.4 and do not explicitly

TABLE VIII: Detailed Code Coverage of libxslt 1.1.29

File (.c)
#Bug Line Coverage (%) Function Coverage (%)

3 Crawl
Crawl

+AFL
Skyfire

Skyfire

+AFL
Crawl

Crawl

+AFL
Skyfire

Skyfire

+AFL

common 0 9.6 9.6 80.8 82.7 33.3 33.3 100.0 100.0

date 0 2.7 2.7 21.7 26.6 1.4 1.4 35.7 40.0

dynamic 0 3.1 3.1 3.1 3.1 33.3 33.3 33.3 33.3

exslt 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

functions 2 3.6 9.1 73.8 78.2 23.1 38.5 92.3 92.3
math 0 5.4 5.4 30.8 33.5 2.8 2.8 44.4 44.4

saxon 0 9.3 9.3 38.4 53.5 12.5 12.5 62.5 75.0

sets 0 7.2 7.2 56.8 58.6 12.5 12.5 62.5 62.5

strings 0 2.7 2.7 43.0 49.2 9.1 9.1 63.6 63.6

attributes 0 3.2 3.2 83.1 85.7 13.3 13.3 86.7 86.7

attrvt 0 65.2 91.3 93.8 95.0 83.3 100.0 100.0 100.0

documents 0 48.4 71.1 75.0 77.3 66.7 77.8 77.8 77.8

extensions 0 46.5 56.2 64.3 64.3 56.5 64.5 71.0 71.0

extra 0 11.5 38.5 47.9 47.9 20.0 40.0 60.0 60.0

functions 0 12.9 30.8 67.8 74.0 33.3 50.0 91.7 91.7

imports 0 60.9 89.9 89.1 89.9 85.7 85.7 85.7 85.7

keys 0 24.0 38.3 86.8 88.3 35.7 57.1 92.9 92.9

namespaces 0 37.1 50.6 74.7 82.9 57.1 57.1 71.4 71.4

numbers 0 0.0 0.0 52.3 87.6 0.0 0.0 52.5 93.8

pattern 0 46.2 62.5 81.4 86.7 57.6 63.6 75.8 78.8

preproc 0 70.7 78.4 94.7 96.5 89.7 89.7 100.0 100.0

security 0 23.5 26.1 53.0 55.7 46.2 46.2 69.2 69.2

templates 0 22.7 43.0 72.2 75.9 18.2 45.5 72.7 72.7

transform 1 41.1 55.7 72.2 77.8 49.3 62.7 74.6 76.1
variables 0 51.4 63.3 68.6 70.8 66.7 69.4 77.8 77.8

xslt 0 68.5 77.9 86.1 87.2 78.4 78.4 89.2 89.2

xsltlocale 0 1.7 1.7 29.7 89.0 16.7 16.7 66.7 66.7

xsltutils 0 22.6 29.5 48.3 56.7 34.1 34.1 48.8 48.8

libxslt-py 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

libxslt 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

testThreads 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xsltproc 0 28.4 30.0 30.5 30.5 42.9 42.9 42.9 42.9

show results for libxml2 2.9.2 and 2.9.3, since they have the

similar results.

Overall Coverage Results. For line coverage, our samples

crawled covered 34.0% lines of Sablotron, 29.6% lines of

libxslt, and 13.5% lines of libxml2. After the 15-month fuzzing,

AFL respectively increased their line coverage to 39.0%, 38.1%,

and 15.3%. On average, through AFL, 5.1% of the code was

further covered. For Skyfire, the inputs generated covered

65.2% lines of Sablotron, 57.4% lines of libxslt, and 22.0%

lines of libxml2. We can see that the inputs generated already

had a much higher coverage than Crawl+AFL. After fuzzing,

AFL improved their line coverage to 69.8%, 62.5%, and 23.8%

respectively; and further covered 3.8% of the code. On the
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TABLE IX: Detailed Code Coverage of libxml2 2.9.4

File (.c)
#Bug Line Coverage (%) Function Coverage (%)

18 Crawl
Crawl

+AFL
Skyfire

Skyfire

+AFL
Crawl

Crawl

+AFL
Skyfire

Skyfire

+AFL

HTMLparser 3 0.4 0.4 33.6 46.7 1.0 1.0 49.0 57.3
HTMLtree 0 1.0 1.0 41.9 54.0 4.2 4.2 33.3 41.7

SAX 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SAX2 1 38.1 39.7 53.3 53.7 55.1 57.1 69.4 69.4
buf 0 48.4 55.9 63.0 63.5 59.5 62.2 67.6 67.6

c14n 0 0.0 0.0 37.5 40.3 0.0 0.0 55.0 57.5

catalog 0 0.4 0.4 23.6 23.9 2.8 2.8 33.3 33.3

chvalid 0 0.0 35.9 35.9 35.9 0.0 11.1 11.1 11.1

debugXML 0 0.0 0.0 0.0 14.8 0.0 0.0 0.0 21.1

dict 6 65.4 78.9 79.4 79.4 70.8 75.0 75.0 75.0
encoding 0 49.2 60.0 65.0 66.1 70.6 73.5 79.4 79.4

entities 0 35.0 38.9 52.1 54.5 43.5 43.5 60.9 60.9

error 1 48.2 52.0 63.7 63.7 40.0 45.0 60.0 60.0
globals 0 19.5 19.5 19.5 26.2 44.2 44.2 44.2 55.8

hash 0 62.1 69.0 70.3 70.3 70.0 70.0 73.3 73.3

legacy 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

list 0 24.2 24.2 34.3 34.3 21.2 21.2 30.3 30.3

parser 5 48.3 55.9 64.4 65.2 60.4 62.6 72.0 73.1
parserInternals 2 56.6 66.4 72.0 72.1 57.9 60.5 73.7 73.7

pattern 0 0.0 0.0 9.1 9.1 0.0 0.0 18.4 18.4

relaxng 0 0.1 0.1 0.1 0.1 0.7 0.7 0.7 0.7

runsuite 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

runtest 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

threads 0 33.3 33.3 33.3 33.3 57.1 57.1 57.1 57.1

tree 0 20.0 21.5 26.8 26.9 28.6 29.8 38.1 38.1

trionan 0 40.6 40.6 40.6 40.6 25.0 25.0 25.0 25.0

uri 0 39.6 59.2 62.6 63.2 71.4 80.0 82.9 82.9

valid 0 27.9 28.5 35.9 37.3 36.4 36.4 47.5 49.2

xinclude 0 0.0 0.0 0.0 10.2 0.0 0.0 0.0 24.3

xmlIO 0 44.5 45.6 55.6 63.2 47.5 48.8 56.2 61.2

xmlcatalog 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xmllint 0 9.4 9.4 38.9 54.7 5.1 5.1 32.2 42.4

xmlmemory 0 7.0 7.0 7.0 7.0 13.6 13.6 13.6 13.6

xmlreader 0 0.0 0.0 22.8 22.8 0.0 0.0 14.4 14.4

xmlsave 0 57.1 59.9 62.6 67.7 46.6 46.6 48.3 53.4

xmlschemastypes 0 0.1 0.1 0.1 0.1 1.5 1.5 1.5 1.5

xmlstring 0 23.1 35.1 44.3 44.9 35.5 41.9 54.8 54.8

xpath 0 0.1 0.1 5.7 5.7 0.4 0.4 13.1 13.1

whole, Skyfire+AFL outperformed Crawl+AFL by around 20%

in line coverage.

On the other hand, in terms of function coverage, the samples

crawled covered 25.2% functions on average; and AFL further

covered 2.5% functions. Instead, the inputs generated by Skyfire

covered 41.1% functions on average; and AFL further covered

1.7%. Generally, Skyfire+AFL outperformed Crawl+AFL by

about 15% in function coverage.

From these results, we can see that, Skyfire can provide well-

distributed seed inputs for a fuzzer such that the fuzzer’s code

coverage can be greatly improved. Another interesting finding is

that, given well-distributed seed inputs, the increased coverage

through AFL was reduced instead, i.e., from Crawl+AFL’s 5.1%

to Skyfire+AFL’s 3.8% in line coverage and from Crawl+AFL’s

2.5% to Skyfire+AFL’s 1.7% in function coverage. This can be

explained that, Skyfire releases the burden of finding seeds to

reach interesting portions of the fuzzed program from the fuzzer

such that the fuzzer can focus attention on triggering unintended

behaviors in these interesting portions.
Detailed Coverage Results. We analyzed the line and func-

tion coverage of Sablotron, libxslt, and libxml2 at the source

code file level in detail. Table VII, VIII, and IX report the

coverage of all the .c or .cpp files. The first column shows

the file name, and the second column lists the number of unique

bugs found in a file. Similar to Table VI, the next four columns

present the line coverage of each file, and the last four columns

list the function coverage of each file.
We can see from these tables that, Skyfire+AFL improved the

coverage of 21 of 25 files for Sablotron, 26 of 32 files

for libxslt, and 28 of 38 files for libxml2 over Crawl+AFL. It

indicates that the coverage of most files was increased. Besides,

we manually looked into the files that had extremely low code

coverage, and analyzed the reasons for such low coverage.

First, some files are for testing and thus will not be executed

(e.g., testThreads in libxslt, and runsuite, runtest,

and runxmlconf in libxml2). Second, some files will only

be executed with specific configurations. For example, we ran

libxslt through command line, but libxslt-py, libxslt,

and types can be covered only when we run libxslt via

Python interface. Similarly, we ran libxml2 with the default

command line configuration, and thus we did not cover many

functionalities (e.g., xmlcatalog and c14n) in libxml2 and

had low overall coverage. However, such functionalities can

be touched by setting various command line configurations

before fuzzing. Third, some files contain code for processing

deprecated features (e.g., sdom in Sablotron and SAX in

libxml2), and thus will not be executed.
Code Coverage vs. Bugs. We also analyzed the relationship

between code coverage of a file and the number of bugs found

in that file, as described in Fig. 8. We can see that, all the bugs

were found in those files that had more than 45% line coverage

and more than 55% function coverage. It shows that improving

code coverage can help to find bugs, and fuzzers can utilize the

coverage information to guide their fuzzing process such that

they can focus on the less-covered program files.

Based on these observations from Table VI-IX and Fig. 8, we

can positively answer RQ2 that Skyfire can generate well-

distributed inputs for a fuzzer, and thus significantly improves

the code coverage of a fuzzer (e.g., 20% in line coverage and

15% in function coverage).

D. Effectiveness of Context and Heuristics (RQ3)
Context. To evaluate the effectiveness of context in PCSG,

we implemented a CFG-based input generation approach

that used Heuristics 3 and 4 to address the non-termination

problem (see Section IV-A), and compared the percentage of

inputs generated that passed the semantic checking stage (see

Fig. 1). For a fair comparison, we used the two approaches to

generate the same number of inputs (i.e., 10,000) for XSL and

XML. Notice that by looking at the exit code, we can easily

determine if an input fails to pass the semantic checking.
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(a) Line Coverage vs. Bugs (b) Function Coverage vs. Bugs

Fig. 8: The Relationship between Code Coverage of a File and the Number of Bugs Found in that File

(a) Termination Ratio with and without Heuristics (b) Distribution of the Number of Rule Applications

Fig. 9: Evaluation Results for the Used Heuristics in our Seed Generation Approach

The results showed that, none of the XSL inputs generated by

the CFG-based approach could pass the semantic checking since

they all failed to pass the first two semantic rules in Table I.

Similarly, only 34% of the XML inputs generated by the CFG-

based approach could pass the semantic checking. Instead, by

considering context, 85% and 63% of the XSL and XML inputs

generated by Skyfire passed the semantic checking and reached

the application execution stage. It indicates that, by considering

context, PCSG is more effective than CFG in generating inputs

that can pass the semantic checking.

Heuristics. Our evaluation in Section V-B and V-C has in-

dicated that Skyfire can generate well-distributed seeds, which

also reflects the effectiveness of the Heuristics 1 and 2 (see Sec-

tion IV-A). To evaluate the effectiveness of the Heuristics 3 and

4, for Skyfire with and without the heuristics, we measured the

termination ratio, i.e., the number of inputs that are generated

within a specified number of production rule applications. Here

we varied the total number of production rule applications from

20 to 400, and 1,000 inputs generated. As shown in Fig. 9a,

only 20% of the XSL inputs were generated in 100 applications

of production rules when the heuristics were not used; and this

termination ratio increased to 50% when the heuristics were

used. For XML inputs, 55% and 65% of them were generated in

100 applications of production rules when the heuristics were

not and were used. This indicates that the Heuristics 3 and 4

effectively resolve the non-termination problem. Notice that,

in our implementation, we empirically set the total number of

production rule applications (see Heuristic 4) to 200 for a

balance between termination and complexity based on Fig. 9a.

Moreover, to evaluate the complexity of the inputs generated,

we respectively generated 200,000 XSL and XML inputs, and

computed the distribution of the number of rule applications to

generate an input. As shown in Fig. 9b, we can see that most of

the inputs were generated within 45 applications of production

rules, which reflects that the inputs generated are mostly not

complex. This indicates that the Heuristics 3 and 4 effectively

reduce the unnecessary complexity of the seeds generated.

Based on these observations, we can positively answer RQ3
that both context and heuristics used in Skyfire are effective

in generating seeds. In particular, context can help generate

semantically valid seeds so that they can reach the application

execution stage. Heuristics can help generate well-distributed

seeds efficiently and reduce the unnecessary complexity.

E. Performance Overhead (RQ4)

To evaluate the efficiency of Skyfire, we measured the exe-

cution time to learn a PCSG from the samples crawled (18,686,

19,324, and 525,647 XSL, XML, and JavaScript samples)

as well as the execution time to generate 18,686, 19,324,

and 525,647 XSL, XML, and JavaScript seeds. As reported

in Table X, the PCSGs of XSL and XML were learned in

around 1.6 hours, and their generation step only took around

21 seconds. The PCSG of JavaScript was learned in 41.0 hours

due to the large number of samples. We can see that, both the

learning and generation steps have linear computation time with

respect to the number of samples crawled and seeds generated,

which is scalable.

From Table X, we can positively answer RQ4 that Skyfire is

scalable with respect to the learning and generation steps.
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<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<xsl:value-of select="substring-before(’F’,’-’)"/>
</xsl:template>

</xsl:stylesheet>

(a) Sample Generated that did not Trigger any Bugs

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<xsl:value-of select="substring-before(’F’)"/>
</xsl:template>

</xsl:stylesheet>

(b) Sample Mutated from Fig. 10a by AFL that Triggered a Bug

Fig. 10: A Sample Generated by Skyfire and then Mutated by AFL to Trigger a New Bug that has been Fixed

TABLE X: Performance of Learning and Generation

Time XSL XML JavaScript

Learning (h) 1.5 1.6 41.0

Generation (s) 20.3 20.6 521.2

F. Case Study and Discussion

We can see from Table IV that Skyfire can generate inputs

that directly trigger bugs. For example, Fig. 4a was generated by

Skyfire, and triggered a buffer underflow bug in Sablotron 1.0.3.

However, some bugs cannot be found by our inputs generated;

and instead, a fuzzer’s capability has to be used to detect them.

For example, the code fragment in Fig. 10a was generated by

Skyfire and did not trigger any bugs. However, when it was fed

to AFL, and mutated by AFL into the code fragment shown in

Fig. 10b, an out-of-bound access vulnerability was triggered in

Sablotron, which also exists in the XSLT engine of the latest

Adobe Reader and Adobe Reader DC.

In particular, this vulnerability is triggered when the value-

of element is supplied with an XPath expression that has an in-

correct call to substring-after() or substring-before(). When the

vulnerability is triggered, an uninitialized Expression Atom

object can be fetched via an out-of-bound read, then used for

subsequent virtual function call to tostring(), allowing straight-

forward remote exploitation as long as the attacker controls

the uninitialized memory content.

The root cause to this vulnerability is the incorrect check for

substring-before() and substring-after() in expr.cpp as given

in Fig. 11, i.e., the argument count check at Line 941 is after the

two tostring() calls that use the arguments (at Line 939 and 940).

Therefore, when only one argument is provided, as shown in

Fig. 10b, atoms[1] is an uninitialized Expression atom pointer

that leads to code execution via the tostring() call.

In this example, AFL’s mutation removed the second param-

eter of function call substring-before, which cannot be achieved

by Skyfire’s generation and mutation. This is because Skyfire

involves big-step mutations (e.g., replacing an attribute), and

AFL employs small-step mutations (e.g., byte flipping). This

indicates that Skyfire is a good complementary to fuzzers. By

combining them together, we can greatly improve the bug-

finding capability.

G. Preliminary Results for JavaScript

We used the seed JavaScript samples generated with variable

names normalized, in conjunction with a relatively fixed HTML

template, to fuzz the Trident rendering engine (mshtml.dll)

934 case EXFF_SUBSTRING_BEFORE:
935 case EXFF_SUBSTRING_AFTER:
936 {
937 Str strg;
938 Str theBigger, theSmaller;
939 E( atoms[0] -> tostring(S, theBigger) );
940 E( atoms[1] -> tostring(S, theSmaller) );
941 checkArgsCount(2);
942 checkIsString2(0,1);
943 int where = firstOccurence(theBigger,theSmaller);
944 if (where == -1)strg.empty();
945 else{
946 if (functor == EXFF_SUBSTRING_BEFORE){
947 if (where == 0)strg.empty();
948 else getBetween(strg, theBigger, 0, where-1);
949 }
950 else getBetween(strg, theBigger,
951 where + utf8StrLength(theSmaller), -1);
952 };
953 retxpr.setAtom(strg);
954 }; break;

Fig. 11: The Vulnerable Code Fragement for CVE-2016-6978

of Internet Explorer 11 for around two months. The result has

shown that JavaScript, as a more complex language than XML

and XSL, has more semantic rules. On the other hand, the

JavaScript and rendering engine for Internet Explorer usually

manipulate a vast variety of objects that interact in a more

complex way, where code coverage may not be a good indicator

to characterize such interactions. Therefore, a better indicator is

needed to capture such interactions and be used as the feedback

during fuzzing.

There are also other subtle issues from the intrinsic design

and implementation complexity of JavaScript. One example

is variables and their scopes, to generate truly semantic valid

JavaScript segments, existing segments with semantic rules for

variable definition, assignment and reference have to be parsed

and annotated separately; when chaining them together, variable

names may be normalized and their initialization and references

may have evolutionary cross-overs where these semantic rules

are respected.

We leave it as our future work to keep extending our

approach to better support more complex languages such as

JavaScript and SQL. Specifically, for JavaScript, we plan to

target Webkit JavaScriptCore, which is open-source and more

standalone; and for the SQL language, we plan to fuzz sqlite3.

Quantitatively, at the time of writing, we have run 1,591,263

JavaScript seed inputs on Internet Explorer 11, and found 11

NULL pointer dereference bugs and achieved 85% basic block

coverage as measured by PIN [30]. However, such results still

demonstrate the promising seed generation capability of Skyfire.
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We will continue enriching the strategies of Skyfire for fuzzing

Internet Explorer (or other browsers) as our future work.

VI. RELATED WORK

Instead of listing all related work, we focus our discussion on

the most related ones: mutation-based fuzzing, generation-based

fuzzing, and fuzzing boosting.

A. Mutation-Based Fuzzing

Mutation-based fuzzing often generates inputs via modifying

well-formed seed inputs through mutation operators such as bit

flipping and token insertion. Such modifications can be totally

random [1], or guided by different heuristics.

AFL [7] applies a novel type of compile-time instrumentation

and genetic algorithm to automatically discover interesting test

inputs that can trigger new internal states in the fuzzed program.

AFL regards a new transition from a basic block to another

as a new internal state. Directed by such coverage information,

AFL substantially improves the code coverage for the program,

and has been widely used in the security community.

BuzzFuzz [8] and TaintScope [9] use taint analysis to locate

the interesting byte for guiding the mutation. Specifically, Buz-

zFuzz [8] applies dynamic taint analysis to automatically locate

the regions in the original seed inputs that influence values

used at vulnerable points (i.e., points where the program might

contain an error). BuzzFuzz then automatically generates new

test inputs by fuzzing these identified regions in the original

seed inputs. Since these new test inputs typically preserve the

underlying syntactic structure of the original seed inputs, they

can often pass the initial input parsing components to exercise

code deep to those semantic checking components. Similarly,

TaintScope [9] first locates the checksum-based integrity checks

by branch profiling techniques and bypasses such checks by

control flow alteration techniques. Then it uses taint analysis

to identify those bytes in a well-formed input that are used

in security-sensitive operations and focuses the attention on

modifying such bytes.

SAGE [11, 12] and the approach in [10] leverage symbolic

execution to perform fuzzing. In particular, SAGE [11, 12] im-

plements a new search algorithm that maximizes the number of

new test inputs generated from each run of symbolic execution.

Given a path condition, all the constraints rather than one of

the constraints in that path are systematically negated one by

one, conjuncted with the prefix of the path condition leading to

it, and then solved by a constraint solver. In this way, a single

run of symbolic execution can generate a set of new test inputs.

Babić et al. [10] propose a three-stage processing approach to

generate test inputs that can reach the potential vulnerabilities

in the program. It first runs dynamic analysis with a small

number of seed inputs to resolve indirect jumps in the binary

code and builds a visibly pushdown automaton to reflect the

global program control-flow. Then it uses static analysis to

the inferred automaton to find potential vulnerabilities. Finally,

it uses the results of the prior phases to assign weights to

automaton edges and then uses symbolic execution to generate

test inputs and direct its exploration to the target potential

vulnerabilities.

Dowser [13] and BORG [14] combine taint analysis and

symbolic execution to guide the fuzzing. Dowser [13] targets

buffer overflow and underflow vulnerabilities. It only considers

the code that accesses an array in a loop, rather than all the

possible instructions in the program. It uses taint analysis to

determine the input bytes that influence the array index. After

finding all such candidate sets of instructions, it ranks them

according to an estimation of how likely they contain interesting

vulnerabilities, and then symbolically executes most promising

sets to generate the test inputs that trigger the vulnerability.

Similarly, BORG [14] targets buffer over-read bugs. It works

by first using taint analysis to select buffer accesses that could

lead to an over-read bug and then guiding symbolic execution

towards those accesses along program paths that could actually

lead to an over-read.

Driller [39] combines fuzzing and concolic execution in a

complementary way to find deep bugs. Inexpensive fuzzing is

used to exercise compartments of an application, while concolic

execution is used to generate inputs that satisfy the complex

checks separating the compartments. When fuzzing is saturated

and fails to trigger any new program behaviors, Driller switches

to concolic execution to touch those hard-to-reach branches

and generate test inputs, then switches back to fuzzing.

Kargén and Shahmehri [40] takes a different perspective to

perform the fuzzing. They propose to perform mutations on the

machine code of the generating programs instead of directly

on a well-formed input such that they can leverage information

about the input format encoded in the generating program to

produce high-coverage test inputs.

In summary, these mutation-based fuzzing approaches can

effectively fuzz programs that process unstructured or simply-

structured inputs (e.g., images and multimedia). However,

they become ineffective for programs that process highly-

structured inputs (e.g., XSL and JavaScript). As a result, most

malformed inputs from mutation-based fuzzing will be rejected

at an early stage of program execution, failing to pass the

syntax parsing, which makes the fuzzers waste a large amount

of time dealing with syntax correctness while only finding

trivial parsing errors, and heavily limits them to find deep bugs.

Instead, our approach is orthogonal to mutation-based fuzzing

techniques because we focus on seed generation and thus can

provide well-distributed input seeds to the fuzzers.

B. Generation-Based Fuzzing

Generation-based fuzzing generates test inputs from a speci-

fication, and thus the inputs generated are adhere to the format

required by applications.

Peach [15] and Spike [16] use the input models as the speci-

fication, and combine mutation to generate inputs. Input model

specifies the format of data chunks and integrity constraints

so that the inputs generated can pass integrity checking (e.g.,

checksum). Recently, Pham et al. [17] combine such input

model-based approaches with symbolic execution. They identify

the format constraint of a program using symbolic execution
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and ensure the validity of the tests generated, which can help

to swiftly carry the exploration beyond the parser code and

improve the effectiveness of fuzzing.

CSmith [19], LangFuzz [20], IFuzzer [21], Radamsa [41],

and the approach in [18] use the context-free grammar as

the specification to generate inputs. Godefroid et al. [18]

propose a dynamic test generation approach, where symbolic

execution is involved to generate grammar-based constraints

whose satisfiability is checked by a grammar-based constraint

solver. CSmith [19] generates C programs that cover a large

subset of C while avoiding the undefined and unspecified

behaviors that may destroy its ability to find bugs. It randomly

selects an allowable production rule from the grammar to

generate C programs. LangFuzz [20] uses the given grammar

to learn code fragments from a given corpus (e.g., a suite of

tests previously failed programs). Then it recombines fragments

of the provided test suite to generate new programs, assuming

that a recombination of previously problematic inputs has a high

chance to cause new crashes. IFuzzer [21] uses a language’s

context-free grammar to extract code fragments from given test

samples. Then it recomposes the code fragments in a biological

evolutionary way to generate new samples. Radamsa [41]

automatically builds a CFG describing the structure of given

training samples, and uses the CFG to generate similar data

for robustness testing. It strikes a practical balance between

completely random and manual test design and proved to be

very effective by finding hundreds of bugs.

These input model-based and grammar-based fuzzing ap-

proaches often easily pass the syntax parsing, but often fail to

pass the semantic checking that checks the semantic validity

of the inputs. As a result, only a small portion of the inputs

generated from these approaches can reach the application

execution stage, where the deep bugs normally hide. Differently,

by directly considering semantic rules as contexts in the

proposed PCSG, the inputs generated by our approach can

mostly pass the semantic checking.

There are also some grammar-based fuzzing approaches [22,

23, 24] that use hard-coded or manually-specified generation

rules to express semantic rules. mangleme[22] is an automated

broken HTML generator and browser fuzzer, originally used

to find dozens of security and reliability problems in all major

Web browsers. Jsfunfuzz [23] is one of the most popular fuzzing

tools, finding more than 1,000 bugs in the Mozilla JavaScript

engine. It uses specific knowledge about past and common

vulnerabilities and hard-codes rules to generate inputs. Dewey

et al. [24] propose to use constraint logic programming (CLP)

for program generation. Using CLP, testers can manually write

declarative predicates to specify interesting program features,

including syntactic features and semantic behaviors. However, it

is daunting and labor-intensive, or even impossible to manually

express the required semantic rules. Differently, we propose to

directly learn such semantic rules from the existing samples,

and automatically leverage such learned knowledge to generate

inputs.

C. Fuzzing Boosting

Several boosting techniques [6, 42, 43, 44, 45] have been pro-

posed to improve the efficiency of current fuzzing approaches.

Householder and Foote [42] introduce a machine learning-

based algorithm for selecting two fuzzing parameters (i.e., the

seed input and the proportion of the seed input for mutation) to

maximize the number of unique application errors discovered

during a fuzzing campaign. They greatly improve the efficiency

of discovering unique application errors over basic parameter

selection techniques.

Woo et al. [43] empirically investigate how to schedule the

fuzzing of a given set of program-seed pairs in order to max-

imize the number of unique bugs found. To this end, they

build a mathematical model for black-box mutational fuzzing,

and use it to evaluate 26 existing and new randomized online

scheduling algorithms. Similarly, Rebert et al. [6] empirically

study how to pick seed files to maximize the total number of

bugs found during a fuzz campaign. They evaluate six different

algorithms and show that the choice of algorithm can greatly

increase the number of discovered bugs. They also show that

the current seed selection strategies in Peach [15] may fare no

better than picking seeds at random.

Cha et al. [44] propose an algorithm to dynamically tune

the mutation ratio in order to maximize the number of bugs

found for black-box mutational fuzzing given a program and a

seed input. They leverage symbolic analysis on the execution

trace of a program-seed pair to detect dependencies among the

bit positions of an input, and then use this dependency relation

to compute a probabilistically optimal mutation ratio for this

program-seed pair. The results showed an average of 38.6%

more bugs than three previous fuzzers over eight programs

within the same amount of fuzzing time.

AFLFast [45] boosts the AFL by several strategies to focus

most of the fuzzing effort on low-frequency paths so as to

explore more paths with the same amount of fuzzing time.

During fuzzing, it chooses the seed i) that exercises lower

frequency paths and ii) that have been chosen less often, which

allows to fuzz the best seeds as early as possible.

Our seed generation approach transforms the generic seed

selection problem for flat binary file formats into an automated

generational approach, specifically for inputs with certain

grammar structures and evaluated on a few programs that

have undergone extensive fuzzing with traditional approaches;

on the other hand, it is also orthogonal to these techniques and

can be chained together as a first step. We plan to combine

these boosting techniques with our approach to investigate

whether the fuzzing efficiency can be further improved.

VII. CONCLUSIONS

In this paper, we have proposed a novel data-driven seed gen-

eration approach, named Skyfire, to generate well-distributed

seed inputs for fuzzing programs that process highly-structured

inputs. We use the large corpus of samples and their grammar to

automatically extract the semantic rules and the frequency of

production rules, and holistically incorporate them by learning
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a probabilistic context-sensitive grammar. The learned PCSG

is then used to generate well-distributed seeds.

Using the seeds generated to fuzz several XSLT, XML,

JavaScript and Rendering engines, we have empirically shown

that Skyfire can generate well-distributed seeds and help to

improve the code coverage and bug-finding capability of fuzzers.

We discovered 19 new memory corruption bugs (among which

we discovered 16 new vulnerabilities and received 33.5k USD

bug bounty rewards) and 32 denial-of-service bugs.

In the future, we will continue applying and extending our

seed generation approach to better support more different lan-

guages such as JavaScript, SQL, C, and Java. In addition to

finding security bugs, we also hope to use the generated seed

inputs to find compiler bugs.
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