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Abstract—The X.509 Public-Key Infrastructure has long been
used in the SSL/TLS protocol to achieve authentication. A recent
trend of Internet-of-Things (IoT) systems employing small foot-
print SSL/TLS libraries for secure communication has further
propelled its prominence. The security guarantees provided by
X.509 hinge on the assumption that the underlying implementa-
tion rigorously scrutinizes X.509 certificate chains, and accepts
only the valid ones. Noncompliant implementations of X.509
can potentially lead to attacks and/or interoperability issues. In
the literature, black-box fuzzing has been used to find flaws
in X.509 validation implementations; fuzzing, however, cannot
guarantee coverage and thus severe flaws may remain undetected.
To thoroughly analyze X.509 implementations in small footprint
SSL/TLS libraries, this paper takes the complementary approach
of using symbolic execution.

We observe that symbolic execution, a technique proven to
be effective in finding software implementation flaws, can also
be leveraged to expose noncompliance in X.509 implementations.
Directly applying an off-the-shelf symbolic execution engine on
SSL/TLS libraries is, however, not practical due to the problem
of path explosion. To this end, we propose the use of SymCerts,
which are X.509 certificate chains carefully constructed with
a mixture of symbolic and concrete values. Utilizing SymCerts
and some domain-specific optimizations, we symbolically execute
the certificate chain validation code of each library and extract
path constraints describing its accepting and rejecting certificate
universes. These path constraints help us identify missing checks
in different libraries. For exposing subtle but intricate noncom-
pliance with X.509 standard, we cross-validate the constraints
extracted from different libraries to find further implementation
flaws. Our analysis of 9 small footprint X.509 implementations
has uncovered 48 instances of noncompliance. Findings and
suggestions provided by us have already been incorporated by
developers into newer versions of their libraries.

I. INTRODUCTION

The X.509 Public-Key Infrastructure (PKI) standard [1], [2]

has long been used in SSL/TLS as a means to distribute keys

and provide authentication. The security assurance expected

from SSL/TLS handshake critically hinges on the premise

that communication peers, particularly the clients, correctly

perform the prescribed validation of the server-provided X.509

certificate chain. Put differently, correctly validating X.509
certificate chains is imperative to achieving security. Flaws

in implementations of the certificate chain validation logic

(CCVL) could potentially lead to two pitfalls: (1) Overly

restrictive CCVL (i.e., incorrectly rejecting valid certificate

chains) may result in interoperability issues and potential

loss of service; (2) Overly permissive CCVL (i.e., incorrectly

accepting invalid certificate chains) may allow attackers to

conduct impersonation attacks. We call an X.509 CCVL

implementation noncompliant with the X.509 specification
if it suffers from over-permissiveness, over-restrictiveness, or

both. The X.509 standard [1] is defined in a generic way to

accommodate different usage scenarios (e.g. for code signing,

encipherment, authentication, etc.). In this work, we concen-

trate on X.509’s use in the context of Internet communication

(i.e., clients performing server authentication during SSL/TLS

negotiation) and focus on the RFC 5280 specification [2].

Although the SSL/TLS protocol implementations have un-

dergone extensive scrutiny [3]–[8], similar rigorous investi-

gation is absent for checking compliance of X.509 CCVL

implementations. For instance, researchers have developed a

formally verified reference implementation for the SSL/TLS

protocol [7] but it does not include a formally verified CCVL.

The portion of code in SSL/TLS libraries responsible for

performing the X.509 chain validation are often plagued with

severe bugs [9]–[21].

Implementing a compliant X.509 CCVL is not easy, primar-

ily due to the complexity of its requirements. For example,

through our analysis, we have seen how a supposedly simple

boundary check on date and time can lead to various instances

of noncompliance in different libraries due to mishandling

time zones and misinterpreting the specification. The following

comment from an SSL/TLS library developer that we con-

tacted regarding a bug report concisely capture the intricacy

of the task: “In general, X.509 validation is one of the most
error prone, code bloating, and compatibility nightmares in
TLS implementation.”

There are two possible directions for addressing X.509

CCVL’s noncompliance problem: (1) Formally proving com-

pliance of a (possibly reference) CCVL implementation with

respect to the specification and having every library use it;

(2) Devising approaches for finding noncompliance in CCVL

implementations. The difficulty of automatically proving com-

pliance of an X.509 CCVL implementation, in addition to

the problem being undecidable in general [22], stems from

2017 IEEE Symposium on Security and Privacy

© 2017, Sze Yiu Chau. Under license to IEEE.

DOI 10.1109/SP.2017.40

503

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 08:04:48 UTC from IEEE Xplore.  Restrictions apply. 



Symbolic ExecutionX.509 CCVL Library 1 Extraction Validator A1 R1

Symbolic ExecutionX.509 CCVL Library 2 Extraction Validator A2 R2

. . .. . . . . . Ai Ri

Symbolic ExecutionX.509 CCVL Library n Extraction Validator An Rn

Accepted & Rejected
X.509 Certificate

Universes

Missing Field
Check Detector

Aj

Rj

Missing Field
Check Report

A1

R1

A2

R2

Cross Validation
Engine

Detected
Inconsistencies

Fig. 1. Our noncompliance finding approach for X.509 CCVL implementations. Symbolic execution engine takes as input a CCVL implementation and
extracts the approximated accepted and rejecting certificate universe whereas extraction validator validates it through concrete execution. Missing field check
detector finds unscrutinized certificate fields from the universes. Cross validation engine performs cross validation among two implementations universes.

the fact that standard formal verification techniques [23]–

[42] often do not support all the idiosyncrasies of a system

level programming language like C. The direction of finding

noncompliance was adopted by Brubaker et al. [43] and they

uncovered a number of bugs in the CCVL implementations

using black-box fuzzing, which raised awareness on both

the existence and severity of the problem. Our approach is

also geared towards finding noncompliance in real CCVL

implementations.

Although black-box fuzzing is an effective technique for

finding implementation flaws, especially when the source code

is not available, it suffers from the following well known

limitation: given a vast input space, black box fuzzing fails

to concentrate on relevant portions of the source code without

explicit guidance (i.e. lack of code coverage).

Symbolic execution [44] has been found to address the

above limitation [45]–[47]. Symbolic execution is also known

to be effective in finding bugs buried deep in the execution.

It is, however, cursed by the problem of path explosion [48],

which severely hinders its scalability and practicality, espe-

cially when the input is recursively structured and complex as

in the case of X.509 certificates.

In this paper, we take the first step in making symbolic

execution practical for finding noncompliance in real X.509

implementations. To this end, we solve symbolic execution’s

path explosion problem in the following manner: (1) Focusing

our analysis on open source SSL/TLS libraries that have a

small footprint and code base; (2) Applying a combination of

domain-specific insights, abstractions, and compartmentaliza-

tion techniques to the symbolic execution environment.

Small footprint SSL/TLS libraries are typically tailor-made

for resource constrained platforms, and often prioritize effi-

ciency over robustness. With the emergence of Internet-of-

Things (IoT), these libraries are actively deployed on com-

modity devices to satisfy the needs for secure communica-

tion in the IoT ecosystem [49]–[52]. Furthermore, following

the discovery of several high-profile vulnerabilities due to

implementation flaws in recent years [53]–[55], traditional

SSL/TLS libraries like OpenSSL has been criticized to have

an unnecessarily large and messy code base that is both slow

and infested with bugs [56]. A call for diverse alternative

implementations with better maintainability and a desire for

performance have sparked interests in adopting small footprint

SSL/TLS libraries for building applications on even conven-

tional PC platforms [57]–[61]. Hence it is of interest for

us to evaluate these implementations of X.509 validation for

robustness and compliance to specification.

To make symbolic execution practical and feasible, we

develop the concept of SymCerts, which are syntactically

well-formed symbolic X.509 certificate chains, such that each

certificate contains a mix of concrete and symbolic values. To

further reduce path explosion, we decompose the problem of

noncompliance finding into smaller independent sub-problems

based on the domain-specific observation that some certificate

fields are logically independent in their semantic meanings.

Fields in the same sub-problem are made symbolic at the

same time, while the other unrelated fields are kept concrete.

The use of SymCerts, along with the observation of semantic

independence of fields, address the path explosion problem of

symbolic execution that stem from the recursive and complex

nature of the input certificate chain representation.

Approach: An X.509 CCVL partitions the certificate chain

input universe into accepting (chains deemed valid) and re-

jecting (chains deemed invalid) certificate universes. We use

symbolic execution to automatically extract the approximation

of the certificate accepting and rejecting universes (See Figure

1), and symbolically represent these sets as path constraints

(quantifier-free first order logic formulas), where the symbolic

variables correspond to fields and extensions of certificates.

In the case where an X.509 CCVL implementation is

noncompliant due to the lack of certain checks, a simple

search (e.g. with grep) of the path constraints will uncover

such noncompliance, as the corresponding symbolic variables

will not appear in the extracted path constraints. For catching

deeper noncompliance, we leverage the principal of differential
testing [62], [63], by carrying out a cross validation of different

implementations. Given two implementations I1, I2, and their

corresponding accepting and rejecting certificate universes A1,

R1, A2, and R2, we can automatically determine whether

discrepancies exist between I1 and I2 (i.e., one implementation

accepts a certificate chain whereas the other rejects it) by

checking whether the sets A1∩R2 and A2∩R1 are nonempty.

Representing these sets symbolically enables us to implement

the set intersection operator by leveraging a Satisfiability
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Modulo Theory (SMT) solver [64], [65].

Evaluation and Findings: We analyzed 9 implementations

from 4 families of code base (axTLS, wolfSSL, mbedTLS,

MatrixSSL) and uncovered 48 instances of noncompliance.

Notably, we have detected the erroneous logic em-

braced by wolfSSL 3.6.6 and MatrixSSL 3.7.2 for matching

ExtKeyUsage object identifiers (OID); such OID matching

is used to assert the proper use of the key according to its

intended purposes (e.g., for code signing). Although standard

usage purposes are identified with pre-defined values (e.g.,
1.3.6.1.5.5.7.3.1 means server authentication), other values

are allowed for defining custom purposes. Both wolfSSL

3.6.6 and MatrixSSL 3.7.2 take a summation of the en-

coded bytes of an OID, and uses only the sum for match-

ing against known standard key usage purposes. In their

scheme, OID 1.3.6.1.5.5.7.3.1 (ASN.1 DER-encoded bytes:

0x2B 0x06 0x01 0x05 0x05 0x07 0x03 0x01) will be identi-

fied as decimal 71. Despite OIDs being unique hierarchically,

the summation of their encoded bytes may not be. An adver-

sary may request a certificate authority to issue an innocuous-

looking certificate with a custom key usage purpose OID value

that adds up to 71, and would then be able to use it for server

authentication in these libraries. We have reported this bug to

the library developers. They acknowledged the problem and
have it fixed in new releases.

Another notable finding is the misinterpretation of the year

field of UTCTime by MatrixSSL 3.7.2. In UTCTime format,

the RFC prescribes two bytes YY to denote years such that

YY∈ [0, 49] is treated as the year 20YY whereas YY∈ [50, 99]
is treated as 19YY, allowing years to be in range 1950−2049.

However, MatrixSSL 3.7.2 misinterprets the YY field and

hence miscalculates some certificate expiration by 100 years
(e.g., certificates expired in 1995 are considered to expire in

2095). Developers of MatrixSSL acknowledged this bug after

receiving our report and implemented a fix in a newer version.

Other findings are reported in Section VI.

Contributions: In summary, this paper makes the following

contributions:

1) We take the first step towards developing a more princi-

pled approach to systematically analyze real implemen-

tations of X.509 validation.

2) Though scalability issue exists, we show that symbolic

execution could be made practical by limiting the scope

of analysis and using domain specific optimization, and

it is very effective in exposing implementation flaws.

3) We revisit three specific implementations that have been

studied before in the literature [43]. With new findings

that are otherwise difficult to find with an unguided

fuzzing approach, we show that previous work based

on fuzz testing indeed suffers from false negatives, and

some of their claims are inaccurate due to a possible

misinterpretation of those false negatives.

4) For the other and more recent implementations that had

not been studied before, we found multiple instances of

noncompliance and have them reported to the developers.

II. RELATED WORK

Given their prominence and importance, the research com-

munity has put implementations of the SSL/TLS protocols

under close scrutiny in recent years. Here we give a brief

overview of previous research efforts and account for how our

work is different from them.

A. Forged certificates, attacks, and patching

Huang et al. [66] designed a client-side applet to moni-

tor and report the certificates that were actually presented

to clients. Their study discovered about 6 thousand forged

certificates in over 3 million connections, and showed that

not just malware but surveillance devices as well as anti-virus

software are also forging certificates to tamper with SSL/TLS

connections. A new attack on TLS known as the KCI attack

has been found in [67]. This attack is possible due to the

use of certain weak non-ephemeral cipher suites, plus the fact

that installing end-entity (in contrast to CA) certificates do

not trigger any warnings, and many implementations are not

correctly handling the key usage extensions. This also high-
lights the importance of correctly handling extensions when
verifying a chain of certificates. Bates et al. [68] proposed

to use dynamically linked objects and binary instrumentation

to implement a defense layer, so that vulnerabilities can be

patched in a prompt manner, proper extension handling can

be enforced, and insecure options can be overridden.

B. Incorrect and insecure usage of TLS library APIs

Georgiev et al. [69] crafted a handful of attack certificates to

attempt MITM attacks against various SSL/TLS library-using

applications, and showed that application developers often

misunderstand and misuse APIs, resulting in vulnerabilities.

Further discussions on false beliefs of developers, exploits on

TLS-using applications and correct usage of TLS can be found

in [70]. He et al. [71] showed how to use static analysis to

vet and identify vulnerable API usage in applications. Yun et

al. [72] propose a fully automated system called APISAN that

can infer correct API usage from other usages to that API, and

use this information to find inconsistent API usages.

The major difference between this line of research and our

work is the different scope of focus. These research efforts

focus on how application developers are making mistakes in

terms of API calls to the libraries, while our work is focused

on how the underlying SSL/TLS libraries providing those APIs

are implementing the certificate validation logic. Problems

in the libraries would affect applications even if application

developers made no mistakes in using the APIs.

C. Fuzz testing of TLS implementations

Fuzzing has been a prominent approach in testing SSL/TLS

implementations, where test cases are typically synthesized

by applying mutation heuristics on known valid input (e.g.
message sequences and certificates). Beurdouche et al. [3]

looked at the problem of libraries mishandling unexpected

sequences of messages when implementing support for various

ciphersuites, authentication modes and protocol extensions.
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Brubaker et al. [43] used black-box fuzzing to test client-side

validation of X.509 certificates in SSL/TLS implementations.

De Ruiter et al. [4] showed that the implemented state machine

of SSL/TLS can be inferred by applying a fuzzing-based

technique, which can then be verified manually to discover

errors. A recent work by Somorovsky [5] presents a framework

that allows developers to evaluate the behavior of TLS servers

in a flexible manner, with the ability to create arbitrary

protocol flows and dynamically modified messages.

Unguided black-box fuzzing, as used in previous work [43],

makes a good first attempt to reveal the existence of problems

in X.509 implementations of SSL/TLS libraries, especially

when the source code is not available. However, there are

limitations of such approach: 1) given a particular test case

that indicates an error, it is not easy to account for the root

causes; 2) it yields no guarantees on coverage of the code

being tested; 3) each generated test case could contain multiple

problems that might mask each other, making results difficult

to interpret. Our work attempts to take advantage of the fact

that when the underlying source code is available, one can

infer useful information out of the code, and perform testing

with better code coverage.

D. TLS state machine and high-confidence implementations

Attempts were made on building high-confidence TLS im-

plementations with a focus on correct state transitions and

cryptographic primitives, using re-engineered protocol speci-

fication and modular code base [6], as well as verified code

along with security proofs [7]. Beurdouche et al. [8] designed

a tool that uses a verified implementation as a reference to test

the state machine of other SSL/TLS implementations.

State machine bugs are about how state transitions are being

performed in response to a sequence of messages of the sub-

protocols, whereas we investigate how the validation logic of

X.509 certificates are being done, which is one crucial step

in typical SSL/TLS handshakes, and have a broader scope of

implications outside the context of SSL/TLS.

At the time of writing, previous work on reference SSL/TLS

implementations do not include a formally verified X.509

CCVL. Possible future efforts made along this direction on

building a high-confidence implementation of X.509 validation

can be used as references to put verdicts on which behaviors

are incorrect and noncompliant, given the discrepancies in

libraries found by previous work [43] and this work.

E. Symbolic Execution

Symbolic execution has been shown to be effective for

detecting low-level (memory) errors (e.g., null dereferencing)

[45]–[47], [73]–[79]. It has also been used for checking the

equivalence of C functions [80], [81], for checking server–

client interoperability of network protocols based on the set

of packets accepted by them [82], for checking controllers in

software-defined networks [83], [84], and for cross-checking

different file system implementations to find semantic bugs

[85]. The input arguments/messages considered in these work

are structurally simpler than an X.509 certificate.

F. Symbolic Finite Automata

Symbolic finite automata (SFA) [86] extend finite automata

by supporting symbolic inputs, that is, typical finite automata

require the alphabet to be of finite size whereas a symbolic

finite automata can support an infinite alphabet set. Recently,

Argyros et al. [87], [88] proposed a black-box automata

learning algorithm (i.e., querying the program in a black box

fashion) for extracting the SFA of a given program (i.e., regular

expression filters and string sanitizers), and use it to perform

differential testing and find bugs in various implementations

(e.g., TCP, Web Application Firewalls). Our collected path

constraints can be viewed as an unwinding of their learned

SFA. The SFA learning algorithm requires sample transitions

for each state to be explicitly given as an input. It is, however,

not obvious how one would obtain such sample transitions for

an X.509 implementation so that it can be given as input to

the learning algorithm. Also, due to the white box nature of

our analysis, our approach is likely to yield a more precise

characterization of the implementation’s internal logic.

III. BACKGROUND AND PROBLEM DEFINITION

In this section, we first present a brief introduction on X.509

certificates and their validation logic. We then present the

noncompliance finding problem and the associated high level

challenges.

A. Preliminary on X.509 Certificate Validation

The X.509 PKI standard is described in ITU-T Recom-

mendation X.509 [1]. The certificate format itself, at the time

of writing, has 3 versions. Version 2 and 3 were introduced

to add support for certificate revocation lists (CRLs) and

certificate extensions, respectively. X.509 certificates can be

used in various environments for different purposes. A variety

of standard certificate extensions are defined in the standard

documents [1] and ANSI X9.55. RFC 5280 [2] profiles how

version 3 certificates, extensions and CRLs are meant to be

used specifically for the Internet. Since we focus on this

particular prominent use case of X.509, in the rest of this

section, we provide a simplified overview of what makes a

certificate and how validation should happen in general, taking

the viewpoint of an Internet client and using RFC 5280 as the

main reference.

1) Contents of an X.509 certificate: At a very high level, a

X.509 certificate is made of 3 parts: the TBS (To-Be-Signed)

part, which includes most of the semantic content of the

certificate; a signature algorithm identifier, which denotes the

algorithm the issuer used to sign the certificate; and finally the

actual signature value. The TBS part generally includes the

following fields: version (version number), serialNumber (that

can uniquely identify a certificate), signature (the signature

algorithm identifier), issuer (name of the entity who signed

the certificate), validity (a time period of which the certificate

can be considered as valid), subject (name of the subject of

the certificate), subjectPublicKeyInfo (the public key of the

subject of the certificate).
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Fig. 2. A simplified structural view of an X.509 version 3 certificate (inspired
by a similar figure in [89]).

Towards the end of the TBS of a X.509 version 3 certificate

there are three optional constructs: the issuerUniqueID and

subjectUniqueID, which are respectively unique identifiers of

the issuer and subject of the certificate, followed by extensions,
which is a sequence of X.509 version 3 extensions. See Figure

2 for a simplified visualization of the structure of a typical

X.509 version 3 certificate.

2) X.509 certificate validation: The X.509 PKI is based on

the idea of “chain of trust”. The main objective of certificate

validation is to show that given a trust anchor, C0, the trust can

be extended through a chain of certificates, all the way down

to the communication peer (e.g. a specific server). Hence the

basic check requires that for each certificate of a chain, the

issuer name of a certificate Ci must equal to the subject name

of the previous certificate Ci−1, and the signature on Ci can

be correctly verified using the algorithm, the public key and

other parameters derived from Ci−1.

In addition, each certificate involved in forming the chain

of trust must be currently valid, in the sense that the current

system time should be within the range (inclusively) prescribed

by the notBefore and notAfter attributes of the Validity field.

Other checks in X.509 certificate validation are related to

the handling of version 3 extensions. Extensions give CAs a

means to impose additional restrictions on certificates issued

by them, to avoid abuse of certificates.

Extensions can be marked as critical or non-critical. For the

standard set of extensions, RFC 5280 [2] mandates some de-

fault criticality that a conforming CAs should follow. However,

from the point of view of a certificate-using system, extensions

should be processed regardless of their criticality if the system

is able to, and in case it cannot process any of the critical

extensions then the certificate should be rejected.

On a valid certificate chain, each of the certificates needs

to be a CA certificate, except for the leaf one (both CA and

non-CA are allowed). In X.509 version 3, this is achieved by

checking the basicConstraints extension, which contains an

isCA boolean field indicating whether the certificate is a CA

certificate or not, and an optional integer pathLenConstraint
that limits the number of non-self-issued intermediate CA cer-

tificates that can follow on the chain, not counting the leaf one.

Before version 3, X.509 certificates do not have extensions.

In such cases, clients can choose to either consider those to

be non-CA certificates, or use an out-of-band mechanism to

verify if those are CA certificates or not.

The KeyUsage and ExtKeyUsage are two useful exten-

sions that describe the intended purposes of a certificate.

With issuing CAs imposing these on certificates, and clients

faithfully checking the intended purposes, some certificate

abuse scenarios can be stopped (e.g. using a certificate that

is only issued for signing software in a SSL/TLS handshake

for authentication would not be allowed).

There are other standard extensions which we do not present

here. For a complete list of extensions deemed useful for the

Internet, and the details on how to handle them, we refer the

readers to RFC 5280 [2].

3) Sources of noncompliance: The intricacies of imple-

menting a compliant X.509 CCVL stem from the rich set of

fields in certificates, which are further complicated by their

wide range of possible values, as well as the numerous optional

but possibly critical extensions. Noncompliance can occur due

to the following two reasons:

a) Certain fields and/or extensions that must be checked are

not involved in the decision making procedure of a CCVL

implementation. This can be further divided into:

i) The fields and/or extensions are not being parsed into

an internal data structure. This is mostly due to a lack

of intention to support a thorough and robust check,

possibly due to concerns on resource usage.

ii) The fields and/or extensions are being parsed into an

internal data structure but checks did not happen. This

is mostly due to an intention to perform the checks but

the implementation is not complete.

b) The fields and/or extensions are involved into deciding

whether to accept or reject the chain, but due to coding

and/or logical errors in the parsing code and/or validation

code, the checks are not performed correctly.

B. Goal and Challenges

In this paper, our goal is to check whether a given X.509
CCVL implementation is compliant with the X.509 specifi-
cation. There are two ways to go about checking compliance

of an implementation, namely, (1) proving the compliance

of the implementation with respect to the specification and

(2) trying to find noncompliance in the implementation. Our

approach is geared towards finding noncompliance.

1) Why Not Prove Compliance: To prove compliance of

a given CCVL implementation, we have to formally specify

the valid sets of X.509 certificate chains that a CCVL imple-

mentation should accept. The X.509 specification is, however,

described in natural languages and coming up with a complete

formal specification is cumbersome and error-prone. Further-

more, even if we have such a formal specification Ψ at our dis-

posal, proving that Ψ is satisfied by the CCVL implementation

I (i.e., I |= Ψ) using standard formal verification techniques

[23]–[42] is infeasible as the problem is undecidable in general

[22]. Also, formal verification techniques often do not scale

and support real implementations. For this reason, we resort

to noncompliance finding in the implementation.

2) Challenges: We now discuss the inherent challenges of

the noncompliance finding.

Natural Languages Specification: The X.509 specifica-

tion is written in English and it is inherently prone to under-

specification, ambiguities, inconsistencies, and misinterpreta-

tions. To validate a noncompliant instance it is often required
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to consult the specification when we do not have a formal

specification at our disposal. We resort to manual effort to

address this challenge.

Scalability: The complex format of X.509 certificates

and also the intricacies in certificate chain validation make

it difficult to develop a scalable noncompliance checker. Also,

it is difficult to develop a scalable noncompliance checker for

real libraries written in system level languages such as C.

Cryptographic Libraries: A X.509 CCVL relies on cryp-

tographic functions to perform operations such as digital signa-

ture verification. Cryptographic functions are well recognized

to be difficult to automatically analyze for correctness.

IV. OUR NONCOMPLIANCE FINDING APPROACH

In this section, we first briefly describe symbolic execution

and then present how we leverage it for noncompliance

detection. Finally, we discuss several technical challenges of

applying symbolic execution and how we overcome them.

A. Preliminary on Symbolic Execution

Symbolic execution [44] has been shown to be an effective

way of inferring test cases that yield high code coverage [45]–

[47], [73]–[79]. It achieves this objective by running a program

with symbolic values for input variables. During execution,

when it encounters a branch instruction (e.g., if-else) with a

branching condition on symbolic values, it consults a Satis-

fiability Modulo Theory (SMT) solver [64], [65] to check

whether any of the two branches (i.e., the if and else branches)

are possible according to their branching conditions. If any

of the branches are feasible (i.e., the branching conditions are

satisfiable for some concrete values for the input variables), the

execution explores the corresponding paths. It keeps collecting

all the feasible branching conditions on the input (symbolic)

variables, also known as path constraints, until the program

terminates or reaches a point of interest (e.g., an error loca-

tion). It then consults an SMT solver to obtain concrete values

for the input that will induce the path in question.

B. Approximating Universes with Symbolic Execution

For noncompliance detection, our approach critically relies

on extracting the universes of accepted and rejected certificate

chains induced by a given X.509 CCVL implementation.

Suppose we denote the universe of all possible X.509

certificate chains with C, a given X.509 CCVL partitions C
into two sets A (the set of accepting certificate chains) and R
(the set of rejecting certificate chains) such that C = A ∪ R
and A ∩ R = ∅. To detect noncompliance in a given X.509

CCVL implementation, we automatically extract the sets A
and R. Due to the large number of possible certificate chains,

explicitly enumerating elements of the sets A and R is not

feasible. We represent the sets A and R symbolically by a

set of quantifier-free first order logic (QFFOL) formulas [64]

{f1, f2, . . . , fn} where each QFFOL formula fi represents a

set of concrete certificate chains. We choose QFFOL as it is

sufficiently expressive and also decidable for certain theories

(e.g., bitvector, array)—one can leverage an SMT solver to

detect noncompliance—whereas the full first order logic (FOL)

is undecidable. We use the theory of bitvectors and array.

For a given X.509 implementation, we extract the sets A
and R by symbolically executing the CCVL of that given

implementation with respect to a symbolic certificate chain.

Symbolically executing the CCVL can capture the validation

logic for that given implementation through path constraints

and their associated return values of the CCVL function.

The path constraint in question here contains input variables

coming from the input certificate chain that has fields and

extensions we marked to have symbolic values. Given a

collected path constraint f and its associated boolean value

b returned by the CCVL function, if b = true (resp., false),

it signifies that any concrete certificate chain c that satisfies

the constraint f (i.e., c |= f ) is accepted (resp., rejected) by

the given CCVL. Precisely, after symbolic execution of the

CCVL, we have C = {〈f1, b1〉, 〈f2, b2〉, . . . , 〈fn, bn〉} where

fi is a path constraint (i.e., QFFOL formula) we obtained

during symbolic execution of the CCVL and bi ∈ {true, false}
is the return value of the CCVL function for the path constraint

fi. From C, we construct A and R in the following way:

A = {fi | 〈fi, true〉 ∈ C} and R = {fj | 〈fj , false〉 ∈ C}.
The sets A and R induced by a given X.509 CCVL imple-

mentation are the core asset of our noncompliance detection
approach. Given the sets of Atest and Rtest induced by a

CCVL implementation under test Itest and the sets Astandard

and Rstandard induced by the X.509 standard specification

(e.g., RFC), Itest is noncompliant if one of the following (or,

both) hold: (1) Atest �= Astandard and (2) Rtest �= Rstandard.

For a given Itest, we can use its Atest and Rtest to expose

noncompliance in several ways, possibly by leveraging an

SMT solver [65], [90]. We discuss them presently.

C. Approaches for Exposing Noncompliance

We now discuss three approaches where we leverage sym-

bolic execution and the sets A and R to find noncompliance

in X.509 CCVL implementations.

1) Noncompliance during Symbolic Execution: During

symbolic execution of the X.509 CCVL function of a given

implementation, the symbolic execution engine can discover

certain low level memory errors (e.g., array out of bounds).

We have discovered an erroneous extension processing bug

using this approach. We present the details in Section VI.

2) Simple Searching of the Path Constraints: By inspecting

all the path constraints in the set A ∪ R for a particular

CCVL implementation, one can easily notice missing checks

of certain certificate fields. Let us assume that we assigned

the subject name field of a certificate to have the symbolic

value sym sub name. We can then perform a search with

the string sym sub name (i.e., often a simple grep will

suffice) among all the path constraints in A∪R. If the search

turns up empty, one can conclude with high confidence that

the implementation does not check the subject name field.

This approach enables exposure of noncompliance due to

an implementation’s inability to take certificate fields into
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consideration during the CCVL decision making process. We

have discovered several serious noncompliances using grep.

3) Cross Validation: To expose deeper noncompliant

instances—the ones due to an implementation’s inability to

impose proper validity checks on a certificate field even after

recognizing it—ideally we want the setsAstandard andRstandard

induced by the X.509 standard specification. We have, how-

ever, neither a formally verified CCVL implementation we

can extract the sets Astandard and Rstandard from, nor a formal

specification for X.509 CCVL at our disposal. We compensate

for the lack of the sets Astandard and Rstandard by utilizing

the existence of a large number of open source SSL/TLS

library implementations. We can perform a cross validation

(or, differential testing [62], [63]) by pitting the different

implementations against each other. If two implementations

come to different conclusions about whether a given certificate

chain is valid, even though it is not clear which implementation

is noncompliant, we can conclude that one of the libraries is

noncompliant. Precisely, for any two implementations I1 and

I2 and their corresponding sets A1, R1, A2, and R2, any

c ∈ C such that (1) c ∈ A1 ∧ c ∈ R2 or (2) c ∈ A2 ∧ c ∈ R1

represents an instance of noncompliance.

One can utilize the path constraints from two different im-

plementations to find inconsistent conclusions in the following

two ways. In our analysis, we follow approach 2.

Let us assume for any two given implementations Ip and

Iq , we have the following sets:

Ap = {ap
1 , a

p
2 , . . . , a

p
n} (accepting certificate universe of Ip)

Rp = {rp1 , rp2 , . . . , rpm} (rejecting certificate universe of Ip)

Aq = {aq
1 , a

q
2 , . . . , a

q
s} (accepting certificate universe of Iq)

Rq = {rq1 , rq2 , . . . , rqt } (rejecting certificate universe of Iq)

Approach 1: To detect inconsistencies between Ip and

Iq , one can check to see whether either of the following

formulas is satisfiable: ¬(∨(1≤i≤n) a
p
i ↔

∨
(1≤j≤s) a

q
j ) and

¬(∨(1≤i≤m) r
p
i ↔

∨
(1≤j≤t) r

q
j ) (↔ stands for logical equiva-

lence). The first (resp., second) formula asserts that the accept-

ing (resp., rejecting) paths of Ip and Iq are not equivalent. Any

model of either of the formulas will signify a noncompliant

instance. We, however, do not utilize this approach to detect

noncompliance for the following three reasons: (1) For each

satisfiability query the SMT solver will present one model (i.e.,
one noncompliant instance) even in the presence of multiple

noncompliant instances (We desire as many noncompliant
instances instead of just one at a time); (2) The resulting

formulas are large and it may put heavy burden on the SMT

solver; (3) Due to the incompleteness caused by techniques

used to relieve path explosion, the extracted sets A and R may

not be exhaustive (i.e., complete), yielding false positives.

Approach 2: In this approach, we first take each accepting

path ap
i from Ap and each rejecting path rqj from Rq where

1 ≤ i ≤ n, 1 ≤ j ≤ t, and check to see whether the formula

ap
i ∧ rqj is satisfiable by consulting an SMT solver. If the

formula is satisfiable, it signifies that there is at least one

certificate chain that Ip accepts but Iq rejects. The model

obtained for the formula from the SMT solver, can be used to

construct a concrete certificate chain signifying an evidence

of inconsistency. We can then repeat the same process by

taking each accepting path from Iq and each rejecting path

from Ip. Note that, multiple pairs may induce inconsistencies

due to the same noncompliant behavior and sometimes best-

effort manual analysis of the source code is needed to detect

the root cause.

D. Scalability Challenges of Applying Symbolic Execution

The application of symbolic execution in a straightforward

way to extract the sets A and R, considering all certificates

in the chains and other arguments to the CCVL function to

have symbolic values, will not yield a scalable noncompliance

detection approach. Our feasibility evaluation have verified
this observation. We have also tried only one of the certificates

in the chain to have symbolic values and even then the

symbolic execution did not finish due to resource exhaustion.

The scalability problem is predominantly due to symbolic
value dependent loops—loops whose terminating conditions

depend on symbolic values—in the certificate parsing im-

plementation. One way to get around this challenge is to

assume the correctness of the parsing code and just focus on

the core CCVL logic. Ignoring the parsing logic, however,

is not sufficient to capture the majority of the CCVL logic

as some of the sanity checks on the certificate fields are

done during parsing. In addition, capturing only the CCVL

logic would require one to manually modify the internal data

structure where the certificate fields are stored after parsing.

This approach requires significant manual efforts (i.e., code

comprehension) and is also error-prone.

E. Our Solution—SymCerts and Problem Decomposition

For addressing the scalability challenge we rely on carefully

crafting symbolic certificates and also on our domain specific

observations. Rather than extracting the complete sets A and

R, we use domain-specific observations and specially crafted

symbolic certificate chains to extract an approximation of the

sets A and R, i.e., Aapprox and Rapprox. Our approximation has

both under- and over-approximation. To overcome path explo-

sion, we create a chain of SymCerts where some portions

of each certificate have concrete values whereas the others

have symbolic values. SymCerts along with the following

observation aid in achieving scalability during the extractions

of the sets Aapprox and Rapprox from an X.509 CCVL.

One domain specific observation we use is the logical
independence between certificate fields. For instance, the

logic of checking whether a certificate is expired according

to its notAfter field is independent of the logic of checking

whether a certificate’s issuer name matches with the subject
name of the predecessor certificate in the chain. In this

case, we can try to capture the logic of checking certificate

expiration independently of the checking of issuer and subject

names. Based on the notion of independence, we group the

certificate fields into equivalence classes where the logic of

fields in the same equivalence class should be extracted at the
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same time, that is, fields in the same equivalence class should

be marked to have symbolic values at the same time. We

leverage this observation by generating a SymCert chain for

each equivalence class where each element of the equivalence

class has symbolic values whereas the rest of the fields have

concrete values. Note that we certainly do not claim that the
checking logic of all certificate fields are independent; there

are obviously certificate fields whose value influences one

another. For instance, the value of the isCA field of an X.509

certificate (i.e., whether the certificate is a CA certificate)

prescribes certain corresponding key usage purposes (i.e.,
affecting the KeyUsage extension). In this case, the isCA field

needs to be in the same equivalence class as KeyUsage.

In our analysis, we conservatively partition the certificate

fields into 2 equivalence classes. We refer to these two

equivalence classes as EqC1 and EqC2, respectively. EqC1 has

all the relevant certificate fields symbolic, except the Validity
date time period fields which are symbolic only in EqC2.

V. IMPLEMENTATION

In this section, we discuss additional challenges of applying

symbolic execution to CCVL code, and our approach to

addressing these challenges. We also discuss other aspects of

implementing our noncompliance finding approach.

Challenge 1 (Complex Structure of X.509 Certificates):
X.509 certificates are represented in the Abstract Syntax No-
tation One (ASN.1) [91], [92] notation. X.509 certificates are

typically transmitted in byte streams encoded following the

DER (Distinguished Encoding Rules), which are binary in

nature. Under the DER format, an X.509 certificate has the

form 〈t, �, v〉 where t denotes a type, � denotes the length of

the values in bytes, and finally v represents the value. t can

represent complex types such as a sequence where the value v
can be recursively made of other 〈t, �, v〉 triplets. Such nesting

of 〈t, �, v〉 triplets inside a v field can be arbitrarily deep.

The problem of marking the whole certificate byte-stream

as symbolic is that, during certificate parsing, the symbolic ex-

ecution engine will try different values for � as it is symbolic,

and the parsing code will keep reading bytes without knowing

when to stop. This will cause memory exhaustion.

Approach—SymCerts (Certificates With Symbolic and
Concrete Values): To avoid the scalability problem, instead

of using a fully symbolic certificate chain, we develop a

certificate chain in which each certificate byte-stream contains

some of concrete values and some symbolic values. We call

each such certificate a SymCert.
We construct a SymCert in the following way: For each

leaf 〈t, �, v〉 tuple (i.e., v contains a value instead of another

〈t, �, v〉 tuple) in a certificate byte-stream, we ensure that the

fields t and � have concrete values whereas only the v field

is symbolic. Concrete values of t can be obtained from actual

certificates and we use them as the backbone for generating

SymCerts. For the l field, we consult the RFC document to

select appropriate concrete values. For instance, when marking

the OIDs used in the ExtKeyUsage extension symbolic, we

give it a concrete length of 8, as most of the standard key

usage purposes defined in RFC 5280 [2] are 8-byte long.
Due to the complexity of DER byte-streams, it is difficult

for a user to directly manipulate and construct SymCerts from

scratch. In addition, due to nesting, changing the length field

(i.e., �) of a child 〈t, �, v〉 triplet may require adjustment on

the length field (i.e., �) of the parent 〈t, �, v〉 triplet. For this,

we developed a Graphical User Interface (GUI), by extending

the ASN.1 JavaScript decoder [93]. Our GUI allows a user to

see and click on different certificate fields, so that they can

be replaced with a desired number of symbolic bytes, and

the new length will be correctly adjusted. The GUI will then

automatically generate code that can be used for symbolic

execution. We use OpenSSL to generate concrete certificate

chains as the input to our GUI, which constitute the basis of

our SymCerts. The philosophy here is that all major fields (e.g.
optional extensions, criticality booleans) of a certificate need

to be explicitly available on the base input certificate, as it is

difficult to mark nonexistent fields symbolic.

Challenge 2 (System Time Handling): Given that our

symbolic execution of the implementations would happen at

different times, if we simply allow the implementations to use

the local system time, then the constraints we have extracted

would not be comparable, as the system time elapses.
Approach—Constant Static Time: We consider a fixed

concrete time value for the system time. We use the same

concrete value for these inputs during the analysis of all

implementations. Using a symbolic variable is also possible,

but using concrete values has the advantage of reducing

the complexity of the path constraints which consequently

improves scalability.

Challenge 3 (Cryptographic Functions): The cryptographic

functions (e.g., for verifying digital signatures) called by the

CCVL contain loops dependent on symbolic data, which

severely impact the scalability of symbolic execution.
Approach—Cryptographic Stub Functions: We abstract

away the cryptographic functions with stub functions. For

instance, the function that matches the digital signature of a

certificate is abstracted away by a stub function that returns

True indicating the match was successful. In this work, we

consider cryptographic correctness beyond our scope. Instead,

we are interested in finding out what fields are checked and

what restrictions are imposed on these fields.

Challenge 4 (Complex String Operations): As part of the

CCVL, implementations are sometimes required to perform

complex string operations (e.g., wild card matching, null

checking) on certificate fields such as subject name and issuer
name. Faithfully capturing the string operations with QF BVA
logic (i.e., QFFOL formulas with equality, bit vector, and

array theories)—which is the underlying logic of the symbolic

execution engine we use—does not scale well.
Approach—Single Byte Strings: We consider names and

other string-based certificate fields to have a single byte

symbolic value, which significantly improves the scalability.

However, because of this, our analysis misses out on finding

noncompliance due to erroneous string operations.
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Challenge 5 (Hashing for Checking Multi-Field Equal-
ity): When checking the equality of two name fields of

certificates—name fields are compound fields containing the

following sub-fields such as street address, city, state/province,

locality, organizational name & unit, country, common name—

some implementations take a hash of the concatenation of all

the sub-fields and match the hash values, instead of checking

the equality of each sub-field. Trying to solve the constraints

from such a match would be similar to attacking the hash

collision problem, which is not scalable to analyze with

symbolic execution due to symbolic data-dependent loops.
Approach—Hash Stub: The hash function in question

(i.e., SHA-1) returns a 20-byte hash value. We replace it

with a SHA-1 stub which returns a 20-byte value where the

(symbolic) name sub-fields are packed together. Because of

the single byte approach we introduced to simplify string

operations described in the previous challenge, 20-byte is more

than enough to pack all name sub-fields of interests.

Challenge 6 (Certificate Chain Length): While symboli-

cally executing the CCVL of a given implementation, one

natural question that arises is: “How many certificates in the

symbolic certificate chain should we consider?” An X.509

CCVL implementation often parses the input X.509 certificate

chain first and then checks the validity of different fields in the

certificates of the parsed chain. During symbolic execution,

if the execution detects a loop whose terminating condition

relies on a symbolic value, it faces the dilemma of how many

times to unroll the loop. Such loops in the implementation

often cause path explosion in symbolic execution, resulting

in incompleteness and scalability challenges. If we consider

the certificate chain length to be symbolic, then the symbolic

execution, especially during parsing, would try all possible

values for the chain length, causing memory exhaustion.
Approach—Concrete Chain Length: For majority of our

analysis, we consider a certificate chain of length 3 such that

one of the certificates is the root CA certificate, the other

is an intermediate CA certificate, and finally the remaining

certificate is the certificate of the server currently being

authenticated. While analyzing the logic of checking the path

length constraint of the basic constraint extension, we also

consider certificates with chain length 4 where we have two

intermediate CA certificates.

Challenge 7 (Other aspects of Path Explosion): After the

simplifications described above, the symbolic execution engine

still generates a large number of paths. We especially observed

that making all the v values of 〈t, �, v〉-tuples that represent

certificate fields and extensions symbolic yields a lot of paths.
Approach—Early Rejection and Grouping Fields: We

observed that implementations sometimes do not return early

even in the case one of the certificates cannot be parsed or one

of the fields validity checks failed. This contributes to a multi-

plicative factor to the number of paths. We judiciously applied

early rejection when parsing or validation check fail. Finally,

we applied the logical independence between certificate fields
based on their semantics to decompose the noncompliance

finding fields. We generated two equivalence classes, one

consists of time fields related to the certificate Validity period

checking, whereas the other contains all the remaining fields.

One could possibly employ a more aggressive grouping of

fields that need to be check together. We, however, make a

conservative choice because if developer incorrectly introduces

artificial dependencies in the implementation, we would like

to capture them as well.

Challenge 8 (Time Field Comparison): An X.509 certificate

contains two time fields (i.e., notBefore and notAfter) which

are compared to the current system time. A time field can

be represented in two formats (i.e., GeneralizedTime and

UTCTime). In GeneralizedTime, the time field contains a 15-

byte ASCII string where day, month, hour, minute, second

contribute 2 bytes each; year contributes 4 bytes, and 1 byte

is used to represent the time zone. For UTCTime, the only

difference is that year contributes 2 bytes instead of 4. Sanity

checks are often performed to ensure the fields are well-

formed (e.g., for minute, the most significant digit cannot

be larger than 6). Marking the format symbolic and let the

symbolic execution engine choose the length of the ASCII

string contributes to poor scalability.
Approach—Decomposing Time Fields: In addition to

checking noncompliance in time fields handling independently

from other fields, we further decompose the analysis by ana-

lyzing the two time formats separately. We use two different

SymCerts during symbolic execution, one with UTCTime and

the other with GeneralizedTime, using the concrete length of

the date time ASCII string according to the format.

Challenge 9 (Redundant Pair of Paths in Cross-Validation):
When cross-validating two implementations Ip and Iq , the

upper bound of discrepancies is |Ap| × |Rq| + |Aq| × |Rp|.
Based on the number of paths in accepting (e.g., Ap and

Aq) and rejecting (e.g., Rp and Rq) universes, the maximum

number of noncompliance instances can be fairly large which

creates a challenge for manual inspection to identify the root

cause of the noncompliance.
Approach—Iterative Pruning: We observe that many

pairwise discrepancies are due to the same root cause. Suppose

implementation Ip does not check a particular field that Iq
checks. In this case, the missing check in Ip’s accepting path

will likely be enumerated through many rejecting paths of

Iq , resulting in a large number of redundant noncompliance

instances. To make it easier to analyze the results of cross-

validation, once we have identified such a case, we can

concretize the value of that specific field, repeat the extraction

step and continue cross-validation with a pruned search space.

Challenge 10 (False Positives): Due to different domain

specific simplifications and the fact that we are abstracting

away cryptographic functions, our approach can yield false

positives, predominantly due to the path constraint extrac-

tion might not be capturing the real execution faithfully. In

addition, the specification (i.e., RFC document) states some

fields should be checked by a certificate using system, without

imposing whether the library or application (the two of them

constitute the system) should perform each check. Conse-

quently, SSL/TLS libraries have different API designs due to
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such unclear separation of responsibility. Some libraries might

enforce all the checks during certificate chain validation, while

some might not and instead provide optional function calls

for application developers desiring such checks, and the other

libraries might completely delegate the task of implementing

such checks to the application developers. As a clear boundary

cannot be drawn easily, false positives can arise if some

optional but provided checks are missed out during extraction.

Approach—Concrete Replay: To avoid false positives, we

use a real client-server setup to help us verify our findings. We

capitalize on the fact that a minimalistic sample client code is

often made available in the source tree by library developers

to demonstrate how the library should be used in application

development and use such clients to draw the baseline. To

gain confidence that our extracted path constraints adequately

capture the real execution, for each accepted (resp., rejected)

path constraint, we consult the SMT solver to obtain a concrete

certificate chain and feed it to a real client-server setup to

see whether the client would actually accept (resp., reject) the

chain. This helps us to see whether the real execution concurs

with our extraction. Similarly, during cross validation between

implementations Ip and Iq , for the discrepancies we found (in

the form of a model provided by the SMT solver), we construct

a concrete certificate chain out of the model and use the client-

server setup to verify it is indeed the case that Ip would accept

and Iq would reject the chain.

VI. EVALUATION AND RESULTS

We applied our approach in testing 9 open-source imple-

mentations from 4 major families of SSL/TLS library source

trees, as shown in Table I. Implementations that have been

tested in previous study by Brubaker et al. [43] are prefixed

with an asterisk. These libraries have seen active deployments

in embedded systems and IoT products to satisfy the security

needs for connecting to the Internet (e.g. axTLS in Arduino

[51] and MicroPython [52] for ESP8266, mbedTLS, tropicSSL

and MatrixSSL on Particle hardware [49], [50], etc.), and are

sometimes used even in building applications and libraries

on conventional desktop platforms [57]–[61], due to their

performance and small footprint advantage. We test multiple

versions of a library from the same family in order to compare

with previous work, and to see if the more recent versions

implement a more complete and robust validation logic.

In this section we first show statistics that justify the

practicality of our approach, and then present noncompliance

findings grouped by how we uncovered them along the 3

approaches described in Section IV-C, together with other

discrepancies and observations that we made while work-

ing with the libraries. Findings on recent versions of the

implementations, whenever applicable, are reported to the

corresponding developers. Many of our reports had led to fixes

being implemented in newer versions.

A. Implementation Efforts and Practicality

For our analysis, we used the KLEE symbolic execution

engine [45] and the STP SMT solver [65]. We added around

2000 lines of C++ code for implementing the path constraint

extraction and cross validation engines, around 500 lines of

Python for parsing path constraints and automating concrete

test case generation, and around 400 lines of HTML plus less

than 300 lines of JavaScript for the GUI that enables the easy

construction of SymCerts.

In order to implement the various optimizations described

before, a limited amount of new code need to be added to the

libraries that we tested. As shown in Table I, no more than

75 lines of code were added to each of the library. Most of

the new code is used to implement a static system time (see

Section V-Challenge 2) and a stub cryptographic signature

check (Section V-Challenge 3). Additionally, for CyaSSL

2.7.0, wolfSSL 3.6.6, and MatrixSSL 3.7.2, some code was

added to implement the hash stub (see Section V-Challenge

5). PolarSSL 1.2.8 and tropicSSL needed a simplified version

of sscanf(), and axTLS (both 1.4.3 and 1.5.3) needed

a simplified version of mktime(), to avoid symbolic-data

dependent loops, both of which are used for reading in and

converting the format of date-time inputs.

Also shown in Table I are the performance statistics regard-

ing path extraction. We ran our experiments on a commodity

laptop equipped with an Intel i5-2520M CPU and 16GB RAM.

Path extraction using EqC1 for most implementations finished

in minutes, while for some heavier ones it completed in hours.

The total number of paths ranges from hundreds to the level

of ten thousands. For EqC2, we report the upper bound of the

total number of paths, referred to in the table as “Total Paths”,

because the actual number could vary within each library

due to different treatments (and possibly missing checks) for

UTCTime and GeneralizedTime (see Section VI-C and VI-D

for examples). For each library, extraction using EqC2 yielded

paths at the scale of tens, and finished within a minute.

B. Errors Discovered By Symbolic Execution

The first opportunity our approach provides is that, during

symbolic execution, certain low-level coding issues (e.g. mem-

ory access errors, division by zeros, etc.) could be found.

Finding 1 (Incorrect extension parsing in CyaSSL 2.7.0 1):
As shown in Listing 1, due to a missing break statement after

DecodeAltNames(), the execution falls through to the next

case and also invokes DecodeAuthKeyId(). Consequently,

some bytes of the subject alternative name extension, which

we made symbolic, will overwrite the authority key identifier

(a pre-computed hash value) at the time of parsing. The error

manifests later during certificate chain validation, when the

authority key identifier undergoes some bit shifting operations

and modulo arithmetic, effectively turning it into an array

accessing index, which is then used to fetch a CA certificate

from a table of trusted CA certificates. Since some bytes of the

authority key identifier were incorrectly made symbolic during

parsing, the execution engine caught potential memory access

errors in fetching from the table. This was not reported in [43],

which applied fuzzing to test CyaSSL 2.7.0. Our conjecture is

1This bug has been fixed in newer versions of CyaSSL and wolfSSL.
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TABLE I
PRACTICALITY AND EFFICACY OF APPLYING THE SYMCERT APPROACH IN TESTING VARIOUS SMALL FOOTPRINT SSL/TLS LIBRARIES

Library - version Released Lines of C
code in library

Lines
Added

Paths[
EqC1

] Extraction
Time

[
EqC1

] Total Paths[
EqC2

] Extraction
Time

[
EqC2

] Found Instances
of Noncompliance

axTLS - 1.4.3 Jul 2011 16,283 72 276 (419) ∼ 1 Minute ≤ 52 ≤ 1 minute 7

axTLS - 1.5.3 Apr 2015 16,832 69 276 (419) ∼ 1 Minute ≤ 52 ≤ 1 minute 6

* CyaSSL - 2.7.0 Jun 2013 51,786 33 32 (504) ∼ 2 Minutes ≤ 26 ≤ 1 minute 7

wolfSSL - 3.6.6 Aug 2015 103,690 40 256 (31409) ∼ 1 Hour ≤ 26 ≤ 1 minute 2

tropicSSL - (Github) Mar 2013 13,610 66 16 (67) ∼ 1 Minute ≤ 30 ≤ 1 minute 10

* PolarSSL - 1.2.8 Jun 2013 29,470 66 56 (90) ∼ 1 Minute ≤ 81 ≤ 1 minute 4

mbedTLS - 2.1.4 Jan 2016 53,433 15 13 (536) ∼ 1 Minute ≤ 41 ≤ 1 minute 1

* MatrixSSL - 3.4.2 Feb 2013 18,360 9 8 (160) ∼ 1 Minute 1 ≤ 1 minute 6

MatrixSSL - 3.7.2 Apr 2015 37,879 30 3240 (8786) ∼ 1 Hour ≤ 25 ≤ 1 minute 5

§ The fourth column of the table refers to the lines of code we added to the libraries to make them amenable to our analysis. The fifth and sixth columns
display the number of accepting (rejecting) paths we obtained when we made the fields in equivalence class EqC1 symbolic, and the time it took to

complete the extraction process, respectively. The seventh and eighth columns show the upper bound of total paths (including both accepting and rejecting)
we observed when the fields in EqC2 are made symbolic, and the time it took for the path extraction process to complete, respectively.

that it would be difficult for concrete test cases to hit this bug,

as the execution is likely to fall through without triggering any

noticeable crashes.

Listing 1. Extension Processing In CyaSSL 2.7.0
switch (oid) {
...
case AUTH_INFO_OID:
DecodeAuthInfo(&input[idx], length, cert);
break;
case ALT_NAMES_OID:
DecodeAltNames(&input[idx], length, cert);
case AUTH_KEY_OID:
DecodeAuthKeyId(&input[idx], length, cert);
break;
... }

C. Findings From Simple Search of Path Constraints

Fields of certificates, represented by symbolic variables in

our approach, will appear on path constraints if they are in-

volved in branching decisions either directly or indirectly (e.g.
some other decision variables were calculated based on their

values). Consequently, the second opportunity our approach

offers is that immediately after extracting path constraints

using symbolic execution, missing checks of fields can be

discovered by performing “grep” on the path constraints.

Finding 2 (pathLenConstraint ignored in CyaSSL 2.7.0,
wolfSSL 3.6.6 2): We noticed that both of the aforementioned

libraries fail to take pathLenConstraint into consideration,

which means any such restrictions imposed by upper level

issuing CAs would be ignored by the libraries.

This was not reported in [43], where fuzzing was ap-

plied to CyaSSL 2.7.0. Interestingly, [43] instead reported

that CyaSSL 2.7.0 incorrectly rejects leaf CA certificates

given the intermediate CA certificate has a pathLenConstraint
of 0, and is noncompliant because such certificates should

be accepted according to the RFC. Our findings, however,

demonstrate that CyaSSL 2.7.0 could not possibly be re-

jecting certificates for such a reason because it completely

ignores pathLenConstraint. Testing CyaSSL 2.7.0 with con-

crete certificates confirmed our finding. Thus, the conclu-

sion in [43] that CyaSSL 2.7.0 misinterprets RFC regarding

2wolfSSL 3.9.10 has implemented support for pathLenConstraint [94].

pathLenConstraint and leaf CA certificate is incorrect. We

conjecture that this is because the frankencerts used as evi-

dence for such conclusion also happen to contain other errors,

and were thus rejected by CyaSSL 2.7.0. This demonstrates

the difficulty of interpreting results obtained from fuzzing.

Finding 3 (pathLenConstraint of intermediate CA certifi-
cates ignored in tropicSSL, PolarSSL 1.2.8 3): Our path con-

straints show that even though both tropicSSL and PolarSSL

1.2.8 recognize the pathLenConstraint variable during parsing

time, they check only the one that is on the trusted root

certificate during chain validation, and ignores those that are

on intermediate CA certificates of a given chain.

In addition to the fact that PolarSSL 1.2.8 does not check

pathLenConstraint on intermediate CA certificates, another

simple search found that PolarSSL 1.2.8 does not check

whether the leaf certificate is CA or not (which is not a

noncompliant behavior). It was however reported in [43]

that PolarSSL 1.2.8 violates the RFC by always rejecting

leaf CA certificates if the intermediate CA certificate has a

pathLenConstraint of 0. This is incorrect because PolarSSL

1.2.8 checks neither pathLenConstraint on intermediate CA

certificates, nor whether the leaf certificate is CA or not.

Finding 4 (Certain attribute types of distinguished names
ignored in axTLS 1.4.3 and 1.5.3): Both axTLS 1.4.3 and 1.5.3

ignore the country, state/province and locality attribute types

of the issuer and subject names. In other words, organizations

from different countries and states having the same name

would be considered equivalent during matching. This is a

clear deviation from RFC 5280 (Section 4.1.2.4) [2].

We have this finding reported to the developer of axTLS,

who acknowledged the existence of the problem and imple-

mented a fix in the new 2.1.1 release.

Finding 5 (Inability to process GeneralizedTime in axTLS
1.4.3, tropicSSL): RFC 5280 (Section 4.1.2.5) [2] states “Con-

forming applications MUST be able to process validity dates

that are encoded in either UTCTime or GeneralizedTime.”

However, given our SymCerts with GeneralizedTime, both

3The enforcement of pathLenConstraint from intermediate CA certificates
has been introduced since PolarSSL 1.2.18 [95].
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tropicSSL and axTLS 1.4.3 returned only 1 concrete rejecting

path with an empty path constraint, hence we conclude that

the aforementioned libraries cannot handle GeneralizedTime,

which is a non-conformance to the RFC. However, the same

SymCerts managed to yield meaningful path constraints in

axTLS 1.5.3, showing that support for GeneralizedTime has

been added in the newer version of axTLS.

Finding 6 (KeyUsage and ExtKeyUsage being ignored
in MatrixSSL 3.4.2, CyaSSL 2.7.0, tropicSSL): The three

aforementioned implementations do not check KeyUsage and

ExtKeyUsage extensions. This noncompliance implies that

certificates issued specifically for certain intended purposes

(e.g. only for software code signing) can be used to authenti-

cate a server in SSL/TLS handshakes. Honoring such restric-

tions imposed by issuing CAs allows the PKI to implement

different levels of trust, and help avoid certificate (and CA)

misuse in general.

Finding 7 (notBefore ignored in tropicSSL, PolarSSL 1.2.8;
validity not checked in MatrixSSL 3.4.2): Our SymCerts

revealed that PolarSSL 1.2.8 does not check the notBefore
field, and MatrixSSL 3.4.2 does not have an inbuilt validity
check, as there is only 1 path, which is an accepting path with

empty constraints, for each of the aforementioned libraries in

their respective cases. This is coherent with the findings in

[43]. MatrixSSL 3.4.2 delegates the task of checking certificate

validity to application developers. tropicSSL has the same

problem as PolarSSL 1.2.8, which is not a surprise considering

the fact that tropicSSL is a fork of PolarSSL.

Finding 8 (hhmmss of UTCTime ignored in tropic-
SSL, axTLS 1.4.3 and 1.5.3; hhmmss of both UTCTime
and GeneralizedTime ignored in MatrixSSL 3.7.2): Given

UTCTime on certificates, even though axTLS 1.4.3 and 1.5.3

check for both notBefore and notAfter, they do not take the

hour, minute and second into consideration, which means

that there could be a shift for as long as a day in terms

of rejecting future and expired certificates. This finding is

particularly interesting for axTLS 1.5.3, as its implementation

of GeneralizedTime support can actually handle hour, minute

and second, but for some reason UTCTime is processed in a

laxer manner. Following our report, the developer of axTLS

has acknowledged the problem and is currently considering a

fix. Our extracted path constraints show and tropicSSL also

suffer from the same problem.

Unlike its older counterpart, MatrixSSL 3.7.2 has im-

plemented validity checks that handle both UTCTime and

GeneralizedTime. However, our extracted path constraints re-

vealed that MatrixSSL 3.7.2 does not attempt to check the time

portion of the validity fields, regardless of whether the date-

time information is in UTCTime or GeneralizedTime. The

developers of MatrixSSL had explained to us the decision to

ignore the time portion was made due to its embedded origin,

where a local timer might not always be available, and in their

own words “having date set correctly is difficult enough”. They

have also admitted that as the result of such decision, a 24-hour

shift in rejecting future and expired certificates is inevitable.

Finding 9 (notAfter check applies only to leaf certificate in
tropicSSL): Not just that future certificates are not rejected

(e.g. missing check for notBefore as described above) in

tropicSSL, our path constraints show that, given a chain of

certificates, the check on notAfter only applies to the leaf one.

This could lead to severe problems, for instance, if a retired

private key of an intermediate issuing CA corresponding to an

expired certificate got leaked, attackers would be able to issue

new certificates and construct a new chain of certificate that

will be accepted by tropicSSL.

Finding 10 (Incorrect CA certificate and version number as-
sumptions in axTLS 1.4.3 and 1.5.3, CyaSSL 2.7.0, MatrixSSL
3.4.2): The aforementioned implementations deviate from the

RFC in how they establish whether certificates of various

versions are CA certificates or not. As explained previously

in Section III-A2, in case the certificate has a version older

than 3, some out-of-band mechanisms would be necessary to

verify whether it is a CA certificate or not. axTLS 1.4.3 and

1.5.3 assume certificates to be CA certificates regardless of the

version number. CyaSSL 2.7.0 also does not check the version

number, though whenever the basicConstraints extension is

present, it will be used to determine whether the certificate

is a CA certificate or not. MatrixSSL 3.4.2 does check the

version number, and would check the basicConstraints exten-

sion for version 3 certificates. However, it would just assume

certificates older than version 3 to be CA certificates. The

findings on CyaSSL 2.7.0 and MatrixSSL 3.4.2 are coherent

with the relevant results reported in [43].

Finding 11 (Unrecognized critical extensions in MatrixSSL
3.4.2, CyaSSL 2.7.0, axTLS 1.4.3 and 1.5.3): Section 4.2 of

RFC 5280 states “A certificate-using system MUST reject

the certificate if it encounters a critical extension it does not

recognize or a critical extension that contains information that

it cannot process.” [2]. Not rejecting unknown critical exten-

sions could lead to interoperability issues. For example, certain

entities might define and issue certificates with additional non-

standard custom extensions, and rely on the default rejection

behavior as described in RFC 5280 to make sure that only

a specific group of implementations can handle and process

their certificates. However, we found that MatrixSSL v3.4.2

and CyaSSL 2.7.0 would accept certificates with unrecognized

critical extensions, which is consistent to the findings in [43].
In addition, we found that axTLS 1.4.3 and 1.5.3 would

also accept certificates with unrecognized critical extensions.

In fact, based on the path constraints we have extracted, they

do not recognize any of the standard extensions that we wanted

to test at all, which deviates from RFC 5280, as Section 4.2

says the minimum requirement for applications conforming

to the document MUST recognize extensions like key usage,

basic constraints, name constraints, and extended key usage,

etc. Similarly for mbedTLS 2.1.4, as we have noticed for

not implementing support for the name constraints extension,

is also noncompliant in that sense. The implication of this

is that restrictions imposed by issuing CAs in the form of

name constraints will not be honored by mbedTLS 2.1.4,

resulting in potential erroneous acceptance of certificates. At

514

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 08:04:48 UTC from IEEE Xplore.  Restrictions apply. 



the time of writing, developers of mbedTLS have indicated

that they currently have no plans on implementing support for

this extension, and suggested that application developers can

implement their own if desired.

D. Findings From Cross-Validating Libraries

The final opportunity would be to cross-validate libraries,

specifically, for each accepting path of library A and each

rejecting path of library B, we perform a conjunction and see

if the resulting constraints would be solvable or not. If yes, it

signifies a discrepancy exists between the two libraries.

Finding 12 (ExtKeyUsage OID handling in wolfSSL 3.6.6,
MatrixSSL 3.7.4): Our path constraints also unveiled that

despite being two of the few libraries that support the extended

key usage extension, both wolfSSL 3.6.6 and MatrixSSL 3.7.2

opted for a somewhat lax shortcut in handling the extension:

given the object identifier (OID) of a key usage purpose,

they do a simple summation (referred colloquially as a non-

cryptographic digest function by the developers of MatrixSSL)

over all nodes of the OID, and then try to match only that sum.

For example, under such scheme, the standard usage purpose

“server authentication” (OID 1.3.6.1.5.5.7.3.1, DER-encoded

byte values are 0x2B 0x06 0x01 0x05 0x05 0x07 0x03 0x01)

would be treated as decimal 71.

Notice that the extension itself is not restricted to only hold

standard usage purposes that are defined in the RFC, and

custom key usage purposes are common 4. Since OIDs are

only meant to be unique in a hierarchical manner, the sums

over nodes of OIDs are not necessarily unique. Hypothetically

some enterprises under the private enterprise arc (1.3.6.1.4.1)

could define OIDs to describe their own key usage purposes,

and if added to the extension, those OIDs might be incorrectly

treated as some of the standard key usage purposes by the two

libraries. This could be problematic for both interoperability

and security, as custom key usage purposes would be misin-

terpreted, and the standard ones could be spoofed.

This finding is a good example of how our approach can be

used to discover the exact treatments that variables undergo

inside the libraries during execution. It might also be difficult

for unguided fuzzing to hit this particular problem.

We contacted the corresponding developers of the 2 libraries

regarding this, and both acknowledged the problem exists.

wolfSSL has introduced a more rigorous OID bytes checking

since version 3.7.3 5, and MatrixSSL is planning to incorporate

additional checks of the OID bytes in a new release.

Finding 13 (Incorrect interpretation of UTCTime year in
MatrixSSL 3.7.2, axTLS 1.4.3 and 1.5.3, tropicSSL): Since

UTCTime reserves only two bytes for representing the year,

one needs to be cautious when interpreting it. RFC 5280

Section 4.1.2.5.1 [2] says that when the YY of a UTCTime is

4For example, Microsoft defines its own key usage purposes and the
corresponding OIDs that are deemed meaningful to the Windows ecosystem
[96] (the extension is referred to as “Application Policy” in Microsoft
terminology, and is not to be confused with “Certificate Policy”).

5https://github.com/wolfSSL/wolfssl/commit/
d248a7660cc441b68dc48728b10256e852928ea3

larger than or equal to 50 then it should be treated as 19YY,

otherwise it should be treated as 20YY. This essentially means

that the represented range of year is 1950 to 2049 inclusively.

During cross-validation, we noticed that in certain libraries,

some legitimate years are being incorrectly rejected (and

accepted). A quick inspection of the path constraints, concrete-

value counterexamples, and finally the source code, found the

following instances of noncompliance.

Listing 2. UTCTime year adjustment in MatrixSSL 3.7.2
y = 2000 + 10 * (c[0] - ’0’) + (c[1] - ’0’); c += 2;
/* Years from ’96 through ’99 are in the 1900’s */
if (y >= 2096) { y -= 100; }

As shown in Listing 2, MatrixSSL 3.7.2 interprets any YY less

than 96 to be in the twenty first century. This means certificates

that had expired back in 1995 would be considered valid, as

the expiration date is incorrectly interpreted to be in 2095.

On the other hand, long-living certificates that have a validity

period began in 1995 would be treated as not valid yet. The

developers acknowledged our report on this and have since

implemented a fix in a new release.

Listing 3. UTCTime year adjustment in tropicSSL
to->year += 100 * (to->year < 90);
to->year += 1900;

A similar instance of noncompliance was found in tropicSSL,

as shown in Listing 3. tropicSSL interprets any YY less than

90 to be in the twenty first century.

Listing 4. UTCTime year adjustment in axTLS 1.4.3 and 1.5.3
if (tm.tm_year <= 50) { /* 1951-2050 thing */
tm.tm_year += 100; }

A similar issue exists in both axTLS 1.4.3 and 1.5.3. As shown

in Listing 4, there is an off-by-one error in the condition used

to decide whether to adjust the year or not. In this case, the

year 1950 would be incorrectly considered to mean 2050.

Based on the inline comment, it seems to be a case where the

developer misinterpreted the RFC. A fix has been implemented

in a new version of axTLS following our report.

Finding 14 (Incorrect timezone adjustment in MatrixSSL
3.7.2): During cross-validation with other libraries, we noticed

that the boundary of date checking in the path constraints of

MatrixSSL 3.7.2 was shifted by one day. A quick inspection of

the date time checking code found that MatrixSSL 3.7.2 uses

the localtime_r() instead of gmtime_r() to convert

the current integer epoch time into a time structure. The shift

was due to the fact that in conventional libc implementa-

tions, localtime_r() would adjust for the local time zone,

which might not necessarily be Zulu, hence deviating from the

RFC requirements.

Assuming the date time on certificates are in the Zulu

timezone, the implication of this subtle issue is that for

systems in GMT-minus time-zones, expired certificates could

be considered still valid because of the shift, and certificates

that just became valid could be considered not yet valid.

Similarly, for systems in GMT-plus time-zones, certificates

that are still valid might be considered expired, and future

certificates that are not yet valid would be considered valid.
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We discussed this with the developers of MatrixSSL. They

conjectured the reason for using localtime_r() instead

of gmtime_r() was due to the latter being unavailable on

certain embedded platforms. They have agreed, however, as

MatrixSSL is gaining popularity on non-embedded platforms,

in a new release, they will start using gmtime_r() on

platforms that support it.

Finding 15 (Overly restrictive notBefore check in CyaSSL
2.7.0 6): RFC 5280 Section 4.1.2.5 says “The validity period

for a certificate is the period of time from notBefore through

notAfter, inclusive.” However, when cross-validating CyaSSL

2.7.0 with other libraries, from the concrete counterexamples

we noticed that discrepancy exists in how the same notBefore
values would be accepted by other libraries but rejected

by CyaSSL 2.7.0, while such discrepancy was not observed

with notAfter. An inspection of the notBefore checking code

yielded the following instance of noncompliance:

Listing 5. Erroneous “less than” check in CyaSSL 2.7.0
static INLINE int DateLessThan(const struct tm* a, const

struct tm* b)
{ return !DateGreaterThan(a,b); }

Notice that the negation of > is ≤, not <, which explains

why if the current date time happen to be the same as the one

described in notBefore, the certificate would be considered

future (not valid yet) and rejected. Hence the notBefore
checking in CyaSSL 2.7.0 turns out to be overly restrictive

than what the RFC mandates.

This is again a new result, comparing to the previous work

[43] that also studied CyaSSL 2.7.0. Our conjecture is that

given a large number of possible values, it might be difficult

for unguided fuzzing to hit boundary cases, hence such a subtle

logical error eluded their analysis.

Finding 16 (KeyUsage and ExtKeyUsage being ignored
in PolarSSL 1.2.8): The fact that PolarSSL 1.2.8 does not

check KeyUsage and ExtKeyUsage, evaded our simple search

approach but was caught during cross-validation, as the im-

plementation actually parses the two extensions, hence some

constraints were added as the result of several basic san-

ity checks happened during parsing. However, during cross-

validation, it became clear that apart from the parsing sanity

checks, PolarSSL 1.2.8 does not do any meaningful checks on

KeyUsage and ExtKeyUsage.

In fact, this resulted in another instance of noncompliance,

as PolarSSL 1.2.8 would not reject certificates with KeyUsage
or ExtKeyUsage, even if those two extensions were made

critical, and it does not perform any meaningful checks apart

from merely parsing them. This is an example where a library

is intended to handle an extension but was not able to, because

of incomplete implementation.

This is consistent with similar results reported in [43],

although the finding that PolarSSL 1.2.8 does not check the

KeyUsage extension on intermediate CA certificates was not

reported in that paper.

6This has been fixed in newer versions of CyaSSL and WolfSSL.

Finding 17 (pathLenConstraint of trusted root misinter-
preted in tropicSSL): During cross validation, it became clear

to us that, in tropicSSL: (1) on one hand, some accepting

paths would allow the pathLenConstraint variable to be 0;

(2) on the other hand, some rejecting paths reject because the

pathLenConstraint was deemed to be smaller than an unex-

pectedly large boundary. In both cases, the pathLenConstraint
variable appears to have been misinterpreted by tropicSSL.

We suspect that this might be due to the value 0 in the

internal parsed certificate data structure is used to capture the

case where the pathLenConstraint variable is absent (i.e. no

limit is imposed). A quick inspection of the parsing code

revealed that our suspicion is indeed correct. In fact, the

parsing code is supposed to always add 1 to the variable if it

is present on the certificate, but a coding error 7 of missing a

dereferencing operator (*) in front of an integer pointer means

that the increment was applied to the pointer itself but not the

value, hence the observed behavior described above.

This subtle bug has a severe implication: it completely de-

feats the purpose of imposing such restriction on a certificate,

as a pathLenConstraint of 0 would be incorrectly treated to

mean that the chain length could be unlimited.

Finding 18 (Not critical means not a CA in tropicSSL):
During cross validation, we also noticed that when the interme-

diate CA certificate’s basicConstraints extension is set to non-

critical, and the isCA boolean is set to True, tropicSSL would

consider the intermediate CA certificate not a CA certificate.

Additionally, in the path constraints, the symbolic variable

representing the criticality of basicConstraints and the one that

represents the isCA boolean are always in conjunction through

a logical AND.

A quick inspection found the following problem in the

parsing code that handles the basicConstraints extension:

Listing 6. Incorrect adjustment to the isCA boolean in tropicSSL
*ca_istrue = is_critical & is_cacert;

This interpretation of the basicConstraints extension de-

viates from the specification, as RFC 5280 says that clients

should process extensions that they can recognize, regardless

of whether the extension is critical or not. The criticality of

basicConstraints should not affect the semantic meaning of

attributes in the extension itself. This is an example of a CCVL

being overly restrictive.

E. Other findings

Here we present other interesting findings that are not

explicitly noncompliant behaviors deviating from RFC 5280.

Extra 1 (Ineffective date string sanity check in MatrixSSL
3.7.2): During cross-validation, we noticed that date time byte

values in MatrixSSL 3.7.2 are not bounded for exceedingly

large or unexpectedly small values. However, in the con-

straints, we see combinations of whether each byte is too

small or not (though not affecting the acceptance decision),

which looked suspiciously like a failed lower boundary check.

A quick inspection of the certificate parsing code unveiled the

7This has been fixed in later versions of PolarSSL and mbedTLS.
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snippet shown in Listing 7 that is meant to vet a given date

string from a certificate, and reject it with a parser error if the

values are outside of an expected range. Unfortunately, due

to incorrectly using the && operator instead of ||, the if
conditions are never satisfiable. This is also proven by the fact

that if we symbolically execute the code snippet in Listing 7,

all possible execution paths returns 1. Consequently that code

snippet would actually never reject any given strings, hence

completely defeating the purpose of having a sanity check.

Listing 7. date string sanity check in MatrixSSL 3.7.2
if (utctime != 1) { /* 4 character year */
if (*c < ’1’ && *c > ’2’) return 0; c++; /* Year */
if (*c < ’0’ && *c > ’9’) return 0; c++;
}
if (*c < ’0’ && *c > ’9’) return 0; c++;
if (*c < ’0’ && *c > ’9’) return 0; c++;
if (*c < ’0’ && *c > ’1’) return 0; c++; /* Month */
if (*c < ’0’ && *c > ’9’) return 0; c++;
if (*c < ’0’ && *c > ’3’) return 0; c++; /* Day */
if (*c < ’0’ && *c > ’9’) return 0;
return 1;

Following our report, the developers of MatrixSSL have ac-

knowledged this is indeed a faulty implementation. Along with

other fixes being implemented to make date-time processing

more robust, they have decided that this sanity check will no

longer be used in newer versions of MatrixSSL.

Extra 2 (notBefore and notAfter bytes taken “as is” in
CyaSSL 2.7.0, WolfSSL 3.6.6, axTLS 1.4.3 and 1.5.3): For

the four aforementioned implementations, we noticed during

cross-validation that they do not perform any explicit boundary

checks on the value of the date time value bytes of notBefore
and notAfter, and just assumed that those bytes are going to

be valid ASCII digits (i.e. 0–9). It is hence possible to put

other ASCII characters in the date time bytes and obtain an

exceptionally large (small) values for notAfter (notBefore),

though this does not seem to be an imminent threat, nor

does it violate the RFC, as the RFC did not stipulate what

implementations should do.

Extra 3 (Timezone Handling): Another discrepancy that

we have observed during cross-validating path constraints of

different libraries was how they impose/assume the time zone

of notBefore and notAfter on certificates. Specifically, we

notice that mbedTLS 2.1.4 and wolfSSL v2.3.3 would reject

certificates that do not have the timezone ending with a ‘Z’.

This is possibly due to the fact that RFC 5280 [2] mandates

conforming CAs to express validity in Zulu time (a.k.a GMT

or Zero Meridian Time) when issuing certificates, regardless

of the type being UTCTime or GeneralizedTime. Other imple-

mentations like MatrixSSL 3.7.2, axTLS 1.5.3 and PolarSSL

1.2.8 ignore the timezone character and simply assume the

Zulu timezone is always being used.

This is arguably an example of under-specification, as it is

not clear whether implementations should try to handle (with

proper time zone adjustment) or reject certificates with a non-

Zulu timezone, since RFC 5280 [2] did not explicitly mandate

an expected behavior.

VII. DISCUSSION

A. Takeaway for Application Developers

As a takeaway for application developers that need to use

SSL/TLS libraries for processing X.509 certificates, a general

rule of thumb is to upgrade to newer versions of the libraries

if possible. As demonstrated by our findings, newer versions

of implementations, even when originated from the same

source tree as their legacy counterparts, are better equipped

in terms of features and extension handling, as well as in

general having more rigorous checks. Holding on to legacy

code could potentially hurt both security and interoperability.

Unfortunately, regular software patching, particularly for IoT

devices, does not seem to happen widespread enough [97].

We understand that due to the needs to optimize for different

application scenarios (e.g. small footprint for resource con-

strained platforms), certain features might not be implemented

in their entirety as described in the standard specifications.

In order to help application developers to better understand

the trade-offs and make a more well-informed decision in

choosing which SSL/TLS library to use, we believe that one

possibility would be to have a certification program that tests

for implementation conformance and interoperability, similar

to that of the IPv6 Ready Logo Program [98], and the High

Definition Logos [99]. For example, an “X.509 Gold” for

libraries that implement most required features correctly, and

an “X.509 Ready” for libraries that can only handle the bare

minimum but are missing out on certain features.

B. Limitations

Since our noncompliance detection approach critically relies

on symbolic execution which is known to suffer from path ex-

plosion, especially in the presence of symbolic data-dependent

loops, it is deliberately made to trade away completeness for
practicality (i.e., our approach is not guaranteed to reveal all

possible noncompliances in an implementation and can have

false negatives).

Our current scope of analysis does not include the logic for

checking certification revocation status and hostname match-

ing. As noted in [43], for both revocation status checking

and hostname matching, while some libraries provide relevant

facilities, some delegate the task to application developers. In

addition, a typical implementation of a hostname matching

logic uses complex string operations and analyzing these

require a dedicated SMT solver with support for the theory

of strings [100]. We leave that for future work.

Moreover, as we use concrete values in SymCerts, symbolic

execution sway away from rigorously exercising the parsing

logic. Though we have uncovered parsing bugs as reported in

Section VI, our scrutiny on the parsing code is not meant to

be comprehensive. Noticeably, low-level memory errors due to

incorrect buffer management in the parsing code, as reported

in a recent Vulnerability Note [101], can elude our analysis.

C. Threat to Validity

In some cases during certificate validation, it is not clear

who is required to perform the validity check on a field, i.e.,
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the underlying library or the application using the library.

The RFC states that some specific validity check must be

performed without clearly identifying the responsible party.

This unclear separation of responsibilities have resulted in

libraries opting for significantly different API designs. We rely

on example usage—often come with the source code in the

form of a sample client—to draw a boundary for extracting the

approximated certificate accepting (and rejecting) universes.

Optional function calls to extra checking logics, if not demon-

strated in the sample client programs, will be missed by our

analysis. Additionally, if some of the checks performed on

certificates are being pushed down to a different phase during

SSL/TLS handshake instead of the server certificate validation

phase, these checks might be missing from our extraction. We

rely on the concrete client-server replay setup to catch them

and iteratively include them in the extraction.

Our optimization often rely on the expectation that the value

of some fields are handled in the implementation in an uniform

way. For checking validity of fields that can have variable

lengths, we assume the implementation treats each regular

length (not corner cases) uniformly. In addition, we also

assume that the semantic independence of certain certificate

fields are maintained in the implementation. For instance, we

assume that the certificate validity fields are not dependent on

any other fields. Although we have observed that this seems to

be the case and the RFC supports it, hypothetically a developer

can mistakenly create an artificial dependency.

VIII. CONCLUSION AND FUTURE DIRECTION

In this paper, we present a novel approach that leverages

symbolic execution to find noncompliance in X.509 implemen-

tations. In alignment with the general consensus, we observe

that due to the recursive nature of certificate representation,

an off-the-shelf symbolic execution engine suffers from path

explosion problem. We overcome this inherent challenge in

two ways: (1) Focusing on real implementations with a small

resource footprint; (2) Leveraging domain-specific insights,

abstractions, and compartmentalization. We use SymCerts—

certificate chains in which each certificate has a mix of

symbolic and concrete values—such that symbolic execution

can be made scalable on many X.509 implementations while

meaningful analysis can be conducted.

We applied our noncompliance approach to analyze 9 real

implementations selected from 4 major families of SSL/TLS

source base. Our analysis exposed 48 instances of noncom-

pliance, some of which has severe security implications. We

have responsibly shared our new findings with the respective

library developers. Most of our reports have generated positive

acknowledgments from the developers, and led to the imple-

mentation of fixes to the said problems in new releases.

We now identify possible ways of extending our work.

The Vision of Fully Automatic Noncompliance Detection:
Our current approach is a significant first step towards a fully

automatic noncompliance detection approach for X.509 CCVL

implementation. We envision the following two automatic

approaches that can leverage our current work.

(1) Signature-driven Automated Noncompliance Detection: Vul-

nerability signatures capture properties that should not hold

for any CCVL implementations. If one can represent a

vulnerability signature as a QFFOL formula Ψ, then for a

given implementation I , we can check, using an SMT solver,

whether there exists a certificate in I’s certificate accepting

universe that satisfies Ψ.

(2) Cross Validation With a Reference Implementation: For this

approach, one would need to develop a formally verified ref-

erence implementation of X.509 CCVL, Iref . Such a reference

implementation can be highly valuable and is also sought after

by the research community, as indicated by a panel in a NSF

workshop titled “Formal Methods for Security” [102]. For

automatically detecting noncompliance of a given implementa-

tion Itest, one can simply cross validate Itest against Iref using

our automatic cross validation approach.

Analyzing Libraries for Conventional Systems: SSL/TLS

libraries that are developed for traditional systems (e.g.,
OpenSSL, GnuTLS, Mozilla NSS) are not included in our

current analysis. We leave the analysis of these libraries as a

subject of future work.
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