
Scalable Bias-Resistant Distributed Randomness

Ewa Syta∗, Philipp Jovanovic†, Eleftherios Kokoris Kogias†, Nicolas Gailly†,
Linus Gasser†, Ismail Khoffi‡, Michael J. Fischer§, Bryan Ford†

∗Trinity College, USA
†École Polytechnique Fédérale de Lausanne, Switzerland

‡University of Bonn, Germany
§Yale University, USA

Abstract—Bias-resistant public randomness is a critical com-
ponent in many (distributed) protocols. Generating public ran-
domness is hard, however, because active adversaries may behave
dishonestly to bias public random choices toward their advan-
tage. Existing solutions do not scale to hundreds or thousands
of participants, as is needed in many decentralized systems.
We propose two large-scale distributed protocols, RandHound
and RandHerd, which provide publicly-verifiable, unpredictable,
and unbiasable randomness against Byzantine adversaries. Rand-
Hound relies on an untrusted client to divide a set of randomness
servers into groups for scalability, and it depends on the pigeon-
hole principle to ensure output integrity, even for non-random,
adversarial group choices. RandHerd implements an efficient,
decentralized randomness beacon. RandHerd is structurally
similar to a BFT protocol, but uses RandHound in a one-time
setup to arrange participants into verifiably unbiased random
secret-sharing groups, which then repeatedly produce random
output at predefined intervals. Our prototype demonstrates that
RandHound and RandHerd achieve good performance across
hundreds of participants while retaining a low failure probability
by properly selecting protocol parameters, such as a group size
and secret-sharing threshold. For example, when sharding 512
nodes into groups of 32, our experiments show that RandHound
can produce fresh random output after 240 seconds. RandHerd,
after a setup phase of 260 seconds, is able to generate fresh
random output in intervals of approximately 6 seconds. For this
configuration, both protocols operate at a failure probability of
at most 0.08% against a Byzantine adversary.

I. INTRODUCTION

A reliable source of randomness that provides high-entropy

output is a critical component in many protocols [11], [22].

The reliability of the source, however, is often not the only

criterion that matters. In many high-stakes protocols, the

unbiasability and public-verifiability of the randomness gen-

eration process are as important as ensuring that the produced

randomness is good in terms of the entropy it provides [31].

More concretely, Tor hidden services [25] depend on the

generation of a fresh random value each day for protection

against popularity estimations and DoS attacks [34]. Anytrust-

based systems, such as Herbivore [32], Dissent [60], and

Vuvuzela [59], as well as sharded blockchains [23], use bias-

resistant public randomness for scalability by sharding par-

ticipants into smaller groups. TorPath [30] critically depends

on public randomness for setting up consensus groups. Public

randomness can be used to transparently select parameters for

cryptographic protocols or standards, such as in the generation

of elliptic curves [2], [40], where adversaries should not be

able to steer the process to select curves with weak security

parameters [6]. Other use-cases for public randomness include

voting systems [1] for sampling ballots for manual recounts,

lotteries for choosing winning numbers, and Byzantine agree-

ment algorithms [15], [46] for achieving scalability.

The process of generating public randomness is nontrivial,

because obtaining access to sources of good randomness,

even in terms of entropy alone, is often difficult and error-

prone [19], [36]. One approach is to rely on randomness

beacons, which were introduced by Rabin [49] in the context

of contract signing, where a trusted third party regularly emits

randomly chosen integers to the public. The NIST beacon [45]

provides hardware-generated random output from quantum-

mechanical effects, but it requires trust in their centralized

beacon—a problematic assumption, especially after the Dual

EC DRBG debacle [8], [54].

This work is concerned primarily with the trustworthi-

ness, rather than the entropy, of public randomness sources.

Generating public randomness without a trusted party is

often desirable, especially in decentralized settings such as

blockchains, where many mutually-distrustful users may wish

to participate. Producing and using randomness in a distributed

setting presents many issues and challenges, however, such

as how to choose a subset of available beacons, or how

to combine random outputs from multiple beacons without

permitting bias by an active adversary. Prior approaches to

randomness without trusted parties [48] employ Bitcoin [4],

[13], slow cryptographic hash functions [40], lotteries [2], or

financial data [21] as sources for public randomness.

Our goal is to provide bias-resistant public randomness in

the familiar (t, n)-threshold security model already widely-

used both in threshold cryptography [24], [47] and Byzantine

consensus protocols [15]. Generating public randomness is

hard, however, as active adversaries can behave dishonestly in

order to bias public random choices toward their advantage,

e.g., by manipulating their own explicit inputs or by selectively

injecting failures. Although addressing those issues is rela-

tively straightforward for small values of n ≈ 10 [15], [38],

we address scalability challenges of using larger values of n,

in the hundreds or thousands, for enhanced security in real-

world scenarios. For example, scalable randomness is relevant

for public cryptocurrencies [39], [44] which tend to have

2017 IEEE Symposium on Security and Privacy

© 2017, Ewa Syta. Under license to IEEE.

DOI 10.1109/SP.2017.45

444

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

hundreds to thousands of distinct miners or for countries with

thousands of national banks that might want to form a national

permissioned blockchain with secure random sharding.

This paper’s contributions are mainly pragmatic rather than

theoretical, building on existing cryptographic primitives to

produce more scalable and efficient distributed randomness

protocols. We introduce two scalable public-randomness gen-

eration protocols: RandHound is a “one-shot” protocol to gen-

erate a single random output on demand, while RandHerd is a

randomness beacon protocol that produces a regular series of

random outputs. Both protocols provide the same key security

properties of unbiasability, unpredictability, availability, and

third-party verifiability of their random outputs.

RandHound is a client-server randomness scavenging pro-

tocol enabling a client to gather fresh randomness on demand

from a potentially large set of nearly-stateless randomness

servers, preferably run by independent parties. A party that

occasionally requires trustworthy public randomness, such as

a lottery association, can use RandHound to produce a random

output that includes contributions of – and trustworthiness

attestations from – all participating servers. The RandHound

client (e.g., the lottery association) first publicly commits to

the parameters of a unique RandHound protocol run, such

as the time and date of the lottery and the set of servers

involved, so a malicious client cannot bias the result by

secretly rerunning the protocol. The client then splits the

servers into balanced subgroups for scalability. Each subgroup

uses publicly verifiable secret sharing (PVSS) [52], [56]

to produce secret inputs such that an honest threshold of

participants can later recover them and form a third-party-

verifiable proof of their validity. To tolerate server failures,

the client selects a subset of secret inputs from each group.

Application of the pidgeonhole principle ensures ensures the

integrity of RandHound’s final output even if some subgroups

are compromised, e.g., due to biased grouping. The client

commits to his choice of secrets, to prevent equivocation,

by obtaining a collective signature [58] from participating

servers. After the servers release the selected secrets, the client

combines and publishes the collective random output along

with a third-party verifiable transcript of the protocol run.

Anyone can subsequently check this transcript to verify that

the random output is trustworthy and unbiased, provided not

too many servers were compromised.

RandHerd is a complementary protocol enabling a poten-

tially large collection of servers to form a distributed public

randomness beacon, which proactively generates a regular

series of public random outputs. RandHerd runs continually

and need not be initiated by any client, but requires stateful

servers. No single or sub-threshold group of failing or mali-

cious servers can halt the protocol, or predict or significantly

bias its output. Clients can check the trustworthiness of any

published beacon output with a single, efficient check of one

collective signature [58]. RandHerd first invokes RandHound

once, at setup or reconfiguration time, to divide the set

of servers securely into uniformly random groups, and to

generate a short-term aggregate public key used to produce

and verify individual beacon outputs. RandHerd subsequently

uses a threshold collective signing protocol based on Shamir

secret sharing [9], [53], to generate random outputs at regular

intervals. Each of RandHerd’s random outputs doubles as

a collective Schnorr signature [57], [58], which clients can

validate efficiently against the group’s aggregate public key.

The dominant cost in both protocols is publicly verifiable

secret sharing (PVSS), which normally incurs O(n3) com-

munication and computation costs on each of n participants.

RandHound and RandHerd run PVSS only among smaller

groups, however, whose configured size c serves as a security

parameter. RandHound therefore reduces asymptotic cost to

O(n) if c is constant. By leveraging efficient tree-structured

communication, RandHerd further reduces the cost of produc-

ing successive beacon outputs to O(log n) per server.

We implemented the RandHound and RandHerd protocols

in Go, and made these implementations freely available as part

of the EPFL DEDIS lab’s Cothority framework.1 Experiments

with our prototype implementations show that, among a collec-

tive of 512 globally-distributed servers divided into groups of

32, RandHerd can produce a new 32-byte collective random

output every 6 seconds, following a one-time setup process

using RandHound that takes approximately 260 seconds. The

randomness verification overhead of RandHerd is equivalent

to verifying a single Schnorr multisignature [51], typically

less than 100 bytes in size, which clients can check in

constant time. Using RandHound alone to produce a random

output on demand, it takes approximately 240 seconds to

produce randomness and approximately 76 seconds to verify it

using the produced 4MByte transcript. In this configuration, a

Byzantine adversary can compromise the availability of either

protocol with a probability of at most 0.08%.

This paper is organized as follows. Section II explores

background and motivation for public randomness. Sections III

and IV introduces the design and security properties of Rand-

Hound and RandHerd, respectively. Section V evaluates the

prototype implementations of both protocols. Finally, Sec-

tion VI summarizes related work and Section VII concludes.

II. BACKGROUND AND MOTIVATION

We first introduce notation and summarize techniques for

secret sharing and Schnorr signing, which RandHound and

RandHerd build on. We then consider a series of strawman

protocols illustrating the key challenges in distributed random-

ness generation of commitment, selective aborts, and malicious

secret shares. We end with RandShare, a protocol that offers

the desired properties, but unlike RandHound and RandHerd

is not third-party verifiable and does not scale well.

For the rest of the work, we denote by G a multiplicatively

written cyclic group of order q with generator G, where the

set of non-identity elements in G is written as G∗. We denote

by (xi)i∈I a vector of length |I| with elements xi, for i ∈ I .

Unless stated otherwise, we denote the private key of a node

i by xi and the corresponding public key by Xi = Gxi .

1https://github.com/dedis/cothority

445

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

A. Publicly Verifiable Secret-Sharing

A (t, n)-secret sharing scheme [9], [53] enables an honest

dealer to share a secret s among n trustees such that any

subset of t honest trustees can reconstruct s, whereas any

subset smaller than t learns nothing about s. Verifiable secret-

sharing (VSS) [20], [26], [50] adds protection from a dishonest

dealer who might intentionally produce bad shares and prevent

honest trustees from recovering the same, correct secret.

A publicly verifiable secret sharing (PVSS) [52], [56]

scheme makes it possible for any party to verify secret-shares

without revealing any information about the shares or the

secret. During the share distribution phase, for each trustee

i, the dealer produces an encrypted share Ei(si) along with a

non-interactive zero-knowledge proof (NIZK) [18], [27], [28]

that Ei(si) correctly encrypts a valid share si of s. During the

reconstruction phase, trustees recover s by pooling t properly-

decrypted shares. They then publish s along with all shares

and NIZK proofs that show that the shares were properly

decrypted. PVSS runs in three steps:

1) The dealer chooses a degree t − 1 secret sharing poly-

nomial s(x) =
∑t−1

j=0 ajx
j and creates, for each trustee

i ∈ {1, . . . , n}, an encrypted share Ŝi = X
s(i)
i of the

shared secret S0 = Gs(0). He also creates commitments

Aj = Haj , where H �= G is a generator of G, and

for each share a NIZK encryption consistency proof P̂i.

Afterwards, he publishes Ŝi, P̂i, and Aj .

2) Each trustee i verifies his share Ŝi using P̂i and Aj ,

and, if valid, publishes the decrypted share Si = (Ŝi)
x−1
i

together with a NIZK decryption consistency proof Pi.

3) The dealer checks the validity of Si against Pi, discards

invalid shares and, if there are at least t out of n de-

crypted shares left, recovers the shared secret S0 through

Lagrange interpolation.

B. Schnorr Signature Schemes

RandHound and RandHerd rely on variations of the well-

known Schnorr (multi-)signature schemes [3], [42], [51].

1) Threshold Signing: TSS [57] is a distributed (t, n)-
threshold Schnorr signature scheme. TSS allows any subset

of t signers to produce a valid signature. During setup, all

n trustees use VSS to create a long-term shared secret key

x and a public key X = Gx. To sign a statement S, the n
trustees first use VSS to create a short-term shared secret v
and a commitment V = Gv and then compute the challenge

c = H(V ‖ S). Afterwards, each trustee i uses his shares vi
and xi of v and x, respectively, to create a partial response

ri = vi−cxi. Finally, when t out of n trustees collaborate they

can reconstruct the response r through Lagrange interpolation.

The tuple (c, r) forms a regular Schnorr signature on S, which

can be verified against the public key X .

2) Collective Signing: CoSi [58] enables a set of witness-

ing servers coordinated by a leader to efficiently produce a

collective Schnorr signature (c, r) under an aggregate public

key X̂ =
∏n−1

i=0 Xi. CoSi scales Schnorr multisignatures to

thousands of participants by using aggregation techniques and

communication trees.

A CoSi round runs in four steps over two round-trips

between a leader and his witnesses. To sign a statement

S sent down the communication tree by the leader, each

server i computes a commitment Vi = Gvi and in a bottom-

up process, all commitments are aggregated until the leader

holds the aggregate commit V̂ =
∏n−1

i=0 Vi. Once the leader

computes and multicasts down the tree the collective challenge

c = H(V̂ ‖ S), each server i responds with a partial response

ri = vi − cxi. Lastly, the servers aggregate all responses into

r =
∑n−1

i=0 ri in a final bottom-up process.

C. Insecure Approaches to Public Randomness

For expositional clarity, we now summarize a series of

inadequate strawman designs: (I) a naive, trivially insecure

design, (II) one that uses a commit-then-reveal process to

ensure unpredictability but fails to be unbiasable, and (III) one

that uses secret sharing to ensure unbiasability in an honest-

but-curious setting, but is breakable by malicious participants.

Strawman I. The simplest protocol for producing a random

output r =
⊕n−1

i=0 ri requires each peer i to contribute their

secret input ri under the (false) assumption that a random

input from any honest peer would ensure unbiasability of r.

However, a dishonest peer j can force the output value to be

r̂ by choosing rj = r̂
⊕

i:i�=j ri upon seeing all other inputs.

Strawman II. To prevent the above attack, we want to

force each peer to commit to their chosen input before seeing

other inputs by using a simple commit-then-reveal approach.

Although the output becomes unpredictable as it is fixed

during the commitment phase, it is not unbiasable because a

dishonest peer can choose not to reveal his input upon seeing

all other openings of committed inputs. By repeatedly forcing

the protocol to restart, the dishonest peer can obtain output

that is beneficial for him, even though he cannot choose its

exact value. The above scenario shows an important yet subtle

difference between an output that is unbiased when a single,

successful run of the protocol is considered, and an output that

is unbiasable in a more realistic scenario, when the protocol

repeats until some output is produced. An attacker’s ability to

re-toss otherwise-random coins he does not like is central to

the reason peer-to-peer networks that use cryptographic hashes

as participant IDs are vulnerable to clustering attacks [41].

Strawman III. To address this issue, we wish to ensure that

a dishonest peer either cannot force the protocol to abort by

refusing to participate, or cannot benefit from doing so. Using

a (t, n)-secret sharing scheme, we can force the adversary to

commit to his action before knowing which action is favorable

to him. First, all n peers, where at most f are dishonest,

distribute secret shares of their inputs using a t = f + 1
recovery threshold. Only after each peer receives n shares

will they reconstruct their inputs and generate r. The threshold

t = f + 1 prevents a dishonest peer from learning anything

about the output value. Therefore, he must blindly choose to

abort the protocol or to distribute his share. Honest peers can

then complete the protocol even if he stops participating upon

446

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

seeing the recovered inputs. Unfortunately, a dishonest peer

can still misbehave by producing bad shares, preventing honest

peers from successfully recovering identical secrets.

D. RandShare: Small-Scale Unbiasable Randomness Protocol

RandShare is an unbiasable randomness protocol that en-

sures unbiasability, unpredictability, and availability, but is

practical only at small scale due to O(n3) communication

overhead. RandShare introduces key concepts that we will re-

use in the more scalable RandHound protocol (Section III).

RandShare extends the approach for distributed key-

generation in a synchronous model of Gennaro et al. [29] by

adopting a point-of-no-return strategy implemented through

the concept of a barrier, a specific point in the protocol exe-

cution after which the protocol always completes successfully,

and by extending it to the asynchronous setting, where the

adversary can break timing assumptions [14], [15].

In RandShare, the protocol output is unknown but fixed as

a function of f+1 inputs. After the barrier point, the protocol

output cannot be changed and all honest peers eventually

output the previously fixed value, regardless of the adversary’s

behavior. In RandShare, we define the barrier at the point

where the first honest member reveals the shares he holds.

We assume a Byzantine adversary and an asynchronous

network where messages are eventually delivered. Let N =
{1, . . . , n} denote the list of peers that participate in Rand-

Share and n = 3f + 1, where f is the number of dishonest

peers. Let t = f + 1 be the VSS threshold. We assume every

peer has a copy of a public key Xj for all j �= i, and that only

valid, properly-signed messages are accepted.

Each RandShare peer i ∈ N executes the following steps:

1. Share Distribution.
1) Select coefficients aik ∈R Z

∗
q of a degree t − 1 secret

sharing polynomial si(x) =
∑t−1

k=0 aikx
k. The secret to

be shared is si(0) = ai0.

2) Compute polynomial commitments Aik = Gaik , for all

k ∈ {0, . . . , t − 1}, and calculate secret shares si(j) for

all j ∈ N.

3) Securely send si(j) to peer j �= i and start a Byzantine

agreement (BA) run on si(0), by broadcasting Âi =
(Aik)k∈{0,...,t−1}.

2. Share Verification.
1) Initialize a bit-vector Vi = (vi1, . . . , vin) to zero, to keep

track of valid secrets sj(0) received. Then wait until a

message with share sj(i) from each j �= i has arrived.

2) Verify that each sj(i) is valid using Âj . This may be

done by checking that Sj(i) = Gsj(i) where:

Sj(x) =

t−1∏
k=0

Axk

jk = G
∑t−1

k=0 ajkx
k

= Gsj(x)

3) If verification succeeds, confirm sj(i) by broadcasting the

prepare message (p, i, j, 1) as a positive vote on the BA

instance of sj(0). Otherwise, broadcast (p, i, j, sj(i)) as

a negative vote. This also includes the scenario when Âj

was never received.

4) If there are at least 2f +1 positive votes for secret sj(0),
broadcast (c, i, j, 1) as a positive commitment. If there

are at least f+1 negative votes for secret sj(0), broadcast

(c, i, j, 0) as a negative commitment.

5) If there are at least 2f + 1 commits (c, i, j, x) for secret

sj(0), set vij = x. If x = 1, consider the secret

recoverable else consider secret sj(0) invalid.

3. Share Disclosure.
1) Wait until a decision has been taken for all entries of Vi

and determine the number of 1-entries n′ in Vi.

2) If n′ > f , broadcast for each 1-entry j in Vi the share

sj(i) and abort otherwise.

4. Randomness Recovery.
1) Wait until at least t shares for each j �= i have arrived,

recover the secret sharing polynomial sj(x) through

Lagrange interpolation, and compute the secret sj(0).
2) Compute and publish the collective random string as:

Z =

n′⊕
j=1

sj(0)

RandShare achieves unbiasability, because the secret shar-

ing threshold t = f + 1 prevents dishonest peers from

recovering the honest peers’ secrets before the barrier. The

Byzantine agreement procedures ensure that all honest peers

have a consistent copy of Vi and therefore know which n′ > f
secrets will be recovered after the barrier or if the protocol run

has already failed as n′ ≤ f . Furthermore, if at least f + 1
honest members sent a success message for each share, and

thus Byzantine agreement (with at least 2f + 1 prepares) has

been achieved on the validity of these shares, each honest

peer will be able to recover every other peer’s secret value.

Unpredictability follows from the fact that the final random

string Z contains n′ ≥ f + 1 secrets; there are at most f
malicious peers, and no honest peer will release his shares

before the barrier. Availability is ensured because f+1 honest

nodes out of the total 2f+1 positive voters are able to recover

the secrets, given the secret-sharing threshold t = f + 1,

without the collaboration of the dishonest nodes.

III. RANDHOUND: SCALABLE, VERIFIABLE

RANDOMNESS SCAVENGING

This section presents RandHound, a scalable client/server

protocol for producing public, verifiable, unbiasable random-

ness. RandHound enables a client, who initiates the protocol,

to “scavenge” public randomness from an arbitrary collection

of servers. RandHound uses a commit-then-reveal approach

to generate randomness, implemented via publicly verifiable

secret sharing (PVSS) [52], and it uses CoSi [58] as a witness-

ing mechanism to fix the protocol output and prevent client

equivocation. We first provide an overview of RandHound and

introduce the notation and threat model. We then describe

randomness generation and verification in detail, analyze the

protocol’s security properties, and discuss protocol extensions.

447

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

A. Protocol Overview

RandHound employs a client/server model, in which a client

invokes the services of a set of RandHound servers to produce

a random value. RandHound assumes the same threat model as

RandShare, i.e., that at most f out of at least 3f+1 participants

are dishonest. If the client is honest, we allow at most f
servers to be malicious and if the adversary controls the client

then we allow at most f − 1 malicious servers. We assume

that dishonest participants can send different but correctly

signed messages to honest participants in stages where they are

supposed to broadcast the same message to all. Furthermore,

we assume that the goal of the adversary is to bias or DoS-

attack the protocol run in the honest-client scenario, and to

bias the output in the malicious-client scenario.

We assume the client gets only one attempt to run Rand-

Hound. A dishonest client might try to run the protocol

many times until he obtains a favorable output. However,

each protocol run uses a session configuration file C that

uniquely identifies a protocol run and binds it to the intended

purpose of the random output. To illustrate RandHound’s

deployment model, the client might be a lottery authority,

which must commit ahead of time to all lottery parameters

including the time and date of the lottery. A cryptographic

hash of the configuration parameters in C uniquely identifies

the RandHound protocol instance. If that protocol run fails

to produce an output, this failure triggers an alarm and an

investigation, and not a silent re-run of the protocol.

Honest RandHound servers enforce this “one-shot” rule

by remembering and refusing to participating in a second

protocol run with session configuration C until the time-

window defined by C has passed. This memory of having

recently participated in a session for configuration C is the

only state RandHound servers need to store for significant

time; the servers are otherwise largely stateless.

RandHound improves on RandShare’s lack of scalability

by sharing secrets not directly among all other servers but

only within smaller groups of servers. RandHound servers

share their secrets only with their respective group members,

decreasing the number of shares they create and transmit. This

reduces the communication and computational overhead from

O(n3) to O(nc2), where c is the average (constant) size of

a group. The client arranges the servers into disjoint groups.

The protocol remains secure even if the client chooses a non-

random adversarial grouping, however, because the client must

employ all groups and the pidgeonhole principle ensures that

at least one group is secure.

Each server chooses its random input value and creates

shares only for other members of the same group using PVSS.

The server sends the encrypted shares to the client together

with the NIZK proofs. The client chooses a subset of server

inputs from each group, omitting servers that did not respond

on time or with proper values, thus fixing each group’s secret

and consequently the output of the protocol. After the client

receives a sign-off on his choice of inputs in a global run of

CoSi, the servers decrypt and send their shares to the client.

The client, in turn, combines the recovered group secrets to

produce the final random output Z. The client documents the

run of the protocol in a log L, or transcript, by recording

the messages he sends and receives. The transcript serves as a

third party verifiable proof of the produced randomness. Fig. 1

gives an overview on the RandHound design.

C

S

S S

S

S S

Client

PVSS Group 1 PVSS Group 2

Servers Servers

Fig. 1. An overview of the RandHound design.

B. Description

Let G be a group of large prime order q with generator G.

Let N = {0, . . . , n−1} denote the list of nodes, let S = N\{0}
denote the list of servers and let f be the maximum number of

permitted Byzantine nodes. We require that n = 3f+1. We set

(x0, X0) as the key pair of the client and (xi, Xi) as the one

of server i > 0. Further let Tl ⊂ S, with l ∈ {0, . . . ,m− 1},
be pairwise disjoint trustee groups and let tl = 	|Tl|/3
 + 1
be the secret sharing threshold for group Tl.

The publicly available session configuration is denoted by

C = (X,T, f, u, w), where X = (X0, . . . , Xn−1) is the list

of public keys, T = (T0, . . . , Tm−1) is the server grouping, u
is a purpose string, and w is a timestamp. We call H(C) the

session identifier. The session configuration and consequently

the session identifier have to be unique for each protocol run.

We assume that all nodes know the list of public keys X .

The output of RandHound is a random string Z which is

publicly verifiable through a transcript L.

1) Randomness Generation: RandHound’s randomness-

generation protocol has seven steps and requires three round

trips between the client and the servers; see Figure 2 for an

overview. All exchanged messages are signed by the sending

party, messages from the client to servers include the session

identifier, and messages from servers to the client contain a

reply identifier that is the hash of the previous client message.

We implicitly assume that client and servers always verify

message signatures and session and reply identifiers and that

they mark non-authentic or replayed messages and ignore them

from the rest of the protocol run.

RandHound consists of three inquiry-response phases be-

tween the client and the servers followed by the client’s

randomness recovery.

1) Initialization (Client). The client initializes a protocol

run by executing the following steps:

448

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

Client Server iMessages

〈I1〉x0 = 〈H(C), T, u, w〉x0

〈R1i〉xi = 〈H(I1), (̂Sij , ̂Pij)j∈Tl , (Aik)k∈{0,...,tl−1}, Vi〉xi

〈I2i〉x0 = 〈H(C), c, T ′, (̂Sji, ̂Pji, Hsj (i))j∈T ′
l
〉x0

〈R2i〉xi = 〈H(I2i), ri〉xi

〈I3〉x0 = 〈H(C), r, E〉x0

〈R3i〉xi = 〈H(I3), (Sji, Pji)j∈T ′
l
〉xi

P
ha

se
1

P
ha

se
2

P
ha

se
3

1. Initialization

2. Share-Distribution

3. Secret-Commitment

4. Secret-Acknowledgement

5. Decryption-Request

6. Share-Decryption

7. Randomness-Recovery: Z, L

(x0, X0) / (xi, Xi) Private and public key of client / server i

C Session configuration
T Group configuration
u, w Purpose string, time stamp
̂Sij / Sij Encrypted / decrypted share
̂Pij / Pij Encryption / decryption consistency proof
Aik Polynomial commitment

Hsi(j) Share commitment
Vi, c, r, E Schnorr commitment, challenge, response, exceptions
T ′ / T ′

l Chosen secrets overall / of group l

Z Collective randomness
L Transcript (protocol log)

Fig. 2. An overview of the RandHound randomness generation process

a) Set the values in C and choose a random integer

rT ∈R Zq as a seed to pseudorandomly create a

balanced grouping T of S. Record C in L.

b) Prepare the message

〈I1〉x0
= 〈H(C), T, u, w〉x0

,

record it in L, and broadcast it to all servers.

2) Share Distribution (Server). To distribute shares, each

trustee i ∈ Tl executes step 1 of PVSS:

a) Map H(C) to a group element H ∈ G∗, set tl =
	|Tl|/3
 + 1, and (randomly) choose a degree tl − 1
secret sharing polynomial si(x). The secret to-be-

shared is Si0 = Gsi(0).

b) Create polynomial commitments Aik, for all k ∈
{0, . . . , tl − 1}, and compute encrypted shares Ŝij =

X
si(j)
j and consistency proofs P̂ij for all j ∈ Tl.

c) Choose vi ∈R Zq and compute Vi = Gvi as a Schnorr

commitment.

d) Prepare the message

〈R1i〉xi
= 〈H(I1), (Ŝij , P̂ij)j∈Tl

, (Aik)k∈{0,...,tl−1}, Vi〉xi

and send it back to the client.

3) Secret Commitment (Client). The client commits to the

set of shared secrets that contribute to the final random

string, and asks servers to co-sign his choice:

a) Record each received 〈R1i〉xi
message in L.

b) Verify all Ŝij against P̂ij using Xi and Aik. Buffer

each (correct) Hsi(j) created in the process. Mark

each share that does not pass the verification as in-

valid, and do not forward the corresponding tuple

(Ŝij , P̂ij , H
si(j)) to the respective trustee.

c) Create the commitment to the final list of secrets T ′ =
(T ′0, . . . , T

′
m−1) by randomly selecting T ′l ⊂ Tl such

that |T ′l | = tl for all l ∈ {0, . . . ,m− 1}.
d) Compute the aggregate Schnorr commit V =

∏
i Vi

and the Schnorr challenge c = H(V ‖ H(C) ‖ T ′).
e) Prepare the message

〈I2i〉x0
= 〈H(C), c, T ′, (Ŝji, P̂ji, H

sj(i))j∈T ′l 〉x0
,

record it in L, and send it to trustee i ∈ Tl.

4) Secret Acknowledgment (Server). Each trustee i ∈ Tl

acknowledges the client’s commitment by executing the

following steps:

a) Check that |T ′l | = tl for each T ′l in T ′ and that f+1 ≤∑m−1
l=0 tl. Abort if any of those conditions does not

hold.

b) Compute the Schnorr response ri = vi − cxi.

c) Prepare the message

〈R2i〉xi
= 〈H(I2i), ri〉xi

and send it back to the client.

5) Decryption Request (Client). The client requests the

decryption of the secrets from the trustees by presenting

a valid Schnorr signature on his commitment:

a) Record each received 〈R2i〉xi
message in L.

b) Compute the aggregate Schnorr response r =
∑

i ri
and create a list of exceptions E that contains infor-

mation on missing server commits and/or responses.

c) Prepare the message

〈I3〉x0 = 〈H(C), r, E〉x0 ,

record it in L, and broadcast it to all servers.

6) Share Decryption (Server). To decrypt received shares,

each trustee i ∈ Tl performs step 2 of PVSS:

a) Check that (c, r) forms a valid Schnorr signature on

T ′ taking exceptions recorded in E into account and

verify that at least 2f +1 servers signed. Abort if any

of those conditions does not hold.

b) Check for all j ∈ T ′l that Ŝji verifies against P̂ji using

Hsj(i) and public key Xi.

c) If the verification fails, mark Ŝji as invalid and do not

decrypt it. Otherwise, decrypt Ŝji by computing Sji =

(Ŝji)
x−1
i = Gsj(i) and create a decryption consistency

proof Pji.

d) Prepare the message

〈R3i〉xi
= 〈H(I3), (Sji, Pji)j∈T ′l 〉xi

and send it back to the client.

449

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

7) Randomness Recovery (Client). To construct the col-

lective randomness, the client performs step 3 of PVSS:

a) Record all received 〈R3i〉xi messages in L.

b) Check each share Sji against Pji and mark invalid

ones.

c) Use Lagrange interpolation to recover the individual

Si0 that have enough valid shares Sij and abort if even

a single one of the secrets previously committed to in

T ′ cannot be reconstructed.

d) Compute the collective random value as

Z =
∏

i∈⋃T ′l

Si0 ,

and publish Z and L.

2) Randomness Verification: A verifier who wants to check

the validity of the collective randomness Z against the tran-

script

L = (C, 〈I1〉x0
, 〈R1i〉xi

, 〈I2i〉x0
, 〈R2i〉xi

, 〈I3〉x0
, 〈R3i〉xi

)

has to perform the following steps:

1) Verify the values of arguments included in the session

configuration C = (X,T, f, u, w). Specifically, check

that |X| = n = 3f + 1, that groups Tl defined in T are

non-overlapping and balanced, that |X| = ∑m−1
l=0 |Tl|,

that each group threshold satisfies tl = |Tl|/3+ 1, that u
and w match the intended use of Z, and that the hash of

C matches H(C) as recorded in the messages.

2) Verify all signatures of 〈I1〉x0
, 〈R1i〉xi

, 〈I2i〉x0
, 〈R2i〉xi

〈I3〉x0
, and 〈R3i〉xi

. Ignore invalid messages for the rest

of the verification.

3) Verify that H(I1) matches the hash recorded in R1i.

Repeat for I2i and R2i, and I3 and R3i. Ignore messages

that do not include the correct hash.

4) Check that T ′ contains at least f + 1 secrets, that the

collective signature on T ′ is valid and that at least 2f+1
servers contributed to the signature (taking into account

the exceptions in E).

5) Verify each recorded encrypted share Ŝij , whose secret

was chosen in T ′, against the proof P̂ij using Xi and

Aik. Abort if there are not enough shares for any secret

chosen in T ′.
6) Verify each recorded decrypted share Sij against the

proof Pij where the corresponding Ŝij was found to be

valid. Abort if there are not enough shares for any secret

chosen in T ′.
7) Verify Z by recovering Z ′ from the recovered individual

secrets Si0 and by checking that Z = Z ′. If the values

are equal, then the collective randomness Z is valid.

Otherwise, reject Z.

C. Security Properties

RandHound provides the following security properties:

1) Availability. For an honest client, the protocol success-

fully completes and produces the final random output Z
with high probability.

2) Unpredictability. No party learns anything about the final

random output Z, except with negligible probability, until

the secret shares are revealed.

3) Unbiasability. The final random output Z represents an

unbiased, uniformly random value, except with negligible

probability.

4) Verifiability. The collective randomness Z is third-party

verifiable against the transcript L, that serves as an

unforgeable attestation that the documented set of par-

ticipants ran the protocol to produce the one-and-only

random output Z, except with negligible probability.

In the discussion below, we assume that each honest node

follows the protocol and that all cryptographic primitives

RandHound uses provide their intended security properties.

Specifically, the (t, n)-PVSS scheme ensures that a secret can

be recovered only by using a minimum of t shares and that

the shares do not leak information about the secret.

Availability. Our goal is to ensure that an honest client

can successfully complete the protocol, even in the presence

of adversarial servers that misbehave arbitrarily, including by

refusing to participate. A dishonest client can always abort

the protocol, or simply not run it, so we do not consider a

“self-DoS” by the client to be an attack on availability. In the

remaining security properties, we can thus restrict our concern

to attacks in which a dishonest client might corrupt (e.g. bias)

the output without affecting the output’s availability.

According to the protocol specification, an honest client

randomly assigns (honest and dishonest) nodes to their groups.

Therefore, each group’s ratio of honest to dishonest nodes will

closely resemble the overall ratio of honest to dishonest nodes

in the entire set. Given that n = 3f +1, the expected number

of nodes in a group Tl is about 3f/m. The secret-sharing

threshold of tl = |Tl|/3 + 1 = (3f/m)/3 + 1 = f/m + 1
enables 2f/m honest nodes in each group to recover its

group secret without the collaboration of malicious nodes. This

ensures availability, with high probability, when the client is

honest. Section V-C analyzes of the failure probability of a

RandHound run for different parameter configurations.

Unpredictability. We want to ensure that output Z remains

unknown to the adversary until step 7 of the protocol, when

honest nodes decrypt and reveal the secret shares they hold.

The random output Z is a function of m group secrets,

where each group contributes exactly one secret that depends

on tl inputs from group members. Further, each input is

recoverable using PVSS with tl shares. In order to achieve

unpredictability, there must be at least one group secret that

remains unknown to the adversary until step 7.

We will show that there exists at least one group for

which the adversary cannot prematurely recover the group’s

secret. An adversary who controls the dishonest client can

deviate from the protocol description and arbitrarily assign

nodes to groups. Assuming that there are h honest nodes

in total and m groups, then by the generalized pigeonhole

principle, regardless of how the dishonest client assigns the

groups, there will be at least one group which contains at

least
h/m� nodes. In other words, there must be at least

450

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

one group with at least an average number of honest nodes.

Therefore, we set the threshold for secret recovery for each

group l such that the number of nodes needed to recover

the group secret contains at least one honest node, that is,

|Tl|−h/m+1 = f/m+1. In RandHound, we have n = 3f+1
and tl = |Tl|/3 + 1 = (3f/m)/3 + 1 = f/m+ 1 as needed.

Consequently, the adversary will control at most m − 1
groups and obtain at most m− 1 group secrets. Based on the

properties of PVSS, and the fact that Z is a function of all m
group secrets, the adversary cannot reconstruct Z without the

shares held by honest nodes that are only revealed in step 7.

Unbiasability. We want to ensure that an adversary cannot

influence the value of the random output Z.

In order to prevent the adversary from controlling the output

Z, we need to ensure that there exists at least one group for

which the adversary does not control the group’s secret. If,

for each group, the adversary can prematurely recover honest

nodes’ inputs to the group secret and therefore be able to

prematurely recover all groups’ secrets, then the adversary can

try many different valid subsets of the groups’ commits to

find the one that produces the Z most beneficial to him. If,

for each group, the adversary can exclude honest nodes from

contributing inputs to the group secret, then the adversary has

full control over all group secrets, hence Z.

As argued in the discussion of unpredictability, there exists

at least one group for which the adversary does not control

its group secret. Furthermore, the requirement that the client

has to select tl inputs from each group in his commitment T ′

ensures that at least
∑m−1

l=0 tl =
∑m−1

l=0 f/m + 1 = f + m
inputs contribute to the group secrets, and consequently to the

output Z. Combining these two arguments, we know that there

is at least one group that is not controlled by the adversary

and at least one honest input from that group contributes to Z.

As a result, the honest member’s input randomizes the group’s

secret and Z, regardless of the adversary’s actions.

Lastly, the condition that at least 2f + 1 servers must sign

off on the client’s commitment T ′ ensures that a malicious

client cannot arrange malicious nodes in such a way that would

enable him to mount a view-splitting attack. Without that last

condition the adversary could use different arrangements of

honest and dishonest inputs that contribute to Z and generate

multiple collective random values with valid transcripts from

which he could choose and release his preferred one.

Verifiability. In RandHound, only the client obtains the

final random output Z. In order for Z to be usable in other

contexts and by other parties, any third party must be able to

independently verify that Z was properly generated. Therefore,

the output of RandHound consists of Z and a transcript

L, which serves as third-party verifiable proof of Z. The

transcript L must (a) enable the third party to replay the

protocol execution, and (b) be unforgeable.

L contains all messages sent and received during the pro-

tocol execution, as well as the session configuration C. If the

verifying party finds C acceptable, specifically the identities of

participating servers, he can replay the protocol execution and

verify the behavior of the client and the servers, as outlined

in Section III-B2. After a successful protocol run completes,

the only relevant protocol inputs that remain secret are the

private keys of the client and the servers. Therefore, any third

party on its own can verify L and decide on its validity since

the private keys are only used to produce signatures and the

signatures are verified using the public keys.

If an adversary can forge the transcript, producing a valid

transcript without an actual run of the protocol, then the

adversary must be in possession of the secret keys of all

participant listed in C, violating the assumption that at most

f nodes are controlled by the adversary.

Therefore, under the assumption that all cryptographic prim-

itives used in RandHound offer their intended security proper-

ties, it is infeasible for any party to produce a valid transcript,

except by legitimately running the protocol to completion with

the willing participation of the at least
∑m−1

l=0 |T ′l | servers

listed in the client’s commitment vector T ′ (step 3).

Further Considerations. In each protocol run, the group

element H is derived from the session identifier H(C), which

mitigates replay attacks. A malicious server that tries to replay

an old message is immediately detected by the client, as the

replayed PVSS proofs will not verify against the new H .

It is also crucial for RandHound’s security that none of the

participants knows a logarithm a with G = Ha. Otherwise

the participant can prematurely recover secret shares since

(Hsi(j))a = Hasi(j) = Gsi(j) = Sij , which violates Rand-

Hound’s unpredictability property and might even enable a

malicious node to bias the output. This has to be taken into

account when deriving H from H(C). The naive way to map

H(C) to a scalar a and then set H = Ga is obviously insecure

as G = H1/a. The Elligator mappings [7] provide a secure

option for elliptic curves.

D. Extensions

Each Lagrange interpolation that the client has to perform to

recover a server’s secret can be replaced by the evaluation of

a hash function as follows: Each server i sends, alongside his

encrypted shares, the value H(si(0)) as a commitment to the

client in step 2. After the client’s request to decrypt the shares,

each server, whose secret was chosen in T ′, replies directly

with si(0). The client checks the received value against the

server’s commitment and, if valid, integrates it into Z.

Note that the verification of the commitment is necessary,

as a malicious server could otherwise just send an arbitrary

value as his secret that would be integrated into the collective

randomness thereby making it unverifiable against the tran-

script L. The client can still recover the secret as usual from

the decrypted shares with Lagrange interpolation if the above

check fails or if the respective server is unavailable.

Finally, SCRAPE [16] provides a new approach to decen-

tralized randomness that builds upon an improved version of

PVSS. While this approach is orthogonal to ours, the improved

PVSS scheme has a lower verification complexity and can be

used to reduce the complexity of RandHound from O(c2n) to

O(cn), making it more scalable.

451

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

IV. RANDHERD: A SCALABLE RANDOMNESS COTHORITY

This section introduces RandHerd, a protocol that builds

a collective authority or cothority [58] to produce unbiasable

and verifiable randomness. RandHerd serves as a decentralized

randomness beacon [45], [49], efficiently generating a regular

stream of random outputs. RandHerd builds on RandHound,

but requires no distinguished client to initiate it, and signifi-

cantly improves repeat-execution performance.

We first outline RandHerd, then detail the protocol, analyze

its security properties, and explore protocol extensions.

A. Overview

RandHerd provides a continually-running decentralized ser-

vice that can generate publicly verifiable and unbiasable ran-

domness on demand, at regular intervals, or both. RandHerd’s

goal is to reduce communication and computational over-

head of the randomness generation further from RandHound’s

O(c2n) to O(c2 log n) given a group size c. To achieve this,

RandHerd requires a one-time setup phase that securely shards

cothority nodes into subgroups, then leverages aggregation and

communication trees to generate subsequent random outputs.

As before, the random output r̂ of RandHerd is unbiasable and

can be verified, together with the corresponding challenge ĉ,
as a collective Schnorr signature against RandHerd’s collective

public key. Fig. 3 illustrates RandHerd’s design.

RandHerd’s design builds on RandHound, CoSi [58], and

a (t, n)-threshold Schnorr signature (TSS) scheme [57] that

implements threshold-based witness cosigning (TSS-CoSi).

A cothority configuration C defines a given RandHerd

instance, listing the public keys of participating servers and

their collective public key X . The RandHerd protocol con-

sists of RandHerd-Setup, which performs one-time setup, and

RandHerd-Round, which produces successive random outputs.

The setup protocol uses RandHound to select a RandHerd

leader at random and arrange nodes into verifiably unbiased

random groups. Each group runs the key generation phase

of TSS to establish a public group key X̂l, such that each

group member holds a share of the corresponding private

key x̂l. Each group can issue a collective signature with a

cooperation of tl of nodes. All public group keys contribute

to the collective RandHerd public key X̂ , which is endorsed

by individual servers in a run of CoSi.

Once operational, to produce each random output, Rand-

Herd generates a collective Schnorr signature (ĉ, r̂) on some

input w using TSS-CoSi and outputs r̂ as randomness. TSS-

CoSi modifies CoSi to use threshold secret sharing (TSS)

rather than CoSi’s usual exception mechanism to handle node

failures, as required to ensure bias-resistance despite node

failures. All m RandHerd groups contribute to each output, but

each group’s contribution requires the participation of only tl
members. Using TSS-CoSi to generate and collectively certify

random outputs allows clients to verify any RandHerd output

via a simple Schnorr signature check against public key X̂ .

CL

GL GL

TSS Group 1

TSS Group 2 TSS Group 3

Cothority Leader

Group Leaders

CoSi-Tree Server-to-Server

Fig. 3. An overview on the RandHerd design

B. Description

Let N = {0, . . . , n− 1} denote the list of all nodes, and let

f denote the maximum number of permitted Byzantine nodes.

We assume that n = 3f + 1. The private and public key of a

node i ∈ N is xi and Xi = Gxi , respectively. Let C denote the

cothority configuration file listing the public keys of all nodes,

the cothority’s collective public key X̂ =
∏n−1

j=0 X̂j , contact

information such as IP address and port number, default group

sizes for secret sharing, and a timestamp on when C was

created. Each node has a copy of C.

1) RandHerd-Setup: The setup phase of RandHerd consists

of the following four steps:

1) Leader Election. When RandHerd starts, each node gen-

erates a lottery ticket ti = H(C ‖ Xi) for every i ∈ N and

sorts them in an ascending order. The ticket ti with the

lowest value wins the lottery and the corresponding node i
becomes the tentative RandHerd leader. If this leader is or

becomes unavailable, leadership passes to the next node

in ascending order. A standard view-change protocol [39],

[17] manages the transition between successive leaders.

In summary, any server who is dissatisfied with the cur-

rent leader’s progress broadcasts a view-change message

for the next leader. Such messages from at least f + 1
nodes force a view change, and the new leader begins

operation upon receiving at least 2f + 1 such “votes of

confidence.” Section IV-E1 discusses an improvement to

leader election to make successive leaders unpredictable.

2) Seed Generation. The leader assumes the role of the

RandHound client and runs the protocol, with all other

nodes acting as RandHound servers. Each leader has only

one chance to complete this step. If he fails, the next

node, as determined by the above lottery, steps in and

attempts to execute RandHound. After a successful run

of RandHound, the leader obtains the tuple (Z,L), where

Z is a collective random string and L is the publicly

verifiable transcript that proves the validity of Z. Lastly,

the current leader broadcasts (Z,L) to all nodes.

452

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

3) Group Setup. Once the nodes receive (Z,L), they use

L to verify Z, and then use Z as a seed to compute

a random permutation of N resulting in N′. Afterwards

N′ is sharded into m groups Tl of the same size as in

RandHound, for l ∈ {0, . . . ,m − 1}. The node at index

0 of each group becomes the group leader and the group

leader of the first group takes up the role of the temporary

RandHerd leader. If any of the leaders is unavailable, the

next one, as specified by the order in N′, steps in. After

this step, all nodes know their group assignments and the

respective group leaders run a TSS-setup to establish the

long-term group secret x̂l using a secret sharing threshold

of tl = |Tl|/3 + 1. All group leaders report back to the

current RandHerd leader with the public group key X̂l.

4) Key Certification. As soon as the RandHerd leader has

received all X̂j , he combines them to get the collective

RandHerd public key X̂ =
∏m−1

j=0 X̂j and starts a run of

the CoSi protocol to certify X̂ by requesting a signature

from each individual node. Therefore, the leader sends

X̂ together with all X̂j and each individual node checks

that X̂j corresponds to its public group key and that X̂
is well-formed. Only if both checks succeed, the node

participates in the co-signing request, otherwise it refuses.

The collective signature on X̂ is valid if there are least

f/m+1 signatures from each group and the total number

of individual signatures across the groups is at least

2f + 1. Once a valid signature on X̂ is established, the

setup of RandHerd is completed. The validity of X̂ can

be verified by anyone by using the collective public key

X , as specified in the configuration C.

After a successful setup, RandHerd switches to the op-

erational randomness generation mode. Below we describe

how the protocol works with an honest and available leader.

A dishonest or failed leader can halt progress at any time,

but RandHerd-Round uses a view-change protocol as in

RandHerd-Setup to recover from leader failures.

2) RandHerd-Round: In this mode, we distinguish between

communications from the RandHerd leader to group leaders,

from group leaders to individual nodes, and communications

between all nodes within their respective group. Each random-

ness generation run consists of the following seven steps and

can be executed periodically:

1) Initialization (Leader). The RandHerd leader initializes

a protocol run by broadcasting an announcement message

containing a timestamp w to all group leaders. All groups

will cooperate to produce a signature (ĉ, r̂) on w.

2) Group Secret Setup / Commitment (Groups / Servers).
Upon the receipt of the announcement, each group creates

a short-term secret v̂l, using a secret sharing threshold

tl, to produce a group commitment V̂l = Gv̂l that will

be used towards a signature of w. Furthermore, each

individual node randomly chooses vi ∈R Zq , creates

a commitment Vi = Gvi that will be used to globally

witness, hence validate the round challenge ĉ, and sends

it to the group leader. The group leader aggregates the

received individual commitments into Ṽl =
∏

i∈Tl
Vi and

sends (V̂l, Ṽl) back to the RandHerd leader.

3) Challenge (Leader). The RandHerd leader aggregates

the respective commitments into V̂ =
∏m−1

l=0 V̂l and

Ṽ =
∏m−1

l=0 Ṽl, and creates two challenges ĉ = H(V̂ ‖ w)
and c̃ = H(Ṽ ‖ V̂). Afterwards, the leader sends (ĉ, c̃)
to all group leaders that in turn re-broadcast them to the

individual servers of their group.

4) Response (Servers). Server i stores the round group

challenge ĉ for later usage, creates its individual response

ri = vi− c̃xi, and sends it back to the group leader. The

latter aggregates all responses into r̃l =
∑

i∈Tl
ri and

creates an exception list Ẽl of servers in his group that

did not respond or sent bad responses. Finally, each group

leader sends (r̃l, Ẽl) to the RandHerd leader.

5) Secret Recovery Request (Leader). The RandHerd

leader gathers all exceptions Ẽl into a list Ẽ, and ag-

gregates the responses into r̃ =
∑m−1

l=0 r̃l taking Ẽ into

account. If at least 2f + 1 servers contributed to r̃, the

RandHerd leader sends the global group commitment V̂
and the signature (c̃, r̃, Ẽ) to all group leaders thereby

requesting the recovery of the group secrets.

6) Group Secret Recovery (Groups / Servers). The group

leaders re-broadcast the received message. Each group

member individually checks that (c̃, r̃, Ẽ) is a valid

signature on V̂ and only if it is the case and at least 2f+1
individual servers signed off, they start reconstructing the

short-term secret v̂l. The group leader creates the group

response r̂l = v̂l − ĉx̂l and sends it to the RandHerd

leader.

7) Randomness Recovery (Leader). The RandHerd leader

aggregates all responses r̂ =
∑m−1

l=0 r̂l and, only if he

received a reply from all groups, he releases (ĉ, r̂) as the

collective randomness of RandHerd.

3) Randomness Verification: The collective randomness

(ĉ, r̂) of RandHerd is a collective Schnorr signature on the

timestamp w, which is efficiently verifiable against the aggre-

gate group key X̂ .

C. Security Properties

RandHerd provides the following security properties:

1) Availability. Given an honest leader, the protocol success-

fully completes and produces the final random output Z
with high probability.

2) Unpredictability. No party learns anything about the final

random output Z, except with negligible probability, until

the group responses are revealed.

3) Unbiasability. The final random output Z represents an

unbiased, uniformly random value, except with negligible

probability.

4) Verifiability. The collective randomness Z is third-party

verifiable as a collective Schnorr signature under X̂ .

We make the same assumptions as in the case of Rand-

Hound (Section III-C) on the behavior of the honest nodes

and the cryptographic primitives RandHerd employs.

453

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

RandHerd uses a simple and predictable ahead-of-time elec-

tion mechanism to choose the temporary RandHerd leader in

the setup phase. This approach is sufficient because the group

assignments and the RandHerd leader for the randomness

phase of the protocol are chosen based on the output of

RandHound. RandHound’s properties of unbiasability and un-

predictability hold for honest and dishonest clients. Therefore,

the resulting group setup has the same properties in both cases.

Availability. Our goal is to ensure that with high probability

the protocol successfully completes, even in the presence of

an active adversary.

As discussed above, the use of RandHound in the setup

phase ensures that all groups are randomly assigned. If the

RandHerd leader makes satisfactory progress, the secret shar-

ing threshold tl = f/m+1 enables 2f/m honest nodes in each

group to reconstruct the short-term secret v̂l, hence produce

the group response r̂l without requiring the collaboration of

malicious nodes. An honest leader will make satisfactory

progress and eventually output r̂ at the end of step 7. This

setup corresponds to a run of RandHound by an honest

client. Therefore, the analysis of the failure probability of

a RandHound run described in Section V-C is applicable to

RandHerd in the honest leader scenario.

In RandHerd, however, with a probability f/n, a dishonest

client will be selected as the RandHerd leader. Although the

choice of a dishonest leader does not affect the group assign-

ments, he might arbitrarily decide to stop making progress

at any point of the protocol. We need to ensure RandHerd’s

availability over time, and if the current leader stops making

adequate progress, we move to the next leader indicated by

the random output of RandHound and, as with common BFT

protocols, we rely on “view change” [17], [39] to continue

operations.

Unpredictability. We want to ensure that the random output

of RandHerd remains unknown until the group responses r̂l
are revealed in step 6.

The high-level design of RandHerd closely resembles that

of RandHound. Both protocols use the same thresholds, assign

n nodes into m groups, and each group contributes an exactly

one secret towards the final random output of the protocol.

Therefore, as in RandHound, there will similarly be at least

one RandHerd group with at least an average number of honest

nodes. Furthermore, the secret-sharing and required group

inputs threshold of tl = f + 1 guarantees that for at least

one group, the adversary cannot prematurely recover v̂l and

reconstruct the group’s response r̂l. Therefore, before step 6,

the adversary will control at most m− 1 groups and obtain at

most m− 1 out of m responses that contribute to r̂.

Unbiasability. Our goal is to prevent the adversary from

biasing the value of the random output r̂.

As in RandHound, we know that for at least one group the

adversary cannot prematurely recover r̂l and that r̂l contains a

contribution from at least one honest group member. Further,

the requirement that the leader must obtain a sign-off from

2f +1 individual nodes in step 4 on his commitment V̂ , fixes

the output value r̂ before any group secrets r̂l are produced.

This effectively commits the leader to a single output r̂.

The main difference between RandHound and RandHerd is

the fact that an adversary who controls the leader can affect

unbiasability by withholding the protocol output r̂ in step 7,

if r̂ is not beneficial to him. A failure of a leader would force

a view change and therefore a new run of RandHerd, giving

the adversary at least one alternative value of r̂, if the next

selected leader is honest, or several tries if multiple successive

leaders are dishonest or the adversary can successfully DoS

them. The adversary cannot freely choose the next value of

r̂, nor go back to the previous value if the next one is not

preferable, the fact that he can sacrifice a leadership role

to try for an alternate outcome constitutes bias. This bias is

limited, as the view-change schedule must eventually appoint

an honest leader, at which point the adversary has no further

bias opportunity. Section IV-D further addresses this issue

with an improvement ensuring that an adversary can hope

to hold leadership for at most O(log n) such events before

permanently losing leadership and hence bias opportunity.

Verifiability. The random output r̂ generated in RandHerd

is obtained from a TSS-CoSi Schnorr signature (ĉ, r̂) on input

w against a public key X̂ . Any third-party can verify r̂ by

simply checking the validity of (ĉ, r̂) as a standard Schnorr

signature on input w using X̂ .

D. Addressing Leader Availability Issues

Each run of RandHerd is coordinated by a RandHerd leader

who is responsible for ensuring a satisfactory progress of the

protocol. Although a (honest or dishonest) leader might fail

and cause the protocol failure, we are specifically concerned

with intentional failures that benefit the adversary and enable

him to affect the protocol’s output.

As discussed above, once a dishonest RandHerd leader

receives responses from group leaders in step 7, he is the first

one to know r̂ and can act accordingly, including failing the

protocol. However, the failure of the RandHerd leader does

not necessarily have to cause the failure of the protocol. Even

without the dishonest leader’s participation, f/m+1 of honest

nodes in each group are capable of recovering the protocol

output. They need, however, a consistent view of the protocol

and the output value that was committed to.

Instead of requiring a CoSi round to get 2f+1 signatures on

V̂ , we use a Byzantine Fault Tolerance (BFT) protocol to reach

consensus on V̂ and consequently on the global challenge ĉ =
H(V̂ ‖ w). Upon a successful completion of BFT, at least

f +1 honest nodes have witnessed that we have consensus on

the V̂ . Consequently, the ĉ that is required to produce each

group’s response r̂l = v̂l − ĉx̂l is “set in stone” at this point.

If a leader fails, instead of restarting RandHerd, we can select

a new leader, whose only allowed action is to continue the

protocol from the existing commitment. This design removes

the opportunity for a dishonest leader biasing the output even

a few times before losing leadership.

Using a traditional BFT protocol (e.g., PBFT [17]) would

yield poor scalability for RandHerd because of the large num-

454

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

ber of servers that participate in the protcol. To overcome this

challenge, we use BFT-CoSi from ByzCoin [39], a Byzantine

consensus protocol that uses scalable collective signing, to

agree on successfully delivering the commitment V̂ . Due to

the BFT guarantees RandHerd crosses the point-of-no return

when consensus is reached. Even if the dishonest leader, tries

to bias output by failing the protocol, the new (eventually

honest) leader will be able to recover r̂, allowing all honest

servers to successfully complete the protocol.

The downside of this BFT-commitment approach is that

once consensus is reached and the point-of-no return is

crossed, then in the rare event that an adversary controls two-

thirds of any group, the attacker can halt the protocol forever

by preventing honest nodes from recovering the committed

secret. This risk may necessitate a more conservative choice

of group size, such that the chance of an adversary ever con-

trolling any group is not merely unlikely but truly negligible.

E. Extensions

1) Randomizing Temporary-Leader Election: The current

set-up phase of RandHerd uses a simple leader election

mechanism. Because the ticket generation uses only values

known to all nodes, it is efficient as it does not require any

communication between the nodes but makes the outcome of

the election predicable as soon as the cothority configuration

file C is available. We use this mechanism to elect a temporary

RandHerd leader whose only responsibility is to run and

provide the output of RandHound to other servers. Rand-

Hound’s unbiasibility property prevents the dishonest leader

from biasing its output. However, an adversary can force f
restarts of RandHound and can therefore delay the setup by

compromising the first (or next) f successive leaders in a well-

known schedule.

To address this issue, we can use a lottery mechanism that

depends on verifiable random functions (VRFs) [43], which

ensures that each participant obtains an unpredictable “fair-

share” chance of getting to be the leader in each round. Each

node produces its lottery ticket as ti = H(C ‖ j)xi , where

C is the group configuration, j is a round number, and xi

is node i’s secret key, along with a NIZK consistency proof

showing that ti is well-formed. Since an adversary has at least

a constant and unpredictable chance of losing the leadership

to some honest node in each lottery, this refinement ensures

with high probability that an adversary can induce at most

O(log n) successive view changes before losing leadership.

2) BLS Signatures: Through the use of CoSi and TSS,

RandHerd utilizes collective Schnorr signatures in a threshold

setting. Other alternatives are possible. Specifically, Boneh-

Lynn-Shacham (BLS) [12] signatures require pairing-based

curves, but offer even shorter signatures (a single elliptic curve

point) and a simpler signing protocol. In the simplified design

using BLS signatures, there is no need to form a fresh Schnorr

commitment collectively, and the process does not need to

be coordinated by a group leader. Instead, a member of each

subgroup, whenever it has decided that the next round has

arrived, produces and releases its share for a BLS signature

of the message for the appropriate time (based on a hash

of view information and the wall-clock time or sequence

number). Each member of a given subgroup waits until a

threshold number of BLS signature shares are available for that

subgroup, and then forms the BLS signature for this subgroup.

The first member to do so can then simply announce or gossip

it with members of other subgroups, combining subgroup

signatures until a global BLS signature is available (based on

a simple combination of the signatures of all subgroups). This

activity can be unstructured and leaderless, since no “arbitrary

choices” need to be made per-transaction: the output of each

time-step is completely deterministic but cryptographically

random and unpredictable before the designated time.

V. EVALUATION

This section experimentally evaluates of our prototype im-

plementations of RandHound and RandHerd. The primary

questions we wish to evaluate are whether architectures of

the two protocols are practical and scalable to large numbers,

e.g., hundreds or thousands of servers, in realistic scenarios.

Important secondary questions are what the important costs

are, such as randomness generation latencies and computation

costs. We start with some details on the implementation itself,

followed by our experimental results, and finally describe our

analysis of the failure probability for both protocols.

A. Implementation

We implemented PVSS, TSS, RandHound, and RandHerd in

Go [33] and made these implementations available on GitHub

as part of the EPFL DEDIS lab’s Cothority framework.2 We

reused existing cothority framework code for CoSi and net-

work communication, and built on the DEDIS advanced crypto

library3 for cryptographic operations such as Shamir secret

sharing, zero-knowledge proofs, and optimized arithmetic on

the popular Curve25519 elliptic curve [5]. As a rough indicator

of implementation complexity, Table I shows approximate

lines of code (LoC) of the new modules. Line counts were

measured with GoLoC.4

TABLE I
LINES OF CODE PER MODULE

PVSS TSS RandHound RandHerd

300 700 1300 1000

B. Performance Measurements

1) Experimental Setup: We ran all our experiments on

DeterLab5 using 32 physical machines, each equipped with

an Intel Xeon E5-2650 v4 (24 cores at 2.2GHz), 64GBytes

2https://github.com/dedis/cothority
3https://github.com/dedis/crypto
4https://github.com/gengo/goloc
5http://isi.deterlab.net/

455

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

of RAM, and a 10Gbps network link. To simulate a globally-

distributed deployment realistically, we restricted the band-

width of all intern-node connections to 100Mbps and imposed

200ms round-trip latencies on all communication links.

To scale our experiments up to 1024 participants given

limited physical resources, we oversubscribed the DeterLab

servers by up to a factor of 32, arranging the nodes such that

most messages had to go through the network. To test the

influence of oversubscription on our experiments, we reran

the same simulations with 16 servers only. This resulted

in an overhead increase of about 20%, indicating that our

experiments are already CPU-bound and not network-bound

at this scale. We therefore consider these simulation results to

be pessimistic: real-world deployments on servers that are not

oversubscribed in this way may yield better performance.

2) RandHound: Fig. 4 shows the CPU-usage costs of a

complete RandHound run that generates a random value from

N servers. We measured the total costs across all servers,

plus the costs of the client that coordinates RandHound and

generates the Transcript. With 1024 nodes divided into groups

of 32 nodes, for example, the complete RandHound run to

generate randomness requires less than 10 CPU minutes total,

correspond to a cost of about $0.02 on Amazon EC2. This cost

breaks down to about 0.3 CPU seconds per server, representing

negligible per-transaction costs to the servers. The client that

initiates RandHound spends about 3 CPU minutes, costing

less than $0.01 on Amazon EC2. These results suggest that

RandHound is quite economical on today’s hardware.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

100

101

102

103

C
P
U
U
s
a
g
e
(s
e
c
)

Randomness Generation Cost to Client

Randomness Generation Cost to Servers

128 256 512 768 1024
Number of Nodes

Fig. 4. Overall CPU cost of a RandHound protocol run

Fig. 5 shows the wall clock time of a complete RandHound

run for different configurations. This test measures total time

elapsed from when the client initiates RandHound until the

client has computed and verified the random output. Our mea-

surements show that the wall clock time used by the servers to

process client messages is negligible in comparison, and hence

not depicted in Fig. 5. In the 1024-node configuration with

groups of 32 nodes, randomness generation and verification

take roughly 290 and 160 seconds, respectively.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

100

101

102

103

W
a
ll
C
lo
c
k
T
im

e
(s
e
c
)

Transcript Verification (External)

Randomness Generation (RandHound)

128 256 512 768 1024

Number of Nodes

Fig. 5. Total wall clock time of a RandHound protocol run

3) RandHerd: The RandHerd protocol requires a setup

phase, which uses RandHound to form random groups and

CoSi to sign the RandHerd collective key. The measured CPU

usage of RandHerd setup is depicted in Fig. 6. For 1024 nodes

and a group size of 32, RandHerd setup requires roughly 40
CPU-hours total (2.3 CPU-minutes per node), corresponding

to a cost of $4.00 total on Amazon EC2 (0.3 cents per

participant). The associated wall clock time we measured, not

depicted in the graphs, amounts to about 10 minutes.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

100

101

102

103

104

105

106

C
P
U
U
s
a
g
e
(s
e
c
)

RandHound

TSS Key Setup

CoSi

128 256 512 768 1024
Number of Nodes

Fig. 6. Total CPU usage of RandHerd setup

After this setup, RandHerd produces random numbers much

more efficiently. Fig. 7 illustrates measured wall clock time for

a single RandHerd round to generate a 32-byte random value.

With 1024 nodes in groups of 32, RandHerd takes about 6
seconds per round. The corresponding CPU usage across the

entire system, not shown in the graphs, amounts to roughly

30 seconds total (or about 29 CPU-milliseconds per node).

A clear sign of the server-oversubscription with regard to

the network-traffic can be seen in Fig. 7, where the wall clock

456

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

time for 1024 nodes and a group size of 32 is lower than the

one for a group size of 24. This is due to the fact that nodes

running on the same server do not have any network-delay. We

did a verification run without server oversubscription for up to

512 nodes and could verify that the wall clock time increases

with higher group-size.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

0

2

4

6

8

10

W
a
ll
C
lo
c
k
T
im

e
(s
e
c
)

128 256 512 768 1024

Number of Nodes

Fig. 7. Wall clock time per randomness creation round in RandHerd

Fig. 8 compares communication bandwidth costs for CoSi,

RandHound, and RandHerd, with varying number of partici-

pants and a fixed group size of 32 nodes. The straight lines

depict total costs, while the dashed lines depict average cost

per participating server. For the case of 1024 nodes, CoSi and

RandHound require about 15 and 25 MB, respectively. After

the initial setup, one round of RandHerd among 1024 nodes

requires about 400 MB (excluding any setup costs) due to

the higher in-group communication. These values correspond

to the sum of the communication costs of the entire system

and, considering the number of servers involved, are still fairly

moderate. This can be also seen as the average per server cost

is less than 300 KB for RandHerd and around 20 KB for CoSi

and RandHound.

Finally, Fig. 9 compares RandHerd, configured to use only

one group, against a non-scalable baseline protocol similar to

RandShare. Because RandShare performs PVSS secret sharing

among all n nodes, it has computation and communication

complexity of O(n3) per node. In comparison, RandHerd has

sublinear per-round complexity of O(log n) when group size

is constant.

C. Availability Failure Analysis

An adversary who controls too many nodes in any group

can compromise the availability of both RandHound and

RandHerd. We can analyze the probability of availability

failure assuming that nodes are assigned randomly to groups,

which is the case in RandHound when the client assigns groups

honestly, and is always the case in RandHerd. As discussed

in Section III-C, dishonest grouping in RandHound amounts

to self-DoS by the client and is thus outside the threat model.

128 256 512 768 1024

Number of Nodes

10-2

10-1

100

101

102

103

104

C
o
m
m
u
n
ic
a
ti
o
n
C
o
s
t
(M

B
y
te
)

RandHerd all Servers

RandHound all Servers

CoSi all Servers

RandHerd per Server

RandHound per Server

CoSi per Server

Fig. 8. Comparison of communication bandwidth costs between RandHerd,
RandHound, and CoSi for fixed group size c = 32

128 256 512 768 1024

Number of Nodes

10
0

10
1

10
2

10
3

W
a
ll
C
lo
c
k
T
im

e
(s
e
c
)

RandShare

RandHerd

Fig. 9. Comparison of randomness generation times for RandShare and
RandHerd (group size c = 32 for RandHerd and c = n for RandShare)

To get an upper bound for the failure probability of the

entire system, we first bound the failure probability of a

single group, that can be modeled as a random variable X
that follows the hypergeometric distribution, followed by the

application of Boole’s inequality, also known as the union

bound. For a single group we start with Chvátal’s formula [55]

P [X ≥ E[X] + cd] ≤ e−2cd2

where d ≥ 0 is a constant and c is the number of draws or in

our case the group size. The event of having a disproportionate

number of malicious nodes in a given group is modeled by

X ≥ c− t+1, where t is the secret sharing threshold. In our

case we use t = cp + 1 since E[X] = cp, where p ≤ 0.33
is the adversaries’ power. Plugging everything into Chvátal’s

formula and doing some simplifications, we obtain

P [X ≥ c(1− p)] ≤ e−2c(1−2p)2

Applying the union bound on this result, we obtain Figs. 10

and 11, which show average system failure probabilities q for

457

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

10 20 30 40 50 60 70

Group Size c

0

10

20

30

40

50

60
S
y
s
te
m

F
a
il
u
re

P
ro
b
a
b
il
it
y
[-
lo
g
2
(q
)]

Percentage p of Compromised Nodes

0.33

0.32

0.28

0.23

Fig. 10. System failure probability for varying group sizes

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Percentage p of Compromised Nodes

0

20

40

60

80

100

120

S
y
s
te
m

F
a
il
u
re

P
ro
b
a
b
il
it
y
[-
lo
g
2
(q
)]

Group Size c

16

24

32

40

Fig. 11. System failure probability for varying adversarial power

varying group sizes (c = 16, . . . , 64) and varying adversarial

power (p = 0.01, . . . , 0.33), respectively. Note that q on the y-

axis is plotted in “security parameter” form as − log2(q): thus,

higher points in the graph indicate exponentially lower failure

probability. Finally, Table II lists failure probabilities for some

concrete configurations. There we see, for example, that both

RandHound and RandHerd have a failure probability of at

most 2−10.25 ≈ 0.08% for p = 0.33 and c = 32. Moreover,

assuming p = 0.33, we identified the point where the system’s

failure probability falls below 1% for a group size of c = 21.

TABLE II
SYSTEM FAILURE PROBABILITIES q (GIVEN AS − log2(q)) FOR CONCRETE

CONFIGURATIONS OF ADVERSARIAL POWER p AND GROUP SIZE c

p | c 16 24 32 40

0.23 13.13 19.69 26.26 32.82
0.28 8.66 15.17 17.33 21.67
0.32 5.76 8.64 11.52 14.40
0.33 5.12 7.69 10.25 12.82

VI. RELATED WORK

Generation of public randomness has been studied in various

contexts. In 1981, Blum proposed the first coin flipping proto-

col [10]. Rabin introduced the notion of cryptographic random-

ness beacons in 1983 [49]. NIST later launched such a bea-

con to generate randomness from high-entropy sources [45].

Centralized randomness servers have seen limited adoption,

however, in part because users must rely on the trustworthiness

of the party that runs the service.

Other approaches attempt to avoid trusted parties [48], [13],

[2], [21]. Bonneau et al. [13] use Bitcoin to collect entropy,

focusing on analyzing the financial cost of a given amount

of bias rather than preventing bias outright. Lenstra et al. [40]

propose a new cryptographic primitive, a slow hash, to prevent

a client from biasing the output. This approach is promising

but relies on new and untested cryptographic hardness assump-

tions, and assumes that everyone observes the commitment

before the slow hash produces its output. If an adversary can

delay the commitment messages and/or accelerate the slow

hash sufficiently, he can see the hash function’s output before

committing, leaving the difficult question of how slow is “slow

enough” in practice. Other approached use lotteries [2], or

financial data [21] as public randomness sources.

An important observation by Gennaro et al. [29] is that

in many distributed key generation protocols [47] an attacker

can observe public values of honest participants. To mitigate

this attack, the authors propose to delay the disclosure of the

protocol’s public values after a “point-of-no-return” at which

point the attacker cannot influence the output anymore. We

also use the concept of a “point-of-no-return” to prevent an

adversary from biasing the output. However, their assumption

of a fully synchronous network is unrealistic for real-world

scenarios. Cachin et al., propose an asychronous distributed

coin tossing scheme for public randomness generation [15],

which relies on a trusted setup dealer.

We improve on that by letting multiple nodes deal secrets

and combine them for randomness generation in our pro-

tocols. Finally, Kate et al. [38], introduced an approach to

solve distributed key-generation in large-scale asynchronous

networks, such as the Internet. The communication complexity

of their solution, similar to Gennaro’s and Cachin’s prevents

scalability to large numbers of nodes. Our protocols use

sharding to limit communication overheads to linear increases,

which enables RandHound and RandHerd to scale to hundreds

of nodes.

Applications of public randomness are manifold and include

the protection of hidden services in the Tor network [34],

selection of elliptic curve parameters [2], [40], Byzantine

consensus [46], electronic voting [1], random sharding of

nodes into groups [35], and non-interactive client-puzzles [37].

In all of these cases, both RandHound and RandHerd may

be useful for generating bias-resistant, third-party verifiable

randomness. For example, RandHound could be integrated into

the Tor consensus mechanism to help the directory authorities

generate their daily random values in order to protect hidden

services against DoS or popularity estimation attacks.

458

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS

Although many distributed protocols critically depend on

public bias-resistant randomness for security, current solutions

that are secure against active adversaries only work for small

(n ≈ 10) numbers of participants [15], [38]. In this paper,

we have focused on the important issue of scalability and ad-

dressed this challenge by adapting well-known cryptographic

primitives. We have proposed two different approaches to

generating public randomness in a secure manner in the

presence of a Byzantine adversary. RandHound uses PVSS

and depends on the pigeonhole principle for output integrity.

RandHerd relies on RandHound for secure setup and then uses

TSS and CoSi to produce random output as a Schnorr signature

verifiable under a collective RandHerd key. RandHound and

RandHerd provide unbiasability, unpredictability, availability
and third-party verifiability while retaining good performance

and low failure probabilities. Our working prototype demon-

strates that both protocols, in principle, can scale even to

thousands of participants. By carefully choosing protocols

parameters, however, we achieve a balance of performance,

security, and availability. While retaining a failure probability

of at most 0.08% against a Byzantine adversary, a set of 512

nodes divided into groups of 32 can produce fresh random

output every 240 seconds in RandHound, and every 6 seconds

in RandHerd after an initial setup.

ACKNOWLEDGMENTS

We would like to thank Rene Peralta and Apostol Vassilev

for their input on generation of public randomness and the

anonymous reviewers for their helpful feedback. This research

was supported in part by NSF grants CNS-1407454 and

CNS-1409599, DHS grant FA8750-16-2-0034, William and

Flora Hewlett Foundation grant 2016-3834, and by the AXA

Research Fund.

REFERENCES

[1] B. Adida. Helios: Web-based Open-audit Voting. In 17th USENIX Se-
curity Symposium, pages 335–348, Berkeley, CA, USA, 2008. USENIX
Association.

[2] T. Baignères, C. Delerablée, M. Finiasz, L. Goubin, T. Lepoint, and
M. Rivain. Trap Me If You Can – Million Dollar Curve. Cryptology
ePrint Archive, Report 2015/1249, 2015.

[3] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In ACM Conference on Computer and
Communications Security (CCS), 2006.

[4] I. Bentov, A. Gabizon, and D. Zuckerman. Bitcoin Beacon. https:
//arxiv.org/abs/1605.04559, 2016.

[5] D. J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key
Cryptography - PKC 2006, pages 207–228, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[6] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange,
R. Niederhagen, and C. van Vredendaal. How to manipulate curve
standards: a white paper for the black hat. Cryptology ePrint Archive,
Report 2014/571, 2014.

[7] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’13, pages 967–980. ACM, 2013.

[8] D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A Standardized
Back Door. Cryptology ePrint Archive, Report 2015/767, 2015.

[9] G. R. Blakley. Safeguarding cryptographic keys. Managing Require-
ments Knowledge, International Workshop on, 00:313, 1979.

[10] M. Blum. Coin Flipping by Telephone: A Protocol for Solving
Impossible Problems. In Advances in Cryptology (CRYPTO), 1981.

[11] C. Blundo, A. De Santis, and U. Vaccaro. Randomness in distribution
protocols. In S. Abiteboul and E. Shamir, editors, Automata, Languages
and Programming, volume 820 of Lecture Notes in Computer Science,
pages 568–579. Springer Berlin Heidelberg, 1994.

[12] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In ASIACRYPT, Dec. 2001.

[13] J. Bonneau, J. Clark, and S. Goldfeder. On Bitcoin as a public
randomness source. Cryptology ePrint Archive, Report 2015/1015, 2015.

[14] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and ef-
ficient asynchronous broadcast protocols. In Advances in Cryptology
(CRYPTO), Aug. 2001.

[15] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology, 18:219–246, July 2005.

[16] I. Cascudo and B. David. SCRAPE: Scalable randomness attested by
public entities. Cryptology ePrint Archive, Report 2017/216, 2017. https:
//eprint.iacr.org/2017/216.pdf.

[17] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In 3rd
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Feb. 1999.

[18] D. Chaum and T. P. Pedersen. Wallet databases with observers. In IACR
International Cryptology Conference (CRYPTO), 1992.

[19] R. Chirgwin. iOS 7’s weak random number generator stuns kernel
security. The Register, Mar. 2014.

[20] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults. In
Symposium on Foundations of Computer Science (SFCS), SFCS ’85,
pages 383–395, Washington, DC, USA, 1985. IEEE Computer Society.

[21] J. Clark and U. Hengartner. On the Use of Financial Data as a Random
Beacon. Cryptology ePrint Archive, Report 2010/361, 2010.

[22] H. Corrigan-Gibbs, W. Mu, D. Boneh, and B. Ford. Ensuring high-
quality randomness in cryptographic key generation. In 20th ACM
Conference on Computer and Communications Security (CCS), Nov.
2013.

[23] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, and E. Gün. On scaling decentralized
blockchains. In Proc. 3rd Workshop on Bitcoin and Blockchain Research,
2016.

[24] Y. G. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances
in Cryptology (CRYPTO), 1989.

[25] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-
generation onion router. In 13th USENIX Security Symposium, Aug.
2004.

[26] P. Feldman. A practical scheme for non-interactive verifiable secret
sharing. In Proceedings of the 28th Annual Symposium on Foundations
of Computer Science, SFCS ’87, pages 427–438, Washington, DC, USA,
1987. IEEE Computer Society.

[27] A. Fiat and A. Shamir. How to prove yourself: practical solutions to
identification and signature problems. In IACR International Cryptology
Conference (CRYPTO), pages 186–194, 1987.

[28] M. Franklin and H. Zhang. Unique ring signatures: A practical
construction. In A.-R. Sadeghi, editor, Financial Cryptography and Data
Security 2013, pages 162–170. Springer Berlin Heidelberg, 2013.

[29] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryp-
tology, 20(1):51–83, 2007.

[30] M. Ghosh, M. Richardson, B. Ford, and R. Jansen. A TorPath to
TorCoin: Proof-of-bandwidth altcoins for compensating relays. In
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs),
2014.

[31] S. Gibbs. Man hacked random-number generator to rig lotteries,
investigators say. The Guardian, Apr. 2016.

[32] S. Goel, M. Robson, M. Polte, and E. G. Sirer. Herbivore: A scalable
and efficient protocol for anonymous communication. Technical Report
2003-1890, Cornell University, February 2003.

[33] The Go programming language, Jan. 2015. http://golang.org/.

[34] D. Goulet and G. Kadianakis. Random Number Generation During Tor
Voting, 2015.

459

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

[35] R. Guerraoui, F. Huc, and A.-M. Kermarrec. Highly dynamic distributed
computing with byzantine failures. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, PODC ’13, pages
176–183, New York, NY, USA, 2013. ACM.

[36] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the Linux random
number generator. In IEEE Symposium on Security and Privacy, pages
371–385, 2006.

[37] J. A. Halderman and B. Waters. Harvesting Verifiable Challenges from
Oblivious Online Sources. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS ’07, pages 330–341,
New York, NY, USA, 2007. ACM.

[38] A. Kate and I. Goldberg. Distributed key generation for the internet. In
Distributed Computing Systems, 2009. ICDCS’09. 29th IEEE Interna-
tional Conference on, pages 119–128. IEEE, 2009.

[39] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In 25th USENIX Conference on
Security Symposium, 2016.

[40] A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and
trx. Cryptology ePrint Archive, Report 2015/366, 2015.

[41] C. Lesniewski-Lass and M. F. Kaashoek. Whanau: A sybil-proof
distributed hash table. NSDI, 2010.

[42] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisigna-
tures. In ACM Conference on Computer and Communications Security
(CCS), 2001.

[43] S. Micali, S. Vadhan, and M. Rabin. Verifiable random functions. In
Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, pages 120–130. IEEE Computer Society, 1999.

[44] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Oct. 2008.

[45] NIST Randomness Beacon.

[46] O. Oluwasanmi and J. Saia. Scalable Byzantine Agreement with a Ran-
dom Beacon. In A. W. Richa and C. Scheideler, editors, Stabilization,
Safety, and Security of Distributed Systems, volume 7596 of Lecture
Notes in Computer Science, pages 253–265. Springer Berlin Heidelberg,
2012.

[47] T. P. Pedersen. A threshold cryptosystem without a trusted party. In
EUROCRYPT (EUROCRYPT). Springer, 1991.

[48] S. Popov. On a Decentralized Trustless Pseudo-Random Number
Generation Algorithm. Cryptology ePrint Archive, Report 2016/228,
2016.

[49] M. O. Rabin. Transaction Protection by Beacons. Journal of Computer
and System Sciences, 27(2):256–267, 1983.

[50] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority. In ACM Symposium on Theory of
Computing (STOC), 1989.

[51] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology (CRYPTO), 1990.

[52] B. Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In IACR International Cryptol-
ogy Conference (CRYPTO), pages 784–784, 1999.

[53] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[54] D. Shumow and N. Ferguson. On the Possibility of a Back Door in the
NIST SP800-90 Dual EC PRNG. CRYPTO 2007 Rump Session, 2007.

[55] M. Skala. Hypergeometric Tail Inequalities: Ending the Insanity. CoRR,
abs/1311.5939, 2013.

[56] M. Stadler. Publicly Verifiable Secret Sharing. In 15th International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 190–199, Berlin, Heidelberg, 1996. Springer.

[57] D. R. Stinson and R. Strobl. Provably secure distributed Schnorr
signatures and a (t, n) threshold scheme for implicit certificates. In
V. Varadharajan and Y. Mu, editors, Australasian Conference on
Information Security and Privacy (ACISP), pages 417–434, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[58] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, May 2016.

[59] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:
Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 137–152, New York, NY, USA, 2015. ACM.

[60] D. I. Wolinsky, H. Corrigan-Gibbs, A. Johnson, and B. Ford. Dissent in
numbers: Making strong anonymity scale. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Oct. 2012.

460

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 19:55:53 UTC from IEEE Xplore. Restrictions apply.

