
Efficient Learning of Communication Profiles from
IP Flow Records

Christian Hammerschmidt∗, Samuel Marchal†, Radu State∗, Gaetano Pellegrino‡, and Sicco Verwer‡
∗SNT, University of Luxembourg

†Aalto University
‡TU Delft

Email: {christian.hammerschmidt,radu.state}@uni.lu; samuel.marchal@aalto.fi; {g.pellegrino,s.e.verwer}@tudelft.nl

Abstract—The task of network traffic monitoring has evolved
drastically with the ever-increasing amount of data flowing in
large scale networks. The automated analysis of this tremendous
source of information often comes with using simpler models
on aggregated data (e.g. IP flow records) due to time and
space constraints. A step towards utilizing IP flow records more
effectively are stream learning techniques. We propose a method
to collect a limited yet relevant amount of data in order to
learn a class of complex models, finite state machines, in real-
time. These machines are used as communication profiles to
fingerprint, identify or classify hosts and services and offer high
detection rates while requiring less training data and thus being
faster to compute than simple models.

I. INTRODUCTION

Due to the high volume of data exchanged in modern

networks, in-depth analysis of the whole traffic is no longer

realistic. A more common approach is to analyze aggregated

communication information of which IP flow records is an

example. The main challenge lies in the extraction of relevant

information from this meta data. In this paper, we focus on the

problem of creating a model to classify hosts based on their

traffic summary statistics. We refer to this task as behavioral

communication profiling. Current methods addressing this task

use batch processing techniques over large amount of data [1],

[2]. This has two drawbacks being the delay induced in model

learning due to long period of data collection and the limited

complexity of the analysis methods [3] due to space and

computation limitation. Consequently, these simple methods

are not able to model accurately communication profiles.

To address these limitations, we propose to use complex

models for modeling fine grained communication profile with

finite state machines. In contrast with previous work [4],

[5], we use finite state machines with a stream learning

component allowing us to start learning a communication

profile in real-time as network traffic is observed. We show

that the amount of training data required to learn an accurate

communication profile can be determined on the fly, limiting

thus data collection time and amount of data to process. We

assess that profiles learned from limited IP flow data are as

efficient as ones using more training data for the use case of

botnet hosts detection. To summarize our contributions:

• We introduce a feature engineering method to aggregate

IP flow records into a state space representation, which

can be input to a finite state machine (Section III-B);

• We present methods to evaluate the amount of informa-

tion contained in the training set, which allows to control

data collection and selection (Section III-C);

• We validate our techniques on real-world traffic obtaining

competitive detection rates (Sections IV and V).

II. BACKGROUND

A. IP Flow Analysis

IP flows records are statistics from packets exchanged

between two hosts. The statistics are collected and aggregated

by a specialized device (e.g. a router). We refer to [6] for

an overview of the basics of IP flow record data collection.

IP flow records are tuples of features including source IP

address, source port, destination IP address and destination

port to describe the participants. The start time and duration
specify when the flow occurred, and transport protocol, packet
counts and amount of data exchanged in both directions

summarize the exchange itself. Table I provides a summary

of the considered features.

B. Probabilistic Deterministic Finite Automata (PDFA)

Finite state automata are a type of automaton model often

used to describe computation and processes in a formal

way. We use finite state automata with probabilities, called

probabilistic deterministic finite automata (PDFA). Introduc-

tions to the field of automaton theory can be found in [7].

A Probabilistic Deterministic Finite Automaton (PDFA) is

quintuple A = 〈Q,T,Σ, q0, P 〉 where Q is a finite set of states,

T : (Q,Σ)→ Q are labeled transitions with labels drawn from

an alphabet Σ, q0 ∈ Q is the start state. The probability matrix

P gives the probability of observing event a ∈ Σ in state q
by pa,q . A PDFA starts in the start state q0 and generates

strings by traversing transitions and drawing events using P .

For example, the probability of generating abc is given by

pa,q0pb,q1pc,q2 where q1 = T (q0, a) and q2 = T (q1, b).

C. State-Merging Algorithms

The task of inferring PDFAs from a given set of obser-

vations is to find a PDFA accepting the words representing

the observed behavior. Currently, state-merging algorithms are

state-of-the-art in learning automatons [8]. Given a set S+

of observed behaviors encoded as words over an alphabet Σ
called the input sample, the goal is to find a (non-unique)

smallest PDFA A that is consistent with S+. A PDFA is

considered consistent with S+ if it satisfies a type of Markov

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Christian Hammerschmidt. Under license to IEEE.

DOI 10.1109/LCN.2016.92

559

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Christian Hammerschmidt. Under license to IEEE.

DOI 10.1109/LCN.2016.92

559

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Christian Hammerschmidt. Under license to IEEE.

DOI 10.1109/LCN.2016.92

559

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:28:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Features of IP flow records. T ime is used to

aggregate sliding windows.

Features Description Values
protocol transport protocol of the flow categorical: tcp, udp, etc.
time time since previous flow started timestamp
duration duration of the flow time in ms
pakets Count of packets exchanged numerical
dataexc Amount of data exchanged numerical, in KB
datarec Amount of data received numerical, in KB

Fig. 1: Left: a prefix tree for a dataset containing the words

{121, 111, 231, 231.615, 231.374}. States contain occurrence

counters. Transitions are labeled with the symbol firing them.

Right: an automaton obtained by merging the transitions 615
with the root and 374 with the state lead to by 121.

property i.e. for every prefix s from S+ that reaches the

same state q in A, the sample probabilities of future suffixes

P (s′ | s) = count(ss′)/count(s) of the states are not

significantly different. The size of a PDFA is measured by

its number of states.

The starting point for state merging algorithms is the

construction of a tree-shaped PDFA A from the input sample

S+. This is called augmented prefix tree acceptor (APTA).

Figure 1 (left) shows a prefix tree for a small input sample.

It contains all samples from S+ in a directed graph, using the

symbols of the samples in S+ as labels for the edges. Two

samples from S+ share a path if they share a prefix. The state

merging algorithm reduces the size of the automaton iteratively

by reducing the tree through merging a pair of states in A,

using a heuristic to decide which pairs are best to merge. The

merges reduce the size of the automaton (number of states),

and introduces loops. Figure 1 (right) depicts the automaton

after a state-merging operation.

III. BUILDING COMMUNICATION PROFILES

A. Communication Profiles

A communication profile provides a concise description

of a participant or a group of participants in a network.

We build profiles only using connection-level communication

information provided by IP flow records. The main task is to

extract the key behavior from the records, and reduce the data

into a compact description. Given IP flow records from an

unknown source, we can classify; given a known source, we

can predict future behavior. Mathematically, a communication

profile is a PDFA learned from IP flow records as described

in Section II. To infer information about a single host from

its IP flow records, we aggregate consecutive flows within a

short time period into a single word and use a sliding window

technique to obtain sequences of words describing consecutive

flows. These words are descriptions of short-term behavior.

B. Encoding IP Records for PDFAs

We obtain input words for PDFAs from IP flow records by

converting each IP flow record into discrete symbol and using

a sliding window to form a sequence. Each numeric feature

of a record, as given in Table I, is put into a discrete bin

and represented by the bin number. We calculate percentiles

as bin boundaries. E.g. using 25-percentile ranks, we create

4 bins (labelled [0, 1, 2, 3]) and calculate feature values such

that 25%, 50%, 75% and 100% of the data fall below. For

categorical values (protocol), we assign each feature value a

unique number. The symbolic representation of an IP flow

record is the concatenation of the values for all its five features

(excluding time) and represents a letter e.g. 02213. After

encoding IP flow records as symbols, we aggregate all flows

starting within a short, fixed time by sliding a window over all

flows, incrementing the start of the window one flow at a time.

An input word for a PDFA used as communication profile

then consists of a sequence of symbols from a window, where

each flow starting within the window’s time is represented by

a letter.

C. Data Estimation Criteria

The prefix tree (APTA) is the starting point for all state

merging learning algorithms. It is a compact way to represent

all the training data and offers ideal access to analyze the

impact of varying training set sizes on the learning process.

The key in minimizing the data needed to learn a model is

understanding the error introduced by using a partial sample

of the data: It enables us to analyse the quality provided by

a partial view of the data with respect to the complete data.

We apply two criteria to judge the completeness of the partial

sample: For a formal approach, we check the Hoeffding bound

(1), a type of concentration inequality [9]. For an informal,

application-driven approach we observe the growth in states

and transitions when adding more data to the prefix tree, we

define this criteria as the freshness (2). Equation (1) states

the Hoeffding inequality. It bounds the difference between the

true mean r of a random variable with the range of the set R
with its estimation r̄ calculated on a finite sample with low

error δ: With probability 1 − δ, the error in the estimation r̄
only deviates by an ε from r. The true mean r is the mean

calculated on all, possibility infinite samples.

r ≤ r̄ − ε with prob 1− δ where ε =

√
R2ln(1/δ)

2n
(1)

We chose the one-sided upper bound, as it would be most

helpful to reason about decisions heuristics applied in state-

merging algorithms take. The estimation is sub-linear in terms

of the confidence δ and quadratic in sample number for

precision ε. We apply this technique to the APTA by estimating

the relative frequency ci
ns

of transition i in each state s
where ns =

∑
ci∈s ci. This allows us to bound the error in

560560560

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:28:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Scenarios (ID) composition summary. Records are

labeled as background, malicious (bnet) or normal traffic.

ID #Flows / Duration / Size
Malware
(#bots)

Class Distribution
back / bnet / norm

10 1,309,791 / 4.75 hrs / 73GB Rbot (10) 90.7 / 8.1 / 1.2
11 107,251 / 0.26 hrs / 5.2GB Rbot (3) 89.9 / 7.6 / 2.5
12 325,471 / 1.21 hrs / 8.3GB NSIS.ay (3) 97 / 2.3 / 0.7

the empirical probability distribution defined by occurrence

counts.

IV. EXPERIMENTS

Our experiments are designed to determine whether a full

data representation can be obtained from a partial view of the

data by observing freshness and the Hoeffding bound to judge

prefix tree completeness. Afterwards, we empirically validate

this dataset reduction method by learning communication

profiles from the obtained sets. We compare their performance

in host classification with profiles trained on full training sets.

A. Dataset and Data Preparation

We use a publicly available dataset of manually labeled IP

flow traces [10]. It contains real communications from hosts

running botnet malware as well as background and legitimate

traffic and is organized in several scenarios (ID), each running

one or more infected hosts connected to the Internet. We chose

scenarios (Table II) that run multiple infected hosts at the

same time, allowing us to repeat the same analysis on different

instances of the bots. The scenarios differ in characteristics:

due to spamming and flooding, some scenarios contain many

flows despite few hosts, whereas in others much less traffic

per host is captured. The background traffic is real legitimate

traffic from other participants in the network.

The IP flow records (Table II) are encoded using the

features stated in Table I. Numeric attributes are discretized

by assigning a number according to the percentile its value

is in. The percentiles themselves are obtained by selecting a

random subset of IP addresses from normal traffic (norm) to

calculate the statistics. Any knowledge transfer is prevented by

excluding these IP addresses from any further experiments. All

flows irrespective of their duration, starting within t = τ ms
are collected in a window to obtain short term interaction

patterns of each IP address. We advance the window on a

per-flow level. The duration τ is chosen using the streaming

data analysis. This process can be done in real-time as the

completed flows are exported.

B. Streaming Data Collection

We observe two different criteria for stopping data col-

lection: In an application-driven approach, we observe the

freshness Δ of samples ws with respect to an APTA A. We

define it as the ratio
�w�
|A| of number �w� of states newly created

in APTA A when adding sample w versus the total number

of states |A| in APTA A. Here, �·� denotes the length of the

word w minus the length of its longest prefix in A. When w
is a set, we define �w� =

∑
wi∈s�wi� as the sum of states

created from the samples in the set. Adding samples that are

already contained or have large prefixes in the tree only adds

little extra information. The freshness ranges between 0 and

1, and low values indicate that the sample already has many

duplicates, or at least long prefixes in the APTA. It serves

as an indicator: if it falls below a threshold, the prefix tree

already contains most of the data. Because this measure does

not guarantee good estimates of the transition probability in

each state, we also use a statistics-driven approach: empirical

distributions in the states of the APTA have to be bounded by

the Hoeffding bound with varying thresholds. The more states

have distributions bounded, the better the APTA summarizes

the true source.

C. Profiling Behavior

We learn communication profiles with the dfasat software

package [11] using Alergia and Overlap heuristics. The goal

is to obtain a small automaton that can reliably distinguish

legitimate from botnet sources. The classification task focuses

on hosts, not individual traffic flows. We use the full training

sets, as well as smaller training sets obtained from an analysis

of freshness and Hoeffding bounds on local distributions to

learn communication profiles. To judge whether a host is

malicious or not, we evaluate its associated communication

profile, an APTA A, by calculating its acceptance rate: the

ratio of accepted versus rejected windows from an evaluation

set. A preliminary analysis showed that an acceptance ratio

exceeding 75% any time after the first 25 windows is a good

threshold to classify hosts as malicious.

V. RESULTS

A. Streaming Data Collection

We chose a small alphabet size obtained through few bins

(4 per feature) and short windows (τ = 20 ms). An inter-

esting observation across the different scenarios is the non-

monotonicity of freshness. It clearly illustrates that the global

behavior of a host is composed of several small, different be-

haviors. This property is captured by PDFAs, which can have

multiple loops with transitions of high probability, connected

by transitions of lower probability. This is particularly easy

to see in Figure 2(a), indicated by a vertical dashed line:

after adding increasingly less new information to the prefix

tree, the updates at the 32% mark of the training set add a

new behavior. The increase in freshness shows that words

inserted encode behavior without prefixes in the APTA, i.e.

previously unseen behavior. This is also visible in a plot of

the states inserted into the prefix tree, i.e. the length of the

samples, and indicates that windows start to contain more

words. The dataset description of Scenario 10 lists a sequence

of bandwidth increases and a switch from a UDP-based flood

attack to an ICMP-based attack. The former did not use

up the full bandwidth, the latter did. This makes extreme

values and monotonicity of freshness an interesting candidate

for clustering behavior. Figure 2(c) shows the fraction of

transitions fulfilling the Hoeffding bounds for a weak choice

of parameters, δ = 15% and ε = 0.15. In neither scenario

561561561

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:28:04 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 2: Overall freshness in Scenario 10 (a) and Scenario 12 (b). The blue line shows the development of the overall freshness,

the green line depicts the freshness of the last update adding the next 1% of the training data to the APTA. The dashed vertical

line indicates a point of change: local updates suddenly contain a lot of new samples without prefixes, or much longer samples.

The Hoeffding inequality applied on transitions in the APTA, using δ = 15% and ε = 0.15, depicted for Scenario 10 (c).

TABLE III: Results summarized. The environment contains 48

benign hosts in total. We trained on 1 of the 10, respectively

3, hosts in the dataset and detect the others.

Experimemt
Alergia

TP / FP / Pr
Overlap

TP / FP / Pr
Baseline in Scenario 10 6 / 0 / 1 7 / 0 / 1
Baseline in Scenario 11 2 / 0 / 1 2 / 0 / 1
Baseline in Scenario 12 1 / 0 / 1 1 / 0 / 1
48% in Scenario 10 6 / 0 / 1 7 / 0 / 1
12% in Scenario 11 0 / 0 / 0 0 / 0 / 0
50% in Scenario 11 2 / 0 / 1 2 / 0 / 1
52% in Scenario 12 1 / 0 / 1 1 / 0 / 1

the ratio of transition bounded correctly exceeded 30%. As a

distribution-free bound, is conservative for our use-case.

B. Profiling Behavior

We use the training datasets determined in the previous step

to learn PDFAs as communication profiles. Communication

profiles trained on all IP flow records of one malicious IP

address in each scenario are the baseline. By inspecting the

freshness, we chose 48% of Scenario 10, and 52% of Scenario

12 training data. For both cases, Figure 2(a) and 2(b) show a

plateau in global freshness, and the freshness of local updates

is also low. In Scenario 11, freshness keeps increasing until

the end, but is very low (Δ < 0.13). We chose two splitting

points: the low point of freshness at 12% of the training data

(Δ = 0.03), and for the lack of another extreme point, we

also split at 50%. Table III summarizes the results: true and

false positives (TP/FP) and precision (Pr), a ratio of TP
TP+FP

describing how many of the identified hosts were relevant.

For all but the 12% split, results for the communication profile

learned from the reduced set are the same as from the baseline.

It is very likely that the learning algorithm can infer the core

structure from the reduced set and generalize enough. The

inability to detect the malicious hosts in Scenario 11 with only

12% of the training data is not surprising. Just observing the

freshness can be deceptive: a highly redundant representation

of additional data can add valuable data to discriminate hosts,

but does so at slow rate.

VI. DISCUSSION AND CONCLUSION

Overall, manually inspecting plots of freshness to decide

on smaller training datasets yields good results. We think

that it can serve as a tool during preprocessing, just as the

Elbow method which is used by manual inspection for clus-

tering. We are currently working on an algorithmic solution

to automatically identify the splitting point, as well as using

Kullback-Leibler divergence measures to detect a wider range

of change-points, such as slow drifts in the occurrence of

existing behaviors.

REFERENCES

[1] K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Internet traffic behavior
profiling for network security monitoring,” IEEE/ACM Transactions on
Networking, vol. 16, no. 6, pp. 1241–1252, 2008.

[2] M. Jaber, R. Cascella, and C. Barakat, “Using host profiling to refine
statistical application identification,” in Proceeding of IEEE INFOCOM,
2012, pp. 2746–2750.

[3] S. Marchal, X. Jiang, R. State, and T. Engel, “A big data architecture
for large scale security monitoring,” in Proceedings of the IEEE Inter-
national Congress on Big Data, 2014, pp. 56–63.

[4] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in IEEE S&P, 2009, pp. 110–125.

[5] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful
models for network honeypots,” in ACM AISEC, 2012, pp. 37–48.

[6] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” Communications Surveys & Tutorials,
IEEE, vol. 16, no. 4, pp. 2037–2064, 2014.

[7] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory,
Languages, And Computation. Addison-Wesley Longman, 1990.

[8] S. Verwer, R. Eyraud, and C. De La Higuera, “PAutomaC: a probabilistic
automata and hidden Markov models learning competition,” Machine
learning, vol. 96, no. 1-2, pp. 129–154, 2014.

[9] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University, 2013.

[10] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Computers & Security, vol. 45, pp.
100–123, Sep. 2014.

[11] N. Walkinshaw, K. Bogdanov, C. Damas, B. Lambeau, and P. Dupont,
“A framework for the competitive evaluation of model inference tech-
niques,” in Proceedings of the First International Workshop on Model
Inference In Testing. ACM, 2010, pp. 1–9.

562562562

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:28:04 UTC from IEEE Xplore. Restrictions apply.

