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Abstract—There are two main requirements in dealing with
coverage holes in wireless sensor networks (WSNs): locating the
hole boundary and finding the locations to deploy new sensors
for hole patching. The current protocols on finding the patching
locations always require re-running the protocols from scratch
many times. This constraint causes the time complexity and
energy overhead to increase proportionally to the hole size. In this
paper, we propose a lightweight protocol to determine coverage
holes in wireless sensor network. Our protocol does not only
can determine the exact hole boundary but also approximate the
boundary by a simpler shape which can help to speed up the
patching location finding process. The simulation experiments
show that our protocol can reduce more than 56% of time
complexity and save more than 46% of energy overhead in
comparison with existing protocols.

Index Terms—Wireless sensor networks, coverage hole, hole
locating, hole healing.

I. INTRODUCTION

One of the most important issues in sensor networks is to
assure a sufficient sensing coverage and connectivity, which
reflects the quality of service of the network. Unfortunately, for
reasons such as natural disruptions, adversarial attacks, or en-
ergy depletion, coverage holes unavoidably emerge. Therefore,
these holes must be healed as soon as they appear. There are
two processes required for healing the hole, that are: locating
the hole boundary and determining the patching locations (i.e.
the locations where the new sensors will be deployed).

In [2], [3], the authors designed algorithms for each sensor
to detect whether it stays on the boundary of a coverage
hole on the basis of localized Voronoi polygons. Li et al.
[6] recently exploited the Delaunay triangulation to detect all
coverage holes in the networks. Other researchers [4], [10],
[7] proposed distributed protocols to determine the sensors on
the coverage holes on the basis of the mathematical analysis
of the arc or angle created by the overlapped sensing area of
two neighboring sensors.

Although many protocols have been proposed to identify
the hole boundary, protocols for determining the patching
locations have only rarely been studied. Aliouane et al. [1]
and Xiong et al. [11] proposed protocols for detecting the
hole boundary and patching locations on the basis of boundary
critical points. Yao el al. [9] developed a patching location
determining algorithm on the basis of the concept of a per-
pendicular bisector line. Although these protocols can find
out the patching locations, they suffer from a large energy

overhead and time complexity. The reason is they require re-
running the protocols from scratch many times. This process
consumes a lot of energy of the boundary sensors. Moreover,
the complexity of these algorithms is proportional to the size
of the hole. That is, the bigger the hole, the more complicated
the algorithm and the more time and energy it consumes. In
addition, re-running the hole boundary determining protocol
also causes the boundary sensors to exhaust energy more
quickly than the other sensors and thus may consequently
result in the hole enlargement problem.

The main reason that makes patching location determination
becomes a hard problem is due to the complication of the hole
boundary. Therefore, in this paper we propose a hole locating
protocol which can not only identify exact hole boundary but
also approximate the boundary by a simpler shape which can
help to speedup the patching location determining process. We
note that Kershner [5] proved that the triangular tessellation
achieves full coverage with an asymptotic minimum number
of sensors. In this tessellation, each sensor is located at the
center of a regular hexagon that has six neighbors at a distance
of 𝑅𝑠

√
3, where 𝑅𝑠 is the sensing range. Motivated by this

result, our idea is to approximate the hole by a simpler polygon
covering the hole, whose vertices and edges are the nodes and
edges of a given regular triangle grid.

The remainder of the paper is organized as follows. We
describe the network model and give definitions in section II.
In section III, we present a protocol to determine the coverage
hole and approximate the hole by a simpler polygon. Section
IV presents our experiments to evaluate the performance of
the protocols. We conclude the paper in section V.

II. NETWORK MODEL AND DEFINITIONS

A. Network model

We assume that the outermost boundary of the sensor
network is known and a set of sensors (denoted by 𝑆 =
{𝑆1, 𝑆2, ..., 𝑆𝑚}) is deployed randomly inside the boundary.
We assume that all sensors have the same sensing range,
𝑅𝑠, and the same transmission range, 𝑅𝑡. We use a widely
accepted assumption that 𝑅𝑡 ≥ 2𝑅𝑠. A point 𝑝 is said to be
in sensing range of a sensor 𝑆𝑖 if their Euclidean distance is
less than the sensing range. We also assume that each sensor
knows its own position and that of its 1-hop neighbors.
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B. Definitions
𝐴𝐵 denotes the Euclidean between A and B.

>
𝐴𝐵 denotes a

circular arc from 𝐴 to 𝐵 in clockwise order (when seeing from
the center of the circle). Given a sensor 𝑆𝑖, the sensing circle of
𝑆𝑖 (denoted by 𝑆𝐶(𝑆𝑖)) is defined as the circle with the center
of 𝑆𝑖 and radius of 𝑅𝑠. The sensing area of 𝑆𝑖 (denoted by
𝑆𝐴(𝑆𝑖)) is defined as the area inside the sensing circle of 𝑆𝑖,
i.e. 𝑆𝐴 (𝑆𝑖) =

{
𝑝∣𝑝𝑆𝑖 < 𝑅𝑠

}
. A coverage hole is defined as

a region bounded by a non-self-intersecting curve and consists
of points that do not belong to the sensing area of any sensors.
The boundary of a coverage hole 𝐻 , ∂𝐻 , is defined by the set
of points 𝑝 of 𝐻 such that every neighborhood of 𝑝 contains
at least one point of 𝐻 and at least one point not of 𝐻 . Also,
any point on the hole boundary is called a boundary point.
In this paper, we assume that the network does not contain
coverage holes whose boundary is discontinuous and thus a
coverage hole boundary is a Jordan curve, i.e. a simple closed
curve. The sensing neighbors of a sensor 𝑆𝑖 are defined as
the sensors whose distance to 𝑆𝑖 is less than or equal to twice
the sensing range, 𝑅𝑠. Let 𝑆𝑖𝑗 be a sensing neighbor of 𝑆𝑖,
and 𝐼1𝑗 , 𝐼

2
𝑗 denote the two intersection points of 𝑆𝐶(𝑆𝑖𝑗 ) with

𝑆𝐶(𝑆𝑖) that stay on the left and right sides of ray
−−−→
𝑆𝑖𝑆𝑖𝑗 ,

respectively, then the intersection arc of 𝑆𝐶(𝑆𝑖𝑗 ) with 𝑆𝐶(𝑆𝑖)

is defined as the arc
>
𝐼1𝑗 𝐼

2
𝑗 that belongs to 𝑆𝐶(𝑆𝑖). Also, 𝐼1𝑗

and 𝐼2𝑗 are called the left and right intersection points of
𝑆𝐶(𝑆𝑖𝑗 ) with 𝑆𝐶(𝑆𝑖), respectively. Throughout this paper,
we use notation 𝑁(𝑆𝑖) = {𝑆𝑖1 , ..., 𝑆𝑖𝑘} to denote the set of

all sensing neighbors of 𝑆𝑖 and
>
𝐼1𝑗 𝐼

2
𝑗 to denote the intersection

arc of 𝑆𝐶(𝑆𝑖𝑗 ) with 𝑆𝐶(𝑆𝑖) (∀𝑗 = 1, 𝑘). 𝑆𝑖𝑗 is called a non-

redundant sensing neighbor of 𝑆𝑖 if
>
𝐼1𝑗 𝐼

2
𝑗 is not covered by any

intersection arc of other sensor’s sensing circles to 𝑆𝐶(𝑆𝑖).
Also, a sensing neighbor that is not non-redundant is called
a redundant sensing neighbor. Let 𝑆𝑖𝑢 , 𝑆𝑖𝑣 be two sensing
neighbors of 𝑆𝑖, then 𝑆𝑖𝑣 is called the right adjacent neighbor
of 𝑆𝑖𝑢 (and 𝑆𝑖𝑢 is called the left adjacent neighbor of 𝑆𝑖𝑣 , vice
versa) if there is no other non-redundant sensing neighbor 𝑆𝑖𝑤

of 𝑆𝑖 such that 𝐼1𝑤 stays between 𝐼1𝑖 and 𝐼1𝑗 , or 𝐼1𝑤 coincides
with 𝐼1𝑖 (or 𝐼1𝑗 ) and 𝐼2𝑤 stays between 𝐼2𝑖 and 𝐼2𝑗 . (𝑆𝑖𝑢 , 𝑆𝑖𝑣 )
is called a disjoint adjacent sensing neighbor pair of 𝑆𝑖 if
𝑆𝑖𝑣 is the right adjacent neighbor of 𝑆𝑖𝑢 and

>
𝐼2𝑢𝐼

1
𝑣 overlaps

with neither
>
𝐼1𝑢𝐼

2
𝑢 nor

>
𝐼1𝑣𝐼

2
𝑣 . An arc (in clockwise order) of a

sensing circle is called a non-covered arc if it is not covered
by the sensing area of any sensor and its two ending points are
intersection points of sensing circles. Also, a sensor is called
a non-covered sensor if its sensing circle contains at least one
non-covered.

III. PROPOSED PROTOCOL

A. Protocol overview
Our goals are (1) identifying the boundaries of the coverage

holes and (2) approximate that holes by simpler polygons. For
the first one, we do it in two steps. First, we check whether
coverage holes exist by searching for non-covered sensors. If
non-covered sensors are detected, we use them to find the
boundaries of the holes. For the second one, the approximate
polygons or A-polygons for short can be obtained by the
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Fig. 1: Illustration of Property 2.

specific edges of unit triangles that intersect the boundary of
the hole, where the specific edges are not inside the hole. To
satisfy the definition of coverage hole, the unit triangle’s edge
length, 𝑑, is set approximately equal to the sensing range, 𝑅𝑠

(i.e. 𝑑 = 𝑅𝑠 − 𝛾, where 𝛾 is a tiny positive number). The
process of our protocol can be summarized as follows.
∙ Each sensor periodically broadcasts neighbor notification

messages that contain its information such as its ID
and coordinates. Because 𝑅𝑡 ≥ 2𝑅𝑠, all sensors can
obtain information of their sensing neighbors using these
neighbor notification messages.

∙ Each sensor identifies whether it is a non-covered sensor
by using the non-covered sensor detecting protocol.

∙ Each non-covered sensor uses hole boundary determining
protocol to locate the boundaries of the corresponding
coverage holes. This protocol is conducted by having spe-
cial packets traveling around the non-covered sensors to
collect information of the hole boundaries. This protocol
also performs an algorithm to approximate the holes by
simpler polygons using the regular triangle grid.

B. Non-covered sensor detecting protocol
Before going further, we make some important observations

about coverage hole.

Property 1. Suppose
{>
𝐼1𝐼2,

>
𝐼2𝐼3, ...,

>
𝐼𝑘−1𝐼𝑘,

>
𝐼𝑘𝐼1

}
is a set

of non-covered arcs and 𝛿 is the line connecting these arcs,
i.e. 𝛿 =

∪𝑘
𝑖=1

>
𝐼𝑖𝐼𝑖+1 (𝐼𝑘+1 ≡ 𝐼1). Then the area enclosed by

𝛿 and staying on the left side of 𝛿 is a coverage hole.

Property 2. Let 𝑆𝑖 be a sensor and
{
𝑆𝑖𝑛1

, ..., 𝑆𝑖𝑛𝑙

}
be the

set of all non-redundant sensing neighbors of 𝑆𝑖. Then:

∙ If 𝑙 = 1, then
>
𝐼2𝑛1

𝐼1𝑛1
is a non-covered arc (Fig. 1(a)).

∙ If 𝑙 > 1 and (𝑆𝑖𝑛𝑢
, 𝑆𝑖𝑛𝑣

) is a disjoint adjacent sensing

neighbor pair of 𝑆𝑖, then
>
𝐼2𝑛𝑢

𝐼1𝑛𝑣
is a non-covered arc

(Fig. 1(b)).

On the basis of these properties, we propose a non-covered
sensor detecting protocol as described below. The protocol is
divided into two steps. In the first step, each sensor constructs
the list of its non-redundant sensing neighbors by using the
information obtained from the periodically broadcast neighbor
notification messages. Each sensor then sorts this list in the
order such that any item of the sorted list will be the right
adjacent neighbor of its previous item. In the second step,
each sensor checks the sorted non-redundant sensing neighbor

181181181181

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 02,2024 at 23:18:26 UTC from IEEE Xplore.  Restrictions apply. 



uiS

iS

pS

vi
S

qS

Fig. 2: Illustration of Property 3.

list to verify whether it has only one non-redundant sensing
neighbor or at least one disjoint adjacent sensing neighbor pair.
If the answer is ”yes”, the sensor is non-covered. Otherwise,
it is not non-covered.
C. Hole boundary determining protocol

In the following, we describe a distributed protocol to locate
the boundary of a coverage hole and approximate the boundary
by a simpler polygon, i.e. an A-polygon. Let us start by
informally discussing the main idea of this protocol, which
is based on an important observation we already mentioned
in Property 1: the hole boundary can be seen as the union
of a collection of non-covered arcs, which are created by a
collection of non-covered sensors. Let us call them boundary
sensors for this context. Thus, a special message, the hole
boundary detection (or HBD for short) message, can be
formed to travel around these boundary sensors. This special
message can be created by a non-covered sensor upon being
detected (as in III.B); multiples of them can be created, but we
will eliminate the late-coming, redundant ones. To fulfill our
protocol, we also need another important observation to decide
how a boundary sensor can find the next boundary sensor (in
the counterclockwise direction). This final point is formally
presented by the following property.

Property 3. Let (𝑆𝑖𝑢 , 𝑆𝑖𝑣 ) be a disjoint adjacent sensing
neighbor pair of a non-covered sensor 𝑆𝑖. Let 𝑆𝑞 be the
non-redundant sensing neighbor of 𝑆𝑖𝑣 such that 𝑆𝑞 is right
adjacent to 𝑆𝑖. Then, (𝑆𝑖, 𝑆𝑞) is a disjoint adjacent sensing
neighbor pair of 𝑆𝑖𝑣 . Similarly, Let 𝑆𝑝 be the non-redundant
sensing neighbor of 𝑆𝑖𝑢 such that 𝑆𝑝 is left adjacent to 𝑆𝑖.
Then, (𝑆𝑝, 𝑆𝑖) is a disjoint adjacent sensing neighbor pair of
𝑆𝑖𝑣 (Fig. 2).

This property implies that if 𝑆𝑖 is a boundary sensor and
(𝑆𝑖𝑢 , 𝑆𝑖𝑣 ) is its disjoint adjacent sensing neighbor pair, then
𝑆𝑖𝑢 and 𝑆𝑖𝑣 are also boundary sensors, and furthermore,
(𝑆𝑖𝑢 , 𝑆𝑖, 𝑆𝑖𝑣 ) are consecutive boundary sensors. On the basis
of this property, the next boundary sensor of a boundary sensor
𝑆𝑖 (i.e. 𝑆𝑖𝑣 ), is a non-redundant sensing neighbor of 𝑆𝑖 and
right adjacent to the previous boundary sensor of 𝑆𝑖 (i.e. 𝑆𝑖𝑢 ).
This move from 𝑆𝑖 to 𝑆𝑖𝑣 is the main move of our algorithm:
we call it the Bound Move.

Below we restate our hole boundary detecting protocol in
full detail. Each sensor detects if it is a boundary sensor as in
section III-B. Assume 𝑆∗ is detected as a boundary sensor.
A non-covered arc and the corresponding disjoint adjacent
sensing neighbor pair can be found at 𝑆∗, which are to be
used as the starting point of the process of creating a HBD
message and forwarding it in the counterclockwise direction

to collect information about the other boundary sensors. At
each intermediate boundary sensor where the HBD message
arrives, the current boundary sensor determines the current
non-covered arc (i.e. the non-covered arc of the hole boundary
belonging to the sensing circle of the current sensor), then
approximates it by a few unit triangle edges, and updates
this A-polygon information to the HBD message. The BHD
message then is forwarded to the next boundary sensor. This
process terminates when the HBD message comes back to the
creator, 𝑆∗.

The boundary of the A-polygon is described by the unit
triangles that intersect the hole boundary. We call these trian-
gles I-triangles. To minimize the size of the HBD message, we
do not store the coordinates of the I-triangles but store only
the relative position of each I-triangle. This relative position
can be as short as a two-bit string that is defined as 10, 01,
11, or 00 if the current I-triangle stays on the right of, left
of, above, or below the previous I-triangle, respectively. Thus,
below are the steps each boundary sensor needs to follow when
it receives the HBD message and becomes the current sensor
in this algorithmic context.
∙ Step 1 - Check for termination: Check if the current

sensor is the HBD’s creator. If it is, the hole boundary de-
termining protocol terminates, and the patching location
determining protocol starts.

∙ Step 2 - Check for redundant HBD: All the boundary
sensors automatically create a HBD message, so this
redundancy can be lessened by allowing only the one
with the highest creator ID and dropping the others.

∙ Step 3 - Approximation of the current non-covered
arc: Execute the Bound Move to determine the next
boundary sensor. Having determined next boundary sen-
sor, the current non-covered arc can be determined
straightforwardly (by using Property 2). The current
sensor determines the I-triangles that intersect the current
non-covered arc and inserts the relative positions of these
I-triangles to the HBD message.

∙ Step 4 - Moving to the next boundary sensor: Forward
the HBD message to the next boundary sensor.

IV. PERFORMANCE EVALUATION

In this section, we compare our protocol with the existing
protocols: HACH [1], BCP [11] and HPA [9]. For the sake of
simplicity, we call our proposed protocol TELC (which stands
for Time and Energy efficient protocol for Locating Coverage
holes). To see the impact of various shapes of the hole, we
placed holes with different shapes as shown in Fig. 3. We run
the experiments on NS-2 simulator and chose IEEE 802.11
(legacy mode) as our MAC protocol. The nodes follow the
energy model suggested by Shnayder et al. [8] (see Table I).
The experiments are deployed on a computer with the CPU
of Xeon E5-2620 v2 2.10GHz x 4, RAM of 10GB and the OS
of Ubuntu 14.04 64-bit. The results are the average of 10 run
times (as the error is very small , it is not shown here).
A. Time complexity

Fig. 4 shows that TELC strongly outperforms the others
strongly in term of time complexity. The time complexities
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Factor Value
Transmission range 40m
Sensing range 20m
Idle power 9.6mW
Receiving power 45mW
Transmitting power 88.5mW

TABLE I: Factor setting of simulated sensors.

a c d

e f g h

b

Fig. 3: Captures of simulated areas.

of HACH, BCP and HPA tend to increase very fast when the
hole size increases, while the time complexity of TELC is quite
stable. Furthermore, even with small holes, the time complexi-
ties of the other protocols are more than twice of TELC’s time
complexity, e.g. the ratios of the time complexities of HACH,
BCP and HPA to TELC are 2.3, 11.2, 28.3, respectively, for
the hole with 15 boundary sensors.
B. Energy overhead

The energy overhead is the average energy consumed by one
sensor. Similarly to the time complexity, the energy overhead
caused by TELC is much less than that caused by the others as
shown in Fig. 5. The energy overheads of all protocols tend to
increase with the increase of the hole size but TELC increases
slowest. When the number of boundary sensors is 15, HACH,
BCP and HPA cause 1.8, 4.0 and 10.7 times more energy
overhead than TELC. This ratio even increases to 7.5, 298.6
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Fig. 4: Evaluation of time complexity.

and 738.7 when the number of boundary sensors increases
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Fig. 5: Evaluation of energy overhead.

to 88. Similarly to the time complexity, the energy overhead
of HPA is larger than that of HACH and BCP because HPA
requires more patching locations than HACH and BCP. HACH
causes a smaller overhead than BCP because it requires re-
running the protocol less times than BCP.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed protocol to locate the
boundary of coverage holes. This protocol also approximates
the holes by simpler polygons using a given regular triangle
grid. The simulation results show that our protocol strongly
outperforms the existing protocols in terms of time and energy
consumption.
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