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Abstract—Real world large scale networks exhibit intrinsic
community structure, with dense intra-community connectivity
and sparse inter-community connectivity. Leveraging their com-
munity structure for parallelization of computational tasks and
applications, is a significant step towards computational efficiency
and application effectiveness. We propose a weighted depth-first-
search graph partitioning algorithm for community formation
that preserves the needed community dependency without any
cycles. To comply with heterogeneity in community structure and
size of the real world networks, we use a flexible limiting value
for them. Further, our algorithm is a diversion from the existing
modularity based algorithms. We evaluate our algorithm as the
quality of the generated partitions, measured in terms of number
of graph cuts.

I. INTRODUCTION

Large scale networks are an integral part of our daily

life, be it the Internet, biological network, social network

and gene regulatory network, to mention a few. Irrespective

of their widely varying application domains, they resemble

similar network structural properties, for example: scale-free,

small-world property, small diameter, neighborhoods of sur-

prisingly dense structure irrespective of relatively sparse over

all network, large connected component, nearly power-law

degree distribution etc. [6], [13]. These structural properties

are leveraged in interesting ways for computational efficiency

and effectiveness of range of applications and computational

tasks [4], [3], [11].

One of the significant structural property, exhibited by

these wide range of diverse large scale networks is that,

they exhibit community structure, i.e. a set of nodes having

more and/or better connections between its members than with

the remainder of the network. We propose to consider these

communities/partitions as the basic elements for our parallel

execution. The partitioning schemes, partition the graph into

predefined number of parts of equal size. The move-based

algorithms for graph partitioning problem iteratively try to

improve the partition, by vertex moves or swaps between

the partitions created during iterations, such as Kernighan-

Lin algorithm (KL) [8]. The algorithm converges to a local

optimum by selecting moves that minimize the cost of graph

cut. n the multilevel algorithms, the input graph is coarsened

iteratively by merging vertices according to a matching, until

a small graph with similar structure is generated. This graph

can then be partitioned with spectral method, or greedy graph

growing algorithm [14], [7]. In the subsequent phase, the graph

is iteratively un-coarsened and the KL algorithm is used in

each iteration. In fact, the multilevel scheme is behind the

state-of-the-art graph partitioning libraries, such as METIS [7].

But in real world networks, say, in social/biological networks,

neither the size, nor the number of clusters can be fixed.

Thus, determining inherent communities (clusters or mod-

ules) in large scale networks, is one of the fundamental

network analysis problems and is widely studied [12], [9], [6],

reflecting dense intra-cluster (connections within a cluster) and

sparse-inter cluster (connections across cluster) connections.

From here onwards, to refer to a densely connected group

of nodes, we will use cluster or community or module in-

terchangeably. Since, finding optimal community structure is

known to be NP -hard [5], heuristics and approximation solu-

tions have been proposed based on agglomerative hierarchical

clustering [1], [2], divisive clustering based on betweenness

centrality [10], or spectral partitioning [14]; though all of

them validate their approach by optimizing (maximizing) the

modularity index.

Besides, the application tasks like information flow, routing

etc., there are computational tasks that can be greatly benefit-

ted from the intrinsic community structure. The work in Das

et al., [2], leverages the underlying community structure for

efficient computation of betweenness centrality indices. Here,

the community detection (formation) acts as a preprocessing

stage to the subsequent influential node evaluation and help

exploit the divide-conquer algorithmic technique. More so,

evaluation of stress centrality, closeness centrality and other

similar distance based centrality metrics can be computed in

a similar manner.

Moreover, the large scale network graph also justifies the

need for parallel computation, besides the distributed approach

in [2]. In fact, computation of influential nodes (centrality

metric like betweenness centrality) in a network, evolution

of network mechanisms say, interactions in gene regulatory

networks can be efficiently analyzed through parallel computa-

tion. Though, parallel computation also resembles distributed

computation in minimizing inter-cluster edge weight (or in-

terprocessor communication), there is also a class of parallel

computation framework called multiple instruction multiple
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data architecture (MIMD) with shared memory and MIMD

architecture without shared memory having number of inter-

processor connections larger than the number of processors,

both of which does not rely on minimizing interprocessor

communication. Thus, it is interesting to investigate creation

of these special class of partitions that preserve their desired

interdependency yet are cyclically connected, as basic compu-

tation elements to the above class of parallel framework. It is

also interesting to investigate to what degree they reflect the

underlying community structure.

We make the following contribution to address the above

issues.

II. SUMMARY OF CONTRIBUTIONS

Here, we propose a weighted depth-first-search-based

(WDFS-based) graph partitioning algorithm for community

formation/detection, that preserves the required dependency

among communities, yet the connectivity graph over these

communities is of acyclic nature. The graph partitioning

combinatorial optimization problem is known to be NP -hard

[5], thus our proposed heuristic for graph partitioning with

flexible bounds on size and number of partitions is based on

divide and conquer algorithmic technique.

Our proposed heuristic acts as a preprocessing stage to

generate communities (partitions) to be used over computa-

tional environments for efficient computation of computational

tasks. The generated partitions can be used in a parallel en-

vironment that is not critical to interprocessor communication

cost for computational tasks, say analyzing temporal evolution,

evaluating influential nodes etc. As communication cost is

of lesser significance, modularity maximization is not our

objective, rather we see how well these dependency preserving,

acyclically connected partitions reflect the under lying real

world community structure. As modularity index above 0.3 is

considered to be good, any generated partitioned structure with

modularity higher than this, reflects good resemblance with

underlying intrinsic community structure of the networks. In

this aspect we examine how the proposed approach varies in

modularity index relative to the work in [2], which optimizes

modularity index.

To leverage the flexibility in underlying application network

structure, as well as allow for the inhomogeneity (hetero-

geneity) in computational environments, instead of a fixed

limit on number and size of communities (partitions), we

propose an upper bound on them (O(
√|V |)), where |V | is

the number of nodes in the network. This helps in forming

communities of different sizes (heterogeneous) and numbers.

Further, the intuition of O(
√|V |), resembles the fact that

efficient parallel execution of tasks needs to have similar

amount of task distribution, where the tasks are of almost

same complexity and the computing elements are equipped

with similar computing resources. Further, it also helps achieve

good modularity index [2].

Our solution to the partition construction caters to the class

of application problems or computational environments, where

interprocessor communication cost is not critical. We compare

the quality of our resulting partitions relative to the partitions

generated using METIS 4.0, in terms of the graph cut size.

We also examine the community structure (modularity index)

w.r.t. the a specific graph cut size for these approaches.

The rest of the paper is organized as follows. In Section III

we present preliminary concepts and definitions used in our

work and formally define our problem. Section IV describes

our divide and conquer-based, weighted depth-first-search

graph partitioning algorithm. Section V reports experimental

results, and finally conclusions and future works are offered

in Section VI.

To the best of our knowledge ours is the first work to

consider graph partitioning in parallelization of computational

tasks over large scale networks. We propose a divide and

conquer-based heuristic that uses weighted depth-first-search

tree and post order traversal on the subsequent spanning tree

in generating partitions (communities).

III. PRELIMINARY DEFINITIONS AND PROBLEM

FORMULATION

Let us consider the underlying directed, weighted network

graph of any application network, represented as G(V,E,W ),
where V , E and W are the set of nodes, edges and edge

weights respectively. For any pair of nodes u, v ∈ V , directed

edge from u to v is represented as euv and its weight is

denoted as w(euv). Any undirected graph can be mapped to

G with each undirected edge as bidirectional edges.

Let the resulting partitioned graph be represented as

G′(V ′, E′,W ′). The graph G′ constitutes the partitions of

graph G, with V ′ as the set of coagulated nodes from V ,

we call them as communities or clusters. Further, for any

pair of nodes u′, v′ ∈ V ′, e′u′,v′ ∈ E′ iff ∃u ∈ u′, v ∈ v′,
s.t. euv ∈ E, thus E′ is the set of coagulated edges in G′.
We virtually nullify the existence of edges within any super

node (i.e. intra-cluster edge), though they exist physically and

remain unaffected. Further, w′(eu′v′) =
∑

∀u∈u′,v∈v′ w(euv),
where super weight w′ ∈W ′.

Let the given input graph be the example, in 1st graph

(graph with green dots and edges) of Figure 1. For simplicity,

we consider undirected graph. The corresponding coagulated

nodes (cluster or communities), resulted from the graph parti-

tioning algorithm, are shown in the 2nd graph of same figure

(blue dots). The clusters are 12, 37, 56 and 48. The partitioning

algorithm acts as a mapping from the input graph in left to

the partitioned graph in right.
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Fig. 1: Partitioned Graph: Example
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Here, we introduce the following two constraints as the basis

of our problem formulation.

• The number of clusters (communities) in G′ is bounded,

i.e. |V ′| ≤ k, where k is a positive integer.

• The number of nodes within cluster node v′ is also

bounded, i.e. ∀v′ ∈ V ′, |v′| ≤ q, where q is a positive

integer.

We formally define our problem as follows:

Given a network graph G and the positive integers k and q,

we propose a divide and conquer-based graph partitioning

algorithm that results in the partitioned graph G′, such that

G′ satisfies the above two constraints and with modularity

index of G′ (without constraint on inter-cluster edge weight).

Modularity index for partitioned graph is given by QG′ =∑
∀v′∈V ′ Qv′ . Further, there is no other partitioned graph G′′,

such that QG′′ > QG′ and G′′ satisfies the above constraints.
We define modularity index for any cluster node v′ ∈ G′

similar to [10], Qv′ =
∑

∀euv∈v′ w′(euv)

w′(E′) −
∑

∀u′∈V ′\v′ w′(ev′u′ )
w′(E′) .

This facilitates the resulting community structure of the parti-

tioned graph, thus resembling the intrinsic clustering exhibited

by real-world networks, though our partition procedure does

not employ inter-cluster edge weight minimization. The nu-

merator of the 1st fraction is the total edge weight within a

cluster node v′, whereas the numerator of the second fraction

is the total edge weight of the cluster node (v′) with all other

cluster nodes u′ (i.e ∀u′ ∈ V ′\v′). Further, w′(E′) is the total

edge weight in G′. Thus, each fraction computes the weighted

measure.

IV. GRAPH PARTITIONING HEURISTIC

Our proposed graph partitioning algorithm works in two

phases. In the 1st phase it creates a spanning tree over the input

graph using weighted depth-first-search (WDFS) traversal. In

the second phase, a post order traversal is performed over

the spanning tree from the 1st phase. This phase accumulates
nodes as per some rules, in generating the final partitioned

graph with coagulated (cluster) nodes and coagulated edges.

The partitioned graph resulting after these two phases has

coagulated nodes or clusters with the required dependency

among cluster connectivity preserved, yet is acyclic. Further,

our flexibility of our proposed graph partitioning algorithm

results from the O(
√|V |) constraint on the size and number

of communities, instead of a strict or fixed limit.
The WDFS traversal, is a diversion from usual graph

theoretic depth-first-search traversal in selecting nodes, though

follows the same traversal principle. Any node with non empty

children and with more than one of these children being non

leaf nodes, it selects the child with least connecting edge
weight with it. Since, during this traversal procedure, we

are intrinsically creating a path between any pair of nodes

of the graph, selecting the edges in the described manner

helps reduce the inter-cluster edge weight wherever possible.

Further, child nodes that are leaf nodes always have the priority

over non-leaf child nodes.
The post order traversal is in accordance with the usual

graph traversal algorithm. In this phase, any single child of a

parent that is also a leaf node, is accumulated with its parent,

in creating a super node. Moreover, for a pair of leaf nodes in

the post order traversal of the DFS tree, if they share common

parent, then these two leaf nodes are accumulated to form a

cluster node.

In the spanning tree from 1st phase, the nodes are accumu-

lated, without compromising the two constraints given in the

problem formulation, i.e the constraints on size and number

of cluster nodes in the resulting partitioned graph.

In the following Subsection we formally describe our algo-

rithm.

A. Algorithm: Graph Partition

We store the input graph in an adjacency list. We use stack

as our basic data structure, denoted here as STCK. We also

use an auxiliary array, AR. The stack is used to store the nodes

added to the spanning tree but not yet coagulated. Nodes of

the input graph that are in the spanning tree are crossed out,

where as nodes that do not yet belong to the spanning tree are

termed New.The top of stack pointer, denoted as TOS. We have

another array A used during WDFS traversal, the spanning

tree in A is passed as input to ClusterFormation() :,
accumulation in storing accumulated/coagulated nodes. Array

A store for each node id v another node id A(v). Intuitively,

it is desirable to join node v with node A(v) if A(v) exists.

We give the steps of our proposed algorithm below.

Creation of Spanning Tree():
1) Input: Network graph G.

2) Initialize data structures. Set node v to be any input node

id and put node v on top of STCK.

3) Find a New node u, adjacent to v, giving priority to u,

as per the rules of weighted DFS. Put u on top of STCK.

While u does not exist, go to Cluster Formation().

4) Find New node m such that (u,m) and (v,m) are edges

in the input graph G. Set A(v) = u,A(u) = m. Put m
on top of STCK. Set v = u and u = m.

5) If such m does not exist, then find a pair of New nodes

m and n, such that (u,m), (m,n), (n, v) are edges in G.

Set A(v) = u,A(u) = m and A(m) = n. Put m and n
on STCK. Set v = m,u = n.

6) If the search for nodes in (3) and (4) is unsuccessful

then set v = u and repeat from step (3).

7) Output: The spanning Tree of the nodes.

Cluster Formation():
1) Input: Spanning Tree from Creation of Spanning Tree().

2) Initialize auxiliary array AR to A.

3) While AR(TOS) is not empty, then join nodes i and

j, i =A(TOS), and j =AR(TOS) into a pair and call

REPEAT(i, j).
4) While AR(TOS) is empty, but AR(TOS−1) is not

empty, then join nodes i and j, i =A(TOS), and

j =AR(TOS−1) into a pair and call REPEAT(i, j).
5) If both AR(TOS) and AR(TOS−1) are empty, set

AR(TOS−1)=A(TOS).

6) Decrement TOS, set v =A(TOS), repeat from step (3).
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7) Output: Partitioned graph with Clusters

In procedure REPEAT(i, j), if A(i) �= j and A(i) is joined

into a pair with node u, such that A(A(i)) �= u, then change

the partition, so that i is joined with A(i), j is joined with u
and the rest of the partition remains unchanged.

The computation cost of the proposed graph compaction al-

gorithm for k compaction is O(nd log n), where d is maximum

node degree.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our proposed WDFS for

flexible graph partitioning problem, we examine the resulting

partitions or cluster nodes. We consider an upper bound of

O(
√|V |) on number and size of cluster nodes.

We consider four distinct network data sets, NetScience,

twitter mention, power grid, and Internet [15]. We give the

network statistics of the four networks in table I. In Table II,

we show the modularity index with O(
√|V |) constraint on

cluster nodes for both WDFS and Das et al. [2] (Modularity).

Modularity index above 0.3 is considered good, thus as it is

evident from the tabular values, WDFS-based flexible graph

partition reasonably reflects underlying community structure.

TABLE I: Network Statistics: Example Network Data Sets

Network measures over Four Distinct Data Sets
Network Measure Internet Power

Grid
Net Sci-
ence

Twitter Men-
tion

Number of Nodes 22963 4941 1859 3656
Number of edges 48436 6594 2742 157727
Network Density 2.1 1.334 1.329 43.14
Average Degree 4 2 3 86

TABLE II: Modularity Index with Constraint on ClusterNode

Modularity Index over Four Distinct Data Sets
ModularityIndex:
ClusterNodeO(

√|V |)
Selected Nodes

Internet
(210)

Power
Grid
(80)

Net
Science
(180)

Twitter
Mention
(61)

WDFS 0.45 0.53 0.5 0.39
Modularity 0.69 0.81 0.65 0.58
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Fig. 2: Partition Quality Evaluation

TABLE III: Modularity Index WDFS vs. METIS

Modularity Index for Twitter over distinct graph cuts
ModularityIndex:
ClusterNode

2-
partition

8-
partition

32-
partition

64-
partition

WDFS 0.18 0.23 0.31 0.43
METIS 0.13 0.2 0.25 0.37

We evaluate the partition quality relative to the partitions

formed using METIS 4.0. We consider 2 to 64 compaction

over Twitter network. We see that in each case our proposed

algorithm has 2% to 10% lower graph cuts w.r.t. METIS. This

is shown in the Figure 2. For brevity we omit the plot of

cut size comparison with Das et al. [2] (Modularity). We also

show the modularity index corresponding to the cut sizes for

the two approaches in Table III. The cluster nodes are input to

the parallel execution stage for subsequent efficient execution

of computational tasks.

VI. CONCLUSION

It is interesting to observe that the resulting partitioned

graph with communities, can be visualized as the compact

graph of the original graph. It has communities as its nodes,

which will be considered as basic computing elements for

efficient parallel execution of computational tasks. We propose

to prove the asymptotic optimality of our resulting partitioned

graph. We would also like to give extensive investigation

results reflecting the purpose of constraints in the proposed

approach, and explore for graph cuts and community formation

relative to METIS and Modularity. We would also like to

investigate the computational cost reduction in parallel exe-

cution of task over these cluster units and finally aggregating

the results wherever possible, which exploits the divide and

conquer algorithmic technique.
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