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Abstract—Monitoring the global state in peer-to-peer networks
through decentralized mechanisms allows targeted optimiza-
tion and improvement of the peer-to-peer network. However,
malicious nodes could aim to distort the process of gather-
ing the global state through monitoring. In this paper, we
propose DOMiNo, a security solution for tree-based peer-to-
peer monitoring mechanisms. It passively listens to incoming
events, e.g. data, and rates its suspiciousness based on outlier
detection, structural verification and sanity check mechanisms.
For our main objective, which is to limit the monitoring error of
the desired global view, we performed an extensive evaluation.
Evaluation shows tolerance with normal fluctuations but effective
filtering of outliers, that severely influence the global view. As our
watchdog solution operates passively, we do not add any costs
nor create new surface for attacks to the monitoring system.

I. INTRODUCTION

Peer-to-peer (P2P) networks offer many advantages com-

pared to client-server network models. They are able to

build networks using only the capacities of every single peer

participating in the network and build up applications with

a minimum of operational costs. However, as no central

instance is present it is hard to manage these networks to

offer a certain Quality of Service. Monitoring systems present

a solution to gain information about the status of the network

so peers may adapt several parameters to improve the overall

performance (e.g. reducing the output during high package loss

or increasing their routing tables’ size in unstable networks).

In particular, structured monitoring systems provide highly

precise monitoring results by building a topology to effectively

aggregate and distribute data. Since every peer gathers its local

view of the network (e.g. local hop count, response time etc.)

and has to contribute its known information to the monitoring

system to gain a profound view on the underlying P2P overlay,

new attack possibilities arise. Even more as no trustworthy

instance, i.e. a server, is present.

P2P overlays with controlled quality of service might play

a role in future, such as for P2P-based online social networks

(LibreSocial [9]), WebP2P-based communication platforms [6]

or future communication platforms for decentralized energy

sources. As an example the Department of Computer Science

from the University of Oldenburg [26] uses a constructed com-

munication overlay to exchange data between several power

plants which monitor each other. If one of those power plants
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gets compromised the results could be fatal. Not just in this

cases, but in general, more information on the P2P network,

in specific global information as obtained from monitoring

mechanisms, are beneficial for the operation of the network.

Bottlenecks can be identified, parameters configured ideally

and an autonomous control loop could be implemented on the

long run, as suggested in [12]. As information is crucial in the

correct operation of a P2P overlay, malicious nodes could aim

to distort the monitoring mechanism, thus aiming at indirect

damage through the processing of false observations.

In our paper, we propose a security solution, DOMiNo,

for existing structured tree-based monitoring systems. Our ap-

proach is applicable for tree-based monitoring systems which

aggregate gathered system-specific information in a push-

based manner. Examples for suitable systems are CONE [3],

SDIMS [28], SOMO [30] and SkyEye.KOM [10]. Appropriate

systems require a dissemination process, where each partic-

ipating node is supplied with the monitoring mechanism’s

global view. The construction of the monitoring tree must

be deterministic. Thus a parent node in the tree must be

able to identify a certain ID space where its child nodes

must be located. This requirement is interchangeable with

any other criteria where a node’s parent is able to verify its

child nodes. Please note, if this requirement is not met by the

tree-based monitoring system, malicious nodes can inject their

(manipulated) data at arbitrary and even multiple points in the

monitoring tree, which may diminish our system’s efficiency.

Also, a node can only be considered for the monitoring process

if it is actively participating in the underneath p2p overlay, thus

nodes participating in the monitoring process can check each

node’s activity. With these assumptions, our solution provides

following properties:

• Passive Rating: No overhead is added to the existing

monitoring approach. The detection does not add any

overhead in terms of exchanging information, i.e. sending

messages, nor does it perform any additional non-local

operations like lookups. Thus, DOMiNo is a passive

rating mechanism which judges by listening to inbound

data messages only. By doing so, we do not introduce

new possibilities for attackers to disturb or influence the

monitoring system in a bad way.

• Precision: The main objective is to minimize the relative
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error from the measured global view in a malicious

environment to the measured global view in a non-

malicious environment respectively desired global view.

Thus, we prioritize a high precision over a minimization

of the false positive rate.

• Performance: The detection mechanism should need as

little effort in terms of computation time as possible.

First, in Section II we introduce briefly in the literature in

the field of monitoring systems in general and security of them

in particular. In order to be able to evaluate our solution, we

focus on the motivation of attackers and concretize a fitting

attacker model in Section III. Our main contribution, called

DOMiNo, which makes use of outlier detection mechanisms

based on Z-Scores, structural and other plausibility checks, is

presented in Section IV. The quality of our proposed system

DOMiNo is evaluated in Section V through simulations. We

show that the influence of the malicious node’s attempt on the

global view are effectively limited. This paper closes with a

conclusion and comments on future work in Section VI.

II. RELATED WORK

In the research field of monitoring in decentralized net-

works there exist several approaches but none of them handle

malicious behavior. On one hand, the unstructured gossip-

based approaches like [16], [18], [23] periodically exchange

messages with their neighbors and average the obtained values.

Over time, the system wide average is obtained, which can

be used also for sum or count calculations. Non of these

solutions propose a mechanism to protect the system against

misbehaving nodes. On the other hand, there are the structured

monitoring approaches, which are mostly tree-based. GAP [5]

and its follow ups Adaptive GAP [22] and TCA-GAP [27]

build up a tree to aggregate monitoring information and

provide a threshold crossing alert but they do not support mali-

cious behavior analysis which is also mentioned in TCA-GAP.

Other approaches like CONE [3], SDIMS [28], SOMO [30]

and SkyEye.KOM [7] also do not provide such mechanisms.

In this paper, we propose an add-on which can be used by the

before mentioned approaches.

In the field of sensor networks there exist some approaches

like SDAP [29] or from Chan et al. [4]. In the first approach,

SDAP, the authors propose a grouping technique for aggregates

to determine the suspiciousness for those groups. In their

approach they build up new communication paths for their

group-ups, in contrast, we passively listen to incoming data

and rate it. Also, we reserve the right to drop suspicious data.

The second approach also builds up its own structure which

violates our requirement of being passive. Our solution is a

passive module which can be integrated to the already existing

tree-based aggregation structure.

Another field of research are reputation systems in P2P

networks, wherefore Marti and Garcia-Molina provide a sur-

vey [19]. Here, the most prominent solution is EigenTrust [17],

where nodes actively distribute trust vectors whereas the trust

system as a whole is transitive (if node A trusts B then

A trusts all nodes B trusts). However, we focus on passive

mechanisms, which do not add any message exchange to the

current monitoring service and do work only locally.

The field of (distributed) intrusion detection systems, which

work passively, are well suited for our purpose. But in contrast

to traditional (distributed) intrusion detection systems like

mentioned in the survey from Axelsson [2], our desire is

to provide a mechanism with a decision-making component

which i) operates only on the local view ii) works decent

on normally distributed data iii) does not need a preceding

training and iv) operates reliably on small data sets. In the field

of Mobile Ad Hoc Networks, Watchdog mechanisms [20],

[21] have been proposed that observed the forwarding be-

havior of neighboring nodes and mark them as potentially

malicious. While in Mobile Ad Hoc Networks, communication

is assumed to be observable, in P2P networks, communication

paths are hidden. Nevertheless, the idea is appealing.

Therefore we have chosen to apply methodologies from

the field of outlier detection [13]. Due to our restrictions we

can not make use of Supervised and Semi-supervised outlier

detections, thus Unsupervised methods, which are proximity-

based, cluster-based, density-based, distance-based or using

probabilistic / statistical models, are left. Most of the men-

tioned methods operate reliably on bigger data sets and / or

build clusters, which do not fit our needs. Except statistical

models, like the Extreme Value Analysis with Z-Scores, which

is used by Iglewicz and Hoaglin [15], fit our needs. Thus using

the divergence to the standard deviation of the data set we are

able to locally rate the badness of incoming data. Additionally,

the proposed method from Iglewicz and Hoaglin works best

on a normally distributed data base.

Hence, in the theory, using an appropriate divergence factor,

each node should be able to distinguish between data from

honest nodes including some noise and bad data, if the number

of honest data exceeds the number of malicious data. In

Section IV we describe how we utilized this in our solution.

III. ATTACKER MODEL

Attackers in monitoring systems can have different in-

tentions to behave not in accordance with the monitoring

algorithm. We state briefly the motivation of attackers, classify

attack patterns and extract an attacker model.

A. Motivation of Attackers

The literature offers a wide range of an attacker’s motivation

to act malicious as stated in the survey from Rounds and

Pendraft [24]. However, irrespective of the reason for being

malicious, virulent nodes participating in a monitoring system

can be categorized into the following classes.

In the first class, participants may manipulate monitoring

data to hinder / influence the QoS (= Quality of Service)

mechanism of the system by changing the current system

view or certain node’s capacities. Applying nodes may aim

to attack honest nodes’ global views to, for example, let QoS

mechanisms regulate accordingly which may lead to an overall

worse P2P experience.
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The second class deals with free riders which want to

maximize their benefit with as little own effort as possible.

So, these malicious nodes are only interested in the global

view but ideally do not want to forward any messages.

The third and last class of malicious nodes want to pur-

posefully disable monitoring by not following rules or even

shutting down specific mechanisms or sealing off single nodes.

In contrast to the first group, this group tries to break links

in the monitoring system and to exclude respectively eclipse

specific nodes or whole sub trees from participation. This

implies an incomplete global view for nodes not eclipsed and

no global view for eclipsed nodes which leads to unawareness

of the P2P network’s current state.

B. Attack Patterns

Next, we describe attacks that achieve the aims mentioned

in the last section. For this, we want to stick to an example

monitoring system that fulfills the requirements mentioned

in Section I. SkyEye.KOM [10] is a tree-based monitoring

system which aggregates statistics in a bottom-top manner and

disseminates the global view top-bottom. For that, all nodes

calculate initially their position in the tree as well as their

parent’s DHT ID based on the node’s ID responsibility in

the DHT. Periodically, each nodes captures its local statistics,

aggregates it with those received from its child nodes, and

sends the aggregated snapshot of its subtree to its parent node.

The parent node replies with an ACK containing its currently

known global view. Over time, all information is aggregated

towards the root, where the global view is created and from

there trickled down to all nodes using the ACKs.

Figure 1 shows an example topology in SkyEye.KOM with

branching factor 2. Black lines denote relevant respectively

active connections of an attack, where data is sent in the di-

rection the arrow points. Dotted lines show connections which

should be established following the monitoring algorithm, but

will not be maintained as a result of an occurring attack. If

marked with an arrow, a dotted line shows that one side tries

to establish the connection unsuccessfully. Gray lines show

existing connections according to the SkyEye.KOM algorithm

which are not affected by either attack depicted in the Figure.

We will denote the different attack types via the schema

ATAbbreviation−for−Attack for future references.

1) Manipulation of Monitoring Results: This group con-

tains malicious nodes which send data to other nodes to

change the current view of them. With this they still keep the

monitoring procedure running, but can influence the behavior

of the whole network, e.g. by sending parent and child nodes

the information that only little bandwidth is available in

the corresponding sub tree. Another possibility would be to

declare high available bandwidth which may lead to the failure

of single nodes due to congestion or similar. Next, we want

to differentiate the following attacks in this group.

a) ATParent – Send modified Data Sets to the Parent
Node: If a peer sends wrong data to its parent node it is

able to modify the local view in the parent node and therefore

such a peer has indirect influence on adjacent sub trees, as the

Fig. 1: Overview of attack types against SkyEye.KOM, a tree-

based monitoring system fulfilling our requirements

parent node will send the influenced local view up towards

the root. At some point the root will get the modified data

and uses it to build the global estimation which will be sent

down the tree. Furthermore peers may present themselves as

weak nodes to maximize their benefit from the running P2P

overlay without providing too much resources themselves as

many overlays have mechanisms to balance load among the

peers according to their capabilities.

This attack type is best suited for having influence on the

monitoring results while being as unobtrusively as possible

since the node behaves correctly regarding the message for-

warding algorithm, i.e. it addresses the correct parent node.

b) ATChild – Send modified Data Sets to the Child
Node(s): Peers can influence all their child nodes or only

a specific child node by forwarding incorrect global views

downwards the tree with the ACKs. With this they are able

reduce the profit child nodes get from the P2P overlay, as they

may not be able to react on potential network changes.

Just like ATParent, malicious nodes using this approach

behave correctly according to the monitoring procedure.

c) ATRandom – Send Data to a Random Contact: Send-

ing data to random nodes corresponds to sending messages

upwards the tree and lets the sender appear as a child node

of the receiver. In addition, nodes applying this attack also

manipulate the data to increase their impact. As depicted in

Figure 1 this attack can affect arbitrary nodes at any position

and may cause loops in the tree if forwarded to a node

lower in the tree, which may lead to exorbitant global views.

Furthermore, the number of child nodes may exceed a possible

maximum, i.e. the branching factor, if all possible child nodes

are present, which may lead to further actions depending

on the monitoring system, e.g. reorganization respectively

applying load balancing mechanisms.

d) ATRandomACK – Send ACK to a Random Contact:
In SkyEye.KOM, application level ACK messages are sent
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downwards the tree to disseminate the global view. In general,

this kind of message is interchangeable, but in the following,

ACKs are linked to the dissemination of the global view.

Consequently, sending arbitrary ACK messages will influence

or even override the global view in the receiving node.

Using this attack results in a more suspicious behavior as

parent nodes are usually well known since child nodes initiate

the communication between themselves and the parent.

2) Free Riders: max benefit, as little own effort as possible:
Free riders want to maximize their benefit from a mechanism

with little own effort. This can be achieved requesting the

global view which is calculated, e.g. at the root node.

a) ATRoot – Send Data to the Root directly: Data sent

to the root node directly by a node that is not a legitimate

child is a special case of the attack ATRandom. As demanded

in Section I, a certain ID space can be identified where child

nodes live in but they cannot be fully verified. In contrast to

ATRandom, this type of attack has a much higher influence

(on the global view), as the root node aggregates the global

view and starts the dissemination down the tree.

3) Shutting down of Monitoring Mechanisms: The follow-

ing attack types aim to shut down specific mechanisms of the

monitoring system or to seal off single nodes from it. These

attacks are more aggressive towards the concerned parts of the

system as they do not provide any information at all.

a) ATEmpty – Forward Empty Data Sets: Forwarding

empty data sets results in the erasure of parts of the gathered

statistics if the forwarding is upwards to the root or even in

the erasure of the whole statistics if empty sets get forwarded

downwards the tree. Attackers are able to shut down significant

parts of the monitoring tree completely as the receivers have

to work with sparse data or even no data if the attacker is the

only connection to the other tree parts. In Figure 1, this would

mean that if the root node uses this attack, the right sub tree

would not be able to gain any global data according to the

message forwarding algorithm.

b) ATUpwards / ATDownwards – Forward Data only up-
wards or downwards: On the one hand, if nodes forward data

only upwards, i.e. without participating in the dissemination

process, they take advantage of the monitoring system without

contributing much to it except the message they send towards

the root and the contribution to the global view. On the other

hand, if nodes forward data only downwards, they can eclipse

a whole sub tree without instantly being suspicious. Nodes in

the sub tree will not be able to commit to the global view and

may only receive information about the sub tree itself if the

attacker decides to do so.

c) ATDoNothing – Do not participate: Missing partic-

ipation in the monitoring system will result in broken links

between multiple tree parts since the denying nodes are the

proper parent respectively child nodes and thus need to be

contacted as part of the monitoring algorithm. This behavior

will both influence the monitoring system’s results and shut

off specific nodes from the system. It combines both attacks

ATUpwards and ATDownwards.

IV. OUR SOLUTION: DOMINO

Detection Of Malicious Nodes (DOMiNo) is our approach

to identify inappropriate behavior in a tree-based structured

monitoring system like SkyEye.KOM, which meets the re-

quirements stated in Section I. Our approach is based on a

rating system containing multiple rating mechanisms, each

returning a numerical rating for an examined data set or peer,

respectively. Ideally, once a peer behaves maliciously, it would

trigger one or more active rating systems and be detected.

In the following, we discuss the detection criteria and

identify which attacks these criteria are able to detect. We

divide our rating mechanisms into instant rating mechanisms
which instantly determine malicious behavior and collecting
rating mechanisms which operate on a collected data base.

A. Instant Rating Mechanisms

Instant rating mechanisms check different properties of a

received message, e.g. its origin or the sender’s properties.

Furthermore they review the containing data sets regarding

several points, e.g. the completeness or the plausibility of data,

using simple but effective rules.

1) Check Data’s Origin: This mechanism checks each

received data’s origin whether its ID lies in the acceptable

ID range where data is excepted to come from, as demanded

in Section I. By doing so, false negatives cannot arise while

false positives are still possible. For this, nodes should not be

able to forge their IDs. To achieve this, several approaches can

be applied like using a PKI, where the public key equals the

node ID, thus encrypting data using the public key can only

be decrypted by the node owning the corresponding private

key (See Graffi et al. [11]). By doing this, IDs are coupled to

an identity and its asymmetric key pair, i.e. to a user. IP/MAC

spoofing for example is useless as incoming data can not be

decrypted due to the missing private key. This mechanism can

be exploited to detect ATRandom attacks.

2) Identifying correct Parent Nodes via Nonces: By intro-

ducing numbers-used-once (nonces) set by the requester and

used by the responding node to identify a pair of request and

corresponding response message, the monitoring mechanism

can cope with the attack type ATRandomACK . So, the request-

ing node is able to identify the response to a sent request and

can ignore or filter out ACK messages with an unknown nonce.

3) Implausible Values: Based on the knowledge we have

about the data we receive respectively expect we can perform

several checks for implausible values. Depending on each data

set’s values, numerous sanity checks like min <= max,

min <= mean <= max, sumOfSquares <= max2 ∗
count, etc. should hold. These criteria support the detection

of attacks which send insufficient data, i.e. ATEmpty , but also

every attack which carelessly manipulates data.

4) Awareness of Missing ACKs: As part of the monitoring

mechanism, once contacted, each node can expect a reaction

from the contacted node if it is active. A node ignoring this

policy is acting highly suspicious. In order to not produce

false positives, as a message can get lost or just delayed, an
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active node is identified to be malicious if it repeatedly does

not answer, e.g. after three unsuccessful tries.

By doing so, we are able to detect those attacks where

nodes do not or partly participate in the monitoring system, i.e.

ATUpwards and ATDoNothing attacks. Please note, that leaf

nodes running ATDoNothing cannot be detected with a passive

approach such as DOMiNo. Depending on the used monitoring

system, parents may be not aware of their children. In order

to rectify this, new lookups would be needed producing a

significant amount of new overhead to the overlay.

B. Collecting Rating Mechanisms

In contrast to instant rating mechanisms, collecting rating

mechanisms need a certain data base in order to work. With

the help of this data base, our proposed mechanisms determine

the likeliness that the data was produced by the same system

and try to differentiate manipulated data from correct data.

In the following, we propose our collecting rating compo-

nent which uses Z-Scores.

Outlier detection: Z-Scores: Our outlier detection, which

has its root in the Modified Z-Scores introduced by Iglewicz

and Hoaglin [15], rates each incoming data set by using its

local data base. This data base contains all received data sets

which are not older than a certain maximum age, thus, the

branching factor of the monitoring tree affects the data base

used by our algorithm.

First, based on the Modified Z-Scores, the median absolute

deviation (in short MAD) is calculated using the Equation 1,

where x is the whole data base and xi is the i′th entry which

gets rated. Please note, the use of the median is crucial in

order to not get biased by extreme values. The Modified Z-

Score is calculated using the Equation 2. The authors propose

the threshold, for labeling a data set as a potential outlier,

to be 3.5. This threshold identifies when noise turns into

suspiciousness, which is defined by a convex hull around

a multiple of the median absolute deviation as visualized

in Figure 2. By increasing this threshold the algorithm gets

increasingly tolerant to noise.

MAD = median(|xi −median(x)|) (1)

Scorei =
|0.6745(xi −median(x))|

MAD
(2)

In the rare case where at least 50 percent of the provided

data sets report the same value, Equation 1 turns to 0, thus

we would divide by 0 in Equation 2. In this case all points

that do not equal the median could be marked as an outlier.

In our context this is not a desired behavior as we require to

operate on diverse data input with a possibly high deviation.

Especially when using discrete data, e.g. the hop count, this

case might happen. To be able to make a meaningful decision

nevertheless, we use a solution used by IBM in their software

SPSS Statistics [14]. They use the mean absolute deviation

(MeanAD) in case the MAD equals 0. The corresponding

calculations for the MeanAD respectively Scorei are denoted

in Equations 3, 4. MeanAD can only be 0, if all data set values

Algorithm 1 Modified Z-Median Score Algorithm

1: Input: A set of collected data D, the data point to examine di

2: procedure CALCULATEMODIFIEDZMEDIAN

3: dataSetMedian← median(D)
4: for all dx in D do
5: add |dataSetMedian− dx| to a median deviation list MD
6: end for
7: MAD ← median(MD)
8: if MAD == 0 then � If more than 50% of the value were equal
9: MeanAD ← average(MD)

10: if MeanAD == 0 then � All values are equal
11: Scorei ← NOTSUSPICIOUS
12: else
13: Scorei ← |(0.7979 ∗ (di − dataSetMedian))|/MeanAD
14: end if
15: else
16: Scorei ← |(0.6745 ∗ (di − dataSetMedian))|/MAD
17: end if
18: return Scorei
19: end procedure

~3.5*Score
Node K

'Convex hull 

Upper bound'

median

Score calc for

Node K in t
1
 

Node K data set

 → O.K.

~3.5*Score
Node K

'Convex hull

lower bound'
Node K data set

 → suspicious

Score calc for

Node K in t
2
 

time interval t
1

time interval t
2

Fig. 2: Visualization of a node rating its incoming data sets.

are the same and therefore no outlier is present.

MeanAD = average(|xi −median(x)|) (3)

Scorei =
|0.7979(xi −median(x))|

MeanAD
(4)

Algorithm 1 presents our method to get a rating for a single

data set. Due to the possibility of false positives, especially

given the reduced data base, one should keep in mind to

control a node’s behavior over a certain time interval and not

prejudge a node because of a single statistical abnormality.

There is no guarantee that a node may not look suspicious

for a short amount of time due to sudden changes in the

network or other reasons. We therefore propose to evaluate a

node’s behavior several times before making a final judgment

when using statistical approaches. This countermeasure is most

suited for manipulation attacks sending data upwards the tree,

i.e. ATParent, ATRandom, and ATRoot.

Additionally, all attacks mentioned in Section III may be

applied over a long period of time which could increasingly

influence the global view created by the monitoring mecha-

nism. In order to minimize the impact of false values on the

calculation of the convex hull, old monitoring data is cleaned

periodically by using a sliding window approach, i.e. only a

limited number of data sets, in particular the latest, is taken

into account.
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C. Blocking Data Sets

In order to reduce or even clear the effect of abnormal

behaving nodes, we propose to drop malicious data. If a

participant does not behave correctly, we do not want him

to influence the monitoring mechanism.

We propose to discard suspicious data according to three

policies implementing an increasing cautiousness against the

impact of malicious data. Discard none is the incautious

approach which does not drop data. The discard safe policy

only discards data sets which are certainly malicious. These

are attacks against the monitoring structure and rated by our

instant rating mechanism, thus false positives are impossible,

as the participant’s behavior is checked. Lastly, discard all
drops each suspicious data set. Please note, due to the use of

an outlier detection system, we may drop false positive data.
Data Set Discard Theory: If aggregated data sets have to be

dropped due to a discard policy, then the data of a complete

subtree will be discarded. To have a rough estimation how

many data sets are expected to be dropped we introduce a

formula modeling the tree with following simplifications: i) all

malicious data sets have been found ii) the tree is balanced

and iii) complete. Here is the formula:

φ = Round(logbF (N ∗ p ∗ (bF − 1)))− 1 (5)

φ∑

i=0

(
bF − 1

bF i+1
∗ p ∗N ∗

i∑

j=0

(bF j − p ∗ bF j)) (6)

Here, N is the total number of nodes, p the ratio of malicious

nodes and bF the branching factor of the tree. The idea behind

Equation 6 is to traverse the tree bottom-top and calculate on

each level how many nodes respectively data sets should be

dropped if this node has been detected from his parent. The

inner sum calculates how many nodes this dropped sub tree

has and subtracts already dropped nodes. The outer sum stops

when the probability that a malicious node is located at that

level is close to zero.

V. EVALUATION

To evaluate our developed rating system, we simulated

several scenarios using our implementation of SkyEye.KOM,

which meets our requirements to the monitoring system

(Section I), in the PeerfactSim.KOM simulator [8]. As a

preparation, we marked all (aggregated) statistics containing

information from malicious nodes with an “evil bit” [1] which

tells us the number of malicious nodes that influenced this

piece of information. Ideally, all information marked with evil

bits should be discarded by DOMiNo.

For the evaluation, we consider the following metrics:

i) number of evil bits in the the global view, which equals the

detection rate (in short #evilBits), ii) the number of discarded

data sets, which gives together with #evilBit a hint about the

false positives, iii) precision, where we compare the measured

global view with the desired one and iv) at a certain point the

costs respectively the fairness of the system’s load distribution.

Next, we describe the different used simulation parameters

along with our scenarios.

Simulation Parameters and Scenarios

For our evaluation, we simulated beforehand a lot of sim-

ulation setups and extracted the most important simulation

parameters which significantly influenced the outcome. As

the configuration file of the simulator is very extensive we

only describe the relevant parameters for our simulation re-

sults, which are summarized by the Table I. We simulated a

Pastry [25] overlay network consisting of 5000 nodes over

a total of 200 minutes without churn. Exemplarily, we let

SkyEye.KOM create statistics about the average number of

bytes sent per node on the network layer.

The actions performed during a simulation are the same in

each scenario. The first 60 minutes are the join phase where

all nodes join the overlay and start distributing data in the

monitoring system from minute 90 on. In parallel, we had a

file sharing application running, publishing data sets between

minute 60 to 80 and starting lookups after them every 10

minutes to feed the monitoring system. From minute 100 on,

each node starts the rating phase. Note that malicious nodes

also use DOMiNo. After feeding DOMiNo with monitoring

data for 10 minutes, we get first results at minute 110.

In the scope of this paper we performed an extensive evalua-

tion with 228 parameter combinations, drafted by Table I, with

at least 10 seeds each. Out of these, we present six scenarios.

In Scenario A (Section V-A) we show the impact of a data

manipulating attack with DOMiNo deactivated. The impact of

DOMiNo on a non-malicious environment is shown in Sce-

nario B (Section V-B). In Scenario C.1 to C.3 (Section V-C) we

expose a parameter study when performing data manipulation

attacks with DOMiNo activated, which gives a first impression

on how well our proposed system works. Lastly, Scenario D

(Section V-D) reveals the outcome when releasing all attacks

with DOMiNo activated while discarding all malicious rated

data and discarding only data which is marked as assured

malicious, respectively. At the end, in Section V-E, we present

a discussion on our proposed system’s characteristics.

Table II presents the simulation outcome ordered by our sce-

narios. For visualization purposes for each metric we present

the absolute and relative error of the simulations average from

minute 110 till 200 (ΔØ and δØ). Additionally, for the data set

discard count and global view metrics we exhibit the standard

deviation, denoted as σX with X being the value we create

the standard deviation for. To enhance the overview, for each

scenario and metric we color the best error value with light

gray respectively the worst with darker gray.

A. Scenario A: Manipulation attacks / DOMiNo deactivated

Scenario A demonstrates the impact of manipulation attacks

on an unprotected monitoring system. The simulations’ out-

come can be taken from Table II. Here, the branching factor

(= bF) is set to 96 for future comparisons and we vary the

malicious ratio and malicious data manipulation factor. We

encounter no thrown away data sets and 5000 ∗m ratio evil

bits in the global view. The global view’s mean attribute shows

we can arbitrarily influence the global view, which scales with

the number of malicious nodes and their manipulation factor.
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TABLE I: Parameters chosen for our simulations

Parameter Value(s)
Number of nodes 5000
Number of seeds ≥ 10

Churn Inactive

Simulation time 200 minutes

Used P2P overlay Pastry

Attack types, (see Section III-B) No, only data manipulation, all

Branching factor 8, 32, 96
Z-Score threshold 3.5, 4.5, 5.5

Discard policy none, discard safe, discard all

Data manipulation factor 2, 10
Malicious node ratio 5%, 10%, 20%

For example 20% malicious nodes with a manipulation factor

of 10, i.e. multiplying monitoring data with 10, result in a

relative error of 9.975 times the global view. I.e. the measured

value in the network is nearly 10 times higher than the actual

values.

B. Scenario B: No attacks / DOMiNo activated

In Scenario B, we stage the impact of DOMiNo on a

network without any attackers, in other words, we want to

evaluate the false positives and their influence on the global

view. Here, we vary the bF and the Z-Score threshold, i.e.

the range of accepted values. Table II shows the outcome and

the reference, where no malicious nodes are included with

deactivated DOMiNo. As expected, we do not detect evil bits

in the global view.

By fixing the bF and increasing the threshold, the convex

hull gets wider, so the system is getting more tolerant of

outliers, thus the number of discarded data sets and the global

view’s error drops. But we still face a very small relative error

from 0.1% to 3.4% compared to the reference with 0.8%.

Increasing the bF has a positive effect on the number of

dropped data sets as each node gets more data for its rating

data base. The improving effect on the global view’s mean is

only reasonable for big bFs. One may argue that a bigger bF

implies an increasingly disbalance of the node’s load. Figure 3

shows the sent bytes per peer sorted by their amount at the

end of the simulation. A tendency for a disbalanced fairness

is noticeable as around 300 nodes have more load throughout

the simulation but we increased the bF by a twelve-fold and

the worst-case (Peer 1) only encounters an increase of 1.5.

So we outline: This scenario works best with a high bF and

threshold, i.e. bF=96 and threshold=5.5. The overhead for an

increased bF is manageable.

C. Scenario C: Manipulation attacks / DOMiNo activated

In this scenario, we enable data manipulation attacks and

activate DOMiNo in three Subscenarios C.1, C.2 and C.3.

First, in Scenario C.1, we repeat the parameter variation

of Scenario B with 10 % malicious nodes and a reasonable

manipulation factor of 10. With an increasing threshold, i.e. a

wider convex hull, the system increasingly tolerates noise, thus

the number of discarded data sets is decreasing, the number

of evil bits is raising and so does the global view mean

value. Meanwhile an increasing bF counteracts the number

TABLE II: Evaluation outcome for all scenarios

Simulation

Configuration

Metric:

data set discard count

Metric:

global view (mean attribute)

Metric:

evil bits in

global view
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ΔØ δØ σΔØ
σδØ

ΔØ δØ σΔØ
σδØ

ΔØ σΔØ

Reference Scenario: No attacks with DOMiNo deactivated
n 0 8 - - - 0 0 0 0 5 0.008 3 0.003 0 0

Scenario A: Impact of manipulation attacks with DOMiNo deactivated
m 0.05 96 3.5 s 10 0 0 0 0 805 1.186 232 0.308 248 11

m 0.05 96 3.5 s 2 0 0 0 0 78 0.114 25 0.032 251 13

m 0.1 96 3.5 s 10 0 0 0 0 2272 3.34 603 0.773 495 16

m 0.1 96 3.5 s 2 0 0 0 0 162 0.238 38 0.046 508 18

m 0.2 96 3.5 s 10 0 0 0 0 6771 9.975 1459 1.764 995 33

m 0.2 96 3.5 s 2 0 0 0 0 356 0.525 57 0.054 984 25

Scenario B: Evaluation of false positives with DOMiNo activated and no attacks
n 0 8 3.5 a - -605 -0.121 234 0.047 -17 -0.027 4 0.007 0 0

n 0 8 4.5 a - -366 -0.073 178 0.036 -11 -0.018 3 0.005 0 0

n 0 8 5.5 a - -259 -0.052 125 0.025 -6 -0.011 2 0.005 0 0

n 0 32 3.5 a - -319 -0.064 54 0.011 -22 -0.034 4 0.004 0 0

n 0 32 4.5 a - -204 -0.041 32 0.006 -13 -0.021 2 0.002 0 0

n 0 32 5.5 a - -155 -0.031 12 0.002 -10 -0.015 2 0.003 0 0

n 0 96 3.5 a - -122 -0.024 43 0.009 -17 -0.024 4 0.004 0 0

n 0 96 4.5 a - -48 -0.01 9 0.002 -7 -0.01 2 0.002 0 0

n 0 96 5.5 a - -21 -0.004 8 0.002 -1 -0.001 2 0.002 0 0

Scenario C.1: Effect of manipulation attacks (factor 10) with DOMiNo activated
m 0.1 8 3.5 a 10 -2465 -0.493 376 0.075 4 0.005 13 0.02 16 6

m 0.1 8 4.5 a 10 -2240 -0.448 308 0.062 34 0.053 25 0.033 30 10

m 0.1 8 5.5 a 10 -2024 -0.405 347 0.069 58 0.091 31 0.04 42 14

m 0.1 32 3.5 a 10 -1586 -0.317 198 0.04 -7 -0.012 8 0.012 15 7

m 0.1 32 4.5 a 10 -1435 -0.287 199 0.04 8 0.011 12 0.016 28 11

m 0.1 32 5.5 a 10 -1394 -0.279 189 0.038 26 0.039 16 0.019 39 11

m 0.1 96 3.5 a 10 -1116 -0.223 142 0.028 6 0.008 6 0.008 16 7

m 0.1 96 4.5 a 10 -1141 -0.228 164 0.033 21 0.03 9 0.009 27 8

m 0.1 96 5.5 a 10 -1101 -0.22 123 0.025 40 0.058 16 0.019 43 13

Scenario C.2: Effect of manipulation attacks (factor 2) with DOMiNo activated
m 0.1 8 3.5 a 2 -1681 -0.336 384 0.077 77 0.123 25 0.027 244 32

m 0.1 8 4.5 a 2 -1313 -0.262 364 0.073 103 0.166 29 0.035 300 31

m 0.1 8 5.5 a 2 -1243 -0.249 389 0.078 127 0.205 33 0.039 315 30

m 0.1 32 3.5 a 2 -922 -0.184 206 0.041 57 0.088 11 0.01 326 20

m 0.1 32 4.5 a 2 -785 -0.157 389 0.078 73 0.112 14 0.011 345 32

m 0.1 32 5.5 a 2 -767 -0.153 260 0.052 91 0.141 16 0.013 366 27

m 0.1 96 3.5 a 2 -731 -0.146 85 0.017 42 0.062 8 0.009 345 19

m 0.1 96 4.5 a 2 -600 -0.12 122 0.024 61 0.089 10 0.008 383 14

m 0.1 96 5.5 a 2 -527 -0.105 121 0.024 74 0.109 12 0.009 418 20

Scenario C.3: Effect of manipulation attacks (factor / malicious share) with DOMiNo activated
m 0.05 96 3.5 a 2 -324 -0.065 87 0.017 11 0.016 2 0.003 174 6

m 0.1 96 3.5 a 2 -731 -0.146 85 0.017 42 0.062 8 0.009 345 19

m 0.2 96 3.5 a 2 -1046 -0.209 145 0.029 119 0.175 19 0.014 685 35

m 0.05 96 3.5 a 10 -684 -0.137 122 0.024 -6 -0.009 3 0.004 7 2

m 0.1 96 3.5 a 10 -1116 -0.223 142 0.028 6 0.008 6 0.008 16 7

m 0.2 96 3.5 a 10 -1987 -0.397 140 0.028 65 0.094 30 0.034 60 20

Scenario D: Effect of all attacks with DOMiNo activated
a 0.05 96 3.5 s 2 -246 -0.049 56 0.011 14 0.02 9 0.011 141 14

a 0.1 96 3.5 s 2 -445 -0.089 70 0.014 28 0.041 14 0.018 273 18

a 0.2 96 3.5 s 2 -884 -0.177 109 0.022 58 0.084 31 0.039 511 18

a 0.05 96 3.5 a 2 -420 -0.084 58 0.012 -20 -0.029 13 0.021 102 11

a 0.1 96 3.5 a 2 -687 -0.137 89 0.018 24 0.035 167 0.247 213 14

a 0.2 96 3.5 a 2 -1053 -0.211 144 0.029 10 0.013 23 0.03 456 17

a 0.05 96 3.5 s 10 -191 -0.038 85 0.017 153 0.225 77 0.108 139 9

a 0.1 96 3.5 s 10 -491 -0.098 114 0.023 285 0.418 86 0.11 268 19

a 0.2 96 3.5 s 10 -907 -0.181 199 0.04 inf inf inf inf 504 23

a 0.05 96 3.5 a 10 -445 -0.089 112 0.022 -22 -0.032 4 0.006 81 8

a 0.1 96 3.5 a 10 -730 -0.146 95 0.019 -25 -0.038 3 0.007 154 9

a 0.2 96 3.5 a 10 -1075 -0.215 71 0.014 430 0.632 142 0.187 419 16

of dropped data sets, which is obviously true as the depth of

the tree is shrinking and dropped aggregated data contains

increasingly more data sets. This can be verified with our

discard Equation 6. Following the formula we get 1736 (bF 8),

1335 (bF 32) and 895 (bF 96). An increasing bF also results

in a decreasing standard deviation of discarded data sets but

it does not significantly influence the other two metrics.

Then, in Scenario C.2, we perform the same parameter

variation as in Scenario C.1, but we lower the manipulation

factor from 10 to 2. With a decreasing manipulation factor the

number of evil bits raises, thus less data sets are discarded

as the factor 2 is mostly not enough to exceed the limits of

the convex hull, a malicious data set is interpreted as noise in

an acceptable zone. The decreasing manipulation factor also

results in a greater error in the desired global view. Before
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referring to Scenario C.3 we conclude that the parameter

setting bF=96 and Z-score threshold=3.5 works best in terms

of precision and false positive discards.

Lastly, in Scenario C.3, we apply optimal parameters for

bF and Z-score threshold (96/3.5) and perform a parameter

variation on the malicious ratio and manipulation factor.

Throughout all malicious ratios, we can observe similar effects

like in Scenario C.2. For the small multiplication factor only

30% of all evil data sets have been discarded but the precision

is quite decent compared to Scenario A. For malicious ratios

of 5%, 10% respectively 20% we encounter the following

relative errors: 1.6% / 6.2% / 17.5% with DOMiNo enabled

and 11.4% / 23.8% / 52.5% with DOMiNo disabled. With a

higher manipulation factor the full potential is unfolded and

we hit a relative error of -0.9%, 0.8% and 9.4% in Scenario C.3

with DOMiNo enabled compared to 118.6% / 334% / 997.5%

in Scenario A without protection. As the number of evil bits

is close to zero, the discard Equation 6 can be applied, which

supplies 473 for 5%, 895 for 10% and 2392 for 20%.

We conclude that the influence of malicious manipulation

attacks is limited to the bounds of the convex hull around

the median. Thus, small changes can influence the precision,

but the degree of influence is limited. Furthermore greater

manipulation factors are filtered out efficiently by DOMiNo.

D. Scenario D: All attacks / DOMiNo activated

In our last scenario, we apply the parameters found till

Scenario C.3 (bF=96 / Z-score threshold=3.5) and see how the

system is performing with all attacks enabled. Here, we want

to figure out how the malicious node ratio, the discard policy

and the manipulation factor influence DOMiNo’s efficiency.

Preliminary we have to state, if p% of all nodes behave

maliciously then these nodes are equally distributed on the

active attacks, which are nine (see Section III-B).

When applying the discard all policy, DOMiNo clears more

evil bits as it significantly discards more data sets. Further-

more, the relative error for the global view is smaller or equals

the discard safe policy’s one. Increasing the malicious node

ratio parameter while fixing the manipulation factor to two

seems to have not a great impact for the discard all policy. In

numbers we got -2.9%, 3.5% and 1.3% for discard all and 2%,

4.1% and 8.4% for discard safe. For the manipulation factor

of ten we encounter a peak when simulating with 20% of

malicious nodes with a relative error of 63.2% for discard all

and inf (=infinity) for discard safe while the other ratios

perform much better. Here we encounter -3.2% vs. 22.5%

for 5% and -3.8% vs. 41.8% for 10% of malicious nodes

for discard all respectively discard safe. The infinite value is

most probably due to the ATRoot and ATRandom attacks. In

the first attack, 5000∗0.2
9 = 111 nodes send manipulated data

to the root node which has bF=96 honest child nodes, which

supply data. This imbalance causes the system to crash if there

also exist a loop in the tree due to the second attack. Owed

to our requirement, that children must be located in a certain

ID space, we are not able to detect all structural attacks. Keep

in mind that loops are still possible due to the goal of having

a passive rating, which does not allow to verify the potential

child node which pushes monitoring data. Lastly, a comparison

to an unprotected system is not useful as the relative error

permanently increases, due to no mechanisms to detect loops

in the monitoring tree.

E. Discussion

In this section we want to discuss and emphasize a few

characteristics of DOMiNo.

In our proposed system attackers can only inject data which

fit into their parents’ continuously calculated bounds, as any-

thing beyond these bounds is dropped by default. Please note

that malicious nodes’ data can be also within the convex hull

and vice versa, deviated honest nodes’ data may be considered

as outliers and may be emitted. But as long as the majority of

the nodes respectively each parents’ nodes report similar data,

our convex hull ensures that outlier will be filtered out.

Also, it is quite difficult to manipulate data which is still

plausible and accepted by the parent, as nodes can not obtain

their parent’s data base to calculate the current convex hull. So

single attackers must guess their parent’s data base or control

respectively cooperate with all other children of a particular

parent. Though, assuming attackers are able to calculate their

parent’s convex hull, the influence on the global view greatly

depends on the number of nodes performing this kind of

attack. So it is possible to inject plausible but false data, and

by doing this shifting the global data to the attacker’s desire,

if attackers 1) are able to calculate their parents’ convex hull

and 2) are cooperating with other attackers evenly distributed

throughout the monitoring tree. Please note, that especially the

first assumption is hard to achieve.

In conclusion, our proposed system DOMiNo performs

efficiently, if the majority (> 50%) of the participants are

honest, parent nodes can fully verify their children nodes and

children are not able to calculate their parents’ convex hull

bounds. If parent nodes are not able to verify their children

nodes, DOMiNo’s reliability decreases when the number of

cooperating malicious nodes exceeds the branching factor of

the monitoring tree, i.e. the number of potentially benign

children of a parent node.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our security system for tree-

based monitoring systems with certain requirements to their

architecture. The system’s main objectives are to serve the

service by only passively listening to incoming events, i.e.

monitoring data sets, and to minimize the relative error to

the global view by keeping the costs low. We developed

an attacker model including manipulation attacks, structural

attacks and free-riding patterns and proposed our rating sys-

tem, called DOMiNo, which includes an outlier detection

based on Z-Scores, structural and other plausibility checks. We

implemented it in the P2P simulator PeerfactSim.KOM [8].
We evaluated our system with 228 configurations with at

least 10 seeds each in a Pastry overlay with 5000 nodes.

For the attackers the configurations cover variations of the

malicious node ratio, their used attack types and, for manip-

ulation attacks, the manipulation factor. On the detecting side

we alter the outlier detection’s Z-Score threshold, the discard

policy after positively rating a node’s data set and, for the

monitoring structure, the branching factor. The outcome shows

that we are able to limit the manipulation attackers’ influence

on the global view by defining a convex hull for acceptable

values. Thus, normal fluctuations are tolerated but outlier, that

harm the global view, can be filtered out effectively. For small

manipulation factor attacks we face a relative error between

11% to 53% in an unprotected monitoring environment versus

2% to 18% with DOMiNo enabled. For higher manipulation

factor attacks the unprotected system’s relative error raises

to 998% while we can correct it to 9%. Enabling the whole

attacker model’s repertoire we are able to decrease the relative

error to values between 1% to 4% from potentially infinity,

caused by loops through structural attacks. If we encounter

more than the tree’s branching factor cooperating malicious

nodes, they are potentially able to break the system. To

circumvent this, we propose stricter tree structural properties,

where parent nodes can verify their children nodes’ positions.
In the future we will work on an approach to loosen the

passive rating requirement and compare it with DOMiNo. By

doing this, we also plan to investigate systems with machine

learning components.
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