
Performance Evaluation of Routing Algorithms for
Distributed Key-Value Store Based on Order
Preserving Linear Hashing and Skip Graph

Ken Higuchi
Graduate School of Engineering,

University of Fukui
Fukui, Japan

higuchi@u-fukui.ac.jp

Naoyuki Miyamoto
Graduate School of Engineering,

University of Fukui
Fukui, Japan

Tatsuo Tsuji
Graduate School of Engineering,

University of Fukui
Fukui, Japan

tsuji@u-fukui.ac.jp

Makoto Yoshida
Graduate School of Engineering,

University of Fukui
Fukui, Japan

Kento Takehara
Faculty of Engineering,

University of Fukui
Fukui, Japan

Abstract

Keywords—distributed key-value store; Skip Graph; linear
hashing

I. INTRODUCTION

Managing a huge data is an important and difficult problem
even now. A database system is a most popular solution to it.
But the database system is difficult to handle data easily and
quickly because it is too strict. This characteristic deteriorates
the performance of it in the distributed environment. From this
circumstance, distributed key-value store (Distributed KVS)
has attracted attention, and is used for various services. The
key-value store (KVS) is a scale-out easily store data model by
limiting the format of the data in the key-value pair and
limiting possible operations and functions. A distributed KVS
is adaptable to large-scale data by storing data in a distributed
manner to a plurality of nodes on the network.

Many existing distributed KVS such as Amazon Dynamo
[1] and Apache Cassandra [2] use a consistent-hashing [3] for

the key to divide and store date to nodes. Also, in order to
reach the node to be processed in 1-hop forwarding, gateway
nodes and client nodes have to hold the entire routing
information to each node. Thus, it is necessary to share the
routing information in a plurality of nodes and it requires
expensive process when the routing information is changed. It
cannot be said to be efficient to insert or delete computers
(nodes) from it.

On the other hand, by using Distributed Hash Table (DHT)
and Skip Graph [4], it is also conceivable to build distributed
KVS. Chord [5] and Kademlia [6] are popular DHT. In these
methods, queries are transmitted to the node in a multi-hop
forwarding. Moreover, all nodes have the same function, and
the node decides a node to forward in order to send the query to
the target node of the query. That is, each node is not required
to store entire routing information for all nodes, and has only a
portion relating to itself. Entire routing information is held on a
whole node set. In this method, when inserting or deleting a
node, it is not necessary to update entire routing information in
all nodes and it is only necessary to update the corresponding
routing information in some nodes. Then, routing information
is updated efficiently. However, on DHT systems that use the
hash function to determine the data location, although excellent
in load balancing, the order of the original key in nodes is often
not preserved. Thus, for a range search, it is necessary to
transfer the query to all nodes and the cost of the range search
is very inefficient.

978-1-5090-0806-3/16/$31.00 copyright 2016 IEEE
ICIS 2016, June 26-29, 2016, Okayama, JapanAuthorized licensed use limited to: IEEE Xplore. Downloaded on June 02,2024 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

In contrast, Skip Graph[4] is an overlay network that is
possible range search. Furthermore, there are some extensions
of Skip Graph. Multi-key Skip Graph[7] is extended Skip
Graph for efficient range retrieval. On the original Skip Graph,
node can handle only one key, but on the Multi-key Skip Graph,
node can handle multiple keys by using virtual nodes. By using
this Skip Graph, the distributed KVS can be implemented. But
the routing table becomes to be large because the routing table
is necessary for each key. Then, the cost of the node insertion
and node deletion is very high. Range-Key Skip Graph[8] is
another extension of Skip Graph. It simplifies the routing table
of Multi-Key Skip Graph. In addition, large-scale distributed
KVS using Range-key Skip Graph has also been proposed[9].
However, it is not performed efficiency when node insertion
and node deletion.

Distributed KVS based on Order Preserving Linear
Hashing and Skip Graph[13][14] is another implementation of
Distributed KVS. In this system, data is divided by order
preserving linear hashing(OPLH) and its overlay network is
Skip Graph. This system can easily insert and delete the node
and the number of hops of the query forwarding is almost the
same as that of [9]. Skip Graph in [13] is very uniform. By
using this feature, detours exist in the route calculated by Skip
Graph and short route can be re-calculated[14]. [14] proposed a
routing algorithm using detours and evaluated by comparing
other Skip Graphs. But it is not compared with the shortest
route.

In this paper, we compare the routing algorithm in [14]
with the shortest route by experiments. And the efficiency of
the algorithm in [14] is proved.

This paper is organized as follows. Sec. II introduces the
distributed KVS based on order preserving linear hashing and
Skip Graph and its routing algorithms using detours. Sec. III
shows the performance evaluation of these routing algorithms.
And Sec. IV concludes this paper.

.

II. DISTRIBUTED KVS BASED ON ORDER PRESERVING LINEAR
HASHING AND SKIP GRAPH

A. Order Preserving Liner Hashing
Linear hashing[10] is a kind of dynamic hashing. It consists

of a hash function, a bucket array (hash table), data buckets,
and meta-information. Meta-information includes the hash
level, the number of data buckets, the number of records, and a
fixed threshold. The data bucket is labeled by the different non-
negative integer that is less than the number of data buckets.
These labels correspond to hash values, and each data bucket
stored only the set of data whose hash values are its label. The
bucket array keeps the addresses of data buckets in order of
hash values. In general, the hash function is modulo by for
hash level i.; i.e. the hash value is the i bits suffix of the bit
pattern of the data.

In the process of data retrieval, the hash value of the target
data is calculated by hash function (whose hash level is i), and
the address of the data bucket storing the target data is searched
from the bucket array. If the calculated hash value is not less
than the number of data buckets, the data bucket corresponding

to this hash value doesn’t exist. In this case, the hash value is
recalculated by the hash function whose hash level is .
Then the data bucket corresponding to recalculated hash value
is searched for retrieval. When the ratio of the number of
record to the number of the data buckets is greater than the
threshold, the bucket array is expanded to have a reference to a
new data bucket. The hash value of the new data bucket is the
number of data bucket minus 1 and is greater than the other
hash values. But if the number of data buckets is , the
corresponding hash value of the new data bucket is already
used. When the number of data buckets becomes to be greater
than for hash level i, the hash level is increased by 1. Then,
on the linear hashing whose hash level is i, the hash level
corresponding to the data bucket is i or .

 Order-preserving linear hashing[11][12] (OPLH) is a linear
hashing which uses special hash function. It employs a
combination of division function and bit reversal function. This
function outputs the reverse ordered bit string of the result of
the division function. For examples in hash level is 3, the hash
value of 010101 is 010 and the hash value of 011000 is 110.

On OPLH, the expansion method and the reduction method
for the bucket array are the same as that of the linear hashing
using modulo function. When hash level is incremented, the
old hash values are added “0” as the prefix and the hash value
of the new element of the bucket array is greater than the other
hash values. Then the order-preserving linear hashing inherits
the advantage of the traditional linear hashing with good
response time for the range query.

B. Skip Graph
Skip Graph[4] is a distributed data structure, based on skip

lists. It is a kind of structured overlay network and it supports
range retrievals. It is suited to peer-to-peer networks. Unlike
DHT, Skip Graph doesn’t use hash function to decide to data
partitioning. On Skip Graph, data is clustered by the range of
key similar to the sequence set of B+tree and the order of keys
is kept. Then, range retrievals are processed effectively.

Figure 1. an example of Skip Graph

Fig. 1 shows an example of Skip Graph. In Fig. 1, the group
of rectangles that have same number is a node and the number
of the group of rectangles is the key of data that are stored by
the node. Each rectangle represents an entry in the routing table
and a link between a pair of rectangles expresses that it is valid
entry. Each entry of the routing table belongs to one level of

Level 2

Level 1

Level 0

 00 01 10 10 00
membership vector

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 02,2024 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

Skip Graph. Each node has the randomized binary number
which called membership vector. Membership vectors are used
for the routing table of Skip Graph. In level 0 layer, nodes are
sorted by keys and only adjacent nodes are connected. In other
level i, rectangles are partitioned by the first i bit of the
membership vector, only adjacent nodes in such partition are
connected. Each valid entry of the routing table includes the
node address and the key. Here, for the number of nodes N, the
maximum level is .

On Skip Graph, the route from node A (whose key is a) to
another node B (whose key is b) is decided as followings. Here,
a is assumed. Firstly the highest key that is not more than b
and its node are searched from the routing table of A. Let such
key be c and let C be the node whose key is c. Next, node A
forwards the message to node C and C forwards this message
to next node similarly. By repeating this forwarding, the
message is reached to node B. Here, this routing algorithm
used routing tables and key (b) can decide the route for exact
queries and range queries. In the followings, the node that is
received query by client is called the start node and the node
that stores result data for the query is called the target node.

C. Distributed KVS
Distributed KVS based on OPLH and Skip Graph was

proposed[13]. In this system, data is partitioned by OPLH and
Skip Graph is used for overlay network. In other words,
buckets of OPLH correspond to nodes. But hash values are not
only used for data partitioning but also membership vectors
and labels of nodes. Then this system has following features.

• The set of labels of nodes is that of consecutive non-
negative integers started from 0.

• In level 0 layer, the nodes are not sorted by their stored
keys.

• In level i, the node labeled a is linked to the nodes
whose labels are if exist.

Fig. 2 shows an example of Skip Graph based of OPLH. In
Fig. 2, the binary number is the label of the node and also
the hash value. Its length is the hash level. Each node has
the label with the hash level.

Figure 2. Skip Graph based on OPLH

D. Basic Routing Algorithm
In this system, the routing is similar to the binary search. In

one routing, the message is not forwarded twice or more using
same level of Skip Graph. Then, maximum number of hops of
the message forwarding is not more than the maximum level of

Skip Graph (for the number of nodes N). But for
retrieval, the calculating the hash value is difficult on this
system. In OPLH, the hash value is calculated by using hash
level and the number of buckets. Then, if some node wants to
calculate the correct hash value, the node has to use the hash
level and the number of nodes. But these are global
information and the node cannot use then in many cases. In
order to solve this problem, this system uses the following
revision.

• Let is the maximum label in the routing table of
the start node. is used as the
hash level.

• If the calculated hash value is more than (it means
that is used as the number of nodes), the hash
value is recalculate using hash function whose hash
level is .

Here, this hash level is called improvised hash level of the
start node. But by using the improvised hash level and

 as the number of nodes, the calculated target node is not the
proper target node. In this situation, additional 1-hop is
necessary (see [13] for details).

E. Detour
The routing algorithm described in Sec. II.D is based on

Skip Graph. But the routing table of [13] is very uniform. By
using this feature, there exists the shortest route[14]. It’s called
detour. Its concept is

 for node label . Fig. 3 shows this detour. In Fig. 3, the
red route (3 hops) is calculated by Skip Graph and the blue
route is the short detour (2 hops). By using this detour, the
number of hops from the start node to the target node can be
reduced.

Figure 3. The detour from 0000 to 0111

In order to define the detour, some notations and
definitions are introduced. Let be the direct route from
the node labeled to the node labeled , and the
concatenation of direct routes is presented as

. This is route from the node labeled to the
node labeled .Let be the route

 calculated by Skip Graph. Here,
 means that the node labeled has the valid entry of the

routing table to at level i and the forwarding is occurred by
using this entry. Here, is the improvised hash level of the

000 01 10 11 100

000 100 10

11

000 100

01 10 11
Level 2

Level 1

Level 0

01

0000 0110 0111 1000

0000 10000110 0111

0000 10000110 0111
Level 2

Level 1

Level 0

0000 1000

0100

0100

0100

Level 3 0110 0111 0100

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 02,2024 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

node labeled . In some routes calculated by Skip Graph, it
holds that . In this case, the node labeled doesn’t
forward to another node using level i entry of the routing table.
Let be a direction vector of the route

 where for any .
Here if is increasing direction then , if

 is decreasing direction then , and if
 then . Then

because of the features of the distributed KVS based on OPLH
and Skip Graph in Sec. II.c. From above equation, even if the
applying order of levels in the routing table, direction vector is
not changed and the query can be forwarded from the start
node to the target node (of course, the route is changed.)

The detour is found in the direction vector. If the direction
vector has followings sub-part, the short detour exists. Here

 formally.

• There exist i and j such that
 and for any , it holds that

.

By changing as following respectively, the direction vector
becomes the detour.

• , and for each
, .

But above detours is not always correct because such
detour forwards via the node that does not exist. Then, the
following condition is added to find the detour. Here, is
the maximum label in the routing table of the start node.

• or
.

Furthermore, since two or more detours exist in one
direction vector, repeating to check of above mentioned
conditions in the direction vector is necessary.

F. Routing Alogorithm for the Detour
In original Skip Graph, the route from the start node to the

target node is decided by only key of the query condition. But
in order to use the detour, the routing algorithm has to be
changed as following.

1. Calculate the direction vector in the start node.

2. Calculate the detour and change the direction vector
in the start node.

3. Select the leftmost element of the direction vector
what the corresponding entry of the routing table is
valid. Then, the destination node of the forwarding is
decided by this element.

4. Forwarding to the destination node and change the
corresponding element of the direction vector to 0.

5. Till reaching to the target node, repeat 3.and 4. in the
node that received the forwarded message.

G. Detour-Finding Alogorithm
Here, one important matter is that “a detour makes new

detour”. In [14], this matter is not discussed. Consider the
detour for the route from the node labeled 000000 to the node
labeled 011011. The direction vector calculated by Skip Graph
becomes . is calculated directly
by the definition of the detour. But, calculating from low level
and using the modified direction vector, another detour can be
calculated. Firstly, is changed to .
Next, is changed to . Since
the number of hops in is less than that of

, it is clear that detour calculating method is
important. Fig. 4 shows these detours. Here, the blue route is

, the red route is , and green
route is .

Figure 4. The detour from 000000 to 011011

Level 2

Level 1

Level 0

000000

Level 3

010000

010000

000000 100000

011000 100000

011100011000

011100011011

011000 011010

011010

100000

011100

Level 5

Level 4

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 02,2024 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

The detour-finding algorithm of [14] uses this method.
Here, this algorithm is because the length of the
direction vector is and the check to each level in the
direction vector is only 1. But it is not proved that this route is
shortest. If the system can uses very long time, the shortest
route can be calculated. It is restricted problem of the shortest
path problem of graph theory and . Furthermore,
another problem exists in this algorithm. It is that the length of
the direction vector is fixed to the improvised hash level of the
start node. The global hash level is equal to the improvised
hash level or the improvised hash level plus 1. Then, by
changing the length of the direction vector to the improvised
hash level plus 1 and verifying the correctness of the detour,
shorter route may be founded. In next section, these 4 types of
the detour-finding algorithms are compared and evaluated by
experiments.

III. EXPERIMENTS

A. Experiment Environment
To show effectiveness of the detour-finding algorithm, we

evaluate the number of hops of the query forwarding and
compare 4 types of finding algorithms shown in Table. I.

Table I. detour-finding algorithms for evaluation

Name Explanations

LHSG Original routing algorithm in [13] (not using detours)

DE0 Using directly the definition of the detour

DE1 Routing algorithms in [14] (using the modified
direction vector to find detours)

DE2 Using the modified direction vector to find detours
and changes the length of the direction vector

MIN Shortest route found by breadth first search only using
information in the start node.

Since we evaluate only the number of hops of the query
forwarding, it is calculated on a simulator. The bit length of
key is 32 and only exact retrievals are the target for evaluation,
because a range retrieval is considered as the set of exact
retrievals. In experiments, all condition (start node and key) are
used for queries to evaluate. They are is not random choice and
all combinations of all start nodes and all 32bit integers for key
are used for query condition. By changing the number of node
(from 10 to 10000), performance of detour-finding algorithms
are evaluated.

B. Results of Experiments
Table II shows the average of the calculation times in case

that the number of nodes is 2000. Fig. 5 shows the average of
the number of hops in exact retrievals. MIN cannot be
calculated over 2000 nodes because the calculating time is too
long. Here, Level is the number of levels of Skip Graph. It
means the upper bound of the number of hops. Therefore, the
number of hops of the valid route decided by the start node is
not more than LEVEL and not less than MIN. Then, the
position of LHSG shows that LHSG is effective. Furthermore,

in all situations, DE0 is less than LHSG and DE1 is less than
DE0. And DE1 is equal to DE2 and is approximately equal to
MIN. Then, it can be said that the improvised hash level is
enough to use for the length of the direction vector.
Furthermore, even if the number of nodes is less or equal to
2000, DE1 can find the shortest route in most case. From Table
II, MIN needs long time to calculate and DE1 is shorter than
DE2. Then it can be said that DE1 is best algorithm to calculate
the route.

Table II. the average of the calculation time (2000 nodes)

Algorithm time(sec)

LHSG

DE0

DE1

DE2

MIN

IV. CONCLUSIONS
By experimental results, it expected that the detour-finding

algorithm in [14] can be calculated effectively good route. But
in some case, it cannot find the shortest route. It is future work.
And other future works, we need to plan a routing algorithm
suitable for replication.

REFERENCES

[1] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshal, P., and Vogels, W., “Dynamo
: Amazon's highly available key-value store”, ACM SIGOPS Oper. Syst.
Rev. Vol41, No.6, pp.205-220, Dec., 2007

[2] Lakshman, A., Malik, P., “Cassandra - A Decentralized Structured
Storage System”, ACM SIGOPS Oper. Syst. Rev. Vol42, No.2, pp.35-
40, Apr., 2010.

[3] Karger, D. R., Lehman, E., Leighton, F. T., Panigrahy, R., Levine, M.
S., and Lewin, D. “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web”,
ACM Symposium on Theory of Computing, pp.654-663, 1997.

[4] Stoica, I., Morris, R., Karger, D.,Kaashoek, F. and Balakrishnan, H.
“Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications”, ACM SIGCOMM, pp.149-160, Oct., 2001.

[5] Maymounkov, P. and Mazieres, D. “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric”, 1st International
Workshop on Peer Systems (IPTPS’02), Mar., 2002.

[6] Aspnes, J., and Shah, G. “Skip Graphs”, ACM Transactions on
Algorithms, Vol.3, No.4, pp.37:1-37:25, Nov., 2007.

[7] Konishi, Y., Yoshida, M., Takeuchi, S., Teranishi, Y., Harumoto, K.,
Shimojo, S., “An Extension of Skip Graph to Store Multiple Keys on
Single Node”, Jornal of IPSJ, Vol.49, No.9, pp.3223-3233, Sep, 2008

[8] Ishi, Y., Teranishi, Y., Yoshida, M., Takeuchi, S., Shimojo, and Nishio,
S., “Range-Key Extensions of the Skip Graph”, Proc. of IEEE 2010
Global Communications Conference (IEEE GLOBECOM 2010) , pp.1-
6, Dec., 2010

[9] Ishi, Y., Teranishi, Y., Yoshida, M., and Takeuchi, S., “An
Implementation of Large Scale Distributed Key-value Store with Range

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 02,2024 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

Search Feature Based on Range-key Skip Graph , Journal ot IPSJ,
Vol.53, No.7, pp1850-1862, Jul., 2012.

[10] Litwin, W., “Linear hashing: new tool for file and table addressing”,
Proc. of 6th Conference on Very Large DataBases, pp.212-223, 1980.

[11] Robinson, J. T., “Order preserving linear hashing using dynamic key
statics”, Proc. of the 5th ACM SIGACT-SIGMOD symposium on
Principles of database systems, pp.91-99, 1985.

[12] Higuchi, K., Tsuji, T., “A Distributed Linear Hashing Enabling Efficient
Retrieval for Range Queries”, Proc. of IEEE SMC 2010, pp. 838-842,
Oct., 2010.

[13] Yoshida, M., Higuchi, K., Tsuji, T., “An Implementation and Evaluation
of Distributed Key-Value Store Based on Order Preserving Linear

Hashing and Skip Graph”, Jornal of IEICE, Vol.J89-D, No.5, pp.742-
750, 2015.

[14] Higuchi, K., Yoshida, M., Miyamoto, M., Tsuji, T., “A Routing
Algorithm for Distributed Key-Value Store Based on Order Preserving
Linear Hashing and Skip Graph”, In Roger Lee (Eds.), Applied
Computing & Informaiton Technology (Studies in Computaitonal
Inteligence Vol. 619), pp.127-140, Springer, 2016.

Figure 5. The average of the number of hops for the exact retrieval

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 02,2024 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

