
Supplementing Object-Oriented Software Change
Impact Analysis with Fault-proneness Prediction

Bassey Isong, Ohaeri Ifeoma
Computer Science Department

Material Science and Innovation
North-West University, Mafikeng, South Africa

bassey.isong@nwu.ac.za, oh.ifeoma@yahoo.com

Munienge Mbodila
Computer Science and Info. Systems Department

University of Venda
Thohoyandou, South Africa

Munienge.mbodila@univen.ac.za

Abstract—Software changes are inevitable during
maintenance, Object-oriented software (OOS) in particular. For
change not to be performed in the “dark”, software change impact
analysis (SCIA) is used. However, due to the exponential growth
in the size and complexity of OOS, classes are not without faults
and the existing SCIA techniques only predict change impact set.
This means that a change implemented on a faulty class could
increase the likelihood for software failure. To avoid this issue,
maintenance has to incorporate both change impact and fault-
proneness (FP) prediction. Therefore, this paper proposes an
extended approach for SCIA that integrates both activities. The
goal is to assist software engineers with the necessary information
of focusing verification and validation activities on the high risk
components that would probably cause severe failures which in
turn can boost maintenance and testing efficiency. This study built
a model for predicting FP using software metrics and faults data
from NASA data set in the public domain. The results obtained
were analyzed and presented. Additionally, a class change
recommender (CCRecommender) tool was developed to assist in
computing the risks associated with making change to any
component in the impact set.

Keywords—Change impact, FP, OOS, metrics, prediction

I. INTRODUCTION

 In the world of software development today, due to the
exponential upsurge in the size and complexity of software
applications as well as the software failure criticality, ensuring
high quality in large software systems during development has
become more and more difficult and a time-consuming task
[4][5][15]. As a result, software deliverables with serious faults
that could lead to failure in the field are produced [1][3][4]. To
assure high-quality in the software, faults have to be found and
removed. Though, testing, inspection, and walkthrough are
designed for this task, testing activity waist time and resources
[8]. In software engineering, a cost-effective way of achieving
high-quality is by predicting fault-proneness (FP) early in the
software using software metrics. The importance is to provide
essential information that can be used to focus verification and
validation efforts on the affected components and boost
maintenance and testing efficiency.

In addition, maintaining large systems today especially object-
oriented software (OOS) has become a difficult task. Change is
an indispensable property of any software that is necessary to
keep the system alive and is inevitable during maintenance

[9][10]. However, just like change in our society, software
changes are not straight forward. Irrespective of the size, a
change can cause some unpredictable effects on other
components of the system [10]. In the perspective of OOS, we
can say that a change carries some possibility of failure that
could manifest either during testing or in the field. The failures
could be due to either: (i) negligence of the existence of
dependences between the OOS components, (ii) process
activities such as the frequency of changes, number of
developers performing the changes, their maintenance
experiences, the file ages, etc. or (iii) faulty software
components such as classes, methods and fields. The first case
can be minimized or eliminated via effective software change
impact analysis (SCIA) activities while the later can’t be
eliminated with SCIA activities alone. This calls for an
effective approach to prevent severe software failure when
changes are made. As classes are the basic units of analysis in
OOS, their quality is critical to the overall quality of the
software system. Nevertheless, OOS classes are not exception
in terms of FP as reported in several empirical studies in the
literature [1][3][4][8][11][12]. FP is the likelihood that a
software component has at least one fault [8]. Since faults may
lead to failure in an executable product, we believed that
changing a faulty class without the prior knowledge of such
faults could compound the risk of software failure. To guard
against software failure due to maintenance in OOS, this study
then proposes an approach that predict faulty classes in the
impact set after SCIA activities before actual changes are made.
By identifying faulty classes early would allow mitigating
actions to be directed to the high risk components that could
possibly cause field failures when changes are made.

This study constructed a model for predicting the FP of OOS
components affected by change. We used data from the
industry, KC1 NASA dataset [1][4][14] to establish FP and OO
design/size metrics relationships. The metrics used are
Chidamber and Kamerer (1994) metric suite [20] and software
lines of code (SLOC) as well the faults data. Logistic regression
(LR) was used to construct the model and the results obtained
were analyzed and presented. In addition, a tool called class
change recommender (CCRecommender) was developed to
assist software engineers to quantify the risk associated with
making change if any in the impact set. The tool is designed to
assist them to identify fault-prone classes so that resources and

978-1-5090-0806-3/16/$31.00 copyright 2016 IEEE
ICIS 2016, June 26-29, 2016, Okayama, JapanAuthorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

verification efforts can be concentrated on the identified high-
risk classes before actual changes are made.

The rest of the paper is organized as follows: Section II is the
background information, Section III presents the extended SCIA
framework and Section IV discusses the FP prediction model.
Moreover, Section V is the methodology employed, Section VI
is the results analysis while Section VII is a discussion on the
model and Section VIII is the model application to software
maintenance. Section IX is the paper conclusions.

II. BACKGROUND INFORMATION
 Software maintenance phase constitute one of the most key
phases of software life cycle and has been tagged the most
costly and difficult phase [17]. Studies have shown that about
70% or more of the total software life-cycle costs are consumed
by software maintenance [18]. Software change is a
fundamental operation to keep software alive and is in
fulfilment of one of the laws of program evolution which
advocate for continuing change. Changes in software over time
are vital to cope with change requests such as add new
requirements, fix faults, system enhancements and meet the
changing needs of the customer [10][18] and so on.
Maintenance is importance for the fact that several software
organizations have invested whooping sums of money on their
systems today. Thus, such systems have to be effectively
maintained instead of developing new systems. However,
changes can produce certain undesirable effects that could yield
inconsistency on other components of the software [9][10][19].
To preserve the quality of the software, SCIA is employed.
SCIA is a technique used to determine which software
component will be truly affected by a change request or likely
to be changed when a component is changed [10].

During the course of SCIA, the input is the request for change
proposed over time. These requests coupled with the source
code are analyzed and by applying SCIA technique, impact set
is discovered. Several SCIA methods exist which are
categorized into static analysis methods and the dynamic
analysis methods [10][18]. Taking the static analysis methods
into consideration, there are several approaches that exist in the
standpoint of OOS. These approaches predict change impact set
only. Unfortunately, OOS classes are not fault-free. OO classes
are known to be faulty as a result of flaws in design and code
complexity, though faults are only known to be present in a few
system components [6][7]. In this case, performing a change on
a class considered to be faulty could be risky and costly. Since
testing activity is known to consume significant amount of time
and resources with regards to software size and complexity,
achieving high quality during maintenance can be effective via
predicting the FP of the affected classes in the impact set before
final changes are made. That is, predicting the most critical
components of the software systems where faults are likely to
occur early in order to appropriately allocate resources for
detecting and fixing them [8][11]. This is vital to guard against
unintended risks posed by faulty components affected by
change request that are likely to cause systems failure in the
field. In addition, the earlier faults are identified, the lower the
costs of fixing and the higher the quality of the software
deliverables [1][5][16].

In software engineering, software fault prediction constitute
one of the most efficient techniques to achieve high quality.
Fault prediction depends on past software release measures and
its faults data to identify the fault-prone components (i.e.
classes) for the next release [8][11]. Today, several techniques
have been developed such as neural network, statistical,
machine learning techniques and so on [13] to predict faults in
a software component. These techniques uses software metrics
to evaluate the quality of the software product. Several OO
metrics have been proposed and are used in the evaluation of
both its OO design and codes quality. Moreover, many studies
have empirically validated the relationship between OOS
measures and FP [13]. The validation is aimed at ensuring that
the OO measures continue to remain relevant in the evaluation
of software quality and the early prediction of high risk
components of the software [11].

III. THE EXTENDED SCIA FRAMEWORK
 In this section, we present the contribution of this paper to
the field of software maintenance - extended SCIA framework.
Extended SCIA framework is an approach that incorporate both
change impact prediction and FP prediction to enhance existing
SCIA activity. FP prediction is considered important because
existing OO SCIA techniques only predicts impact set without
considering the FP of OO classes. Moreover, though existing
version control system maintained during configuration
management take control of all OOS dependencies thereby
putting complexity under check, there are cases where such
dependencies are neglected or the task of maintaining the
dependencies might be time consuming. In the presence of such
cases, there is the likelihood that the system under maintenance
may have some faults that are hard to detect or identify the
impact associated with a change. Consequently, if changes are
made to such classes that are faulty, it could however increase
the risk for software failure in the field. By prediction FP of the
impact set will allow faulty classes to be identified and take
decisions early before actual changes are implemented.

Fig. 1. Extended SCIA framework

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

Figure 1 presents the extended SCIA framework and it shows
that, before a change request is implemented, faulty classes that
are likely to be faulty or lead to failure in the field should first
be identified and fixed. We consider this vital to avoiding risky
software changes. The approach shown in Figure 1 involve
three main phases: impact prediction, FP prediction and
change implementation. There are discussed as follows:

A. Impact prediction

 As shown in Figure 1, during the course of a maintenance
task, the approach will assume a normal approach for
conducting SCIA. That is, any static impact analysis technique
for OOS can be applied while taking the change type and the
dependencies between impacted components into account. The
objective is to assist in determining which OOS components in
the original software systems are truly affected by the change
request or yield inconsistencies in the system. The resultant
output will therefore, be the correct impact set that are the real
candidate for maintenance which in turn, will be utilized as
input in the next phase.

B. Fault-proneness Prediction
After completing the main SCIA activity with output as the

impact set, the next activity would have been to perform the
actual changes. However, in this proposed approach, changes
are performed after predicting the FP of OOS components in the
impact set. The basis of predicting FP at this phase is to
determine which among the affected components may lead to
software failure or increase the risk of failures if changes are
committed. As OO classes are complex and not without faults,
identifying fault-prone components in the impact set is
important. However, predicting FP is dependent on the size (i.e.
small, medium and large) of the system and the availability of
fault data from the earlier releases. For instance, for small sized
systems, FP prediction can be avoided. Consequently, only the
impact set that can be predicted. On the other hand, for a
medium-sized or large-scale systems, FP prediction is
important. In this case, faults data from previous release can be
used coupled with snapshot of software measures from current
version and past change histories will be used. To achieve this,
suitable fault prediction model can be utilized. The importance
of identifying or detecting faulty OOS components early before
actual change implementation is aimed at reducing maintenance
efforts, costs and risky changes while assuring high-quality
software products. In addition, regression testing and other
decision making activities can be facilitated.

C. Change Implementation

Before change can be implemented, decisions has to be made
by taken the impact set and their FP into consideration. Based
on the assessment made, decisions can be reached as to either
accept the change, reject the change if it associated with
deteriorating effects or consider further change plan such as
refactoring to improve the system. Additionally, plans will
involve channeling verification and validation activities on the
high risk components in order to reduce or eliminate the risk of
software failure when changes are made.

IV. FAULT-PRONENESS PREDICTION MODEL
 When constructing a FP prediction model, several decisions
have to made about which the variables to be used, the
statistical technique, the evaluation method and the evaluation
criteria [11][22]. In this paper, to construct a prediction model,
we first identify the variables: dependent and independent and
then proceed to describing the model construction techniques
and its evaluation.

A. Variables and Fault Data

1) Dependent and independent variables: This paper is
centered on building a fault prediction model that will be used
to improve the quality of OOS under maintenance. In the
model, the dependent variable is the FP which is the faults data
collected from previous release of the software system. The
collected faults data are then used to evaluate whether OO
design measures are useful for predicting the likelihood of
classes being faulty. Moreover, the independent variables are
OO design metrics and size metric. We utilizes Chidamber and
Kamerer (1994) or CK metric suite [20] which are weighted
methods per class (WMC), coupling between objects (CBO),
response for a class (RFC), lack of cohesion of methods
(LCOM), depth of inheretance (DIT), numbeer of childrence
(NOC) and software lines of code (SLOC). The choice of these
metrics is based on the fact that they have been empirically
validated and re-validated several times both in the industry and
the academia for being associated with OOS class FP [13].

2) Fault data description: To construct the prediction
model, this study reused public domain data set KC1 collected
from the NASA Metrics Data Program [14]. The collection and
validation of the data set was performed by Metrics Data
Program and stored in the NASA data repository. In addition,
the KC1 dataset was gathered from a storage management
system developed in C++ programming language used for
receiving and processing ground data. For more information,
visit [1][4][14]. The system has 145 classes with 2,107 methods
and 40 KSLOC. Though the KC1 offers both static software
metrics at both class and methods levels, only static metrics at
the class-level are of interest in this study. Consequently, the
values of 7 metrics were computed: CK and SLOC metrics at
the class-level for analysis. Fault data were collected by
associating methods to classes as well as their reported faults.
Out of the 145 classes, 60 classes were found to be faulty while
85 are not faulty. A class is faulty if at least one fault is traced
to it, otherwise, not faulty.

V. METHODOLOGY
This section presents the methodology used. We employed
descriptive statistics in the analysis of the metrics and LR in the
construction of the model.

1) Descriptive Statistics: Descriptive statistics play an
important part in analyzing and quantitatively describing the
main features of the data collected. It assist in reducing
empirical data to a form that can be read easily, draw conclusion
and further analysis. The important statistics measures used in
this study for comparing the different metrics of interest are the

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

minimum, maximum, mean, median, and standard deviation as
shown in Table I.

TABLE I. DESCRIPTIVE STATISTICS OF METRICS

Metrics N Min Max Mean Std. Dev.

CBO 145 0 24 8.32 4.270
LCOM 145 0 100 68.72 18.362
NOC 145 0 5 .21 .747
RFC 145 0 222 34.38 26.493
WMC 145 0 100 17.42 14.597
DIT 145 0 6 1.00 1.149
SLOC 145 0 2313 211.25 190.033
Fault Data 145 0 101 4.61 10.841

In Table I, class size is measured with respect to lines of code
that vary between 0 and 2313. SLOC has the highest mean
indicating the largest measure per class in the KC1 data set.
Also, LCOM measure has higher values when compared to
CBO, indicating good quality in the design. Furthermore, DIT
and NOC values are very low, indicating there were not much
utilized in all the systems studied.

2) Binary Logistic Regression: Binary LR is one of the
most widely used statistical techniques to model the
relationship between certain internal products attributes and
their external quality attributes such as FP. LR is the best
statistical technique for building a prediction model [13]. It
predicts the probability for an event to occur such as fault
prediction and is used in constructing prediction model that
utilized a dependent variable, Y as binary. That is, it can take
on only one of two different values (0 and 1). Y = 1 indicates
the class is faulty and Y = 0 indicates a non-faulty class [8][11].
In the model, Y is the measure of FP of a class. Suppose that
X1, X2, X3,..., Xn are the independent variables and Prob(Y =
1|x1, x2, x3. . ., xn) represents the probability that Y = 1 when X1
= x1, X2 = x2, X3 = x3. . ., and Xn = xn. Then, LR model assumes
that Prob(Y = 1|x1, x2, x3. . ., xn) is connected to x1, x2, x3. . ., xn
as shown in equation (1). Thus, the general format of BLR
model is given by:

…1

Where Prob is the conditional probability which indicates the
likelihood that a class has a fault. Xi is the independent variable
which are the class’s change history and structural properties
and and is parameters (where i=1, 2,..,n) are the estimated
regression coefficients which are obtained through the
maximum log-likelihood.

In this study, multivariate LR and univariate LR are employed.
Multivariate LR is used to build the prediction model for classes
FP. In this case, several metrics considered to be related to FP
based on univariate and correlation analysis are used in
combination to predict FP of classes. In equation (1), the
variables x1, x2, x3. . ., xn are the predictors. On the other hand,
the univariate LR model as shown in equation (2) is a distinct
form of multivariate LR involving only a single independent
variable, X. Univariate LR is used to model the association
between the dependent and the individual independent
variables in order to confirm their significance with respect to
FP. The format for univariate LR is given by:

 …………………………………2

Other reported statistics used in this study are the estimated
regression coefficients (and is parameters), statistical
significance ((sig)), R-square Statistics (R2), odds ratio
(Exp()), maximum likelihood estimation. For model
evaluation, we employed sensitivity, specificity and accuracy.

VI. RESULTS ANALYSIS
 This section present the result of the binary LR analysis. It
begins with the computation of the univariate LR followed by
the correlation analysis and lastly, the multivariate LR. The
importance is to select optimum subset of metrics that will be
used for constructing the class FP prediction model.

A. Univariate LR Analysis

Results of the univariate LR is presented in Table II. The
statistics reported are the regression coefficient (), the statistical
significance - value, odds ratio (Exp()), and R2 of individual
measure. Metrics were selected based on positive , -value
0.05 and Exp() > 1. A cutoff value of 0.5 was used for the
classification. Based on the selection criteria, NOC metric has
no significant relationship with FP while LCOM metric appears
negative in its coefficient and its odds ratio is less than 1.
Consequently, LCOM metric is inversely related to FP.
Accordingly, metric with the highest value of R2 is the CBO,
signifying the best predictor followed by WMC metric. In
addition, from the results obtained, R2 values are considered
more important than the -values as they indicate the correlation
strength. Also, CBO, RFC, and WMC are found to be more
significant with respect to their R2 value joined by SLOC and
DIT. Thus, CBO is the most effective at that level of significance
used while LCOM and NOC are dropped in further analysis.

TABLE II. ULR RESULTS

Metrics -value Exp () R2

CBO 2.040 0.000 7.688 0.649
LCOM -0.091 0.000 0.913 0.290
NOC 0.009 0.969 1.009 0.000
RFC 0.127 0.000 1.135 0.506
WMC 0.171 0.000 1.187 0.443
DIT 0.585 0.002 1.794 0.081
SLOC 0.006 0.010 1.007 0.060

B. Correlation Analysis

 Correlation analysis is used to discover relationship between
individual software metric and the fault data - FP. The
Spearman’s rank correlation among metrics is presented in
Table III. The correlation coefficient value was based on
Hopkins [23] classification. In the classification we adopted,
the threshold value is 0.5 and the significance level is 0.01
level. In the results captured in Table III, WMC, DIT, SLOC
are related to RFC while RFC, WMC and CBO are related to
SLOC.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

TABLE III. CORRELATION RESULTS

Metrics CBO RFC WMC DIT SLOC

CBO 1
RFC .691** 1

WMC .619** .529** 1

DIT .255** .152 .367** 1
SLOC .171* .312** .110 .064 1

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Moreover, the results indicates that the metrics are not
completely independent or redundant with each other, proving
they are significantly good for fault prediction. However, the
correlations among CBO, RFC, and WMC and between RFC
and WMC are very strong. Consequently, CBO, RFC, WMC,
DIT and SLOC are selected to be included in the MLR model.

C. Multivariate LR Results

Multivariate LR analysis is aimed at selecting metric subsets
that yield the optimum classification in the model. To achieve
this, we used a forward stepwise procedure [24] and promising
results were obtained in terms of R2 and log likelihood statistic.
The classifier at threshold = 0.5 was used as cutoff value, and all
the 145 classes were used as the train data. Due to the multi-
collinearity effect, we have three sets of predictors as potential
metrics (M1, M2 and M3) for the model construction. Table IV
captured the regression coefficient (), statistical significance
(-value), odds ratio (Exp()), R2, the -2 Log likelihood and the
constant () for metrics included in the model, M3. Moreover,
Table V captured the results of the classification and Table VI
presents the specificity, accuracy and sensitivity of the models.

TABLE IV. MLR RESULTS FOR M3

M3 -
value Exp ()

CBO 2.938 0.005 18.878
RFC 0.200 0.027 1.221
DIT 2.214 0.021 9.152
R2 0.709

- 2 Log likelihood 17.605
Constant () - 37.124

TABLE V. CLASSIFICATION RESULTS

TABLE VI. SENSITIVITY, SPECIFICITY AND ACCURACY

VII. MODEL DISCUSSIONS
In this section, the predicted model is assessed based the results
presented in Table VI and VII. In Table VII presents the overall
summary of the prediction model and a dash indicate the metric
was not included in the model.

 TABLE VII. MODEL PREDICTORS

In Table IV the maximum likelihood estimate of the model, M3
which measures how poorly the model predicts FP of classes
was very encouraging. The results indicates that the models is
good in FP prediction since the smaller the statistic, the better
the model. M1 has a maximum likelihood value of 16.681, M2
106.227 and M3 17.605. Furthermore, the Cox & Snell R2
values were very high though it is difficult to achieve a value of
1. It shows that the models are accurate in prediction since the
higher the R2 values, the higher the effect of the models. In
addition, the R2 values were all positive with M1 = 0.711, M2 =
0.464 and M3 = 0.709. Based on the results, M1 and M3 have
the highest R2 values indicating the strength of the dependent
variables in identifying the likelihood of a fault in OOS class.

Given the sensitivity, specificity and accuracy of the model, the
values were also very high which indicates that, several non-
faulty and faulty classes were appropriately classified. See
Table VI. The high accuracy indicates the higher the quality of
the software system under maintenance will be. This stems
from the fact that detecting which class is faulty early, would
allow mitigating plans to be concentrated on the high risk
components before changes can be implemented.

VIII. MODEL APPLICATION TO SCIA
This section present the application of the prediction model
during software maintenance. Using this model will assist in
identifying which set of classes in the impact set of a change
request are more likely to have faults or fail if changes are
committed on them. To construct the prediction model, the KC1
dataset and the software metrics were used. However, before
predicting FP of classes in the impact set, static analysis SCIA
framework shown in Figure 1 will be applied to predict the
impact set. Based on the variables collected, the maintainer can

LR Model Predicted Fault

Non-Faulty Faulty

 M1 M2 M3 M1 M2 M3

Non-Faulty 85 82 84 2 3 1

Faulty 2 11 1 58 49 59

LR Model Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

M1 97 98 97
M2 82 97 90
M3 98 99 99

 Predictors () Constant
()

Predicted
Model

CBO RFC WMC DIT SLOC

M1 2.867 0.195 0.711 - - -36.938

M2 - - 0.173 - 0.008 -4.857

M3 2.938 0.200 - 2.214 - -37.124

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

then compute the FP of each class known to be affected by the
change request using any of the prediction models M1, M2 and
M3. In this case, we employed M3 as the predictive model since
it yielded the highest accuracy rate of 99%. Thus, the model is
fitted follows:
(1/Class FP) = (- 37.124 + 2.938(CBO) + 0.2(RFC) + 2.214(DIT))

Furthermore, a class is considered fault-prone if the risk is more
than 50%. That is, the risk rate > cutoff value (0.5). To compute
the risk associated with each class, we developed a novel tool
called Class Change Recommender (CCRecommender).

A. Class Change Recommender

 The CCRecommender is a novel tool developed in Java to
help software maintenance personnel to compute the risk or FP
of each class affected by a change request before the change
implementation. To use CCRecommender during maintenance
involve building the model first by using any statistical tool in
order to compute values of the regression coefficients, , , and
others parameters. Then the parameter values and the metric
values of each included metric are use as input to the tool. In
the M3 model chosen, three metrics are included, CBO, RFC
and DIT. The interface of the tool is captured in Figure 2. The
prediction menu is where the actual computation is performed.
First is the entering of the intercept () called alpha. Next is the
choice of the metrics for the model, the entering of their values
as well as their respective regression coefficients () called
beta. After entering the value and the value for a metric, the
button “SET” is used to input the values of the next chosen
metric. After entering all the parameters values, the COMPUTE
button is used to obtain the risk value in percentage of the
affected class.

Fig. 2. CCRecommender system

In essence, CCRecommender also offers modification advice
based on the risk value of each class on whether a change is
advisable or not. It is modeled based on the following cutoff
probabilities or conditions:

1) Condition I: If the risk value is less than or equals to 20,
(prob. 0.2) a GREEN CIRCLE will appear. The indication
is that the class is not fault-prone and the change can be

implemented with no risk. For instance, the result captured in
Figure 3 indicates that the risk associated with making changes
to a class having CBO = RFC =10 and DIT = 1 is 3%.

Fig. 3. Prediction results for condition I

2) Condition II: If the risk value is greater than 20% but
less than or equals to 50% (0.2 > prob. 0.5), a BLUE
CIRCLE will appear indicating the class is not fault-prone, but
care must be taken when making changes to such a class. For
instance, if a particular class has CBO = 10, RFC = 10 and DIT
= 1, the prediction on the system will yield the following result
as shown in Figure 4.

Fig. 4. Prediction results for condition II

3) Condition III: If the risk value is greater than 50% but
less than or equals to 70%, (0.5 > prob. 0.7), a YELLOW
CIRCLE will appear. The indication is that the class is fault-
prone. However, before changes can be made verification and
validation activities must be focused on such class to fix the
faults. For example, the FP probability for a class having metric
values, say CBO = 11, RFC = 25 and DIT = 0 will be 55% as
shown in Figure 5.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Prediction results for condition III

4) Condition IV: lastly, if the risk value is greater than
70%, (prob. > 0.7), a RED CIRCLE would appear, indicating
that the class is severely fault or failure-prone. In this case,
change is not recommended on such as class. For instance, for
a class having CBO = 8, RFC = 36 and DIT = 5, the risk rate or
FP probability would be 99%. See Figure 6. However,
additional plans can be invoked that either reject the change or
redesign the system, apply refactoring and so on before actual
changes can be possible.

Fig. 6. Prediction results for condition IV

 The above results indicates that, a class having a high
amount of coupling, a great number of outside and inside
methods coupled with inheritance having extended depth are
more likely to have faults than a class with lower values of the
metrics. Thus, we advise that software engineers should use the
information provided by the model after SCIA in order to know

if a change is going to be risky or not. This will assist in
reducing or avoiding the costly changes.

IX. CONCLUSIONS AND FUTURE WORK
This paper presented an extended framework for SCIA that
incorporates both change impact and FP predictions during
software maintenance. The approach is intended to preserve the
quality of the system under maintenance. As today software
applications have grown in size and complexity as well as OOS
classes being faulty, maintaining a faulty class without the
knowledge of existing fault could be very risky. As a cost-
effective, we discussed an approach that predict the occurrence
of potential faults in the impact set before actual changes are
made. To assist engineers in channeling efforts to high risks
components during maintenance, a tool called
CCRecommender was developed. It is intended for use to
quantify the risk associated with making changes on a fault-
prone class in the impact set before actual changes are
implemented. This will provide important information in
making good decisions, plan and allocate resource, reduce cost
as well as assure high quality.

The study limitation is that CCRecommender has not been
applied to a real-world system. We only used the dataset from
the public domain to demonstrate its operation during
maintenance. Therefore, the results obtained cannot be
generalized to any other similar empirical studies in terms of
metrics validation. Moreover, the tool is not automated, thus
require parameters to be mined externally. To this end, the
future work will be on automation and to perform the prediction
on a real-world software in order to evaluate the accuracy and
effectiveness of the tool. Additionally, we will consider other
prediction models to find out which one is more effective and
accurate.

ACKNOWLEDGMENT
The study reported in this paper has been conducted with the

assistance from MaSIM in the NWU. We are very appreciative
and grateful for the opportunity given to us and we would like
to thank their efforts in making this study a huge success.

REFERENCES
[1] Xu, J., Ho, D. and Capretz, L.F. An Empirical Validation of Object-

Oriented Design Metrics for Fault Prediction. Journal of Computer
Science No.4, Vol 7, pp. 571-577, 2008. ISSN 1549-3636

[2] Subramanyam, R. and Krishnan, M.S.: Empirical Analysis of CK Metrics
for Object- Oriented Design Complexity: Implications for Software
Defects. IEEE Trans. Software Eng. No.29, pp. 297-310, 2003

[3] Zhou, Y., & Leung, H. Empirical analysis of object oriented design
metrics for predicting high and low severity faults. IEEE Transactions on
Software Engineering, 32(10), pp. 771–784, 2006

[4] Singh, Y. Kaur, A. and Malhotra, R. Empirical validation of object-
oriented metrics for predicting FP models. Software Quality Journal,
vol.18 pp. 3–35, 2010

[5] Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical assessment of
the models for identification of defect-prone classes in object-oriented
commercial systems using design metrics. Journal of Systems and
Software 65, pp. 1-12, 2003

[6] Myers, G., Badgett, T., Thomas, T., Sandler, C.The Art of Software
Testing, second ed. John Wiley & Sons, Inc., Hoboken, NJ., 2004.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

[7] Fenton, N., Ohlsson, N. Quantitative analysis of faults and failures in a
complex software system. IEEE Transactions on Software Engineering,
Vol. 26 no. 8, pp.797-814, 2000

[8] Shatnawi, R. andLi, W. The effectiveness of software metrics in
identifying error-prone classes in post-release software evolution process.
The Journal of Systems and Software vol. 81 pp.1868–1882, 2008.

[9] Jönsson, P. and Lindvall, M.: “Impact Analysis” Engineering and
Managing Software Requirements Issue: 6, Springer-Verlag, pp. 117-142,
2005

[10] Bohner, S. A.: “Extending software change impact analysis into COTS
components” Proceedings of the 27th Annual NASA Goddard Software
Engineering Workshop, Greenbelt, USA, pp.175 -182, 2000

[11] Emam, K.E., Melo, W.L., Machado, J.C.: The prediction of faulty classes
using object-oriented design metrics. Journal of Systems and Software
No. 56, pp. 63-75, 2001

[12] Malhotra, R., Kaur, A. and Singh, Y. Empirical validation of object-
oriented metrics for predicting FP at different severity levels using
support vector machines. International Journal System Assurrance
Engineering Management. No.1, vol. 3, pp. 269–281, 2010.

[13] Isong, B.E. and Ekabua, O.O. (2013) “A Systematic Review of the
Empirical Validation of Object-oriented Metrics towards Fault-proneness
Prediction”. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE) WSPC. Vol. 23, No. 10. pp. 1513–
1540 DOI: 10.1142/S0218194013500484. ISSN: 0218-1940

[14] Metrics Data Program (MDP, 2006),
http://sarpresults.ivv.nasa.gov/ViewResearch/107.jsp

[15] Ruchika Malhotra, Nakul Pritam Yogesh Singh On the Applicability of
Evolutionary Computation for Software Defect Prediction. International
Conference on Advances in Computing, Communications and
Informatics (ICACCI, 2014). Pp. 2249 – 2257, 2014

[16] Wu, Y., Zhao, Y. and Lu, H. The Influence of Developer Quality on
Software Fault-Proneness Prediction, 2014 Eighth International
Conference on Software Security and Reliability (SERE),. pp.11-19, 2014

[17] Chen, J. and Huang, S. An empirical analysis of the impact of software
development problem factors on software maintainability. The Journal of
Systems and Software 82 (2009) 981–992

[18] Holgeid, K.K., Krogstie, J., Sjøberg, D.I.K. A study of development and
maintenance in Norway: assessing the efficiency of information systems
support using functional maintenance. Information and Software
Technology 42 (10), 687–700, 2000.

[19] Sun, X., Li, B., Tao, C., Wen, W. and Zhang, S. “Change Impact Analysis
Based on a Taxonomy of Change Types” 2010 IEEE Proceedings of
34th Annual Computer Software and Applications Conference
(COMPSAC’10), pp.373-82, 2010.

[20] Chidamber, S., Kemerer, C.F.(1994): A metrics suite for object oriented
design. IEEE Trans. Softw. Eng. Vol. 20, No. 6, pp. 476–493, 1994.

[21] Yu, P., Systa, T., & Muller, H. Predicting FP using OO metrics: An
industrial case study. In Proceedings of Sixth European Conference on
Software Maintenance and Reengineering, Budapest, Hungary, pp.99–
107, 2002

[22] Arisholm, E. Briand, L.C. and Johannessen, E.B. “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models”, The Journal of Systems and Software, vol.83, pp.2–
17, 2010

[23] Gyimóthy, T., Ferenc, R., Siket, I.: “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction“. IEEE
Transactions on Software Engineering, No.31, pp.897-910, 2005

[24] Aggarwal, K. K., Singh, Y., Kaur, A. and Malhotra, R. Empirical Analysis
for Investigating the Effect of Object-Oriented Metrics on FP: A
Replicated Case Study. Software Process Improvement and Practice,
No.14, pp. 39–62, 2009.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

