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Abstract—Software changes are inevitable during 
maintenance, Object-oriented software (OOS) in particular. For 
change not to be performed in the “dark”, software change impact 
analysis (SCIA) is used. However, due to the exponential growth 
in the size and complexity of OOS, classes are not without faults 
and the existing SCIA techniques only predict change impact set. 
This means that a change implemented on a faulty class could 
increase the likelihood for software failure. To avoid this issue, 
maintenance has to incorporate both change impact and fault-
proneness (FP) prediction. Therefore, this paper proposes an 
extended approach for SCIA that integrates both activities. The 
goal is to assist software engineers with the necessary information 
of focusing verification and validation activities on the high risk 
components that would probably cause severe failures which in 
turn can boost maintenance and testing efficiency. This study built 
a model for predicting FP using software metrics and faults data 
from NASA data set in the public domain. The results obtained 
were analyzed and presented. Additionally, a class change 
recommender (CCRecommender) tool was developed to assist in 
computing the risks associated with making change to any 
component in the impact set. 
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I. INTRODUCTION

       In the world of software development today, due to the 
exponential upsurge in the size and complexity of software 
applications as well as the software failure criticality, ensuring 
high quality in large software systems during development has 
become more and more difficult and a time-consuming task 
[4][5][15]. As a result, software deliverables with serious faults 
that could lead to failure in the field are produced [1][3][4]. To 
assure high-quality in the software, faults have to be found and 
removed. Though, testing, inspection, and walkthrough are 
designed for this task, testing activity waist time and resources 
[8]. In software engineering, a cost-effective way of achieving 
high-quality is by predicting fault-proneness (FP) early in the 
software using software metrics. The importance is to provide 
essential information that can be used to focus verification and 
validation efforts on the affected components and boost 
maintenance and testing efficiency. 

In addition, maintaining large systems today especially object-
oriented software (OOS) has become a difficult task. Change is 
an indispensable property of any software that is necessary to 
keep the system alive and is inevitable during maintenance 

[9][10]. However, just like change in our society, software 
changes are not straight forward. Irrespective of the size, a 
change can cause some unpredictable effects on other 
components of the system [10]. In the perspective of OOS, we 
can say that a change carries some possibility of failure that 
could manifest either during testing or in the field. The failures 
could be due to either: (i) negligence of the existence of 
dependences between the OOS components, (ii) process 
activities such as the frequency of changes, number of 
developers performing the changes, their maintenance 
experiences, the file ages, etc. or (iii) faulty software 
components such as classes, methods and fields. The first case 
can be minimized or eliminated via effective software change 
impact analysis (SCIA) activities while the later can’t be 
eliminated with SCIA activities alone. This calls for an 
effective approach to prevent severe software failure when 
changes are made. As classes are the basic units of analysis in 
OOS, their quality is critical to the overall quality of the 
software system. Nevertheless, OOS classes are not exception 
in terms of FP as reported in several empirical studies in the 
literature [1][3][4][8][11][12]. FP is the likelihood that a 
software component has at least one fault [8]. Since faults may 
lead to failure in an executable product, we believed that 
changing a faulty class without the prior knowledge of such 
faults could compound the risk of software failure. To guard 
against software failure due to maintenance in OOS, this study 
then proposes an approach that predict faulty classes in the 
impact set after SCIA activities before actual changes are made. 
By identifying faulty classes early would allow mitigating 
actions to be directed to the high risk components that could 
possibly cause field failures when changes are made.  

This study constructed a model for predicting the FP of OOS 
components affected by change. We used data from the 
industry, KC1 NASA dataset [1][4][14] to establish FP and OO 
design/size metrics relationships. The metrics used are 
Chidamber and Kamerer (1994) metric suite [20] and software 
lines of code (SLOC) as well the faults data. Logistic regression 
(LR) was used to construct the model and the results obtained 
were analyzed and presented. In addition, a tool called class 
change recommender (CCRecommender) was developed to 
assist software engineers to quantify the risk associated with 
making change if any in the impact set. The tool is designed to 
assist them to identify fault-prone classes so that resources and 
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verification efforts can be concentrated on the identified high-
risk classes before actual changes are made. 

The rest of the paper is organized as follows: Section II is the 
background information, Section III presents the extended SCIA 
framework and Section IV discusses the FP prediction model. 
Moreover, Section V is the methodology employed, Section VI 
is the results analysis while Section VII is a discussion on the 
model and Section VIII is the model application to software 
maintenance. Section IX is the paper conclusions. 

II. BACKGROUND INFORMATION 
       Software maintenance phase constitute one of the most key 
phases of software life cycle and has been tagged the most 
costly and difficult phase [17]. Studies have shown that about 
70% or more of the total software life-cycle costs are consumed 
by software maintenance [18]. Software change is a 
fundamental operation to keep software alive and is in 
fulfilment of one of the laws of program evolution which 
advocate for continuing change. Changes in software over time 
are vital to cope with change requests such as add new 
requirements, fix faults, system enhancements and meet the 
changing needs of the customer [10][18] and so on. 
Maintenance is importance for the fact that several software 
organizations have invested whooping sums of money on their 
systems today. Thus, such systems have to be effectively 
maintained instead of developing new systems. However, 
changes can produce certain undesirable effects that could yield 
inconsistency on other components of the software [9][10][19]. 
To preserve the quality of the software, SCIA is employed. 
SCIA is a technique used to determine which software 
component will be truly affected by a change request or likely 
to be changed when a component is changed [10].  

During the course of SCIA, the input is the request for change 
proposed over time. These requests coupled with the source 
code are analyzed and by applying SCIA technique, impact set 
is discovered. Several SCIA methods exist which are 
categorized into static analysis methods and the dynamic 
analysis methods [10][18]. Taking the static analysis methods 
into consideration, there are several approaches that exist in the 
standpoint of OOS. These approaches predict change impact set 
only. Unfortunately, OOS classes are not fault-free. OO classes 
are known to be faulty as a result of flaws in design and code 
complexity, though faults are only known to be present in a few 
system components [6][7]. In this case, performing a change on 
a class considered to be faulty could be risky and costly. Since 
testing activity is known to consume significant amount of time 
and resources with regards to software size and complexity, 
achieving high quality during maintenance can be effective via 
predicting the FP of the affected classes in the impact set before 
final changes are made. That is, predicting the most critical 
components of the software systems where faults are likely to 
occur early in order to appropriately allocate resources for 
detecting and fixing them [8][11]. This is vital to guard against 
unintended risks posed by faulty components affected by 
change request that are likely to cause systems failure in the 
field. In addition, the earlier faults are identified, the lower the 
costs of fixing and the higher the quality of the software 
deliverables [1][5][16]. 

In software engineering, software fault prediction constitute 
one of the most efficient techniques to achieve high quality. 
Fault prediction depends on past software release measures and 
its faults data to identify the fault-prone components (i.e. 
classes) for the next release [8][11]. Today, several techniques 
have been developed such as neural network, statistical, 
machine learning techniques and so on [13] to predict faults in 
a software component. These techniques uses software metrics 
to evaluate the quality of the software product. Several OO 
metrics have been proposed and are used in the evaluation of 
both its OO design and codes quality. Moreover, many studies 
have empirically validated the relationship between OOS 
measures and FP [13]. The validation is aimed at ensuring that 
the OO measures continue to remain relevant in the evaluation 
of software quality and the early prediction of high risk 
components of the software [11]. 

III. THE EXTENDED SCIA FRAMEWORK 
       In this section, we present the contribution of this paper to 
the field of software maintenance - extended SCIA framework.  
Extended SCIA framework is an approach that incorporate both 
change impact prediction and FP prediction to enhance existing 
SCIA activity. FP prediction is considered important because 
existing OO SCIA techniques only predicts impact set without 
considering the FP of OO classes. Moreover, though existing 
version control system maintained during configuration 
management take control of all OOS dependencies thereby 
putting complexity under check, there are cases where such 
dependencies are neglected or the task of maintaining the 
dependencies might be time consuming. In the presence of such 
cases, there is the likelihood that the system under maintenance 
may have some faults that are hard to detect or identify the 
impact associated with a change. Consequently, if changes are 
made to such classes that are faulty, it could however increase 
the risk for software failure in the field. By prediction FP of the 
impact set will allow faulty classes to be identified and take 
decisions early before actual changes are implemented.  

 
Fig. 1. Extended SCIA framework 
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Figure 1 presents the extended SCIA framework and it shows 
that, before a change request is implemented, faulty classes that 
are likely to be faulty or lead to failure in the field should first 
be identified and fixed. We consider this vital to avoiding risky 
software changes. The approach shown in Figure 1 involve 
three main phases: impact prediction, FP prediction and 
change implementation. There are discussed as follows: 

A. Impact prediction 

      As shown in Figure 1, during the course of a maintenance 
task, the approach will assume a normal approach for 
conducting SCIA. That is, any static impact analysis technique 
for OOS can be applied while taking the change type and the 
dependencies between impacted components into account. The 
objective is to assist in determining which OOS components in 
the original software systems are truly affected by the change 
request or yield inconsistencies in the system. The resultant 
output will therefore, be the correct impact set that are the real 
candidate for maintenance which in turn, will be utilized as 
input in the next phase. 

B. Fault-proneness Prediction 
After completing the main SCIA activity with output as the 

impact set, the next activity would have been to perform the 
actual changes. However, in this proposed approach, changes 
are performed after predicting the FP of OOS components in the 
impact set. The basis of predicting FP at this phase is to 
determine which among the affected components may lead to 
software failure or increase the risk of failures if changes are 
committed. As OO classes are complex and not without faults, 
identifying fault-prone components in the impact set is 
important. However, predicting FP is dependent on the size (i.e. 
small, medium and large) of the system and the availability of 
fault data from the earlier releases. For instance, for small sized 
systems, FP prediction can be avoided. Consequently, only the 
impact set that can be predicted. On the other hand, for a 
medium-sized or large-scale systems, FP prediction is 
important. In this case, faults data from previous release can be 
used coupled with snapshot of software measures from current 
version and past change histories will be used. To achieve this, 
suitable fault prediction model can be utilized. The importance 
of identifying or detecting faulty OOS components early before 
actual change implementation is aimed at reducing maintenance 
efforts, costs and risky changes while assuring high-quality 
software products. In addition, regression testing and other 
decision making activities can be facilitated. 

C. Change Implementation 

Before change can be implemented, decisions has to be made 
by taken the impact set and their FP into consideration. Based 
on the assessment made, decisions can be reached as to either 
accept the change, reject the change if it associated with 
deteriorating effects or consider further change plan such as 
refactoring to improve the system. Additionally, plans will 
involve channeling verification and validation activities on the 
high risk components in order to reduce or eliminate the risk of 
software failure when changes are made. 

IV. FAULT-PRONENESS PREDICTION MODEL 
      When constructing a FP prediction model, several decisions 
have to made about which the variables to be used, the 
statistical technique, the evaluation method and the evaluation 
criteria [11][22]. In this paper, to construct a prediction model, 
we first identify the variables: dependent and independent and 
then proceed to describing the model construction techniques 
and its evaluation.  

A. Variables and Fault Data 

1) Dependent and independent variables: This paper is 
centered on building a fault prediction model that will be used 
to improve the quality of OOS under maintenance. In the 
model, the dependent variable is the FP which is the faults data 
collected from previous release of the software system. The 
collected faults data are then used to evaluate whether OO 
design measures are useful for predicting the likelihood of 
classes being faulty. Moreover, the independent variables are 
OO design metrics and size metric. We utilizes Chidamber and 
Kamerer (1994) or CK metric suite [20] which are weighted 
methods per class (WMC), coupling between objects (CBO), 
response for a class (RFC), lack of cohesion of methods 
(LCOM), depth of inheretance (DIT), numbeer of childrence 
(NOC) and software lines of code (SLOC). The choice of these 
metrics is based on the fact that they have been empirically 
validated and re-validated several times both in the industry and 
the academia for being associated with OOS class FP [13].  

2) Fault data description: To construct the prediction 
model, this study reused public domain data set KC1 collected 
from the NASA Metrics Data Program [14]. The collection and 
validation of the data set was performed by Metrics Data 
Program and stored in the NASA data repository. In addition, 
the KC1 dataset was gathered from a storage management 
system developed in C++ programming language used for 
receiving and processing ground data. For more information, 
visit [1][4][14]. The system has 145 classes with 2,107 methods 
and 40 KSLOC. Though the KC1 offers both static software 
metrics at both class and methods levels, only static metrics at 
the class-level are of interest in this study. Consequently, the 
values of 7 metrics were computed: CK and SLOC metrics at 
the class-level for analysis. Fault data were collected by 
associating methods to classes as well as their reported faults. 
Out of the 145 classes, 60 classes were found to be faulty while 
85 are not faulty. A class is faulty if at least one fault is traced 
to it, otherwise, not faulty. 

V. METHODOLOGY 
This section presents the methodology used. We employed 
descriptive statistics in the analysis of the metrics and LR in the 
construction of the model. 

1) Descriptive Statistics: Descriptive statistics play an 
important part in analyzing and quantitatively describing the 
main features of the data collected. It assist in reducing 
empirical data to a form that can be read easily, draw conclusion 
and further analysis. The important statistics measures used in 
this study for comparing the different metrics of interest are the 
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minimum, maximum, mean, median, and standard deviation as 
shown in Table I. 

TABLE I.  DESCRIPTIVE  STATISTICS OF METRICS 

Metrics N Min Max Mean Std. Dev. 

CBO 145 0 24 8.32 4.270 
LCOM 145 0 100 68.72 18.362 
NOC 145 0 5 .21 .747 
RFC 145 0 222 34.38 26.493 
WMC 145 0 100 17.42 14.597 
DIT 145 0 6 1.00 1.149 
SLOC 145 0 2313 211.25 190.033 
Fault Data 145 0 101 4.61 10.841 

 
In Table I, class size is measured with respect to lines of code 
that vary between 0 and 2313. SLOC has the highest mean 
indicating the largest measure per class in the KC1 data set. 
Also, LCOM measure has higher values when compared to 
CBO, indicating good quality in the design. Furthermore, DIT 
and NOC values are very low, indicating there were not much 
utilized in all the systems studied. 

2) Binary Logistic Regression: Binary LR is one of the 
most widely used statistical techniques to model the 
relationship between certain internal products attributes and 
their external quality attributes such as FP. LR is the best 
statistical technique for building a prediction model [13]. It 
predicts the probability for an event to occur such as fault 
prediction and is used in constructing prediction model that 
utilized a dependent variable, Y as binary.  That is, it can take 
on only one of two different values (0 and 1). Y = 1 indicates 
the class is faulty and Y = 0 indicates a non-faulty class [8][11]. 
In the model, Y is the measure of FP of a class. Suppose that 
X1, X2, X3,..., Xn  are the independent variables and Prob(Y = 
1|x1, x2, x3. . ., xn) represents the probability that Y = 1 when X1 
= x1, X2 = x2, X3 = x3. . ., and  Xn = xn. Then, LR model assumes 
that Prob(Y = 1|x1, x2, x3. . ., xn) is connected to x1, x2, x3. . ., xn 
as shown in equation (1). Thus, the general format of BLR 
model is given by: 

…1 

Where Prob is the conditional probability which indicates the 
likelihood that a class has a fault. Xi is the independent variable 
which are the class’s change history and structural properties 
and  and is parameters (where i=1, 2,..,n) are the estimated 
regression coefficients which are obtained through the 
maximum log-likelihood.  

In this study, multivariate LR and univariate LR are employed. 
Multivariate LR is used to build the prediction model for classes 
FP. In this case, several metrics considered to be related to FP 
based on univariate and correlation analysis are used in 
combination to predict FP of classes. In equation (1), the 
variables x1, x2, x3. . ., xn are the predictors.  On the other hand, 
the univariate LR model as shown in equation (2) is a distinct 
form of multivariate LR involving only a single independent 
variable, X. Univariate LR is used to model the association 
between the dependent and the individual independent 
variables in order to confirm their significance with respect to 
FP. The format for univariate LR is given by: 

 …………………………………2 

Other reported statistics used in this study are the estimated 
regression coefficients (  and is parameters), statistical 
significance ( (sig)), R-square Statistics (R2), odds ratio 
(Exp( )), maximum likelihood estimation. For model 
evaluation, we employed sensitivity, specificity and accuracy. 

VI. RESULTS ANALYSIS 
      This section present the result of the binary LR analysis. It 
begins with the computation of the univariate LR followed by 
the correlation analysis and lastly, the multivariate LR. The 
importance is to select optimum subset of metrics that will be 
used for constructing the class FP prediction model. 

A. Univariate LR Analysis 

Results of the univariate LR is presented in Table II. The 
statistics reported are the regression coefficient ( ), the statistical 
significance - value, odds ratio (Exp( )), and R2 of individual 
measure. Metrics were selected based on positive , -value  
0.05 and Exp( ) > 1. A cutoff value of 0.5 was used for the 
classification. Based on the selection criteria, NOC metric has 
no significant relationship with FP while LCOM metric appears 
negative in its coefficient and its odds ratio is less than 1. 
Consequently, LCOM metric is inversely related to FP. 
Accordingly, metric with the highest value of R2 is the CBO, 
signifying the best predictor followed by WMC metric. In 
addition, from the results obtained, R2 values are considered 
more important than the -values as they indicate the correlation 
strength. Also, CBO, RFC, and WMC are found to be more 
significant with respect to their R2 value joined by SLOC and 
DIT. Thus, CBO is the most effective at that level of significance 
used while LCOM and NOC are dropped in further analysis. 

TABLE II. ULR RESULTS 

Metrics  -value Exp ( ) R2 

CBO 2.040 0.000 7.688 0.649 
LCOM -0.091 0.000 0.913 0.290 
NOC 0.009 0.969 1.009 0.000 
RFC 0.127 0.000 1.135 0.506 
WMC 0.171 0.000 1.187 0.443 
DIT 0.585 0.002 1.794 0.081 
SLOC 0.006 0.010 1.007 0.060 

 

B. Correlation Analysis 

     Correlation analysis is used to discover relationship between 
individual software metric and the fault data - FP. The 
Spearman’s rank correlation among metrics is presented in 
Table III. The correlation coefficient value was based on 
Hopkins [23] classification. In the classification we adopted, 
the threshold value is 0.5 and the significance level is   0.01 
level. In the results captured in Table III, WMC, DIT, SLOC 
are related to RFC while RFC, WMC and CBO are related to 
SLOC. 

 

 

 

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 15:47:33 UTC from IEEE Xplore.  Restrictions apply. 



 

 

TABLE III. CORRELATION RESULTS 

Metrics CBO RFC WMC DIT SLOC 
 

CBO 1     
RFC .691** 1    

WMC .619** .529** 1   

DIT .255** .152 .367** 1  
SLOC .171* .312** .110 .064 1 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 
Moreover, the results indicates that the metrics are not 
completely independent or redundant with each other, proving 
they are significantly good for fault prediction. However, the 
correlations among CBO, RFC, and WMC and between RFC 
and WMC are very strong. Consequently, CBO, RFC, WMC, 
DIT and SLOC are selected to be included in the MLR model. 
 
C. Multivariate LR Results 

Multivariate LR analysis is aimed at selecting metric subsets 
that yield the optimum classification in the model. To achieve 
this, we used a forward stepwise procedure [24] and promising 
results were obtained in terms of R2 and log likelihood statistic. 
The classifier at threshold = 0.5 was used as cutoff value, and all 
the 145 classes were used as the train data. Due to the multi-
collinearity effect, we have three sets of predictors as potential 
metrics (M1, M2 and M3) for the model construction. Table IV 
captured the regression coefficient ( ), statistical significance 
( -value), odds ratio (Exp( )), R2, the -2 Log likelihood and the 
constant ( ) for metrics included in the model, M3. Moreover, 
Table V captured the results of the classification and Table VI 
presents the specificity, accuracy and sensitivity of the models. 

TABLE IV. MLR RESULTS FOR M3 

M3  - 
value Exp ( ) 

CBO 2.938 0.005 18.878 
RFC 0.200 0.027 1.221 
DIT 2.214 0.021 9.152 
R2 0.709   

- 2 Log likelihood 17.605   
Constant ( ) - 37.124   

 

TABLE V. CLASSIFICATION RESULTS 

 

 

TABLE VI. SENSITIVITY, SPECIFICITY AND ACCURACY 

VII.  MODEL DISCUSSIONS 
In this section, the predicted model is assessed based the results 
presented in Table VI and VII. In Table VII presents the overall 
summary of the prediction model and a dash indicate the metric 
was not included in the model. 
 

 TABLE VII. MODEL PREDICTORS 

 

In Table IV the maximum likelihood estimate of the model, M3 
which measures how poorly the model predicts FP of classes 
was very encouraging. The results indicates that the models is 
good in FP prediction since the smaller the statistic, the better 
the model. M1 has a maximum likelihood value of 16.681, M2 
106.227 and M3 17.605.  Furthermore, the Cox & Snell R2 
values were very high though it is difficult to achieve a value of 
1. It shows that the models are accurate in prediction since the 
higher the R2 values, the higher the effect of the models. In 
addition, the R2 values were all positive with M1 = 0.711, M2 = 
0.464 and M3 = 0.709. Based on the results, M1 and M3 have 
the highest R2 values indicating the strength of the dependent 
variables in identifying the likelihood of a fault in OOS class.  

Given the sensitivity, specificity and accuracy of the model, the 
values were also very high which indicates that, several non-
faulty and faulty classes were appropriately classified. See 
Table VI. The high accuracy indicates the higher the quality of 
the software system under maintenance will be. This stems 
from the fact that detecting which class is faulty early, would 
allow mitigating plans to be concentrated on the high risk 
components before changes can be implemented. 

VIII. MODEL APPLICATION TO SCIA 
This section present the application of the prediction model 
during software maintenance. Using this model will assist in 
identifying which set of classes in the impact set of a change 
request are more likely to have faults or fail if changes are 
committed on them. To construct the prediction model, the KC1 
dataset and the software metrics were used. However, before 
predicting FP of classes in the impact set, static analysis SCIA 
framework shown in Figure 1 will be applied to predict the 
impact set. Based on the variables collected, the maintainer can 

LR Model Predicted Fault 

Non-Faulty Faulty 

 M1 M2 M3 M1 M2 M3 

Non-Faulty 85 82 84 2 3 1 

Faulty 2 11 1 58 49 59 

LR Model Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

 
M1 97 98 97 
M2 82 97 90 
M3 98 99 99 

      Predictors ( )    Constant 
( ) 

Predicted 
Model 

CBO RFC         WMC DIT SLOC 

M1 2.867 0.195 0.711 - - -36.938 

M2 - - 0.173 - 0.008 -4.857 

M3 2.938 0.200 - 2.214 - -37.124 
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then compute the FP of each class known to be affected by the 
change request using any of the prediction models M1, M2 and 
M3. In this case, we employed M3 as the predictive model since 
it yielded the highest accuracy rate of 99%. Thus, the model is 
fitted follows: 
(1/Class FP) = (- 37.124 + 2.938(CBO) + 0.2(RFC) + 2.214(DIT)) 

Furthermore, a class is considered fault-prone if the risk is more 
than 50%. That is, the risk rate > cutoff value (0.5). To compute 
the risk associated with each class, we developed a novel tool 
called Class Change Recommender (CCRecommender). 

A. Class Change Recommender 

     The CCRecommender is a novel tool developed in Java to 
help software maintenance personnel to compute the risk or FP 
of each class affected by a change request before the change 
implementation. To use CCRecommender during maintenance 
involve building the model first by using any statistical tool in 
order to compute values of the regression coefficients, , , and 
others parameters. Then the parameter values and the metric 
values of each included metric are use as input to the tool. In 
the M3 model chosen, three metrics are included, CBO, RFC 
and DIT. The interface of the tool is captured in Figure 2. The 
prediction menu is where the actual computation is performed. 
First is the entering of the intercept ( ) called alpha. Next is the 
choice of the metrics for the model, the entering of their values 
as well as their respective regression coefficients ( ) called 
beta. After entering the value and the  value for a metric, the 
button “SET” is used to input the values of the next chosen 
metric. After entering all the parameters values, the COMPUTE 
button is used to obtain the risk value in percentage of the 
affected class. 

 
Fig. 2. CCRecommender system 

In essence, CCRecommender also offers modification advice 
based on the risk value of each class on whether a change is 
advisable or not. It is modeled based on the following cutoff 
probabilities or conditions: 

1) Condition I: If the risk value is less than or equals to 20, 
(prob.  0.2) a GREEN CIRCLE will appear. The indication 
is that the class is not fault-prone and the change can be 

implemented with no risk. For instance, the result captured in 
Figure 3 indicates that the risk associated with making changes 
to a class having CBO = RFC =10 and DIT = 1 is 3%. 

 
Fig. 3. Prediction results for condition I 

2) Condition II: If the risk value is greater than 20% but 
less than or equals to 50% (0.2 > prob.  0.5), a BLUE 
CIRCLE will appear indicating the class is not fault-prone, but 
care must be taken when making changes to such a class. For 
instance, if a particular class has CBO = 10, RFC = 10 and DIT 
= 1, the prediction on the system will yield the following result 
as shown in Figure 4. 

 

 
Fig. 4. Prediction results for condition II 

3) Condition III: If the risk value is greater than 50% but 
less than or equals to 70%, (0.5 > prob.  0.7), a YELLOW 
CIRCLE will appear. The indication is that the class is fault-
prone. However, before changes can be made verification and 
validation activities must be focused on such class to fix the 
faults. For example, the FP probability for a class having metric 
values, say CBO = 11, RFC = 25 and DIT = 0 will be 55% as 
shown in Figure 5. 
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Fig. 5. Prediction results for condition III 

4) Condition IV: lastly, if the risk value is greater than 
70%, (prob. > 0.7), a RED CIRCLE would appear, indicating 
that the class is severely fault or failure-prone. In this case, 
change is not recommended on such as class.  For instance, for 
a class having CBO = 8, RFC = 36 and DIT = 5, the risk rate or 
FP probability would be 99%. See Figure 6. However, 
additional plans can be invoked that either reject the change or 
redesign the system, apply refactoring and so on before actual 
changes can be possible. 

 
 

 
Fig. 6. Prediction results for condition IV 

       The above results indicates that, a class having a high 
amount of coupling, a great number of outside and inside 
methods coupled with inheritance having extended depth are 
more likely to have faults than a class with lower values of  the 
metrics. Thus, we advise that software engineers should use the 
information provided by the model after SCIA in order to know 

if a change is going to be risky or not. This will assist in 
reducing or avoiding the costly changes. 

IX. CONCLUSIONS AND FUTURE WORK 
This paper presented an extended framework for SCIA that 
incorporates both change impact and FP predictions during 
software maintenance. The approach is intended to preserve the 
quality of the system under maintenance. As today software 
applications have grown in size and complexity as well as OOS 
classes being faulty, maintaining a faulty class without the 
knowledge of existing fault could be very risky. As a cost-
effective, we discussed an approach that predict the occurrence 
of potential faults in the impact set before actual changes are 
made. To assist engineers in channeling efforts to high risks 
components during maintenance, a tool called 
CCRecommender was developed. It is intended for use to 
quantify the risk associated with making changes on a fault-
prone class in the impact set before actual changes are 
implemented. This will provide important information in 
making good decisions, plan and allocate resource, reduce cost 
as well as assure high quality. 
      
The study limitation is that CCRecommender has not been 
applied to a real-world system. We only used the dataset from 
the public domain to demonstrate its operation during 
maintenance. Therefore, the results obtained cannot be 
generalized to any other similar empirical studies in terms of 
metrics validation. Moreover, the tool is not automated, thus 
require parameters to be mined externally. To this end, the 
future work will be on automation and to perform the prediction 
on a real-world software in order to evaluate the accuracy and 
effectiveness of the tool. Additionally, we will consider other 
prediction models to find out which one is more effective and 
accurate. 
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