
ACRO: Assignment of Channels in Reverse Order
to Make Arbitrary Routing Deadlock-free

Ryuta Kawano1, Hiroshi Nakahara1, Seiichi Tade1, Ikki Fujiwara2,

Hiroki Matsutani1, Michihiro Koibuchi2, and Hideharu Amano1

1Keio University 2National Institute of Informatics

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

blackbus@am.ics.keio.ac.jp {ikki, koibuchi}@nii.ac.jp

Abstract—Distributed routing methods with small routing
tables are scalable design on irregular networks for large-scale
High Performance Computing (HPC) systems. Recently proposed
compact routing methods, however, do not guarantee deadlock-
freedom. Cyclic channel dependencies on arbitrary routing are
typically removed with multiple Virtual Channels (VCs). How-
ever, challenges still remain to provide good trade-offs between a
number of required VCs and a time complexity of an algorithm
for assignment of VCs to paths. In this work, a novel algorithm
ACRO is proposed for enriching arbitrary routing functions with
deadlock-freedom with a reasonable number of VCs and a time
complexity. Experimental results show that ACRO can reduce the
average number of required VCs by up to 63% compared with
the conventional algorithm that has the same time complexity.
Furthermore, ACRO reduces a time complexity by a factor of
O(|N | · log |N |) compared with that of the other conventional
algorithm that needs almost the same number of VCs.

I. INTRODUCTION

For large parallel applications executed on next generation

High Performance Computing (HPC) systems, MPI commu-

nication latency should be lower than one microsecond [1],

[2]. There is thus a strong need for low-latency inter-switch

networks for these systems. Switch delays (e.g., about 100

nanoseconds in InfiniBand QDR) are typically larger than

the wire and flit injection delays even when including serial

and parallel converters. Therefore, to achieve low latency,

inter-switch topologies should have low diameter and low

average shortest path length, both of which can be measured

in numbers of switch hops.

Compared with the conventional Torus or Fat-tree networks,

recently proposed random shortcut topologies can drastically

reduce the number of hops [3], [4], [5]. It is reported that such

topologies can be efficiently applied to inter-switch networks

for HPC systems and Datacenters. For these topologies, it is

necessary to use topology-agnostic routing algorithms [6]. To

implement such algorithms, each switch must have forwarding

table entries for all of the destination nodes, which degrades

scalability for larger system sizes.

A problem of dealing with trade-offs between the number of

hops and the number of forwarding table entries has been well

discussed by researchers in the field of distributed computing.

Such problem is called Compact Routing [7]. Recent tech-

nologies of MPLS or OpenFlow enable such routing methods

TABLE I: Trade-offs on conventional algorithms.

Routing # of required VLs Time Complexity

LASH 9 for 256 SWs O(|N |2)
LASH-TOR 4 for 256 SWs O(|N |3)

to be utilized for HPC networks. These algorithms only

support livelock-freedom and do not offer deadlock-freedom.

Therefore, enriching livelock-free routing, including compact

routing methods, with deadlock-freedom would be needed to

apply it to practical HPC networks.

In this work, in order to support deadlock-freedom for

arbitrary routing methods, multiple Virtual Channels (VCs) for

each physical channel are exploited. With a given topology

and the routing table obtained from a livelock-free routing

algorithm assumed as inputs, VC assignment to paths is

generated by our new methodology, which has a small time

complexity yet with the same number of VCs compared with

the conventional method. Our new methodology is referred to

as Assignment of Channels in Reverse Order (ACRO).

The rest of our paper is organized as follows. Section II

shows related work. In Section III, the detailed ACRO al-

gorithm is presented. In Section IV, the ACRO algorithm is

evaluated and compared with the conventional VC assignment

methods. In Section V, discussion about the implementation

on Infiniband is presented. Section VI shows some future work

and conclusion.

II. RELATED WORK

A. Virtually Layered Networks

Some deadlock-free routing methods exploit multiple Vir-

tual Channels (VCs) to break cyclic channel dependencies.

One of them is LASH routing [8], [9], in which each VC be-

longs to one Virtual Layer (VL). Each source-and-destination

pair is assigned to one of VLs, as shown in Fig. 1a. Each VL

contains subset of a set of all paths, which does not form

cyclic channel dependencies. This routing method supports

deadlock-free minimal paths at the cost of relatively large

number of VLs. For 256 nodes, LASH uses up to 9 VLs.

To avoid its weakness, an extended method, LASH-TOR [10]

was proposed. It can reduce the number of required VLs by

permitting transitions among ordered VLs in descending order,

978-1-5090-0806-3/16/$31.00 copyright 2016 IEEE
ICIS 2016, June 26-29, 2016, Okayama, JapanAuthorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 21:19:45 UTC from IEEE Xplore. Restrictions apply.

�������

��	
�����
� ��������
�

���

���

(a) LASH routing.

�������

�	��
���
�

���
������� ��	�������

���

���

(b) LASH-TOR routing.

Fig. 1: Routings with virtual layers.

as shown in Fig. 1b. Only 4 VLs for 256 nodes are required to

support deadlock-free minimal routing with LASH-TOR. The

trade-off is its time complexity, O(|N |3), which makes it quite

unrealistic for large-sized networks. We summarize the trade-

offs on these routing algorithms in Table I. Although these

methods mainly focus on shortest path routing, they can be

extended for arbitrary routing including non-minimal routing

by calculating paths obtained from the routing and treating

them as inputs to the methods. In this work, multiple VLs are

exploited to support deadlock-freedom in the same way.

B. Ordered Channels

To avoid cyclic channel dependencies in each VL, the

ordered channels are introduced. A previous work [11] proves

the following theorem.

Theorem 1. A set of paths within a network is deadlock-free
if and only if there exists an ordering of the channels such
that each of the paths uses channels in decreasing order.

This can be proved by a topological sort for a Channel

Dependency Graph (CDG) induced by a set of paths [12]. In

this work, a heuristic is introduced for the channel ordering in

each VL to maximize the number of paths and the length of

each path routed within the VL. By combining this heuristic

approach and the transitions among VLs as mentioned in

Section II-A, the number of required VLs is minimized.

III. ACRO FOR DEADLOCK-FREE ROUTING

A. Problem Definition

According to the general models [11], network configuration

is defined as follows.

Definition 1. An interconnection network I is represented by
a directed graph I = (N,C), where N is a set of switches
and C is a set of physical channels.

��

�

�

����� �����

�����

�����

�����

�

�	��� ���	�

�	���

���	�

�����

(a) Topology

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�

�

(b) Routing Table

Fig. 2: Example of given inputs.

Definition 2. A deterministic routing function R : N×N → C
returns the physical output channel cout to be taken from a
node ni for packets whose destination node is nd.

In our methodology, a topology and a routing table shown in

Fig. 2 are given as an interconnection network and a routing

function, respectively. The routing table in Fig. 2b takes a

current node ni and a destination node nd as inputs, and

returns the next node nnext. Therefore, the output channel

cout in Def. 2 is determined as follows. cout is (ni, nnext)
if ni �= nd, otherwise cout becomes clocal,nd

.

The definition of a VL Li of a network I is the same

manner as that in LASH-TOR [10], that is, Li can be treated

as a virtual network that is isomorphic to the original physical

network I . Additionally, in this work, Li is defined as a strictly

and decreasingly ordered set. It contains the sorted physical

channels of I such that every path within Li is restricted to

use the corresponding VCs in decreasing order.

Given the inputs of a topology and a routing table, a strictly

and decreasingly ordered set of layers L = {L|L|−1, ..., L0}
is determined such that for every source-and-destination pair,

the path can reach the destination by using channels in

decreasing order within each Li and transitions among layers

in decreasing order within L.

B. CDG Generation for Each Destination

In the conventional implementation of LASH-TOR [10], at

least a cyclic dependency check must be done for a path.

Since a cyclic dependency search has a time complexity

O(|C| + |E|), the minimum time complexity per VL be-

comes approximately O(|N |3). In the recent improvement on

LASH [9], only a cyclic dependency check per VL is needed.

This can be done by initially adding all paths to a CDG and

checking cyclic dependencies for all edges. Detected cycles

are removed by moving a portion of paths included in each

cycle to the next VL. Then, the dependency check is done

again. It is iterated until no cyclic dependency is detected. This

solution is called an offline-manner which can reduce the time

complexity of search to O(|N |2). Here, the extension of this

offline-manner for LASH-TOR, called ACRO is proposed to

balance the number of VLs and the time complexity.

The detail of ACRO is shown in Alg. 1. A set of paths from

a set of nodes N to a destination node nd is determined as

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 21:19:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Assignment of Virtual Layers.

Input: I = (N,C), a Routing Table

Output: a Set of Virtual Layers L
for all n ∈ N do

Create a CDG Tn = (C,En)
for all c ∈ C do

Calculate a weight value w(n, c)
m(n, c) ← False

end for
end for
/* Set an initial number of Virtual Layers */

i ← 0
repeat

Create a new empty strictly ordered set Li

Create a new empty set U
for all c ∈ C do

Add c to U
for all n ∈ N do

Calculate a fitness value f(n, c)
end for
Calculate the sum of fitness values F (c)

end for
while U �= ∅ do

From U remove cmin which minimizes F (c)
Add cmin to the head of Li

for all n ∈ N do
if cmin has no parent in Tn then

m(n, cmin) ← True

for all c′′ ∈ Cchild(n, cmin) do
Remove an edge (c′′, cmin) in Tn

F (c′′) ← F (c′′)− w(n, c′′)
end for

end if
end for

end while
Add Li to the head of L
i ← i+ 1

until ∀n ∈ N ∀c ∈ C, m(n, c) = True

T ′nd
= (N,Cnd

), satisfying Cnd
⊂ C. T ′nd

forms a directed

tree whose root is nd, and all edges are directed toward

the direction of nd. T ′nd
produces a Channel Dependency

Graph (CDG) for the destination nd. Here, it is represented

as Tnd
= (C,End

), where End
denotes a set of the channel

dependencies. Tnd
is a set of directed trees as shown in Fig. 4b,

and the node of the CDG is corresponding to ’channel.’ For

avoiding the confusion, a node of the CDG is called ’channel.’

In this work, all of the channel dependencies with all paths

in a traffic are determined as a set of CDGs for the destination

nodes rather than the source nodes. This is due to the following

reasons. As shown in Fig. 3b, if a CDG is generated for each

source node, the number of referred elements in the table for

each destination node is equal to the number of hops between

the source and destination nodes (Fig. 3a). Therefore, the

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�

�

(a) Routing Table

����������

�����

���	�

(b) CDG for src. #0

Fig. 3: Creation of CDG for src. #0.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�

�

(a) Routing Table

����������

�����

�	���

(b) CDG for dst. #0

Fig. 4: Creation of CDG for dst. #0.

time complexity becomes O(|N | · log |N |) for each source

node. Note that O(log |N |) comes from the characteristics of

irregular networks [13].

On the other hand, as shown in Fig. 4b, if a CDG is

generated for each destination node, only a column of the

table is needed to be referred (Fig. 4a). As a result, the time

complexity becomes O(|N |) for each destination node.

C. Heuristic Approach to Reduce VLs

VCs in each VL should be ordered properly to minimize the

number of required VLs for deadlock-freedom. In this section,

a simple heuristic is introduced to minimize the number of

paths and the length of each path moved to the next VL.

Cchild(n, c) is a set of channels which are children of the

channel c in Tn. In Tn, w(n, c) is defined as a weight of

a channel c, which is calculated by the following recursive

formula.

w(n, c)

=

⎧
⎨

⎩

1 (if Cchild(n, c) = ∅)
∑

c′∈Cchild(n,c)

|N | · w(n, c′) (otherwise)

This value increases depending mainly on the distance of the

channel c from the leaf, and secondarily on the number of

descendants. This calculation is done at the beginning of the

algorithm.

Immediately after generating a new VL, a fitness value of c
in Tn, f(n, c), is calculated. This value is defined as follows.

f(n, c) =

{
0 (if c has no parent in Tn)
w(n, c) (otherwise)

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 21:19:45 UTC from IEEE Xplore. Restrictions apply.

The value of 0 implies that c is a root in one of the trees

in Tn, and thus the smallest order is desirable to be assigned

into c. Furthermore, the sum of fitness values for c, F (c), is

calculated as follows.

F (c) =
∑

n∈N
f(n, c)

D. Assignment of VLs to Paths in Reverse Order

To make sure whether a channel is reachable in Tn, an

|N |×|C| boolean table is introduced. Each element of the table

is initially set to a boolean value ’False’, which is specified by

m(n, c) in Alg. 1. The termination condition of the algorithm

is that all channels c ∈ C are reachable in Tn for all n ∈ N .

The VLs and VCs are assigned for each path in the reverse

order. Namely, unlike the conventional virtually layered net-

works, the VLs and VCs are assigned in the order from the

destination node to the source node. After generating a new VL

Li as an empty ordered set, the channel cmin which minimizes

the value of F (c) is selected from unassigned channels, and

added to the head of Li. For each CDG Tn, if the channel

cmin does not have a parent in Tn, the following procedures

are done. Since cmin is reachable in Tn, the boolean value of

’True’ is assigned to m(n, cmin). Furthermore, edges from all

the children of cmin to cmin are removed if exists.

This deletion of the edges denotes that the dependency

between the child of cmin and cmin will be dissolved in either

of the following two ways. If the order of the child is not

assigned yet, it will be inevitably larger than that of cmin.

This means that the dependency is dissolved within the current

VL Li. Otherwise, the order of the child is surely smaller

than that of cmin, which cannot dissolve the dependency. Even

after all the channel orders are assigned in Li, the termination

condition is not satisfied. This leads to the generation of a

VL Li+1. The dependency will be dissolved by the transition

between the child in Li+1 and cmin in Li.

E. Proof of Deadlock-freedom

Theorem 2. The VC and VL assignment with ACRO can
enrich a given topology and a routing table with deadlock-
freedom.

Proof. Each VC that belongs to c in a VL Li is labeled

with a two-digit number (i, Idx(i, c))|C|, where Idx(i, c) is

the order of c in Li and (i, j)|C| = i · |C| + j. Given these

labeling to VCs, the proposed algorithm in Alg. 1 establishes a

route of the consecutive channels which are labeled in strictly

decreasing order for every source-and-destination pair. With

the notation of Theorem 1, the resultant routing is deadlock-

free.

IV. EVALUATION

In this section, the proposed VC assignment method is

evaluated and compared with the conventional VC assignment

methods proposed in LASH and LASH-TOR. As shown in

Section III, a topology of switches and a routing table are

given as inputs. Note that the routing table takes source and

current nodes, and returns a destination node.

A. Number of Required VLs
In this section, the impact of the network size and the

node degree to the number of VLs is analyzed. Note that the

degree is corresponding to the number of ports of a switch. In

this evaluation, the VC assignment algorithms in LASH and

LASH-TOR are implemented as follows.
1) VC Assignment Methodology in LASH: Let GCD,i be a

CDG created by a set of paths in Li. For a given path between

a source node ns and a destination node nd, the algorithm

searches a set of VLs L to find Li ∈ L. The path induces

the channel dependencies, which could be added to GCD,i

without generating a cycle of channel dependencies. If Li is

found, the dependencies are added to GCD,i. Otherwise, a new

VL and the corresponding CDG are created and the channel

dependencies are added to the new CDG.
2) VC Assignment Methodology in LASH-TOR: Let GCD

be a set of CDGs created by sets of paths in a set of VLs L.

For the same inputs as Section IV-A1, the algorithm searches

L and N to find {L′, S}, satisfying L′ ⊆ L and S ⊂ N .

The path would be split into the subpaths according to the

transition node sj ∈ S. Each subpath would induce the channel

dependencies, which could be added to GCD,i ∈ GCD without

generating a cycle of dependencies within the VL Li ∈ L′

respectively. If {L′, S} is found, the dependencies are added

to GCD. Otherwise, a new VL and the corresponding CDG

are created and added to L and GCD, respectively. GCD

then incorporates the dependencies obtained from {L′, S} that

satisfies the condition mentioned above, and is exhibited by

the additional VL. The original implementation of LASH-TOR

can limit the number of VLs by permitting non-minimal paths

with up*/down* routing on the final VL. This technique is not

used in this evaluation because a routing table is given as an

input. It means that the alternative paths are forbidden.
Surely connected regular random topologies are adopted in

this evaluation, in which all of the edges are bidirectional.

The number of nodes is set to |N | = 64, 256. The number

of degree d is varied from 4 to 12. In this evaluation, a

hundred topologies are generated from different seeds for each

(|N |, d) pair. The corresponding routing tables take exactly

one minimal path for a source-and-destination pair. In the

original LASH and LASH-TOR routing, only a topology is

assumed as an input. This enables them to select a minimal

path from multiple minimal paths if exist so that the number

of VLs is minimized. This path selection does not occur in

this evaluation because of the given routing table.
Fig. 5 and Fig. 6 show the maximum, minimum, and average

numbers of required VLs for 64- and 256-node topologies.

These results show that ACRO efficiently reduces the number

of VLs compared with the VC assignment methodology in

LASH routing. For 64-node topologies, it reduces the average

and maximum numbers of required VLs by up to 37% and

50%, respectively. Furthermore, for 256-node topologies, it

reduces the average and maximum numbers of required VLs

by up to 60% and 63%, respectively. The additional result

is that the heuristic used in ACRO achieves almost the same

number of required VLs as the VC assignment methodology

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 21:19:45 UTC from IEEE Xplore. Restrictions apply.

 2

 3

 4

 5

 6

 2 4 6 8 10 12#
of

 r
eq

ui
re

d
V

irt
ua

l L
ay

er
s

Degree

LASH
LASH-TOR

ACRO

(a) Maximum.

 2

 3

 4

 5

 6

 2 4 6 8 10 12#
of

 r
eq

ui
re

d
V

irt
ua

l L
ay

er
s

Degree

LASH
LASH-TOR

ACRO

(b) Minimum.

 2

 3

 4

 5

 6

 2 4 6 8 10 12#
of

 r
eq

ui
re

d
V

irt
ua

l L
ay

er
s

Degree

LASH
LASH-TOR

ACRO

(c) Average.

Fig. 5: Number of required VLs (64 nodes)

 2

 4

 6

 8

 10

 2 4 6 8 10 12#
of

 r
eq

ui
re

d
V

irt
ua

l L
ay

er
s

Degree

LASH
LASH-TOR

ACRO

(a) Maximum.

 2

 4

 6

 8

 10

 2 4 6 8 10 12#
of

 r
eq

ui
re

d
V

irt
ua

l L
ay

er
s

Degree

LASH
LASH-TOR

ACRO

(b) Minimum.

 2

 4

 6

 8

 10

 2 4 6 8 10 12#
of

 r
eq

ui
re

d
V

irt
ua

l L
ay

er
s

Degree

LASH
LASH-TOR

ACRO

(c) Average.

Fig. 6: Number of required VLs (256 nodes)

in LASH-TOR routing in which paths are assigned to VLs

sequentially. Moreover, ACRO accomplishes as small variance

in the number of required VLs as LASH-TOR. In our evalua-

tion, a difference of 2 between the maximum and the minimum

numbers of required VLs is observed for LASH in the case

of (|N |, d) = (64, 3). On the other hand, the differences for

ACRO and LASH-TOR never exceed 1.

B. Time and Memory Complexity
The original algorithm for the VC assignment in LASH [8]

is accelerated by the recent implementation [9]. In this imple-

mentation, the time complexity and the memory complexity

of VC assignment algorithm are as follows.

Proposition 1. The time complexity of the algorithm for VC
assignment in LASH is

O(∇ · (|C|+ |E|) + |N |2)
while the memory complexity is

O(∇ · h(I) · |N |2 +∇ · (|C|+ |E|)).
In this proposition, ∇ and h(I) are a number of required

VLs and diameter of a topology, respectively. These parame-

ters are used in the propositions to be hereinafter described.

On the other hand, the time and memory complexities of VC

assignment algorithm in LASH-TOR [10] are as follows.

Proposition 2. The time complexity of the algorithm for VC
assignment in LASH-TOR is

O(|N |2 · (h(I) · ∇ · (|C|+ |E|)))

while the memory complexity is

O(∇ · (|C|+ |E|))
From the proposed ACRO algorithm shown in Alg. 1,

the time and memory complexities are summarized as fol-

lows. The generation of CDGs for all the destinations has

a time complexity of O(|N |2) and a memory complexity of

O(|C| · |N |). A time complexity to calculate all the weight

values w(n, c) is O(|N | · (|C| + |E|)), while a memory

complexity is O(|C| · |N |). The summation of fitness values

to evaluate F (c) has a time complexity of O(|C| · |N |) and

a memory complexity of O(|C|). Moreover, the selection of

the channel which minimizes the fitness function F (c) and the

modification of F (c) need time complexities of O(|C|) and

O(|N |2) in total, respectively.

These findings as mentioned from the above is followed by

these propositions.

Proposition 3. The time complexity of the ACRO algorithm is

O(∇ · (|N |2 + |N | · |C|+ |C|) + |N | · |E|)
while its memory complexity is

O(|C| · |N |+∇ · |C|).
Given that a topology is randomly generated and the degree

d is quite smaller than the network size |N |, the propor-

tionalities h(I) ∝ log |N |, |C| ∝ |N |, and |E| ∝ |N |
are satisfied [13]. From these proportionalities, it can be

said that ACRO reduces a time complexity by a factor of

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 21:19:45 UTC from IEEE Xplore. Restrictions apply.

O(|N | · log |N |) compared with that of the VC assignment

algorithm in LASH-TOR yet with almost the same number of

required VLs.

V. IMPLEMENTATION ON INFINIBAND

In this section, implementation of ACRO on Infiniband is

discussed and compared with that of the conventional VC

assignment methodologies in LASH and LASH-TOR.

On Infiniband networks, a packet only includes the infor-

mation of a destination node as a destination LID (Local

IDentifier) in the header. Moreover, the forwarding table in

each switch refers only the LID of the packets to determine

the output channel. In LASH and LASH-TOR algorithms, to

reduce the numbers of required VCs, one of the minimal paths

for a given source-and-destination pair is selected. Therefore,

packets which have the same destination node may use the

different output ports in a switch. For this reason, LASH and

LASH-TOR cannot be implemented with the naive manner

because of the routing specification of Infiniband switches

mentioned before.

A workaround plan [14] against this problem exploits LMC

(LID Mask Control) to use multiple virtual switches for a

single physical switch. This implementation lacks scalability

because one sub-net can use approximately 48,000 LIDs at

maximum. On the other hand, ACRO takes a routing table

as an input. It means that packets for the same destination

node must use the same output port regardless of the source

node. Thus, the LIDs can be assigned to physical switches in

a one-to-one correspondence manner. Hence it can be said that

ACRO is more suitable for implementation on Infiniband than

the conventional LASH and LASH-TOR.

Another merit of ACRO is that a VL used by a packet

is determined only by a destination node of the packet and

an output channel. However, the SLtoVL mapping table in

Infiniband switches does not take the destination node of the

packet as an input. It instead takes the SL (Service Level) of

the packet. One possible solution to implement VL assignment

with ACRO is to embed the information of the destination

node to the SL. Although the number of SLs is limited to

16, the different destination nodes can share the same SL

unless there is any conflict in the SL-to-VL mapping. This

sharing could reduce the number of required SLs. The detailed

methodology is our future work.

VI. FUTURE WORK AND CONCLUSION

The remaining work is as follows. Dealing with the fault

tolerance is one of big challenges from the viewpoint of

practical HPC networks. It would be solved by extension

of our methodology for multi-path routing. Here, we mainly

focused on the number of VLs and the time complexity of the

algorithm. The methodology for load balancing among VCs

also remains as another challenge.

We conclude this paper as the following summary. An

algorithm to make arbitrary routing methods for irregular net-

works deadlock-free was proposed with a reasonable number

of virtual channels and a time complexity. In the algorithm,

VCs are assigned to paths from the destination node to the

source node. In order to remove cyclic dependencies with a

number of VLs as small as possible, a heuristic is introduced.

The proposed VC assignment algorithm, ACRO, has a quite

small time complexity yet requires almost the same number

of VLs compared with that in LASH-TOR.

Experimental results show that ACRO supports both the

reduced number of VLs, equivalent to that in LASH-TOR,

and the time complexity as small as LASH at the same time.

We believe that ACRO is the versatile and scalable scheme, in

terms of both implementation and time complexity, to enrich

arbitrary routing with deadlock-freedom for the future HPC

networks.

Acknowledgment A part of this work was supported by

JSPS KAKENHI Grant Number JP 15J03374.

REFERENCES

[1] K. Scott Hemmert et al, “Report on Institute for Advanced Architectures
and Algorithms, Interconnection Networks Workshop 2008,” http://ft.
ornl.gov/doku/ media/iaaicw/iaa-ic-2008-workshop-report-v09.pdf.

[2] J. Tomkins, “Interconnects: A Buyers Point of View,” ACS Workshop,
2007.

[3] J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-World Datacenters,” in
Proc. of the Symposium on Cloud Computing (SoCC), Oct 2011, pp.
2:1–2:13.

[4] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova, “A
Case for Random Shortcut Topologies for HPC Interconnects,” in Proc.
of the International Symposium on Computer Architecture (ISCA), 2012,
pp. 177–188.

[5] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-
working Data Centers Randomly,” in Proc. of USENIX Symposium on
Network Design and Implementation (NSDI), 2012, p. 17.

[6] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato,
M. Koibuchi, T. Rokicki, and J. C. Sancho, “A Survey and Evaluation
of Topology-Agnostic Deterministic Routing Algorithms,” in IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 23, no. 3,
Mar. 2012, pp. 405–425.

[7] L. J. Cowen, “Compact Routing with Minimum Stretch,” in Proc. of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999, pp.
255–260.

[8] T. Skeie, O. Lysne, and I. Theiss, “Layered Shortest Path (LASH)
Routing in Irregular System Area Networks,” in Proc. of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2002.

[9] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-Free Oblivious
Routing for Arbitrary Topologies,” in Proc. of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2011, pp. 616–
627.

[10] T. Skeie, O. Lysne, J. Flich, P. Lopez, A. Robles, and J. Duato, “LASH-
TOR: A Generic Transition-Oriented Routing Algorithm,” in Proc. of
the 10th International Conference on Parallel and Distributed Systems
(ICPADS), 2004, pp. 595–604.

[11] W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multi-
processor Interconnection Networks,” IEEE Transactions on Computers
(TC), 1987.

[12] D. M. Chiu, M. Kadansky, R. Perlman, J. Reynders, G. Steele, and
M. Yuksel, “Deadlock-free Routing Based on Ordered Links,” in Proc. of
the 27th Annual IEEE Conference on Local Computer Networks (LCN),
2002, pp. 62–71.

[13] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[14] O. Lysne, “Deadlock Free Network Routing,” May 2010, US Patent
7,724,674.

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 21:19:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

