
An Executable Model and Testing for Web Software
based on Live Sequence Charts

Liping Li1*
1Computer and Information

Engineering Institute,
Shanghai Polytechnic University,

Shanghai, 201209, China
*E-mail: liliping@sspu.edu.cn

Honghao Gao2
2Computing Center,

Shanghai University, 200444,
Shanghai, China

E-mail: gaohonghao@shu.edu.cn

Tang Shan3

3Computer and Information
Engineering Institute,

Shanghai Polytechnic University,
Shanghai, 201209, China

E-mail: tangshan@sspu.edu.cn

Abstract Static modeling is often difficult to understand
when meet with complicated, large-scale Web software which has
many unique characteristics. Aim at this problem, this paper
proposes a method to create an executable model for Web
software based on Live Sequence Charts (LSCs). The executable
model can simulate the running of the system, which helps to find
the inconsistency of the model in early development stage. Then
the LSCs model is transformed to a symbolic automaton. Testing
scenarios can be generated by traversing the automaton by
depth-first search (DFS). Results showed test cases generated by
this executable model are more effective than general model. We
hope this method can do some help to the modeling and testing of
the Web application.

Keywords Executable model; Web software; test scenario;
Live Sequence Chart; symbolic automaton.

I. INTRODUCTION

Software testing is one of the most important means to
guarantee software quality and improve software reliability.
With the development of big data, cloud computing, Web
software is becoming more and more complex. According to
the Symantec Report, more than 60% of the software security
vulnerabilities are about Web application, and these
vulnerabilities may lead to various attacks and serious results
[1]. How to ensure the quality and the security of Web
applications have got much attention. But the characteristics of
interaction, dynamic, heterogeneous, diversity and short
development cycle etc. make the modeling and testing of Web
software more complicated than before.

Static modeling is often difficult to understand for large-
scaled Web software. Nowadays, the premise of most model-
based testing is to suppose the test model is correct. If the test
model itself is wrong, the test case generated by the model is
also wrong. How to confirm the correctness of the model and
how to verify them are still the hot topic in discussion.

Scenario-based specification language, such as Message
Sequence Charts (MSCs), UML sequence diagram represent
how system components, the environment, and users interact in
order to provide system level functionality [2]. Live Sequence
Chart (LSC) is a visual scenario-based modeling and
specification language. It is an extension of MSC and UML 2

sequence diagram, but LSC are more expressive and
semantically rich than them [3].

At present, there have been many research achievements on
scenario-based modeling and testing, but most of the model
cannot simulate the system’s running dynamically.

Hussein et al. [4] proposed a method to describe the
scenario by use case, they used classes to present the structure
of the system, and state machines to model the behavior of the
system. Massacci and Naliuka [5] use UML sequence
diagrams and linear temporal logic to modeling behavioral of
the system. But the semantics of UML sequence diagrams is
not suited to model constraints like obligation, and prohibition.
LSCs are Zell Ge¿neG anG haYe a strict formal semantics , and
can be used at various stages of the software development and
verification process [6]. Sven Patzina1 et al. [7] illustrated
/iYe SeTuence Charts are aGeTuate for the speci¿cation of
behavioral signatures. Paper [8] introduced Live Sequence
Charts are a wonderful scenario-based language and
introduced their tool Play-Engine. A lot of other work [9-13]
presented Live Sequence Charts are well defined and possess a
strict formal semantics. But, most work is investigating LSC
model-checking problem. To the best of our knowledge, there
is little paper focus on the modeling and testing of Web
Applications by LSCs.

This paper proposed a new method to testing Web
application. We first present how to construct an executable
model for the Web application using use cases and Live
Sequence Charts (LSCs). Then transform these LSCs model to
symbolic automata. Finally generate test scenarios for Web
application by traversing the automata. For the executable
model, we first adopt hierarchical profile use cases to describe
the high-level function requirement of Web software. Then use
LSCs to model the detail behavioral requirements. Because
LSCs can simulate the execution of the system dynamically,
we can check how a running LSC affects the system behaviors
in response to a set of external events.

The remainder of this paper is organized as follows:
Section 2 describes the proposed approach to constructing the
executable model for Web software and shows an example.
Section 3 transforms LSCs to symbolic automaton and
generates test scenarios. Section 4 discusses some related

978-1-5090-0806-3/16/$31.00 copyright 2016 IEEE
ICIS 2016, June 26-29, 2016, Okayama, JapanAuthorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2024 at 19:16:01 UTC from IEEE Xplore. Restrictions apply.

work. Section 5 concludes the paper and highlights our future
work.

II. THE CONSTRUCTION OF EXECUTABLE MODEL
In this chapter, we show how to create the executable model

for Web Application through an example. First, hierarchical
use cases are applied to describe the high-level function
requirements, and then LSCs is used to model the detail
behavioral of the Web system.

A. The Hierarchical Use Case Model
A use case is an informal description of a collection of

possible scenarios involving the system under test and its
external actors. However, since use cases are high-level and
informal by nature, they cannot be served as the basis for
formal testing and verification. To support a more complete
and rigorous development cycle, use cases must be translated
into fully detailed requirements written in some formal
language [4].

We use model driven approach to create the executable
model for Web Application. In UML, use case diagram is used
to specify system’s high-level behavioral requirements. A use
case diagram depicts actors, use cases, and relationships
between them. Actors are external entities that interact with
the system and use cases depict the function of the system.
Actually, each use case is a sequence of actions that the
system offers to its actors. LSCs are well defined and possess a
strict formal semantics [8]. In this paper, we first apply
hierarchical profile use cases to describe the high-level
function requirement of Web application. Live Sequence
Charts (LSCs) are used to model the detail behavioral
speci¿cation of each use case�

The approach of using hierarchical profile use cases to
describe the high-level function requirement is shown as below.

)rom the users’ perspectiYe� :eE application is
divided into several main use cases according to actors;
each of them completes a whole function of the actor.

 Divide the big use cases into a set of sub-use cases
according to the function. The primary relationships
between use cases are include, extend, and
generalization. We extend the relationship between
use cases with stereotype <<navigate>>, which means
Web pages navigation.

 Repeat step 2 until the behavioral requirement of each
use case in lower layer can be described easily by
LSCs.

A Web Flight Reservation System (WFRS) is used as an
example throughout the paper. The WFRS has three actors:
customer, agency and administrator. Through this system,
customers can search the flight information, reserve flight
tickets, view his/her orders and return tickets etc. And agency
also can search flight information, book tickets, and view
customer’s orGers� moGify, return or cancel orders. The
administrator can add/delete/modify the information of
customers and flights.

The top use-case diagram is shown as Figure 1. The
function of customer, shown as figure 2, is divided into four

use cases: Search Flight, Reserve Flight, View Orders and
Return Tickets. The relationship between uses cases with
stereotype <<navigate>> means the navigation of use cases.
For the space limited, we omit other actors’ use case diagram
here.

The adoption of hierarchical profile use case diagrams to
describe a complex Web application has the concise,
comprehensive and integrated features.

Fig 2. Use case diagram for customer

B. The Executable Model by LSCs
Live Sequence Chart (LSC) can serve to specify the

behavior of either sequential or parallel systems, based on
either centralized or distributed architectures, and they can be
used to describe the interaction between processes, tasks,
functions and objects [7]. LSC has universal chart and
existential chart which can be used to describe mandatory
behaviors or possible behaviors. A universal chart typically
contains a pre-chart (denoted by a top dashed hexagon) and a
main chart (denoted by a solid rectangle); pre-chart represents a
precondition that has to be fulfilled before the main chart, if the
pre-chart is satisfied, then the system is forced to satisfy the
defined scenario in the main chart right below the pre-chart.
Existential charts are more like MSCs and UML sequence
diagrams. They are basic charts depicted in a dotted frame
which are used in LSCs to specify sample interactions between
the system and its environment and must be satisfied by at least
one system run. An existential chart is usually used to specify a
testing scenario that can be satisfied by at least one possible

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2024 at 19:16:01 UTC from IEEE Xplore. Restrictions apply.

system run. In this paper, we mainly focus on the universal
chart.

Fig 3. A Universal LSC

Objects / instance variables in LSCs are represented by a
rectangular instance head and a vertical lifeline originating
from each instance head. The lifeline represents the time
dimension in the LSC with time progressing in the downward
direction. Each lifeline of the object is marked with the
number of points, which indicates that the event occurs or
conditions, referred to as a location. According to the location,
the sequence of events can be distinguished. As shown in
figure 3, referred from paper [11], there are four instance
variables/objects: I1, I2, I3, I4. Object I1 has three location
points < I1, 0>, < I1, 1>, < I1, 2>. Communication between
objects occurs with messages with the arrows representing the
direction of communication. Condition is represented by
hexagon, there are two conditions: Cond1 and Cond2. This
paper assumes all messages in LSCs are synchronous message
(filled arrowhead) where both the sender and receiver have to
be ready for the message to be observed. There are some
other important characteristics of live sequence chart, such as
cut and temperatures etc.

The notion of temperatures have values of hot and cold,
hot means elements must happen and cold is may happen [8].
For example, Object I1, being at location l1, sends a message
m1 to I2, who receives the message at location l2, if the
message and the locations are all hot, meaning that I1 must
send the message, the message must arrive, and I2 must
receive it. If the message and the location l1 are hot, but
location l2 is cold, that is mean I1 must send the message and
the message must arrive. However, I2 may decide not to
receive the message. There are eight different cases, each
indicating a different combination of temperatures for l1, m1
and l2.

The detail introduction of LSC can be seen in [8]. An
automatic tool Play-Engine has been provided to simulate
scenario based behavior through play-in and play-out approach
for LSCs.

We use the universal LSCs to modeling the WFRS, shown
as Figure 4. There are four objects in the example: Customer,
Agency, Airline and Seller.

Customer and Seller are the external objects, denoted by
waved clouds, which send the external/user inputs to the
system. Objects Agency and Airline each has a state variable,

conf, with the finite domain {false, true, abort} denoting
whether the order has been initiated, confirmed or aborted
respectively. There are two types of flight tickets, discount and
non-discount. If the passenger reserved the non-discount one
and at this point, the Airline has not confirmed the order,
he/she can return the tickets; otherwise, he/she cannot return
them. We introduce the parameter fNo to represent the ticket’s
type, fNo=1 denotes the non-discount tickets, 0 is the discount
one.

There are several scenarios in figure 4. Chart (a) (b) (c)
describes the scenario-based behavior of a successful flight
reserve. Chart (a) shows if a customer wants to reserve flight,
he/she creates an order, then the order is initiated in Agency by
setting Agency.conf false, sending a Order message to Airline,
and waiting for the acknowledgment; chart (b) says that if
Airline receives an order request, it will set Airline.conf false,
and then reply to Agency an acknowledgment; chart (c) shows
that Agency receives an order confirmation from Airline, and
then sets its state variable Agency.conf true. Chart (d) (e) (f)
represents the scenario of aborting the order. Chart (d)
describes if the customer wants to abort the order, and at that
point if the order has not been confirmed yet, an abort
message will be forwarded to Airline, or otherwise, an
appropriate message according to order status will be send to
the Customer. The three stacked rectangles in the main chart is
a select-case construct, where each hexagon contains a
condition. Chart (e) says that if Airline receives an abort
request, and at the same time, if Airline.conf is still false and
the reserved tickets are non-discount, then change the value of
Airline.conf to abort and reply with an abort confirmation
message; otherwise, reply with an abort deny message; chart (f)
expresses that if Airline receives an order confirmation from
Seller directly, and at that point, if Airline.conf is still false,
then sets it true, or otherwise, an appropriate message
according to order status will be send to the Seller. Chart (g)
shows that Agency receives an abort deny from Airline and
chart (h) shows that Agency receives an abort confirmation
from Airline, and then sets its state variable Agency.conf abort.

As we can see, the message and the locations of this
example are all hot, denoted by the solid lines, meaning that
mandatory behavior that things must move on. For example,
in chart (a), in pre-chart, Customer want to order flight, he/she
sends a message to Agency, in the main chart, the order is
initiated by Agency setting Agency.conf false, that is mean the
order is new, then the Agency sending the Order message to
Airline, because the message and the location are all hot,
Agency must send the message order(fNo) to Airline, and the
message must arrive, and Airline must receive it.

We can execute and monitor the LSCs in the Play-Engine.
The Play-Engine is a tool with “play-in/play-out” approach
developed by David Harel and Rami Marelly [8]. Play-out
allows a convenient way to debug requirements at an early
stage and to detect problems in the design. But Play-Engine is
only a research-level tool, not a commercial product. So the
maintain is not as good as commercial one.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2024 at 19:16:01 UTC from IEEE Xplore. Restrictions apply.

(a) Agency creates an order

(b) Airline receives an order

(c) Agency receives an order confirmation

(d) Agency aborts an order

(e) Airline receives an order abort

(f) Airline confirms the order

(g) Agency receives an abort deny

(h) Agency receives an abort confirmation

Fig 4. An LSC example--Web Flight Reserve System

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2024 at 19:16:01 UTC from IEEE Xplore. Restrictions apply.

III. TRANSFORM LSCS TO SYMBOLIC AUTOMAT ON AND
GENERATE TESTING SCENARIOS

A. Transform LSCs to Symbolic Automaton
Previous work shows that the LSC-to-temporal logic and

LSC-to-automata translations can be automated and
formalized for the LSC language [6]. In this paper, we convert
the LSCs model to corresponding symbolic automata based on
paper [10]. The symbolic automaton for LSCs is basically a
Buchi automaton where the transitions are labeled by events,
messages ([parameter variables]) or Boolean conditions.

The main difference between the LSC and the MSC
language is that LSCs introduce modalities for whole charts,
locations on instance lines, and LSC elements [10]. Referred
to paper [10], we describe the abstract syntax and semantics of
LSCs by a new formalization. We only concentrate on the
universal chart and the main characters of LSCs, called it core
LSC.

Definition 1 (Core LSC). A live sequence chart is a tuple
Ls = (O, L, E, M, , C) where O is a set of instances variables,
L is a set of lifelines, E is a set of events appearing in Ls and
M is a set of messages, is the partial order on L, C is the
runtime locations of the instances of Ls.

Definition 2. Let Ls be a LSC, L is a set of lifelines, a
lifeline l L is a sequence of events l= (e1,e2,...,ej,...,en), let
E(Ls) be the set of events appearing in Ls. The chart Ls
induces a partial order relation on E(Ls) as follows:

 1) (e1,e2,...,ej,...,en) E(Ls� anG � � M�n� it holds that ej
 ej+1; and

 2) m M, if (m, s) and (m, r) E(Ls), then (m, s)
(m, r). Where (m, s) denotes the event of sending m, and (m, r)
denotes the event of receiving m.

Definition 3 (Cut). Let Ls be a LSC and O be the instance
variables of Ls. i O, DOM (Ls, i) = {l0, l1, ..., lmax (i)} is the
point set of position for instance variable i from the first point
l0 to the last point of lmax (i). DOM (Ls) = {(i, l) | i O l

DOM (Ls, i)} is a dual set of all instances of Ls and its
mapping location point.

Actually, the running of LSCs is a Cut sequence. Each Cut
in sequence is the successor of the Cut before. Cut represents a
mapping set of the current location points of all instance
variables in a LSC, that is, a set of mapping of each instance to
a location point at which Ls is running. By Cut, we can
acquire the progress along an instance line. So we can use Cut
to represent as a state, then a cut sequence can be considered
as a series of state transition.

Definition 4 (Symbolic Automaton of an LSC). The
Symbolic Automaton of a LSC Ls, denoted by SA, is a tuple
SA= (S, s0, E, ǻ, F) with S = Cut (Ls), s0 is the initial state, E is
a set of all system events including external events, internal
messages among system objects, conditions or hidden events
defined in LSCs, ǻ S × �İ E) × S is the set of allowed
transitions, F S is final states set.

Given a current state s S and a system event e E, the

transition ǻ�s,e) returns an updated state after processing one
or more of actions.

According to definitions above, we can transform the
LSCs model of figure 4 to a symbolic automaton, shown as
figure 5. In figure 5, the initial state is s0 and the final states
are s6, s9, s13 and s16, which represented by double circle.
The formal symbolic automaton for Web Flight Reserve
System is shown as below:

 SA= (S, s0, E, ǻ, F);
 S ={s0, s1, …, s16}, s0 =(Customer, l0) is the initial

state, F={s6, s9, s13, s16};
 E={order(fNo), Conf(fNo)[false], orderAck(fNo),

orderConfirm(fNo), orderAbort(fNo),
Agency.Conf(fNo)[true], Agency.Conf(fNo)[false],
Agency.Conf(fNo)[abort], orderAbort(fNo),
abortDeny(fNo), abortDeny(fNo), Conf(fNo)[abort],
abortConfirm(fNo)};

 ǻ: ǻ�s, order(fNo))=s1,
ǻ�s1, Conf(fNo)[false])=s2,

ǻ�s0, orderAbort(fNo))=s7, …,

ǻ�s15, orderConfirm(fNo))=s16.

s0

s1

s2

s3

order(fNo)

Conf(fNo)[false]

order(fNo)

s4

orderAck(fNo)

orderConfirm(fNo)

s7

s10

Agency.Conf(fNo)[false]

s11

orderAbort(fNo)

orderConfirm(fNo)

orderAbort(fNo)

s5

Agency.Conf(fNo)[true]

s8

Agency.Conf(fNo)[abort]

s14

Airline.Conf(fNo)[false]&& fNo=1

s15

Conf(fNo)[abort]

abortConfirm(fNo)

s12

Airline.Conf(fNo)[false]&& fNo=0

abortDeny(fNo)

abortConfirm(fNo)

Fig 5. The converted symbolic automaton

B. Generate Testing Scenarios
We traversing the symbolic automaton use depth-first

search (DFS) method. Start from the initial state s0, and
explores as far as possible along each branch before reach one
of the final state, collect the sequence of transitions/states
from the initial state to the final state, this transitions/states
sequence is one test scenario for the Web system. Repeat the
steps above until all the states are traversing.

 For the Web Flight Reserve System, we can obtain five
test scenarios shown as below:

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2024 at 19:16:01 UTC from IEEE Xplore. Restrictions apply.

Ts1: s0, s1, s2, s3, s4, s6

Ts2: s0, s7, s5, s6

Ts3: s0, s7, s8, s9

Ts4: s0, s7, s10, s11, s14, s15, s16

Ts5: s0, s7, s10, s11, s12, s13

Among the five test scenarios, Ts1 is the scenario for a
successful flight reserve; Ts2 is a scenario for the customer
wants to abort the ticket, but the ticket is confirmed, so he/she
cannot return the tickets. Ts3 is the scenario that the customer
wants to abort the subscribing and the ticket is not confirmed,
so the Airline cancel the order; Ts4 is the scenario that the
subscribing is success, but the customer want to return and this
is a non-discount ticket, so the Airline return the ticket. Ts5 is
the scenario that the book is success and the customer want to
return the ticket, but this is a discount ticket, so the customer
cannot return the ticket. We can get test cases by substituting
specific data for symbols in test scenarios.

IV. RELATED WORK

Recent years, there are a lot of papers [6-13] investigated
live sequence chart, most of them are about the model-
checking problem by transforming LSCs to an automaton.
Paper [6] focused on the problem of formally verifying
systems aJainst /SC speci¿cations. Paper [7] illustrated live
sequence chart is aGeTuate for the speci¿cation of EehaYioral
signatures of the embedded systems. Paper [8] introduced a lot
of information about LSCs and their tool Play-Engine. Our
work use Play-Engine to model the Web application. Paper [9]
first introduced model-checking LSCs against system models.
Paper [10] gave a well-formedness of LSCs in terms of
concrete syntax and the semantics-giving automata. Paper [11]
used LSCs to describe scenario based requirement. They
presented three criteria for generating and extracting the safety,
reachability and liveness properties from LSC. Paper [12]
proposed an algorithm that transforms LSCs to automata,
which enables the verification of communication protocol
implementations. Paper [13] proposed a method to verify
systems against LSC specifications by transforming the LSC
to a positive automaton. But as we know, there is little paper
concentrate on the modeling and testing Web application by
LSCs.

V. CONCLUSIONS AND FUTURE WORK
In view of the unique characteristics of Web software, this

paper proposes a method to create an executable model for
Web software using live sequence charts (LSCs). The
executable model can simulate the running of the system
which helps to find the inconsistency of the design model and
requirement specification. In order to generate test scenarios
from the model, we transform the LSCs to symbolic
automaton. Traversing the symbolic automaton by depth-first
search (DFS), we can obtain test scenarios for Web software.

Results showed test cases generated from our executable
model are more effective than those generated from general
model. So, it can improve the quality of Web software and
reduce the security vulnerabilities in some degree. Our future
work is to apply this method on some large Web system and
discuss how to control the state explosion problem for the
symbolic automaton of the large system.

Acknowledgment
This paper is supported by National Natural Science

Foundation of China (NFSC) under Grant No. 61502294, The
Natural Science Foundation of Shanghai under Grant No.
15ZR1415200, The Key Disciplines of Computer Science and
Technology of Shanghai Polytechnic University under Grant
No.XXKZD1604, and Internet Technology of CERNTER
under Grant No.NGII20150609.

References
[1] Symantec Internet security threat report trends for January-June 07,

Volume XII[R]. Cupertino. Symantec Corporation.2007.
[2] G. Sibay, S. Uchitel, and V. A. Braberman. Existential Live Sequence

Charts Revisited, ICSE’08, Leipzig, Germany. pp. 41-50, 2008.
[3] :erner 'amm anG 'aYiG +arel� “/SCs� %reathinJ /ife into 0essaJe

SeTuence Charts”� 3roc� �rG I)I3 Int� Conf� on)ormal 0ethoGs for
Open Object-based Distributed Systems, 1999, pp. 293–312.

[4] +ussein� 0�� =ulkernine� 0�� 80/intr� $ 80/ 3ro¿le for SpecifyinJ
Intrusions. Ins: 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems, ECBS 2006, pp.
8–288. IEEE, Los Alamitos (2006)

[5] Massacci, F., Naliuka, K.: Towards Practical Security Monitors of UML
Policies for Mobile Applications. In: Proc. of IEEE POLICY 2007, pp.
278 (2007)

[6] Rahul Kumar1 Eric G Mercer. Improving Translation of Live Sequence
Charts to Temporal Logic. Electronic Notes in Theoretical Computer
Science. 2006

[7] Sven Patzina, Lars Patzina, Andy Schu¨rr. Extending LSCs for
Behavioral Signature Modeling. SEC 2011, IFIP AICT 354, pp. 293–304,
2011.

[8] 'aYiG +arel anG 5ami 0arelly� Come� /et’s 3lay� Scenario -Based
Programming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[9] Bunker, A., Gopalakrishnan, G., Slink, K.: Live sequence charts applied
to hardware requirements specification and verification: A VCI bus
interface model. Software Tools for Technology Transfer 7 (2004) 341–
350.

[10] Bernd Westphal and Tobe Toben. The good, the bad and the ugly: Well-
formedness of live sequence charts, FASE 2006, LNCS 3922, pp. 230–
246, 2006.

[11] Dai Yu-ting, Miao Huai-kou, Mei Jia, and Hao Hong-hao. Property
Extraction Based on LSC Model Checking, Journal of Shanghai
University (Natural Science), Vol. 18, No2, April. 2012, pp. 156-162

[12] R. Kumar and E. Mercer: Improving live sequence chart to automata
translation for verification. Electronic communications of the EASST,
2008.

[13] J. Klose, T . Toben, B. Westphal, and H. Wittke: Check It Out: On the
Efficient Formal Verification of Live Sequence Charts. 18th
International Conference on Computer Aided Verification (CAV), pp.
219–233, 2006.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2024 at 19:16:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

