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Abstract—In this paper an introduction to an elastic group
recommendation system is made where recommendation hap-
pens by collaborative and content filtering at three phases for
multivariate dynamic attributes. Most regular recommendation
systems work on static data contents where as an elastic group
recommendation is designed to work for dynamic data inputs
and on different use cases. recommendation systems which are
commercially available today focuses on individual behavior
however for events like movies and restaurants we need a
group recommendation systems where group requirements are
prioritized. The system introduced here is a breed model of
content based and collaborative filtering techniques and filtering
is done at three phases so that we can make a recommendation
which works best for an individual as well as the group. The
system model designed here can have wide applications in making
recommendations for restaurants, movies or events for a group
of people in real time for varying attributes like users tastes and
preferences. On the other hand the system tries to address a
classic human psychology problem called Abileneparadox [2].

Keywords—Group recommendation systems; Data Mining;
Knowledge Discovery; Content based filtering; Collaborative fil-
tering; Hybrid models; Learning approaches; Machine Learning.

I. INTRODUCTION

Today many applications are backed by intelligent rec-
ommendation systems. Netflix does movie recommendations
where as Amazon does product recommendation. Music rec-
ommendation systems like Pandora uses very complex algo-
rithms to predict that next song that you might like. In this
paper when we say a product it means a use cases like a
movie, restaurant, weekend idea etc. The domains in which
recommendation systems can be applied is varying day by day
from online dating to financial analysis. This shows that the
research in developing intelligent recommendation systems is
gaining popularity these days. But one thing we can notice
in majority of these recommendation systems is they make
predictions based on static data contents. ie. they all have a
database which hold user profiles and product features and
run a prediction algorithm to fetch those top ranked list for a
given user. However for applications which involve dynamic
user activity like say user preference for dinner tonight or
music matching your mood etc are very random and its hard
to predict. This means we need to make our recommendation
systems very elastic and when I say elastic it means a generic
recommendation system which can work as plug and play
and can also handle dynamic data input. This recommendation
systems is designed to handle multiple products at a same time
for varying attributes.

II. RELATED WORKS IN GROUP RECOMMENDATION

SYSTEM

Many researchers have come up with different models of
group recommendation system but there applications in real
commercial products are still limited. To get a quick intro into
group recommendation systems we can refer PolyLens [9].
PolyLens is a collaborative recommendation system making
recommendation for a group of people rather than an individ-
ual. We can see that they use static data contents for making
predictions. Even today most recommendation systems have
focused on making recommendation for an individual and it
mostly depends on the applications. In PolyLens they have
explored the architecture on how the system would work.In
another work a TV news recommendation system is designed
to work for group of people[5]. The approach taken gives an
intro into elastic nature of its systems but still lacks the usage
of real time dynamic input. The system needs a common user
taste profile to work which means you as an individual who
have many groups need to make many group profiles to make
this work and this shows as a user we can feel that system
needs to more elastic. In another work a user modeling strategy
is introduced where the system averages the preferences of the
individual and the preferences of the remaining members of the
group and the actual recommendation of for individual cases
are performed using the incremental critiquing method[?].
This incremental critiquing method looks interesting as it
considers that the fact that the user preferences are subjected
to change. Systems like Pandora recommendation uses a very
high dimensional feature space to make predictions[10].There
are many works related to this domain varying to different
applications and one thing we can notice is majority of these
systems use hybrid versions of collaborative filtering systems.
The work presented in the paper is also one such hybrid version
of collaborative and content filtering systems.

III. PROBLEM SPACE

Elastic group recommendation systems can be applied to
wide variety of problems and perhaps one of the most common
encountered problem is a group event planning. Let us consider
a hypothetical situation where three friends decide to hangout.
Now for the host if he/she wants to pick a restaurant then
he/she has to consider various parameters like location, their
availability, their choices, Mode of transportation etc and
in a group discussion like this everyone has opinions and
preferences and host holds the responsibility for entire event.
In these situation the classical Abilene paradox says that a
group of people collectively decide on a course of action that
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Fig. 1. A Group recommendation scenario.

TABLE I. A SAMPLE FEATURE AND PREFERENCES REPRESENTATION

θ(1) θ(2) θ(3) x1 x2 x2

χ(1) 0.80 0.09 0.27 0.93 0.01 0.06

χ(2) - - 0.09 0.25 0.50 0.25

χ(3) 0.95 0.51 0.03 0.69 0.68 0.32

χ(4) - 0.87 0.5 0 0.83 0.08 0.32

is counter to the preferences of many of the individuals in
the group and this doesn’t happen always but the chances are
high that choice made might not please many in the group. We
want our system to make recommendation such that it pleases
everyone. The system should also apply learned features from
different vector spaces to make good recommendation. In
Figure 1 we can see that there are 3 users at different locations
making a polygon (Triangle). There are multiple clusters of
data point and we need to pick the best ones from them and
make recommendation which works best for both group and
individual members.

IV. USER PROFILES AND ITEM FEATURE VECTORS

As we know in a recommendation system we have a user
preference profiles and item feature vectors. In content based
filtering we use feature vectors to learn the user preferences
and in collaborative filtering technique we use the user
profiles to learn product/item features. before we jump into
the feature and profile extraction these are some conventions
used in this paper.
nu : number of users
nm : number of items
nf : number of features we have
np : number of preferences
χ : feature vectors where χi ∈ Rnf

θ : user profile vector where θj ∈ Rnp

Gθ : group profile vector where θj ∈ Rnp

lθ : learnable user profile vector where θj ∈ Rnp

y(i,j) : ratings user i has given on item j
r(i, j) : 1 if user i has rated item j else its 0
θ
′

: Sub features
X

′
: Sub preferences

We can represent the feature(χ) and preferences(θ) as
shown in table 1. We can represent Gθ-χ (group preference
- features table)and lθ-χ (individual learnable preference -
features )tables similarly.

χ represents the feature vectors and we have taken four
items hence our nm will be 4. θ represents the preference
vectors and its collected from the user or leaned from lθ − χ
table. We have three members in this example hence our nu

will be 3. A sample preference vector θ1 can be something
like this.

θ(1) =

⎛
⎜⎝ θ

(1)
0 = 0.80

θ
(1)
1 = 0.10

θ
(1)
2 = 0.10

⎞
⎟⎠

y(1, 1) is 0.80 from the table which represents the actual
rating the user 1 had given to item 1 and since 0.87 is pretty
close to 1 we can understand that he/she kind of like the item
1. From the table we can see that

χ(1) =

⎛
⎜⎝ x

(1)
0 = 0.93

x
(1)
1 = 0.01

x
(1)
2 = 0.06

⎞
⎟⎠

now

(θ(1))T .χ(1) = 0.751 (1)

and that‘s our predicted ratings. the y(1, 1) rating from
the table is 0.80 and predicted ratings is pretty close and the
error in the difference makes our learning component. We can
construct a learning function based on this.

γ = ((θ(j))T .χ(i) − yi,j)2 (2)

Table 1 computations are not expensive since a group
usually don‘t have a big nu and hence its computed on client
side. For Gθ and lθ we need to learn over large datasets and
hence these tables are computed on server side.

We know that each query must have a feature vector
associated with it for us to make recommendation based on
it. So we need to way to represent features vectors to compute
predictions and these two sections will explain for food and
movie related queries.

1) Feature vectors for food related queries.: Now the
question on what kind of features are we considering to make
such predictions needs to be explained. Each kind of food or
cuisine has some cultural influences over each other and it all
goes to culinary history of the cuisine, Authors of this paper
have considers the basic tastes as features in this paper[11] and
in this work where they have built a food recommendation
system for diabetic patients they have used food nutritions
as features[8]. However in this work I have taken a different
approach. Food historians are unfolding cultural influence of
cuisines over each other[13]. For Instance when we say hotpot
it originated from Mongolia and spread to all countries so
each south Asian countries now have their own version of
hotpot. So using this idea instead of treating different cuisines
as categorical name tag I will considering them as ordinate
data. So if one queries for hotpot its feature vectors would
tell us what components of its feature xi is Chinese and what
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component of it is Korean and so on. For instance Mexican
food can have a high degree of similarity with indian food
because they both are spicy in nature.

2) Feature vectors for movie related queries.: Now for
movies it should be easier for us to obtain feature vectors. We
have wide range of options for movies like action, comedy,
romantic etc. and also we can represent sub features for these
features.

3) Sub features (θ
′
) and Sub preferences (X

′
): Sub features

are features embedded inside a feature. To understand sub
features lets us consider an example. Say if a user want‘s to
visit a restaurant for dinner. now among all the options he/she
might be interested to have Chinese food. Now if he/she goes
to a Chinese restaurant they have different food options. If
yelp or google gives you a rating of 4.5 for that restaurant
we don’t know the ratings for sub features like Cantonese,
Sichuan, Jiangsu, Zhejiang, Fujian, Hunan, Anhui, Shandong.
Similarly india food can be broken down into more than 29
sub features based on its provinces.

In case of movies we can get feature ratings for action,
comedy, romantic etc and each feature can be broken down
into sub features like action can be based on disaster, super
hero movies, chase movies etc.

In elastic group recommendation system we can introduce
these dynamic features as we learn new features and also
train them. On the other hand we can also learn user‘s new
preferences vectors like over course of time we can learn that
a user likes Cantonese food over schezuan and hence we can
make better recommendation.

V. SYSTEM FLOW AND ARCHITECTURE.

The system extracts three ratings matrix which holds ranks
on scale of 0 to 1. these three rank matrices are convenience
ranks, group similarity ranks and system predicted ranks.
convenience ranks are the ranks given to places based on how
convenient these places are to the group or in other words
finding a place which is least far from all members. Group
similarity ranks are ranks given to the places based on the
idea that a group which is has similar preferences as our group
must have similar tastes in their choices. Predicted ranks are
the ranks which we predict to places based on simultaneous
minimization in collaborative and content filtering. These three
ranking spaces form a three dimensional space consisting
clusters of places. We will apply our final reduction logic
to come up with a best ranking list for the group and these
ranking chances when users move to different places or change
when they change their preferences by interacting with the
system.

A. convenience ranks : Query result extraction and conve-
nience feature extraction algorithm.

When a host creates an event he/she will invite his/her
friends and when members accept the invites the system will
acquire their gps location and its in latitude and longitude
form which is a x y coordinate. Now while making decision
where to hangout distance plays a vital role, so we need
to pick a place which is convenient for all the members.
Now convenience is a deduced feature and we will use

users location and the place location to deduce this. Inside
the application all members can query for the restaurant or
movies that they are interested in. For our example we have
there members and let their queries be.
q1: sushi
q2: Indian
q3: fast food

or the members want to go for a movie then the queries
can be like.
q1: The imitation game
q2: Avengers
q3: Iron Man

1) Query processing.: When each member makes a query
we store those queries in our system. Since we don‘t have a
database for different restaurants we will use Yelp for our data
source. Yelp api usage rules says that we cannot modify their
ratings but in the system we are ranking the places and not
modifying their ratings and also all the tests follows their api
rules. Now for movies yelp doesn’t have a database so I have
implemented own database for this purpose.

Yelp api will provide us all the places which come inside
a geometric boundary. lets take 3 queries and in our case q1
is sushi, q2 is Indian etc. yelp [1] also provides us features of
the places which includes location co ordinates, review count,
categories, rating, review. The following lines show that for
each query we have 10 results where pid11 shows restaurant
with id 1 for query 1.
q1: sushi : [pid11, pid12, ..., pid110]
q2: indian: [pid21, pid22,..., pid210]
q3: fast food : [pid31, pid32, ..., pid310]

Here in case of movies we need to consider all theaters
which are playing the queried movie so for each query there
may be multiple pid‘s.

we can get the traveling distance between co ordinates
(users and places ) using google‘s location api but for our
computation lets just use a simple euclidean distance, however
it makes more sense to use haversine formula [4].

In this stage we have 3 set of 10 restaurants matching query
q1, q2, q3 which comes inside the polygon formed by users
as shown in figure 1. Now we will try to represent all these
queries in form of features matrix which we will be used in
later processing. Each query will return 10 places and each
place has a feature vector χ = [x0, x1, ...., xnf

].

Each place also has a place id, now will need to compute
a mean feature to represent individual query. Lets build a
10 × nf matrix χqi which holds features for 10 different
places for query qi. Let M1 be a ones matrix of size 1× 10.
The equation gives a row matrix which captures mean features
for query qi

( �μχqi)1xnf
= (1/nf ).M1.χqi (3)

( �μχqi) represents a query vector for a member. We can
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TABLE II. A SAMPLE NORMALIZED ITEM USER DISTANCE MATRIX

M place1 place2 place3 place4

usr1 0.80 0.09 0.27 0.93

usr2 0.45 1.0 0.09 0.25

usr3 0.95 0.51 0.03 0.69

usr4 0.3 0.87 0.5 0 0.83

then construct a matrix which represent the query formed by
the group like this.

χ(Q) =

(
�μχq1
�μχq2
�μχq3

)

χQ is a matrix of dimension nqueries x nf . χ(Q)1 represent
feature vector for q1 and so on.
So now we have reduced 30 places to three row feature of
matrices. Next we move on to convenience ranks extraction.

2) convenience ranks extraction: we will first construct a
matrix in which the columns are users and rows are places
and the matrix holds distances from users to places. the table
2 shows how the values are held.

The code below explains the convenience feature extraction
algorithm

import numpy as np

def main ( ) :
s c o r e = d i c t ( )

M = g e t u s r t o p l a c e d i s t a n c e m a t r i x ( )
M1 = np . ones ( l e n (M) )
sum dis = np . d o t (M1, M)
d i s = np . a r r a y ( sum dis )
d i s t a n c e = d i s [ 0 ]
f o r x in range ( 0 , l e n ( d i s t a n c e ) ) :

s c o r e [ g e t p l a c e i d ( x ) ] = d i s t a n c e [ x ]
r a n k l i s t = s o r t ( s c o r e . i t e m s ( ) , \

key=lambda x : x [ 1 ] )
# r a n k l i s t h o l d s p l a c e s s o r t e d

i f name == ” main ” :
main ( )

M is the users to places distance matrix as show in the
table 2. Let M1 be a ones matrix of size 1× nu.
M1Ṁ gives us the sum of all user distances to a given place
and a row matrix dis will capture this. We will use a dictionary
which will hold placeid as key and the net distances as value.
The for loop defined there will populate the dictionary with
keys as placeids. we then just need to sort it based on its values
which will give us a list with which is sorted places based on
distance.

B. group similarity ranks : Ranking by measuring group
similarities.

In our database the system holds two tables which holds
ratings a user gives to a place and ratings the group gives to
that place and these ratings are stored as they are used for
learning.

TABLE III. A SAMPLE INDIVIDUAL PREFERENCE AND FEATURES

TABLE IN DATABASE((θ − χ TABLE)).

TB1 user1(gθ1) user2(gθ2) ... userNu (gθNu )

place1 0.31 0.66 0.54 0.28

place2 0.56 0.41 1.0 0.24

... 0.75 0.51 0.03 0.69

placeNm 0.41 0.87 0.5 0 0.83

TABLE IV. A SAMPLE GROUP PREFERENCE AND FEATURES TABLE IN

DATABASE (Gθ − χ TABLE).

TB1 G1(Gθ1) G2(Gθ2) ... GNu (GθNu )

p1 0.80 0.09 0.27 0.93

p2 - - 0.09 0.25

... 0.95 0.51 0.03 0.69

pNm - 0.87 0.5 0 0.83

When a member i gives rating to place j we store that
rating y(i, j) in our lθ − χ table. Now for Gθ − χ table we
can just take mean of all the members and store the ratings
in our group table Gθ − χ but it doesn’t justify fact that the
placej may have a feature which the user i dislikes the most.
Lets say a user dislikes spicy food and the group decides to go
to Indian Andhra cuisine which is know for its spiciness. In
this case no wonder the user j will give bad ratings and that
doesn’t mean that place is bad. we need to give weighted to
the ratings given by user k who appreciates spicy food. So we
need to take ratings given by individual members and compute
weighted average and that can be done by these equations.
∀ user i we will compute the similarity between preference θ
and feature χ for item j using this equation.

∀useri, itemj βi,j =
(θ)Ti .(χj)

||θi|| ∗ ||χj || (4)

Now we can calculate ratings Gyi,j for item j given by
group i using this equation.

∀useri, itemj Gyi,j =

nu∑
i=0

[
β(i,j).y

(i,j)

nu
] (5)

In the database we also hold individual preference vectors
and group preference vectors. The following tables depict
how they can be held. The table1 holds place id‘s in its rows
and user ids in its column and each entry into the block is
ratings that useri has given to placej . For each user we hold
their global preferences gθ and for each place we hold place
features. table2 is formed when a users form a group. We
take individual user ids and just append to each other and
compute a sha1 hash[] and this becomes an entry in our table
2. here is an example.
user1Id : 345123
user2Id : 787980
user3Id : 586987
Shahash(users) : hash(345123787980586987)
groupid :
78d8505a06a95591e5f4c32a9a6a4
fa3d9f069ce1fec509b6e9a1493f11bd3ce

So now next time when a group hangs out when just need
to append all the userid‘s compute sha hash and check if that
entry is in Gθ − χ table.
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If the group has not hung out before then we will not have
an entry in our group table and thus we have no idea what this
group might like or not so for now we will go head and create
a new column in our group table and assign a new group id
to it. When a user registers to the application he/she would
have given some basic preferences like simple re ordering of
cuisines like a user might like Asian food and its at the top
in his/her list and in cases of movies action, comedy etc are
ordered based on their choices. We take these preferences and
use it as a kick starter. we now compute a mean preferences
to represent this group.

μθ =

⎛
⎜⎜⎝

μθ1 = (
∑nu

i=1(θ
i
1))/(nu)

μθ2 = (
∑nu

i=1(θ
i
2))/(nu)

...
μθnp

= (
∑nu

i=1(θ
i
np
))/(nu)

⎞
⎟⎟⎠

our μθ1 is a straight mean of first preference and so on.
We now need to find a group which is similar to our group i.e
a group in our database which matches our μθ. We can use
cosinemeasure to find similarity but as dataset grows it can be
expensive so we can use technique like KNearestNeighbor
algorithm to find the most similar group. KNN works best for
clusters like this[12]. Once we have found a nearest neighbor
we now have access to all the restaurants he/she has been and
thus we also have access to the features of those places.
for example if the most similar group to our group is say G20

and this group has tried out 15 different restaurants. Which
means we have 15 feature vectors. In the section 5.1 we have
computed the features matching the query ( θq). We now
compute cosine similarity to each features and pick the ones
that‘s most similar. To retrieve all the places that group has
been we can use a technique called item to item filtering which
is explained in the next section.

χg20 =

⎛
⎜⎝

�χnp1

�χnp2

...
�χnpi

⎞
⎟⎠

where χnp1
is a row feature vector of a restaurant 1 that

group g20 has hung out. Now we can find out the most
preferred feature vector by this equation.
∀i : 0− > npi

fitness = min(
(μχ).(χi)

T

||μχ|| ∗ ||χj || ) (6)

Of course we need to a pick a group which has hung out
quite often, a group which has hung out quite often and most
similar to our test group yields the best matching features.

We now have all the restaurants the groups has been which
matches our query preferences. If we plot them on a feature
space we can see that they make clusters. we just need to find
which cluster has least distance to our Gθ and we will pick the
top rates restaurant from that. Next we pick the next closest
cluster and so on. for each group nearest neighbor we check
we will compute the fitness value which measure how close
the place is matching our group query. Ideally our objective
here is to pick a place which yields high similarity values
for group similarity and query and places similarity. We do

Fig. 2. places cluster over group similarity.

the above process until all the restaurants are picked and that
forms our ratings2.

In figure 3 we can see many cluster belonging to a type of
cuisine or movie. Each point or node represents a restaurant
or a movie. This plot is shown over a two dimensional space
however each point would be attributed to higher dimensional
space. The vector that each node makes with origin is a feature
vector for that place and the vector that’s drawn in center with
an arrow represents a group preference vector. A node which
is close to the group preference vector is the best choice in this
sample. The actual distance is the fitness value for this sample.
We need to do this for next nearest neighbor and compute
fitness value and so on. Finally a sample which has high fitness
and high group similarity will be the best choice and ranked
higher.

C. Ranking based on our Predictions.

Now this is where our core recommendation process starts.
The central idea of this system is to make recommendations
to the group using three rating vectors and then reduce it to a
list ranked by our reduction logic. Our reduction logic will be
explained in the later sections. Ratings1 and Rating2 were
extracted in previous sections and now we need to extract one
more ratings vectors.

1) Hybrid item to item filtering: This filtering algorithm
was popularized by Amazon[7].The central idea here is
multiple groups with similar tastes and preferences enjoys to
hangout at similar places and this is how we listed places in
the previous section.

If the group has hung out before then we have groups
preference vectors which makes it easy for predicting a place.
When the group hung out last time the application will ask
each user to rate their experience. In content based filtering
technique we have χ and we try to learn θ and this can be
done by minimizing the cost function J(θ) ∀ θj where j runs
from 0 to nu. We can learn the θ like this

θ
(j)
k := θ

(j)
k − α

∑
i:r(i,j)=1

(((θ(j))T .χ(i) − yi,j)2)χ
(i)
k + λθ

(j)
k

(7)
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Fig. 3. Ranks reduction.

where α is the learning rate and λ is regularization com-
ponent to avoid over fitting. Now this learning is for one user
with learning preference vector k. For learning the preferences
for all the users in our dataset we have to minimize it for each
user i.e θ(1)...θ(nu).

min

nu∑
j=1

[
∑

i:r(i,j)=1

(((θ(j))T .χ(i) − yi,j)2)χ
(i)
k + λ

np∑
k=1

(θ
(j)
k )2]

(8)

and for collaborative filtering we go from χ(1)...χ(nm).

min

nm∑
j=1

[
∑

i:r(i,j)=1

(((θ(j))T .χ(i) − yi,j)2)χ
(i)
k + λ

nf∑
k=1

(χ
(i)
k )2]

(9)

In real time we can simultaneously minimize the cost
function J(S(χ,θ)) like this.

∑
(i,j):r(i,j)=1

(γ2) + λ

nm∑
i=1

(

nf∑
k=1

(χi
k)

2) + λ

nu∑
j=1

(

np∑
k=1

(θjk)
2) (10)

where γ is from equation 2.

So the simultaneous minimization [6] helps the system
to learn user preferences and item features. Once learnt we
can find a most similar group to our group. Once we have a
most similar group we can apply item to item filtering and
matching the query as explained in previous sections with
group similarity ranks. Once the system has learnt pretty good
results and our evaluation yields least errors we can calculate
the predicate ratings as explained in section 4. Here if the user
has not hung out we will use θ and if we have Gθ then we
will use that for computing predictions. Finally we will apply
rank reduction technique where a point whose cosine distance
to (1, 1, 1) is rated higher and thus reduces to a rank list.

VI. CONCLUSIONS

In this paper an attempt to get an elastic group recommen-
dation was made. The system is currently under use through an
android app called Metster. To capture the entire work the
system used individual preference and predicted group pref-
erences. The system does filtering at three stages calculating

convenience ratings, similarity ratings and predicted ratings.
convenience was calculated based on distance measure of the
user at that moment. similarity ratings were calculated by find-
ing a most similar group to our group and applying item to item
filtering on the items close to our query. We then ranked our
items based on how close their features were. predicted ranking
were calculated using group preference if available else we
used learned individual preference. We applied simultaneous
minimization on collaborative and content filtering to improve
our predictions. In the last stage we reduced all the ranking
into a final rank based on distance to unit vector.
This work was intended to develop a recommendation system
which works best for all members in group and yet satisfying
individual preferences.For a next stage of improvement we can
consider these attributes mentioned in this work[3] to bring this
system much closer to users.
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