
Hawk: The Blockchain Model of Cryptography and
Privacy-Preserving Smart Contracts

Ahmed Kosba∗, Andrew Miller∗, Elaine Shi†, Zikai Wen†, Charalampos Papamanthou∗
∗University of Maryland and †Cornell University

{akosba, amiller}@cs.umd.edu, {rs2358, zw385}@cornell.edu, cpap@umd.edu

Abstract—Emerging smart contract systems over decentralized
cryptocurrencies allow mutually distrustful parties to transact
safely without trusted third parties. In the event of contrac-
tual breaches or aborts, the decentralized blockchain ensures
that honest parties obtain commensurate compensation. Existing
systems, however, lack transactional privacy. All transactions,
including flow of money between pseudonyms and amount
transacted, are exposed on the blockchain.

We present Hawk, a decentralized smart contract system that
does not store financial transactions in the clear on the block-
chain, thus retaining transactional privacy from the public’s view.
A Hawk programmer can write a private smart contract in an
intuitive manner without having to implement cryptography, and
our compiler automatically generates an efficient cryptographic
protocol where contractual parties interact with the blockchain,
using cryptographic primitives such as zero-knowledge proofs.

To formally define and reason about the security of our
protocols, we are the first to formalize the blockchain model
of cryptography. The formal modeling is of independent interest.
We advocate the community to adopt such a formal model when
designing applications atop decentralized blockchains.

I. INTRODUCTION

Decentralized cryptocurrencies such as Bitcoin [48] and alt-

coins [20] have rapidly gained popularity, and are often quoted

as a glimpse into our future [5]. These emerging cryptocur-

rency systems build atop a novel blockchain technology where

miners run distributed consensus whose security is ensured if

no adversary wields a large fraction of the computational (or

other forms of) resource. The terms “blockchain” and “miners”

are therefore often used interchangeably.

Blockchains like Bitcoin reach consensus not only on a

stream of data but also on computations involving this data. In

Bitcoin, specifically, the data include money transfer transac-

tion proposed by users, and the computation involves transac-

tion validation and updating a data structure called the unspent

transaction output set which, imprecisely speaking, keeps track

of users’ account balances. Newly emerging cryptocurrency

systems such as Ethereum [57] embrace the idea of running

arbitrary user-defined programs on the blockchain, thus creat-

ing an expressive decentralized smart contract system.

In this paper, we consider smart contract protocols where

parties interact with such a blockchain. Assuming that the

decentralized concensus protocol is secure, the blockchain can

be thought of as a conceptual party (in reality decentralized)

that can be trusted for correctness and availability but not for

privacy. Such a blockchain provides a powerful abstraction for

the design of distributed protocols.

The blockchain’s expressive power is further enhanced by

the fact that blockchains naturally embody a discrete notion

of time, i.e., a clock that increments whenever a new block

is mined. The existence of such a trusted clock is crucial

for attaining financial fairness in protocols. In particular,

malicious contractual parties may prematurely abort from a

protocol to avoid financial payment. However, with a trusted

clock, timeouts can be employed to make such aborts evident,

such that the blockchain can financially penalize aborting

parties by redistributing their collateral deposits to honest,

non-aborting parties. This makes the blockchain model of

cryptography more powerful than the traditional model without

a blockchain where fairness is long known to be impossible

in general when the majority of parties can be corrupt [8],

[17], [24]. In summary, blockchains allow parties mutually

unbeknownst to transact securely without a centrally trusted

intermediary, and avoiding high legal and transactional cost.

Despite the expressiveness and power of the blockchain

and smart contracts, the present form of these technologies

lacks transactional privacy. The entire sequence of actions

taken in a smart contract are propagated across the network

and/or recorded on the blockchain, and therefore are publicly

visible. Even though parties can create new pseudonymous

public keys to increase their anonymity, the values of all trans-

actions and balances for each (pseudonymous) public key are

publicly visible. Further, recent works have also demonstrated

deanonymization attacks by analyzing the transactional graph

structures of cryptocurrencies [42], [52].

We stress that lack of privacy is a major hindrance towards

the broad adoption of decentralized smart contracts, since fi-

nancial transactions (e.g., insurance contracts or stock trading)

are considered by many individuals and organizations as being

highly secret. Although there has been progress in designing

privacy-preserving cryptocurrencies such as Zerocash [11] and

several others [26], [43], [54], these systems forgo programma-

bility, and it is unclear a priori how to enable programmability

without exposing transactions and data in cleartext to miners.

A. Hawk Overview
We propose Hawk, a framework for building privacy-

preserving smart contracts. With Hawk, a non-specialist pro-

grammer can easily write a Hawk program without having to

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.55

839

2016 IEEE Symposium on Security and Privacy

© 2016, Ahmed Kosba. Under license to IEEE.

DOI 10.1109/SP.2016.55

839

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

implement any cryptography. Our Hawk compiler is in charge

of compiling the program to a cryptographic protocol between

the blockchain and the users. As shown in Figure 1, a Hawk
program contains two parts:

1) A private portion denoted φpriv which takes in parties’ input

data (e.g., choices in a “rock, paper, scissors” game) as well

as currency units (e.g., bids in an auction). φpriv performs

computation to determine the payout distribution amongst

the parties. For example, in an auction, winner’s bid goes to

the seller, and others’ bids are refunded. The private Hawk
program φpriv is meant to protect the participants’ data and

the exchange of money.

2) A public portion denoted φpub that does not touch private

data or money.

Our compiler will compile the Hawk program into the

following pieces which jointly define a cryptographic protocol

between users, the manager, and the blockchain:

• the blockchain’s program which will be executed by all

consensus nodes;

• a program to be executed by the users; and

• a program to be executed by a special facilitating party

called the manager which will be explained shortly.

Security guarantees. Hawk’s security guarantees encompass

two aspects:

• On-chain privacy. On-chain privacy stipulates that transac-

tional privacy be provided against the public (i.e., against

any party not involved in the contract) – unless the con-

tractual parties themselves voluntarily disclose information.

Although in Hawk protocols, users exchange data with

the blockchain, and rely on it to ensure fairness against

aborts, the flow of money and amount transacted in the

private Hawk program φpriv is cryptographically hidden

from the public’s view. Informally, this is achieved by

sending “encrypted” information to the blockchain, and

relying on zero-knowledge proofs to enforce the correctness

of contract execution and money conservation.

• Contractual security. While on-chain privacy protects con-

tractual parties’ privacy against the public (i.e., parties

not involved in the financial contract), contractual secu-

rity protects parties in the same contractual agreement

from each other. Hawk assumes that contractual parties

act selfishly to maximize their own financial interest. In

particular, they can arbitrarily deviate from the prescribed

protocol or even abort prematurely. Therefore, contractual

security is a multi-faceted notion that encompasses not only

cryptographic notions of confidentiality and authenticity,

but also financial fairness in the presence of cheating and

aborting behavior. The best way to understand contractual

security is through a concrete example, and we refer the

reader to Section I-B for a more detailed explanation.

Minimally trusted manager. The execution of Hawk con-

tracts are facilitated by a special party called the manager.

The manager can see the users’ inputs and is trusted not to

disclose users’ private data. However, the manager is NOT to

Public Фpub Private Фpriv

Hawk Contract

Protocol

Coins

Data

Blockchain

Programmer

Compile

Manager

Users

Fig. 1. Hawk overview.

be equated with a trusted third party — even when the manager
can deviate arbitrarily from the protocol or collude with the
parties, the manager cannot affect the correct execution of
the contract. In the event that a manager aborts the protocol,

it can be financially penalized, and users obtain compensation

accordingly.

The manager also need not be trusted to maintain the

security or privacy of the underlying currency (e.g., it cannot

double-spend, inflate the currency, or deanonymize users).

Furthermore, if multiple contract instances run concurrently,

each contract may specify a different manager and the effects

of a corrupt manager are confined to that instance. Finally,

the manager role may be instantiated with trusted comput-

ing hardware like Intel SGX, or replaced with a multiparty

computation among the users themselves, as we describe in

Section IV-C and Appendix A.

Terminology. In Ethereum [57], the blockchain’s portion of

the protocol is called an Ethereum contract. However, this

paper refers to the entire protocol defined by the Hawk
program as a contract; and the blockchain’s program is a

constituent of the bigger protocol. In the event that a manager

aborts the protocol, it can be financially penalized, and users

obtain compensation accordingly.

B. Example: Sealed Auction

Example program. Figure 2 shows a Hawk program for

implementing a sealed, second-price auction where the highest

bidder wins, but pays the second highest price. Second-

price auctions are known to incentivize truthful bidding under

certain assumptions, [55] and it is important that bidders

submit bids without knowing the bid of the other people. Our

example auction program contains a private portion φpriv that

determines the winning bidder and the price to be paid; and

a public portion φpub that relies on public deposits to protect

bidders from an aborting manager.

For the time being, we assume that the set of bidders are

known a priori.
Contractual security requirements. Hawk will compile this

auction program to a cryptographic protocol. As mentioned

earlier, as long as the bidders and the manager do not volun-

tarily disclose information, transaction privacy is maintained

against the public. Hawk also guarantees the following con-

tractual security requirements for parties in the contract:

840840

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

1 HawkDeclareParties(Seller,/* N parties */);
2 HawkDeclareTimeouts(/* hardcoded timeouts */);

3 // Private portion φpriv

4 private contract auction(Inp &in, Outp &out) {
5 int winner = -1;
6 int bestprice = -1;
7 int secondprice = -1;

8 for (int i = 0; i < N; i++) {
9 if (in.party[i].$val > bestprice) {

10 secondprice = bestprice;
11 bestprice = in.party[i].$val;
12 winner = i;
13 } else if (in.party[i].$val > secondprice) {
14 secondprice = in.party[i].$val;
15 }
16 }

17 // Winner pays secondprice to seller
18 // Everyone else is refunded
19 out.Seller.$val = secondprice;
20 out.party[winner].$val = bestprice-secondprice;
21 out.winner = winner;
22 for (int i = 0; i < N; i++) {
23 if (i != winner)
24 out.party[i].$val = in.party[i].$val;
25 }
26 }

27 // Public portion φpub

28 public contract deposit {
29 // Manager deposited $N earlier
30 def check(): // invoked on contract completion
31 send $N to Manager // refund manager
32 def managerTimeOut():
33 for (i in range($N)):
34 send $1 to party[i]
35 }

Fig. 2. Hawk program for a second-price sealed auction. Code described
in this paper is an approximation of our real implementation. In the public
contract, the syntax “send $N to P ” corresponds to the following semantics
in our cryptographic formalism: ledger[P] := ledger[P] + $N – see
Section II-B.

• Input independent privacy. Each user does not see others’

bids before committing to their own (even when they collude

with a potentially malicious manager). This way, users bids

are independent of others’ bids.

• Posterior privacy. As long as the manager does not disclose

information, users’ bids are kept private from each other

(and from the public) even after the auction.

• Financial fairness. Parties may attempt to prematurely abort

from the protocol to avoid payment or affect the redistribu-

tion of wealth. If a party aborts or the auction manager

aborts, the aborting party will be financially penalized

while the remaining parties receive compensation. As is

well-known in the cryptography literature, such fairness

guarantees are not attainable in general by off-chain only

protocols such as secure multi-party computation [7], [17].

As explained later, Hawk offers built-in mechanisms for

enforcing refunds of private bids after certain timeouts.

Hawk also allows the programmer to define additional rules,

as part of the Hawk contract, that govern financial fairness.

• Security against a dishonest manager. We ensure authen-
ticity against a dishonest manager: besides aborting, a dis-

honest manager cannot affect the outcome of the auction

and the redistribution of money, even when it colludes with

a subset of the users. We stress that to ensure the above,

input independent privacy against a faulty manager is a

prerequisite. Moreover, if the manager aborts, it can be

financially penalized, and the participants obtain correspond-

ing remuneration.

An auction with the above security and privacy requirements

cannot be trivially implemented atop existing cryptocurrency

systems such as Ethereum [57] or Zerocash [11]. The former

allows for programmability but does not guarantee transac-

tional privacy, while the latter guarantees transactional privacy

but at the price of even reduced programmability than Bitcoin.

Aborting and timeouts. Aborting is dealt with using timeouts.

A Hawk program such as Figure 2 declares timeout parame-

ters using the HawkDeclareTimeouts special syntax. Three

timeouts are declared where T1 < T2 < T3:

T1 : The Hawk contract stops collecting bids after T1.

T2 : All users should have opened their bids to the manager

within T2; if a user submitted a bid but fails to open by T2,

its input bid is treated as 0 (and any other potential input

data treated as ⊥), such that the manager can continue.

T3 : If the manager aborts, users can reclaim their private bids

after time T3.

The public Hawk contract φpub can additionally implement

incentive structures. Our sealed auction program redistributes

the manager’s public deposit if it aborts. Specifically, in our

sealed auction program, φpub defines two functions, namely

check and managerTimeOut. The check function will be in-

voked when the Hawk contract completes execution within T3,

i.e., manager did not abort. Otherwise, if the Hawk contract

does not complete execution within T3, the managerTimeOut

function will be invoked. We remark that although not explic-

itly written in the code, all Hawk contracts have an implicit

default entry point for accepting parties’ deposits – these

deposits are withheld by the contract till they are redistributed

by the contract. Bidders should check that the manager has

made a public deposit before submitting their bids.

Additional applications. Besides the sealed auction example,

Hawk supports various other applications. We give more

sample programs in Section VI-B.

C. Contributions
To the best of our knowledge, Hawk is the first to simulta-

neously offer transactional privacy and programmability in a

decentralized cryptocurrency system.

Formal models for decentralized smart contracts. We are

among the first ones to initiate a formal, academic treatment

of the blockchain model of cryptography. We present a formal,

Universal Composability (UC) model for the blockchain model

of cryptography – this formal model is of independent interest,

841841

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

and can be useful in general for defining and modeling the

security of protocols in the blockchain model. Our formal

model has also been adopted by the Gyges work [35] in

designing criminal smart contracts.

In defining for formal blockchain model, we rely on a notion

called wrappers to modularize our protocol design and to sim-

plify presentation. Wrappers handle a set of common details

such as timers, pseudonyms, global ledgers in a centralized

place such that they need not be repeated in every protocol.

New cryptography suite. We implement a new cryptography

suite that binds private transactions with programmable logic.

Our protocol suite contains three essential primitives freeze,

compute, and finalize. The freeze primitive allows parties

to commit to not only normal data, but also coins. Committed

coins are frozen in the contract, and the payout distribution will

later be determined by the program φpriv. During compute,

parties open their committed data and currency to the manager,

such that the manager can compute the function φpriv. Based on

the outcome of φpriv, the manager now constructs new private

coins to be paid to each recipient. The manager then submits

to the blockchain both the new private coins as well as zero-

knowledge proofs of their well-formedness. At this moment,

the previously frozen coins are now redistributed among the

users. Our protocol suite strictly generalizes Zerocash since

Zerocash implements only private money transfers between

users without programmability.

We define the security of our primitives using ideal func-

tionalities, and formally prove security of our constructions

under a simulation-based paradigm.

Implementation and evaluation. We built a Hawk prototype

and evaluated its performance by implementing several ex-

ample applications, including a sealed-bid auction, a “rock,
paper, scissors” game, a crowdfunding application, and a

swap financial instrument. We propose interesting protocol

optimizations that gained us a factor of 10× in performance

relative to a straightforward implementation. We show that

for at about 100 parties (e.g., auction and crowdfunding), the

manager’s cryptographic computation (the most expensive part

of the protocol) is under 2.85min using 4 cores, translating

to under $0.14 of EC2 time. Further, all on-chain computation

(performed by all miners) is very cheap, and under 20ms for

all cases. We will open source our Hawk framework in the

near future.

D. Background and Related Work
1) Background: The original Bitcoin offers limited pro-

grammability through a scripting language that is neither

Turing-complete nor user friendly. Numerous previous endeav-

ors at creating smart contract-like applications atop Bitcoin

(e.g., lottery [7], [17], micropayments [4],verifiable computa-

tion [40]) have demonstrated the difficulty of in retrofitting

Bitcoin’s scripting language – this serves well to motivate a

Turing-complete, user-friendly smart contract language.

Ethereum is the first Turing-complete decentralized smart

contract system. With Ethereum’s imminent launch, companies

and hobbyists are already building numerous smart contract

applications either atop Ethereum or by forking off Ethereum,

such as prediction markets [3], supply chain provenance [6],

crowd-based fundraising [1], and security and derivatives

trading [28].

Security of the blockchain. Like earlier works that design

smart contract applications for cryptocurrencies, we rely on the

underlying decentralized blockchain to be secure. Therefore,

we assume the blockchain’s consensus protocol attains security

when an adversary does not wield a large fraction of the com-

putational power. Existing cryptocurrencies are designed with

heuristic security. On one hand, researchers have identified

attacks on various aspects of the system [29], [34]; on the

other, efforts to formally understand the security of blockchain

consensus have begun [32], [45].

Minimizing on-chain costs. Since every miner will execute

the smart contract programs while verifying each transaction,

cryptocurrencies including Bitcoin and Ethereum collect trans-

action fees that roughly correlate with the cost of execution.

While we do not explicitly model such fees, we design our

protocols to minimize on-chain costs by performing most of

the heavy-weight computation off-chain.

2) Additional Related Works: Leveraging blockchain for
financial fairness. A few prior works have explored how to

leverage the blockchain technology to achieve fairness in pro-

tocol design. For example, Bentov et al. [17], Andrychowicz

et al. [7], Kumaresan et al. [40], Kiayias et al. [36], as well

as Zyskind et al. [59], show how Bitcoin can be used to

ensure fairness in secure multi-party computation protocols.

These protocols also perform off-chain secure computation

of various types, but do not guarantee transactional privacy

(i.e., hiding the currency flows and amounts transacted). For

example, it is not clear how to implement our sealed auction

example using these earlier techniques. Second, these earlier

works either do not offer system implementations or provide

implementations only for specific applications (e.g., lottery). In

comparison, Hawk provides a generic platform such that non-

specialist programmers can easily develop privacy-preserving

smart contracts.

Smart contracts. The conceptual idea of programmable elec-

tronic “smart contracts” dates back nearly twenty years [53].

Besides recent decentralized cryptocurrencies, which guaran-

tee authenticity but not privacy, other smart contract imple-

mentations rely on trusted servers for security [46]. Our work

therefore comes closest to realizing the original vision of

parties interacting with a trustworthy “virtual computer” that

executes programs involving money and data.

Programming frameworks for cryptography. Several works

have developed programming frameworks that take in high-

level programs as specifications and generate cryptographic

implementations, including compilers for secure multi-party

computation [19], [39], [41], [51], authenticated data struc-

tures [44], and (zero-knowledge) proofs [12], [30], [31], [49].

Zheng et al. show how to generate secure distributed protocols

such as sealed auctions, battleship games, and banking applica-

tions [58]. These works support various notions of security, but

842842

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

none of them interact directly with money or leverage public

blockchains for ensuring financial fairness. Thus our work

is among the first to combine the “correct-by-construction”

cryptography approach with smart contracts.

Concurrent work. Our framework is the first to provide a

full-fledged formal model for decentralized blockchains as

embodied by Bitcoin, Ethereum, and many other popular

decentralized cryptocurrencies. In concurrent and independent

work, Kiayias et al. [36] also propose a blockchain model

in the (Generalized) Universal Composability framework [23]

and use it to derive results that are similar to what we

describe in the online version [37], i.e., fair MPC with public

deposits. However, the “programmability” of their formalism

is limited to their specific application (i.e., fair MPC with

public deposits). In comparison, our formalism is designed

with much broader goals, i.e., to facilitate protocol designers

to design a rich class of protocols in the blockchain model. In

particular, both our real-world wrapper (Figure 11) and ideal-

world wrapper (Figure 10) model the presence of arbitrary user

defined contract programs, which interact with both parties and

the ledger. Our formalism has also been adopted by the Gyges

work [35] demonstrating its broad usefulness.

II. THE BLOCKCHAIN MODEL OF CRYPTOGRAPHY

A. The Blockchain Model
We begin by informally describing the trust model and

assumptions. We then propose a formal framework for the

“blockchain model of cryptography” for specifying and rea-

soning about the security of protocols.
In this paper, the blockchain refers to a decentralized set

of miners who run a secure consensus protocol to agree upon

the global state. We therefore will regard the blockchain as a

conceptual trusted party who is trusted for correctness and
availability, but not trusted for privacy. The blockchain

not only maintains a global ledger that stores the balance for

every pseudonym, but also executes user-defined programs.

More specifically, we make the following assumptions:

• Time. The blockchain is aware of a discrete clock that

increments in rounds. We use the terms rounds and epochs
interchangeably.

• Public state. All parties can observe the state of the block-

chain. This means that all parties can observe the public

ledger on the blockchain, as well as the state of any user-

defined blockchain program (part of a contract protocol).

• Message delivery. Messages sent to the blockchain will

arrive at the beginning of the next round. A network

adversary may arbitrarily reorder messages that are sent

to the blockchain within the same round. This means that

the adversary may attempt a front-running attack (also

referred to as the rushing adversary by cryptographers), e.g.,

upon observing that an honest user is trading a stock, the

adversary preempts by sending a race transaction trading the

same stock. Our protocols should be proven secure despite

such adversarial message delivery schedules.

We assume that all parties have a reliable channel to the

blockchain, and the adversary cannot drop messages a party

sends to the blockchain. In reality, this means that the

overlay network must have sufficient redundancy. However,

an adversary can drop messages delivered between parties

off the blockchain.

• Pseudonyms. Users can make up an unbounded polynomial

number of pseudonyms when communicating with the

blockchain.

• Correctness and availability. We assume that the blockchain

will perform any prescribed computation correctly. We also

assume that the blockchain is always available.

Advantages of a generic blockchain model. We adopt

a generic blockchain model where the blockchain can run

arbitrary Turing-complete programs. In comparison, previous

and concurrent works [7], [17], [40], [50] retrofit the artifacts

of Bitcoin’s limited and hard-to-use scripting language. In

Section VII and the online version [37], we present additional

theoretical results demonstrating that our generic blockchain

model yields asymptotically more efficient cryptographic pro-

tocols.

B. Formally Modeling the Blockchain
Our paper adopts a carefully designed notational system

such that readers may understand our constructions without

understanding the precise details of our formal modeling.

We stress, however, that we give formal, precise specifi-

cations of both functionality and security, and our protocols

are formally proven secure under the Universal Composability

(UC) framework. In doing so, we make a separate contribution

of independent interest: we are the first to propose a formal,

UC-based framework for describing and proving the security

of distributed protocols that interact with a blockchain —

we refer to our formal model as “the blockchain model of

cryptography”.

Programs, wrappers, and functionalities. In the remainder

of the paper, we will describe ideal specifications, as well

as pieces of the protocol executed by the blockchain, the

users, and the manager respectively as programs written in

pseudocode. We refer to them as the ideal program (denoted

Ideal), the blockchain program (denoted B or Blockchain), and

the user/manager program (denoted UserP) respectively.

All of our pseudo-code style programs have precise mean-

ings in the UC framework. To “compile” a program to a

UC-style functionality or protocol, we apply a wrapper to

a program. Specifically, we define the following types of

wrappers:

• The ideal wrapper F(·) transforms an ideal program IdealP
into a UC ideal functionality F(IdealP).

• The blockchain wrapper G(·) transforms a blockchain pro-

gram B to a blockchain functionality G(B). The blockchain

functionality G(B) models the program executing on the

blockchain.

• The protocol wrapper Π(·) transforms a user/manager

program UserP into a user-side or manager-side protocol

Π(UserP).

One important reason for having wrappers is that wrappers im-

plement a set of common features needed by every smart con-

843843

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

tract application, including time, public ledger, pseudonyms,

and adversarial reordering of messages — in this way, we

need not repeat this notation for every blockchain application.

We defer our formal UC modeling to Appendix B. This will

not hinder the reader in understanding our protocols as long

as the reader intuitively understands our blockchain model and

assumptions described in Section II-A. Before we describe our

protocols, we define some notational conventions for writing

“programs”. Readers who are interested in the details of our

formal model and proofs can refer to Appendix B.

C. Conventions for Writing Programs
Our wrapper-based system modularizes notation, and allows

us to use a set of simple conventions for writing user-defined

ideal programs, blockchain programs, and user protocols. We

describe these conventions below.

Timer activation points. The ideal functionality wrapper

F(·) and the blockchain wrapper G(·) implement a clock that

advances in rounds. Every time the clock is advanced, the

wrappers will invoke the Timer activation point. Therefore,

by convention, we allow the ideal program or the blockchain

program can define a Timer activation point. Timeout oper-

ations (e.g., refunding money after a certain timeout) can be

implemented under the Timer activation point.

Delayed processing in ideal programs. When writing the

blockchain program, every message received by the blockchain

program is already delayed by a round due to the G(·) wrapper.

When writing the ideal program, we introduce a simple

convention to denote delayed computation. Program instruc-

tions that are written in gray background denote computation

that does not take place immediately, but is deferred to

the beginning of the next timer click. This is a convenient

shorthand because in our real-world protocol, effectively any

computation done by a blockchain functionality will be de-

layed. For example, in our IdealPcash ideal program (see

Figure 3), whenever the ideal functionality receives a mint or

pour message, the ideal adversary S is notified immediately;

however, processing of the messages is deferred till the next

timer click. Formally, delayed processing can be implemented

simply by storing state and invoking the delayed program in-

structions on the next Timer click. By convention, we assume

that the delayed instructions are invoked at the beginning of

the Timer call. In other words, upon the next timer click, the

delayed instructions are executed first.

Pseudonymity. All party identifiers that appear in ideal

programs, blockchain programs, and user-side programs by

default refer to pseudonyms. When we write “upon receiving

message from some P ”, this accepts a message from any

pseudonym. Whenever we write “upon receiving message

from P ”, without the keyword some, this accepts a message

from a fixed pseudonym P , and typically which pseudonym

we refer to is clear from the context.

Whenever we write “send m to G(B) as nym P ” inside a

user program, this sends an internal message (“send”, m, P)

to the protocol wrapper Π. The protocol wrapper will then

authenticate the message appropriately under pseudonym P .

IdealPcash
Init: Coins: a multiset of coins, each of the form (P, $val)

Mint: Upon receiving (mint, $val) from some P :

send (mint,P, $val) to A
assert ledger[P] ≥ $val
ledger[P] := ledger[P]− $val
append (P, $val) to Coins

Pour: On (pour, $val1, $val2,P1,P2, $val
′
1, $val

′
2) from P :

assert $val1 + $val2 = $val′1 + $val′2
if P is honest,

assert (P, $vali) ∈ Coins for i ∈ {1, 2}
assert Pi �= ⊥ for i ∈ {1, 2}
remove one (P, $vali) from Coins for i ∈ {1, 2}
for i ∈ {1, 2}, if Pi is corrupted, send (pour, i,
Pi, $val

′
i) to A; else send (pour, i,Pi) to A

if P is corrupted:

assert (P, $vali) ∈ Coins for i ∈ {1, 2}
remove one (P, $vali) from Coins for i ∈ {1, 2}

for i ∈ {1, 2}: add (Pi, $val
′
i) to Coins

for i ∈ {1, 2}: if Pi �= ⊥, send (pour, $val′i) to Pi

Fig. 3. Definition of IdealPcash. Notation: ledger denotes the public ledger,
and Coins denotes the private pool of coins. As mentioned in Section II-C,

gray background denotes batched and delayed activation. All party names

correspond to pseudonyms due to notations and conventions defined in
Section II-B.

When the context is clear, we avoid writing “as nym P ”,

and simply write “send m to G(B)”. Our formal system also

allows users to send messages anonymously to the blockchain

– although this option will not be used in this paper.

Ledger and money transfers. A public ledger is denoted

ledger in our ideal programs and blockchain programs. When a

party sends $amt to an ideal program or a blockchain program,

this represents an ordinary message transmission. Money

transfers only take place when ideal programs or blockchain

programs update the public ledger ledger. In other words,

the symbol $ is only adopted for readability (to distinguish

variables associated with money and other variables), and does

not have special meaning or significance. One can simply think

of this variable as having the money type.

III. CRYPTOGRAPHY ABSTRACTIONS

We now describe our cryptography abstraction in the form

of ideal programs. Ideal programs define the correctness and

security requirements we wish to attain by writing a speci-

fication assuming the existence of a fully trusted party. We

will later prove that our real-world protocols (based on smart

contracts) securely emulate the ideal programs. As mentioned

earlier, an ideal program must be combined with a wrapper F
to be endowed with exact execution semantics.

Overview. Hawk realizes the following specifications:

• Private ledger and currency transfer. Hawk relies on the

existence of a private ledger that supports private currency

transfers. We therefore first define an ideal functionality

called IdealPcash that describes the requirements of a private

ledger (see Figure 3). Informally speaking, earlier works

such as Zerocash [11] are meant to realize (approximations

844844

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

of) this ideal functionality – although technically this ought

to be interpreted with the caveat that these earlier works

prove indistinguishability or game-based security instead

UC-based simulation security.

• Hawk-specific primitives. With a private ledger specified,

we then define Hawk-specific primitives including freeze,

compute, and finalize that are essential for enabling trans-

actional privacy and programmability simultaneously.

A. Private Cash Specification IdealPcash

At a high-level, the IdealPcash specifies the requirements of a

private ledger and currency transfer. We adopt the same “mint”

and “pour” terminology from Zerocash [11].

Mint. The mint operation allows a user P to transfer money

from the public ledger denoted ledger to the private pool

denoted Coins[P]. With each transfer, a private coin for user

P is created, and associated with a value val.
For correctness, the ideal program IdealPcash checks that

the user P has sufficient funds in its public ledger ledger[P]
before creating the private coin.

Pour. The pour operation allows a user P to spend money

in its private bank privately. For simplicity, we define the

simple case with two input coins and two output coins. This

is sufficient for users to transfer any amount of money by

“making change,” although it would be straightforward to

support more efficient batch operations as well.

For correctness, the ideal program IdealPcash checks the

following: 1) for the two input coins, party P indeed possesses

private coins of the declared values; and 2) the two input coins

sum up to equal value as the two output coins, i.e., coins

neither get created or vanish.

Privacy. When an honest party P mints, the ideal-world

adversary A learns the pair (P, val) – since minting is raising

coins from the public pool to the private pool. Operations on

the public pool are observable by A.

When an honest party P pours, however, the adversary A
learns only the output pseudonyms P1 and P2. It does not learn

which coin in the private pool Coins is being spent nor the

name of the spender. Therefore, the spent coins are anonymous

with respect to the private pool Coins. To get strong anonymity,

new pseudonyms P1 and P2 can be generated on the fly to

receive each pour. We stress that as long as pour hides the

sender, this “breaks” the transaction graph, thus preventing

linking analysis.

If a corrupted party is the recipient of a pour, the adversary

additionally learns the value of the coin it receives.

Additional subtleties. Later in our protocol, honest parties

keep track of a wallet of coins. Whenever an honest party

pours, it first checks if an appropriate coin exists in its local

wallet – and if so it immediately removes the coin from the

wallet (i.e., without delay). In this way, if an honest party

makes multiple pour transactions in one round, it will always

choose distinct coins for each pour transaction. Therefore, in

our IdealPcash functionality, honest pourers’ coins are immedi-

ately removed from Coins. Further, an honest party is not able

to spend a coin paid to itself until the next round. By contrast,

corrupted parties are allowed to spend coins paid to them in

the same round – this is due to the fact that any message is

routed immediately to the adversary, and the adversary can

also choose a permutation for all messages received by the

blockchain in the same round (see Section II and Appendix B).

Another subtlety in the IdealPcash functionality is while hon-

est parties always pour to existing pseudonyms, the function-

ality allows the adversary to pour to non-existing pseudonyms

denoted ⊥ — in this case, effectively the private coin goes

into a blackhole and cannot be retrieved. This enables a

performance optimization in our UserPcash and Blockchaincash

protocol later – where we avoid including the cti’s in the NIZK

of LPOUR (see Section IV). If a malicious pourer chooses to

compute the wrong cti, it is as if the recipient Pi did not

receive the pour, i.e., the pour is made to ⊥.

B. Hawk Specification IdealPhawk

To enable transactional privacy and programmability simul-

taneously, we now describe the specifications of new Hawk
primitives, including freeze, compute, and finalize. The formal

specification of the ideal program IdealPhawk is provided in

Figure 4. Below, we provide some explanations. We also refer

the reader to Section I-C for higher-level explanations.

Freeze. In freeze, a party tells IdealPhawk to remove one

coin from the private coins pool Coins, and freeze it in the

blockchain by adding it to FrozenCoins. The party’s private

input denoted in is also recorded in FrozenCoins. IdealPhawk

checks that P has not called freeze earlier, and that a coin

(P, val) exists in Coins before proceeding with the freeze.

Compute. When a party P calls compute, its private input

in and the value of its frozen coin val are disclosed to the

manager PM.

Finalize. In finalize, the manager PM submits a public

input inM to IdealPhawk. IdealPhawk now computes the outcome

of φpriv on all parties’ inputs and frozen coin values, and

redistributes the FrozenCoins based on the outcome of φpriv.

To ensure money conservation, the ideal program IdealPhawk

checks that the sum of frozen coins is equal to the sum of

output coins.

Interaction with public contract. The IdealPhawk functional-

ity is parameterized by a public Hawk contract φpub, which is

included in IdealPhawk as a sub-module. During a finalize,

IdealPhawk calls φpub.check. The public contract φpub typically

serves the following purposes:

• Check the well-formedness of the manager’s input inM.
For example, in our financial derivatives application (Sec-

tion VI-B), the public contract φpub asserts that the input

corresponds to the price of a stock as reported by the stock

exchange’s authentic data feed.

• Redistribute public deposits. If parties or the manager have

aborted, or if a party has provided invalid input (e.g., less

than a minimum bet) the public contract φpub can now

redistribute the parties’ public deposits to ensure financial

845845

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

IdealPhawk(PM, {Pi}i∈[N], T1, T2, φpriv, φpub)
Init: Call IdealPcash.Init. Additionally:

FrozenCoins: a set of coins and private in-
puts received by this contract, each of the form
(P, in, $val). Initialize FrozenCoins := ∅.

Freeze: Upon receiving (freeze, $vali, ini) from Pi for some
i ∈ [N]:

assert current time T < T1

assert Pi has not called freeze earlier.
assert at least one copy of (Pi, $vali) ∈ Coins
send (freeze,Pi) to A
add (Pi, $vali, ini) to FrozenCoins
remove one (Pi, $vali) from Coins

Compute: Upon receiving compute from Pi for some i ∈ [N]:

assert current time T1 ≤ T < T2

if PM is corrupted, send (compute,Pi, $vali, ini)
to A
else send (compute,Pi) to A
let (Pi, $vali, ini) be the item in FrozenCoins
corresponding to Pi

send (compute,Pi, $vali, ini) to PM
Finalize: Upon receiving (finalize, inM, out) from PM:

assert current time T ≥ T2

assert PM has not called finalize earlier
for i ∈ [N]:

let ($vali, ini) := (0,⊥) if Pi has not called
compute

({$val′i}, out†) := φpriv({$vali, ini}, inM)
assert out† = out
assert

∑
i∈[N] $vali =

∑
i∈[N] $val

′
i

send (finalize, inM, out) to A
for each corrupted Pi that called compute: send (Pi,
$val′i) to A
call φpub.check(inM, out)
for i ∈ [N] such that Pi called compute:

add (Pi, $val
′
i) to Coins

send (finalize, $val′i) to Pi

φpub: Run a local instance of public contract φpub. Messages
between the adversary to φpub, and from φpub to parties
are forwarded directly.
Upon receiving message (pub,m) from party P:

notify A of (pub,m)

send m to φpub on behalf of P

IdealPcash: include IdealPcash (Figure 3).

Fig. 4. Definition of IdealPhawk. Notations: FrozenCoins denotes frozen coins
owned by the contract; Coins denotes the global private coin pool defined by
IdealPcash; and (ini, vali) denotes the input data and frozen coin value of
party Pi.

fairness. For example, in our “Rock, Paper, Scissors” exam-

ple (see Section VI-B), the private contract φpriv checks if

each party has frozen the minimal bet. If not, φpriv includes

that information in out so that φpub pays that party’s public

deposit to others.

Security and privacy requirements. The IdealPhawk specifies

the following privacy guarantees. When an honest party P
freezes money (e.g., a bid), the adversary should not observe

the amount frozen. However, the adversary can observe the

party’s pseudonym P . We note that leaking the pseudonym P
does not hurt privacy, since a party can simply create a new

pseudonym P and pour to this new pseudonym immediately

before the freeze.

When an honest party calls compute, the manager PM gets

to observe its input and frozen coin’s value. However, the

public and other contractual parties do not observe anything

(unless the manager voluntarily discloses information).

Finally, during a finalize operation, the output out is

declassified to the public – note that out can be empty if we

do not wish to declassify any information to the public.

It is not hard to see that our ideal program IdealPhawk

satisfies input independent privacy and authenticity against a

dishonest manager. Further, it satisfies posterior privacy as

long as the manager does not voluntarily disclose information.

Intuitive explanations of these security/privacy properties were

provided in Section I-B.

Timing and aborts. Our ideal program IdealPhawk requires

that freeze operations be done by time T1, and that compute

operations be done by time T2. If a user froze coins but did

not open by time T2, our ideal program IdealPhawk treats

(ini, vali) := (0,⊥), and the user Pi essentially forfeits

its frozen coins. Managerial aborts is not handled inside

IdealPhawk, but by the public portion of the contract.

Simplifying assumptions. For clarity, our basic version of

IdealPhawk is a stripped down version of our implementation.

Specifically, our basic IdealPhawk and protocols do not realize

refunds of frozen coins upon managerial abort. As mentioned

in Section IV-C, it is not hard to extend our protocols to

support such refunds.

Other simplifying assumptions we made include the follow-

ing. Our basic IdealPhawk assumes that the set of pseudonyms

participating in the contract as well as timeouts T1 and T2 are

hard-coded in the program. This can also be easily relaxed as

mentioned in Section IV-C.

IV. CRYPTOGRAPHIC PROTOCOLS

Our protocols are broken down into two parts: 1) the private

cash part that implements direct money transfers between

users; and 2) the Hawk-specific part that binds transactional

privacy with programmable logic. The formal protocol descrip-

tions are given in Figures 5 and 6. Below we explain the high-

level intuition.

A. Warmup: Private Cash and Money Transfers
Our construction adopts a Zerocash-like protocol for im-

plementing private cash and private currency transfers. For

completeness, we give a brief explanation below, and we

mainly focus on the pour operation which is technically more

interesting. The blockchain program Blockchaincash maintains

a set Coins of private coins. Each private coin is of the format

(P, coin := Comms($val))

where P denotes a party’s pseudonym, and coin commits to

the coin’s value $val under randomness s.

846846

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

Blockchaincash

Init: crs: a reference string for the underlying NIZK system

Coins: a set of coin commitments, initially ∅
SpentCoins: set of spent serial numbers, initially ∅

Mint: Upon receiving (mint, $val, s) from some party P ,
coin := Comms($val)
assert (P, coin) /∈ Coins
assert ledger[P] ≥ $val
ledger[P] := ledger[P]− $val
add (P, coin) to Coins

Pour: Anonymous receive (pour, π, {sni,Pi, coini, cti}i∈{1,2}})
let MT be a merkle tree built over Coins
statement := (MT.root, {sni,Pi, coini}i∈{1,2})
assert NIZK.Verify(LPOUR, π, statement)
for i ∈ {1, 2},

assert sni /∈ SpentCoins
assert (Pi, coini) /∈ Coins
add sni to SpentCoins
add (Pi, coini) to Coins
send (pour, coini, cti) to Pi,

Relation (statement,witness) ∈ LPOUR is defined as:

parse statement as (MT.root, {sni,Pi, coin
′
i}i∈{1,2})

parse witness as (P, skprf, {branchi, si, $vali, s′i, ri, $val′i})
assert P.pkprf = PRFskprf(0)
assert $val1 + $val2 = $val′1 + $val′2
for i ∈ {1, 2},

coini := Commsi($vali)
assert MerkleBranch(MT.root, branchi, (P‖coini))
assert sni = PRFskprf(P‖coini)
assert coin′i = Comms′i($val

′
i)

Protocol UserPcash
Init: Wallet: stores P’s spendable coins, initially ∅

GenNym: sample a random seed skprf
pkprf := PRFskprf(0)
return pkprf

Mint: On input (mint, $val),
sample a commitment randomness s
coin := Comms($val)
store (s, $val, coin) in Wallet
send (mint, $val, s) to G(Blockchaincash)

Pour (as sender): On input (pour, $val1, $val2, P1, P2, $val′1,
$val′2),

assert $val1 + $val2 = $val′1 + $val′2
for i ∈ {1, 2}, assert (si, $vali, coini) ∈ Wallet for some
(si, coini)
let MT be a merkle tree over Blockchaincash.Coins
for i ∈ {1, 2}:

remove one (si, $vali, coini) from Wallet
sni := PRFskprf(P‖coini)
let branchi be the branch of (P, coini) in MT
sample randomness s′i, ri
coin′i := Comms′i($val

′
i)

cti := ENC(Pi.epk, ri, $val
′
i‖s′i)

statement := (MT.root, {sni,Pi, coin
′
i}i∈{1,2})

witness := (P, skprf, {branchi, si, $vali, s′i, ri, $val′i})
π := NIZK.Prove(LPOUR, statement,witness)
AnonSend(pour, π, {sni,Pi, coin

′
i, cti}i∈{1,2})

to G(Blockchaincash)
Pour (as recipient): On receive (pour, coin, ct) from

G(Blockchaincash):
let ($val‖s) := DEC(esk, ct)
assert Comms($val) = coin
store (s, $val, coin) in Wallet
output (pour, $val)

Fig. 5. UserPcash construction. A trusted setup phase generates the NIZK’s common reference string crs. For notational convenience, we omit writing the
crs explicitly in the construction. The Merkle tree MT is stored on the blockchain and not computed on the fly – we omit stating this in the protocol for
notational simplicity. The protocol wrapper Π(·) invokes GenNym whenever a party creates a new pseudonym.

During a pour operation, the spender P chooses two coins

in Coins to spend, denoted (P, coin1) and (P, coin2) where

coini := Commsi($vali) for i ∈ {1, 2}. The pour operation

pays val′1 and val′2 amount to two output pseudonyms denoted

P1 and P2 respectively, such that val1 + val2 = val′1 + val′2.

The spender chooses new randomness s′i for i ∈ {1, 2}, and

computes the output coins as

(Pi, coini := Comms′i($val
′
i)
)

The spender gives the values s′i and val′i to the recipient Pi

for Pi to be able to spend the coins later.

Now, the spender computes a zero-knowledge proof to show

that the output coins are constructed appropriately, where

correctness compasses the following aspects:

• Existence of coins being spent. The coins being spent

(P, coin1) and (P, coin2) are indeed part of the private pool

Coins. We remark that here the zero-knowledge property

allows the spender to hide which coins it is spending – this

is the key idea behind transactional privacy.

To prove this efficiently, Blockchaincash maintains a Merkle

tree MT over the private pool Coins. Membership in the set

can be demonstrated by a Merkle branch consistent with the

root hash, and this is done in zero-knowledge.

• No double spending. Each coin (P, coin) has a cryptograph-

ically unique serial number sn that can be computed as

a pseudorandom function of P’s secret key and coin. To

pour a coin, its serial number sn must be disclosed, and a

zero-knowledge proof given to show the correctness of sn.

Blockchaincash checks that no sn is used twice.

• Money conservation. The zero-knowledge proof also attests

to the fact that the input coins and the output coins have

equal total value.

We make some remarks about the security of the scheme.

Intuitively, when an honest party pours to an honest party,

the adversary A does not learn the values of the output

coins assuming that the commitment scheme Comm is hiding,

and the NIZK scheme we employ is computational zero-

knowledge. The adversary A can observe the nyms that receive

the two output coins. However, as we remarked earlier, since

these nyms can be one-time, leaking them to the adversary

would be okay. Essentially we only need to break linkability

at spend time to ensure transactional privacy.

847847

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

Blockchainhawk(PM, {Pi}i∈[N], T1, T2, φpriv, φpub)
Init: See IdealPhawk for description of parameters

Call Blockchaincash.Init.
Freeze: Upon receiving (freeze, π, sni, cmi) from Pi:

assert current time T ≤ T1

assert this is the first freeze from Pi

let MT be a merkle tree built over Coins
assert sni /∈ SpentCoins
statement := (Pi,MT.root, sni, cmi)
assert NIZK.Verify(LFREEZE, π, statement)
add sni to SpentCoins and store cmi for later

Compute: Upon receiving (compute, π, ct) from Pi:
assert T1 ≤ T < T2 for current time T
assert NIZK.Verify(LCOMPUTE, π, (PM, cmi, ct))
send (compute,Pi, ct) to PM

Finalize: On receiving (finalize, π, inM, out, {coin′i, cti}i∈[N])
from PM:

assert current time T ≥ T2

for every Pi that has not called compute, set cmi := ⊥
statement := (inM, out, {cmi, coin

′
i, cti}i∈[N])

assert NIZK.Verify(LFINALIZE, π, statement)
for i ∈ [N]:

assert coin′i /∈ Coins
add coin′i to Coins
send (finalize, coin′i, cti) to Pi

Call φpub.check(inM, out)

Blockchaincash: include Blockchaincash

φpub : include user-defined public contract φpub

Relation (statement,witness) ∈ LFREEZE is defined as:

parse statement as (P,MT.root, sn, cm)
parse witness as (coin, skprf, branch, s, $val, in, k, s

′)
coin := Comms($val)
assert MerkleBranch(MT.root, branch, (P‖coin))
assert P.pkprf = skprf(0)
assert sn = PRFskprf(P‖coin)
assert cm = Comms′($val‖in‖k)

Relation (statement,witness) ∈ LCOMPUTE is defined as:

parse statement as (PM, cm, ct)
parse witness as ($val, in, k, s′, r)
assert cm = Comms′($val‖in‖k)
assert ct = ENC(PM.epk, r, ($val‖in‖k‖s′))

Relation (statement,witness) ∈ LFINALIZE is defined as:

parse statement as (inM, out, {cmi, coin
′
i, cti}i∈[N])

parse witness as {si, $vali, ini, s′i, ki}i∈[N]

({$val′i}i∈[N], out) := φpriv({$vali, ini}i∈[N], inM)
assert

∑
i∈[N] $vali =

∑
i∈[N] $val

′
i

for i ∈ [N]:

assert cmi = Commsi($vali‖ini‖ki))∨($vali, ini, ki, si, cmi) = (0,⊥,⊥,⊥,⊥)
assert cti = SENCki(s

′
i‖$val′i)

assert coin′i = Comms′i($val
′
i)

Protocol UserPhawk(PM, {Pi}i∈[N], T1, T2, φpriv, φpub)
Init: Call UserPcash.Init.

Protocol for a party P ∈ {Pi}i∈[N]:

Freeze: On input (freeze, $val, in) as party P :
assert current time T < T1

assert this is the first freeze input

let MT be a merkle tree over Blockchaincash.Coins
assert that some entry (s, $val, coin) ∈ Wallet for some
(s, coin)
remove one (s, $val, coin) from Wallet
sn := PRFskprf(P‖coin)
let branch be the branch of (P, coin) in MT
sample a symmetric encryption key k
sample a commitment randomness s′

cm := Comms′($val‖in‖k)
statement := (P,MT.root, sn, cm)
witness := (coin, skprf, branch, s, $val, in, k, s

′)
π := NIZK.Prove(LFREEZE, statement,witness)
send (freeze, π, sn, cm) to G(Blockchainhawk)

store in, cm, $val, s′, and k to use later (in compute)
Compute: On input (compute) as party P :

assert current time T1 ≤ T < T2

sample encryption randomness r
ct := ENC(PM.epk, r, ($val‖in‖k‖s′))
π := NIZK.Prove((PM, cm, ct), ($val, in, k, s′, r))
send (compute, π, ct) to G(Blockchainhawk)

Finalize: Receive (finalize, coin, ct) from G(Blockchainhawk):
decrypt (s‖$val) := SDECk(ct)
store (s, $val, coin) in Wallet
output (finalize, $val)

Protocol for manager PM:

Compute: On receive (compute,Pi, ct) from G(Blockchainhawk):
decrypt and store ($vali‖ini‖ki‖si) := DEC(esk, ct)
store cmi := Commsi($vali‖ini‖ki)
output (Pi, $vali, ini)
If this is the last compute received:

for i ∈ [N] such that Pi has not called compute,
($vali, ini, ki, si, cmi) := (0,⊥,⊥,⊥,⊥)

({$val′i}i∈[N], out) := φpriv({$vali, ini}i∈[N], inM)
store and output ({$val′i}i∈[N], out)

Finalize: On input (finalize, inM, out):
assert current time T ≥ T2

for i ∈ [N]:
sample a commitment randomness s′i
coin′i := Comms′i($val

′
i)

cti := SENCki(s
′
i‖$val′i)

statement := (inM, out, {cmi, coin
′
i, cti}i∈[N])

witness := {si, $vali, ini, s′i, ki}i∈[N]

π := NIZK.Prove(statement,witness)
send (finalize, π, inM, out, {coin′i, cti})

to G(Blockchainhawk)

UserPcash: include UserPcash.

Fig. 6. Blockchainhawk and UserPhawk construction.

848848

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

When a corrupted party P∗ pours to an honest party P , even

though the adversary knows the opening of the coin, it cannot

spend the coin (P, coin) once the transaction takes effect by

the Blockchaincash, since P∗ cannot demonstrate knowledge

of P’s secret key. We stress that since the contract binds the

owner’s nym P to the coin, only the owner can spend it even

when the opening of coin is disclosed.

Technical subtleties. Our Blockchaincash uses a modified ver-

sion of Zerocash to achieve stronger security in the simulation

paradigm. In comparison, Zerocash adopts a strictly weaker,

indistinguishability-based privacy notion called ledger indis-

tinguishability. In multi-party protocols, indistinguishability-

based security notions are strictly weaker than simulation

security. Not only so, the particular ledger indistinguishability

notion adopted by Zerocash [11] appears subtly questionable

upon scrutiny, which we elaborate on in the online ver-

sion [37]. This does not imply that the Zerocash construction

is necessarily insecure – however, there is no obvious path

to proving their scheme secure under a simulation based

paradigm.

B. Binding Privacy and Programmable Logic
So far, Blockchaincash, similar to Zerocash [11], only sup-

ports direct money transfers between users. We allow transac-

tional privacy and programmable logic simutaneously.

Freeze. We support a new operation called freeze, that does

not spend directly to a user, but commits the money as well

as an accompanying private input to a smart contract. This is

done using a pour-like protocol:

• The user P chooses a private coin (P, coin) ∈ Coins, where

coin := Comms($val). Using its secret key, P computes the

serial number sn for coin – to be disclosed with the freeze

operation to prevent double-spending.

• The user P computes a commitment (val||in||k) to the

contract where in denotes its input, and k is a symmetric

encryption key that is introduced due to a practical opti-

mization explained later in Section V.

• The user P now makes a zero-knowledge proof attesting to

similar statements as in a pour operation, i.e., that the spent

coin exists in the pool Coins, the sn is correctly constructed,

and that the val committed to the contract equals the value

of the coin being spent. See LFREEZE in Figure 6 for details

of the NP statement being proven.

Compute. Next, computation takes place off-chain to compute

the payout distribution {val′i}i∈[n] and a proof of correctness.

In Hawk, we rely on a minimally trusted manager PM to

perform computation. All parties would open their inputs to

the manager PM, and this is done by encrypting the opening

to the manager’s public key:

ct := ENC(PM.epk, r, ($val‖in‖k‖s′))
The ciphertext ct is submitted to the smart contract along with

appropriate zero-knowledge proofs of correctness. While the

user can also directly send the opening to the manager off-

chain, passing the ciphertext ct through the smart contract

would make any aborts evident such that the contract can

financially punish an aborting user.

After obtaining the openings, the manager now computes

the payout distribution {val′i}i∈[n] and public output out by

applying the private contract φpriv. The manager also constructs

a zero-knowledge proof attesting to the outcomes.

Finalize. When the manager submits the outcome of φpriv

and a zero-knowledge proof of correctness to Blockchainhawk,

Blockchainhawk verifies the proof and redistributes the frozen

money accordingly. Here Blockchainhawk also passes the man-

ager’s public input inM and public output out to the public

Hawk contract φpub. The public contract φpub can be invoked

to check the validity of the manager’s input, as well as

redistribute public collateral deposit.

Theorem 1. Assuming that the hash function in the Merkle
tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption schemes ENC and SENC
are perfectly correct and semantically secure, the PRF scheme
PRF is secure, then, our protocols in Figures 5 and 6 securely
emulates the ideal functionality F(IdealPhawk) against a ma-
licious adversary in the static corruption model.

Proof. Deferred to our online version [37].

C. Extensions and Discussions
Refunding frozen coins to users. In our implementation,

we extend our basic scheme to allow the users to reclaim

their frozen money after a timeout T3 > T2. To achieve this,

user P simply sends the contract a newly constructed coin

(P, coin := Comms($val)) and proves in zero-knowledge that

its value $val is equal to that of the frozen coin. In this case,

the user can identify the previously frozen coin in the clear,

i.e., there is no need to compute a zero-knowledge proof of

membership within the frozen pool as is needed in a pour

transaction.

Instantiating the manager with trusted hardware. In some

applications, it may be a good idea to instantiate the manager

using trusted hardware such as the emerging Intel SGX. In this

case, the off-chain computation can take place in a secret SGX

enclave that is not visible to any untrusted software or users.

Alternatively, in principle, the manager role can also be split

into two or more parties that jointly run a secure computation

protocol – although this approach is likely to incur higher

overhead.

We stress that our model is fundamentally different from

placing full trust in any centralized node. Trusted hardware
cannot serve as a replacement of the blockchain. Any off-

chain only protocol that does not interact with the blockchain

cannot offer financial fairness in the presence of aborts – even

when trusted hardware is employed.

Furthermore, even the use of SGX does not obviate the need

for our cryptographic protocol. If the SGX is trusted only by

a subset of parties (e.g., just the parties to a particular private

contact), rather than globally, then those users can benefit from

849849

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

the efficiency of an SGX-managed private contract, while still

utilizing the more widely trusted underlying currency.

Pouring anonymously to long-lived pseudonyms. In our

basic formalism of IdealPcash, the pour operation discloses

the recipient’s pseudonyms to the adversary. This means that

IdealPcash only retains full privacy if the recipient generates

a fresh, new pseudonym every time. In comparison, Zero-

cash [11] provides an option of anonymously spending to a

long-lived pseudonym (in other words, having IdealPcash not

reveal recipients’ pseudonyms to the adversary).

It would be straightforward to add this feature to Hawk as

well (at the cost of a constant factor blowup in performance);

however, in most applications (e.g., a payment made after

receiving an invoice), the transfer is subsequent to some

interaction between the recipient and sender.

Open enrollment of pseudonyms. In our current formalism,

parties’ pseudonyms are hardcoded and known a priori. We can

easily relax this to allow open enrollment of any pseudonym

that joins the contract (e.g., in an auction). Our implementation

supports open enrollment. Due to SNARK’s preprocessing,

right now, each contract instance must declare an upper-

bound on the number of participants. An enrollment fee

can potentially be adopted to prevent a DoS attack where

the attacker joins the contract with many pseudonyms thus

preventing legitimate users from joining. How to choose the

correct fee amount to achieve incentive compatibility is left as

an open research challenge. The a priori upper bound on the

number of participants can be avoided if we adopt recursively

composable SNARKs [18], [25] or alternative proofs that do

not require circuit-dependent setup [16].

V. ADOPTING SNARKS IN UC PROTOCOLS AND

PRACTICAL OPTIMIZATIONS

A. Using SNARKs in UC Protocols

Succinct Non-interactive ARguments of Knowledge [12],

[33], [49] provide succinct proofs for general computation

tasks, and have been implemented by several systems [12],

[49], [56]. We would like to use SNARKs to instantiate the

NIZK proofs in our protocols — unfortunately, SNARK’s

security is too weak to be directly employed in UC protocols.

Specifically, SNARK’s knowledge extractor is non-blackbox

and cannot be used by the UC simulator to extract witnesses

from statements sent by the adversary and environment —

doing so would require that the extractor be aware of the

environment’s algorithm, which is inherently incompatible

with UC security.

UC protocols often require the NIZKs to have simulation

extractability. Although SNARKs do not satisfy simulation

extractability, Kosba et al. show that it is possible to apply

efficient SNARK-lifting transformations to construct simula-

tion extractable proofs from SNARKs [38]. Our implementa-

tions thus adopt the efficient SNARK-lifting transformations

proposed by Kosba et al. [38].

B. Practical Considerations

Efficient SNARK circuits. A SNARK prover’s performance

is mainly determined by the number of multiplication gates

in the algebraic circuit to be proven [12], [49]. To achieve

efficiency, we designed optimized circuits through two ways:

1) using cryptographic primitives that are SNARK-friendly,

i.e. efficiently realizable as arithmetic circuits under a specific

SNARK parametrization. 2) Building customized circuit gen-

erators to produce SNARK-friendly implementations instead

of relying on compilers to translate higher level implementa-

tion.

The main cryptographic building blocks in our system are:

collision-resistant hash function for the Merkle trees, pseudo-

random function, commitment, and encryption. Our imple-

mentation supports both 80-bit and 112-bit security levels. To

instantiate the CRH efficiently, we use an Ajtai-based SNARK-

friendly collision-resistant hash function that is similar to the

one used by Ben-Sasson et al. [14]. In our implementation, the

modulus q is set to be the underlying SNARK implementation

254-bit field prime, and the dimension d is set to 3 for the 80-

bit security level, and to 4 for the 112-bit security level based

on the analysis in [38]. For PRFs and commitments, we use

a hand-optimized implementation of SHA-256. Furthermore,

we adopt the SNARK-friendly primitives for encryption used

in the study by Kosba et al. [38], in which an efficient circuit

for hybrid encryption in the case of 80-bit security level was

proposed. The circuit performs the public key operations in a

prime-order subgroup of the Galois field extension Fpμ , where

μ = 4, p is the underlying SNARK field prime (typically 254-

bit prime, i.e. pμ is over 1000-bit), and the prime order of the

subgroup used is 398-bit prime. This was originally inspired

by Pinocchio coin [26]. The circuit then applies a lightweight

cipher like Speck [10] or Chaskey-LTS [47] with a 128-bit key

to perform symmetric encryption in the CBC mode, as using

the standard AES-128 instead will result in a much higher

cost [38]. For the 112-bit security, using the same method for

public key operations requires intensive factorization to find

suitable parameters, therefore we use a manually optimized

RSA-OAEP encryption circuit with a 2048-bit key instead.

In the next section, we will illustrate how using SNARK-

friendly implementations can lead to 2.0-3.7× savings in the

size of the circuits at the 80-bit security level, compared to

the case when naive straightforward implementation are used.

We will also illustrate that the performance is also practical

in the higher security level case.

Optimizations for finalize. In addition to the SNARK-

friendly optimizations, we focus on optimizing the O(N)-
sized finalize circuit since this is our main performance

bottleneck. All other SNARK proofs in our scheme are for

O(1)-sized circuits. Two key observations allow us to greatly

improve the performance of the proof generation during

finalize.

Optimization 1: Minimize SSE-secure NIZKs. First, we ob-

serve that in our proof, the simulator need not extract any new

witnesses when a corrupted manager submits proofs during a

850850

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

finalize operation. All witnesses necessary will have been

learned or extracted by the simulator at this point. Therefore,

we can employ an ordinary SNARK instead of a stronger

simulation sound extractable NIZK during finalize. For

freeze and compute, we still use the stronger NIZK. This

optimization reduces our SNARK circuit sizes by 1.5× as can

be inferred from Figure 9 of Section VI, after SNARK-friendly

optimizations are applied.

Optimization 2: Minimize public-key encryption in SNARKs.
Second, during finalize, the manager encrypts each party

Pi’s output coins to Pi’s key, resulting in a ciphertext cti.
The ciphertexts {cti}i∈[N] would then be submitted to the

contract along with appropriate SNARK proofs of correctness.

Here, if a public-key encryption is employed to generate

the cti’s, it would result in relatively large SNARK circuit

size. Instead, we rely on a symmetric-key encryption scheme

denoted SENC in Figure 6. This requires that the manager

and each Pi perform a key exchange to establish a symmetric

key ki. During an compute, the user encrypts this ki to the

manager’s public key PM.epk, and prove that the k encrypted

is consistent with the k committed to earlier in cmi. The

SNARK proof during finalize now only needs to include

commitments and symmetric encryptions instead of public key

encryptions in the circuit – the latter much more expensive.

This second optimization additionally gains us a factor of

1.9× as shown in Figure 9 of Section VI after applying the

previous optimizations. Overall, all optimizations will lead to

a gain of more than 10× in the finalize circuit.

Remarks about the common reference string. SNARK

schemes require the generation of a common reference string

(CRS) during a pre-processing step. This common reference

string consists of an evaluation key for the prover, and a

verification key for the verifier. Unless we employ recursively

composed SNARKs [18], [25] whose costs are significantly

higher, the evaluation key is circuit-dependent, and its size

is proportional to the circuit’s size. In comparison, the

verification key is O(|in| + |out|) in size, i.e., depends on

the total length of inputs and outputs, but independent of the

circuit size. We stress that only the verification key portion of
the CRS needs to be included in the public contract that lives
on the blockchain.

We remark that the CRS for protocol UserPcash is shared

globally, and can be generated in a one-time setup. In com-

parison, the CRS for each Hawk contract would depend

on the Hawk contract, and therefore exists per instance of

Hawk contract. To minimize the trust necessary in the CRS

generation, one can employ either trusted hardware or use

secure multi-party computation techniques as described by

Ben-Sasson et al. [13].

Finally, in the future when new primitives become suffi-

ciently fast, it is possible to drop-in and replace our SNARKs

with other primtives that do not require per-circuit preprocess-

ing. Examples include recursively composed SNARKs [18],

[25] or other efficient PCP constructions [16]. The commu-

nity’s efforts at optimizing these constructions are underway.

Compile Augment

���

..

..

..

Private Input
Private inCoin Values

Symmetric Enc Key
Public statement
(seen by contract)
randomness To Libsnark

Comm

Comm

Comm

Enc Enc

Balance
Check

Comm

���

T/F?

Private outCoin Values

Program
Φpriv

Fig. 7. Compiler overview. Circuit augmentation for finalize.

VI. IMPLEMENTATION AND EVALUATION

A. Compiler Implementation
Our compiler consists of several steps, which we illustrate

in Figure 7 and describe below:

Preprocessing: First, the input Hawk program is split into its

public contract and private contract components. The public

contract is Serpent code, and can be executed directly atop

an ordinary cryptocurrency platform such as Ethereum. The

private contract is written in a subset of the C language,

and is passed as input to the Pinocchio arithmetic circuit

compiler [49]. Keywords such as HawkDeclareParties are

implemented as C preprocessors macros, and serve to de-

fine the input (Inp) and output (Outp) datatypes. Currently,

our private contract inherits the limitations of the Pinocchio

compiler, e.g., cannot support dynamic-length loops. In the

future, we can relax these limitations by employing recursively

composition of SNARKs.

Circuit Augmentation: After compiling the preprocessed pri-

vate contract code with Pinocchio, we have an arithmetic

circuit representing the input/output relation φpriv. This be-

comes a subcomponent of a larger arithmetic circuit, which we

assemble using a customized circuit assembly tool. This tool

is parameterized by the number of parties and the input/output

datatypes, and attaches cryptographic constraints, such as

computing commitments and encryptions over each party’s

output value, and asserting that the input and output values

satisfy the balance property.

Cryptographic Protocol: Finally, the augmented arithmetic

circuit is used as input to a state-of-the-art zkSNARK library,

Libsnark [15]. To avoid implementing SNARK verification

in Ethereum’s Serpent language, we must add a SNARK

verification opcode to Ethereum’s stack machine. We finally

compile an executable program for the parties to compute the

Libsnark proofs according to our protocol.

B. Additional Examples
Besides our running example of a sealed-bid auction (Fig-

ure 2), we implemented several other examples in Hawk,

demonstrating various capabilities:

Crowdfunding: A Kickstarter-style crowdfunding campaign,

(also known as an assurance contract in economics litera-

ture [9]) overcomes the “free-rider problem,” allowing a large

851851

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Performance of the zk-SNARK circuits for the user-side circuits: pour,

freeze AND compute (SAME FOR ALL APPLICATIONS). MUL denotes
multiple (4) cores, and ONE denotes a single core. The mint operation does

not involve any SNARKs, and can be computed within tens of
microseconds. The Proof includes any additional cryptographic material

used for the SNARK-lifting transformation.

80-bit security 112-bit security

pour freeze compute pour freeze compute

KeyGen(s)MUL 26.3 18.2 15.9 36.7 30.5 34.6

ONE 88.2 63.3 54.42 137.2 111.1 131.8

Prove(s) MUL 12.4 8.4 9.3 18.5 15.7 16.8

ONE 27.5 20.7 22.5 42.2 40.5 41.7

Verify(ms) 9.7 9.1 10.0 9.9 9.3 9.9

EvalKey(MB) 148 106 90 236 189 224

VerKey(KB) 7.3 4.4 7.8 8.7 5.3 8.4

Proof(KB) 0.68 0.68 0.68 0.71 0.71 0.71

Stmt(KB) 0.48 0.16 0.53 0.57 0.19 0.53

number of parties to contribute funds towards some social

good. If the minimum donation target is reached before the

deadline, then the donations are transferred to a designated

party (the entrepreneur); otherwise, the donations are refunded.

Hawk preserves privacy in the following sense: a) the do-

nations pledged are kept private until the deadline; and b)

if the contract fails, only the manager learns the amount by

which the donations were insufficient. These privacy properties

may conceivably have a positive effect on the willingness

of entrepreneurs to launch a crowdfund campaign and its

likelihood of success.

Rock Paper Scissors: A two-player lottery game, and natu-

rally generalized to an N -player version. Our Hawk imple-

mentation provides the same notion of financial fairness as

in [7], [17] and provides stronger security/privacy guarantees.

If any party (including the manager), cheats or aborts, the

remaining honest parties receive the maximum amount they

might have won otherwise. Furthermore, we go beyond prior

works [7], [17] by concealing the players’ moves and the

pseudonym of the winner to everyone except the manager.

“Swap” Financial Instrument: An individual with a risky

investment portfolio (e.g, one who owns a large number

of Bitcoins) may hedge his risks by purchasing insurance

(e.g., by effectively betting against the price of Bitcoin with

another individual). Our example implements a simple swap

instrument where the price of a stock at some future date

(as reported by a trusted authority specified in the public

contract) determines which of two parties receives a payout.

The private contract ensures the privacy of both the details of

the agreement (i.e., the price threshold) and the outcome.

The full Hawk programs for these examples are provided in

our online version [37].

C. Performance Evaluation
We evaluated the performance for various examples, using

an Amazon EC2 r3.8xlarge virtual machine. We assume

a maximum of 264 leaves for the Merkle trees, and we

TABLE II
Performance of the zk-SNARK circuits for the manager circuit

finalize for different applications. The manager circuits are the same
for both security levels. MUL denotes multiple (4) cores, and ONE denotes a

single core.

swap rps auction crowdfund

#Parties 2 2 10 100 10 100

KeyGen(s)MUL 8.6 8.0 32.3 300.4 32.16 298.1

ONE 27.8 24.9 124 996.3 124.4 976.5

Prove(s) MUL 3.2 3.1 15.4 169.3 15.2 169.2

ONE 7.6 7.4 40.1 384.2 40.3 377.5

Verify(ms) 8.4 8.4 10 19.9 10 19.8

EvalKey(GB) 0.04 0.04 0.21 1.92 0.21 1.91

VerKey(KB) 3.3 2.9 12.9 113.8 12.9 113.8

Proof(KB) 0.28 0.28 0.28 0.28 0.28 0.28

Stmt(KB) 0.22 0.2 1.03 9.47 1.03 9.47

0

0.5

1

1.5

pour freeze compute

N
um

be
r o

f m
ul

 g
at

es
 (x

 1
 m

ill
io

n)

Naïve SNARK-friendly Impl.
2.3x

1.0x
1.0x

1.0x

2.6x

2.0x

Fig. 8. Gains of using SNARK-friendly implementation for the user-side
circuits: pour, freeze and compute at 80-bit security.

present results for both 80-bit and 112-bit security levels. Our

benchmarks actually consume at most 27GB of memory and 4

cores in the most expensive case. Tables I and II illustrate the

results – we focus on evaluating the zk-SNARK performance

since all other computation time is negligible in comparison.

We highlight some important observations:

• On-chain computation (dominated by zk-SNARK verifica-

tion time) is very small in all cases, ranging from 9 to 20
milliseconds The running time of the verification algorithm

0

20

40

60

80

Auction (25) Auction (50) Auction (100)

N
um

be
r o

f m
ul

 g
at

es
 (x

 1
 m

ill
io

n) Naïve
SNARK-friendly Impl.
With Opt 1
With Opt 2 (overall)

1.0x

1.9x
2.8x

10.5x

10.5x

2.8x
1.9x

1.0x

10.5x

2.8x
1.9x 1.0x

Fig. 9. Gains after adding each optimization to the finalize auction
circuit, with 25, 50 and 100 Bidders. Opt 1 and Opt 2 are two practical
optimizations detailed in Section V.

852852

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

is just linearly dependent on the size of the public statement,

which is far smaller than the size of the computation,

resulting into small verification time.

• On-chain public parameters: As mentioned in Sec-

tion IV-C, not the entire SNARK common reference string

(CRS) need to be on the blockchain, but only the verification

key part of the CRS needs to be on-chain. Our imple-

mentation suggests the following: the private cash protocol

requires a verification key of 23KB to be stored on-chain –

this verification key is globally shared and there is only a

single instance. Besides the globally shared public param-

eters, each Hawk contract will additionally require 13-114
KB of verification key to be stored on-chain, for 10 to 100
users. This per-contract verification key is circuit-dependent,

i.e., depends on the contract program. We refer the readers

to Section IV-C for more discussions on techniques for

performing trusted setup.

• Manager computation: Running private auction or crowd-

funding protocols with 100 participants requires under

6.5min proof time for the manager on a single core, and

under 2.85min on 4 cores. This translates to under $0.14 of

EC2 time [2].

• User computation: Users’ proof times for pour, freeze

and compute are under one minute, and independent of the

number of parties. Additionally, in the worst case, the peak

memory usage of the user is less than 4 GB.
Savings from protocol optimizations. Figure 8 illustrates

the performance gains attained by using a SNARK-friendly

implementation for the user-side circuits, i.e. pour, freeze

and compute w.r.t. the naive implementation at the 80-bit

security level. We calculate the naive implementation cost

using conservative estimates for the straightforward implemen-

tation of standard cryptographic primitives. The figure shows a

gain of 2.0-2.6× compared to the naive implementation. Fur-

thermore, Figure 9 illustrates the performance gains attained

by our protocol optimizations described in Section V The

figure considers the sealed-bid auction finalize circuit at dif-

ferent number of bidders. We show that the SNARK-friendly

implementation along with our two optimizations combined

significantly reduce the SNARK circuit sizes, and achieve a

gain of 10× relative to a straightforward implementation. The

figure also illustrates that the manager’s cost is proportional

to the number of participants. (By contrast, the user-side costs

are independent of the number of participants).

VII. ADDITIONAL THEORETICAL RESULTS

Last but not the least, we present additional theoretical

results to fruther illustrate the usefulness of our formal block-

chain model. In the interest of space, we defer details to the

online version [37], and only state the main findings here.

Fair MPC with public deposits in the generic blockchain
model. As is well-understood, fairness is in general impossible

in plain models of multi-party computation when the majority

can be corrupted. This was first observed by Cleve [24]

and later extended in subsequent papers [8]. Assuming a

TABLE III
Additional theoretical results for fair MPC with public deposits. The

table assumes that N parties wish to securely compute 1 bit of output that
will be revealed to all parties at the end. For collateral, we assume that each

aborting party must pay all honest parties 1 unit of currency.

claim-or-refund [17] multi-lock [40]
generic

blockchain

On-chain cost O(N2) O(N2) O(N)
rounds O(N) O(1) O(1)
Total collateral O(N2) O(N2) O(N2)

blockchain trusted for correctness and availability (but not

for privacy), an interesting notion of fairness which we refer

to as “financial fairness” can be attained as shown by recent

works [7], [17], [40]. In particular, the blockchain can finan-

cially penalize aborting parties by confiscating their deposits.

Earlier works in this space [7], [17], [40], [50] focus on

protocols that retrofit the artifacts of Bitcoin’s limited scripting

language. Specifically, a few works use Bitcoin’s scripting

language to construct intermediate abstractions such as “claim-

or-refund” [17] or “multi-lock” [40], and build atop these

abstractions to construct protocols. Table VII shows that by

assuming a generic blockchain model where the blockchain

can run Turing-complete programs, we can improve the effi-

ciency of financially fair MPC protocols.

Fair MPC with private deposits. We further illustrate how to

perform financially fair MPC using private deposits, i.e., where

the amount of deposits cannot be observed by the public. The

formal definitions, constructions, and proofs are supplied in

the online version [37].

ACKNOWLEDGMENTS

We gratefully acknowledge Jonathan Katz, Rafael Pass,

and abhi shelat for helpful technical discussions about the

zero-knowledge proof constructions. We also acknowledge

Ari Juels and Dawn Song for general discussions about

cryptocurrency smart contracts. This research is partially sup-

ported by NSF grants CNS-1314857, CNS-1445887, CNS-

1518765, CNS-1514261, CNS-1526950, a Sloan Fellowship,

three Google Research Awards, Yahoo! Labs through the

Faculty Research Engagement Program (FREP) and a NIST

award.

REFERENCES

[1] http://koinify.com.
[2] Amazon ec2 pricing. http://aws.amazon.com/ec2/pricing/.
[3] Augur. http://www.augur.net/.
[4] bitoinj. https://bitcoinj.github.io/.
[5] The rise and rise of bitcoin. Documentary.
[6] Skuchain. http://www.skuchain.com/.
[7] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.

Secure Multiparty Computations on Bitcoin. In S&P, 2013.
[8] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete

characterization of fairness in secure two-party computation of boolean
functions. In TCC, 2015.

[9] M. Bagnoli and B. L. Lipman. Provision of public goods: Fully
implementing the core through private contributions. The Review of
Economic Studies, 1989.

853853

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

[10] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The simon and speck families of lightweight block ciphers.
http://ia.cr/2013/404.

[11] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza. Zerocash: Decentralized anonymous payments from
Bitcoin. In S&P, 2014.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks
for C: verifying program executions succinctly and in zero knowledge.
In CRYPTO, 2013.

[13] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In
S&P, 2015.

[14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero
knowledge via cycles of elliptic curves. In CRYPTO, 2014.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In Security,
2014.

[16] E. Ben-Sasson and M. Sudan. Short pcps with polylog query complexity.
SIAM J. Comput., 2008.

[17] I. Bentov and R. Kumaresan. How to Use Bitcoin to Design Fair
Protocols. In CRYPTO, 2014.

[18] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive compo-
sition and bootstrapping for snarks and proof-carrying data. In STOC,
2013.

[19] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A Framework for
Fast Privacy-Preserving Computations. In ESORICS. 2008.

[20] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten. Research Perspectives and Challenges for Bitcoin and
Cryptocurrencies. In S&P, 2015.

[21] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, 2001.

[22] R. Canetti. Universally composable signature, certification, and authen-
tication. In CSF, 2004.

[23] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable
security with global setup. In TCC. 2007.

[24] R. Cleve. Limits on the security of coin flips when half the processors
are faulty. In STOC, 1986.

[25] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur. Geppetto: Versatile verifiable
computation. In S & P, 2015.

[26] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio Coin:
building Zerocoin from a succinct pairing-based proof system. In
PETShop, 2013.

[27] C. Decker and R. Wattenhofer. Bitcoin transaction malleability and
mtgox. In ESORICS. Springer, 2014.

[28] A. K. R. Dermody and O. Slama. Counterparty announcement. https:
//bitcointalk.org/index.php?topic=395761.0.

[29] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In FC, 2014.

[30] C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo. Zql: A compiler for
privacy-preserving data processing. In USENIX Security, 2013.

[31] M. Fredrikson and B. Livshits. Zø: An optimizing distributing zero-
knowledge compiler. In USENIX Security, 2014.

[32] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Eurocrypt, 2015.

[33] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Eurocrypt, 2013.

[34] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on
bitcoin’s peer-to-peer network. In USENIX Security, 2015.

[35] A. Juels, A. Kosba, and E. Shi. The ring of gyges: Using smart contracts
for crime. Manuscript, 2015.

[36] A. Kiayias, H.-S. Zhou, and V. Zikas. Fair and robust multi-party
computation using a global transaction ledger. http://ia.cr/2015/574.

[37] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. http://ia.cr/2015/675.

[38] A. Kosba, Z. Zhao, A. Miller, H. Chan, C. Papamanthou, R. Pass,
abhi shelat, and E. Shi. How to use snarks in universally composable
protocols. https://eprint.iacr.org/2015/1093, 2015.

[39] B. Kreuter, B. Mood, A. Shelat, and K. Butler. PCF: A portable circuit
format for scalable two-party secure computation. In Security, 2013.

[40] R. Kumaresan and I. Bentov. How to Use Bitcoin to Incentivize Correct
Computations. In CCS, 2014.

[41] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A
programming framework for secure computation. In S&P, 2015.

[42] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage. A fistful of bitcoins: characterizing payments
among men with no names. In IMC, 2013.

[43] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
Distributed E-Cash from Bitcoin. In S&P, 2013.

[44] A. Miller, M. Hicks, J. Katz, and E. Shi. Authenticated data structures,
generically. In POPL, 2014.

[45] A. Miller and J. J. LaViola Jr. Anonymous Byzantine Consensus from
Moderately-Hard Puzzles: A Model for Bitcoin, 2014.

[46] M. S. Miller, C. Morningstar, and B. Frantz. Capability-based financial
instruments. In FC, 2001.

[47] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel,
and I. Verbauwhede. Chaskey: An efficient mac algorithm for 32-bit
microcontrollers. In Selected Areas in Cryptography–SAC 2014, pages
306–323. Springer, 2014.

[48] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http:
//bitcoin.org/bitcoin.pdf, 2009.

[49] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In S&P, 2013.

[50] R. Pass and abhi shelat. Micropayments for peer-to-peer currencies. In
CCS, 2015.

[51] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A programming
language for generic, mixed-mode multiparty computations. In S&P,
2014.

[52] D. Ron and A. Shamir. Quantitative Analysis of the Full Bitcoin
Transaction Graph. In FC, 2013.

[53] N. Szabo. Formalizing and securing relationships on public networks.
First Monday, 1997.

[54] N. van Saberhagen. Cryptonote v 2.0. https://goo.gl/kfojVZ, 2013.

[55] W. Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. Journal of finance, 1961.

[56] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish.
Efficient RAM and control flow in verifiable outsourced computation.
In NDSS, 2015.

[57] G. Wood. Ethereum: A secure decentralized transaction ledger. http:
//gavwood.com/paper.pdf.

[58] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication
and partitioning to build secure distributed systems. In S&P, 2003.

[59] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized
computation platform with guaranteed privacy.

APPENDIX A

FREQUENTLY ASKED QUESTIONS

we address frequently asked questions. Some of this con-

tent repeats what is already stated earlier, but we hope that

addressing these points again in a centralized section will help

reiterate some important points that may be missed by a reader.

A. Motivational

“How does Hawk’s programming model differ from
Ethereum?” Our high-level approach may be superior than

Ethereum: Ethereum’s language defines the blockchain pro-

gram, where Hawk allows the programmer to write a single

global program, and Hawk auto-generates not only the block-

chain program, but also the protocols for users.

“Why not spin off the formal blockchain modeling into
a separate paper?” The blockchain formal model could be

presented on its own, but we gain evidence of its usefulness

by implementing it and applying it to interesting practical

examples. Likewise our system implementation benefits from

the formalism because we can use our framework to provide

provable security.

854854

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

B. Technical

“SNARKs do not offer simulation extractability required
for UC.” See Section V-A as well as Kosba et al. [38].

SNARK’s common reference string. See discussions in

Section V-B.

“Why are the recipient pseudonyms P1 and P2 revealed
to the adversary? And what about Zerocash’s persistent
addresses feature?” See discussions in Section IV-C.

“Isn’t the manager a trusted-third party?” No, our man-

ager is not a trusted third party. As we mention upfront

in Sections I-A and I-B, the manager need not be trusted

for correctness and input independence. Due to our use of

zero-knowledge proofs, if the manager deviates from correct

behavior, it will get caught.

Further, each contract instance can choose its own manager,

and the manager of one contract instance cannot affect the

security of another contract instance. Similarly, the manager

also need not be trusted to retain the security of the crypto-

currency as a whole. Therefore, the only thing we trust the

manager for is posterior privacy.

As mentioned in Section IV-C we note that one can possi-

bly rely on secure multi-party computation (MPC) to avoid

having to trust the manager even for posterier privacy –

however such a solution is unlikely to be practical in the

near future, especially when a large number of parties are

involved. The thereotical formulation of this full-generality

MPC-based approach is detailed in the online version [37].

In our implementation, we made a conscious design choice

and opted for the approach with a minimally trusted manager

(rather than MPC), since we believe that this is a desirable

sweet-spot that simultaneously attains practical efficiency and

strong enough security for realistic applications. We stress that

practical efficiency is an important goal of Hawk’s design.

In Section IV-C, we also discuss practical considerations

for instantiating this manager. For the reader’s convenience,

we iterate: we think that a particularly promising choice is to

rely on trusted hardware such as Intel SGX to obtain higher

assurance of posterior privacy. We stress again that even when

we use the SGX to realize the manager, the SGX should not

have to be trusted for retaining the global security of the

cryptocurrency. In particular, it is a very strong assumption to

require all participants to globally trust a single or a handful

of SGX prcessor(s). With Hawk’s design, the SGX is only

very minimally trusted, and is only trusted within the scope

of the current contract instance.

APPENDIX B

FORMAL TREATMENT OF PROTOCOLS IN THE

BLOCKCHAIN MODEL

We are the first to propose a UC model for the blockchain

model of cryptography. First, our model allows us to easily

capture the time and pseudonym features of cryptocurrencies.

In cryptocurrencies such as Bitcoin and Ethereum, time pro-

gresses in block intervals, and the blockchain can query the

current time, and make decisions accordingly, e.g., make a

refund operation after a timeout. Second, our model captures

the role of a blockchain as a party trusted for correctness and

availability but not for privacy. Third, our formalism modular-

izes our notations by factoring out common specifics related

to the smart contract execution model, and implementing these

in central wrappers.

For simplicity, we assume that there can be any number

of identities in the system, and that they are fixed a priori.

It is easy to extend our model to capture registration of new

identities dynamically. We allow each identity to generate an

arbitrary (polynomial) number of pseudonyms as in Bitcoin

and Ethereum.

A. Programs, Functionalities, and Wrappers
To make notations simple for writing ideal functionalities

and smart contracts, we make a conscious notational choice of

introducing wrappers. Wrappers implement in a central place

a set of common features (e.g., timer, ledger, pseudonyms) that

are applicable to all ideal functionalities and contracts in our

blockchain model of execution. In this way, we can modularize

our notational system such that these common and tedious

details need not be repeated in writing ideal, blockchain and

user/manager programs.

Blockchain functionality wrapper G: A blockchain function-

ality wrapper G(B) takes in a blockchain program denoted B,

and produces a blockchain functionality. Our real world proto-

cols will be defined in the G(B)-hybrid world. Our blockchain

functionality wrapper is formally presented in Figure 11. We

point out the following important facts about the G(·) wrapper:

• Trusted for correctness and availability but not privacy.
The bloc kchain functionality wrapper G(·) stipulates that a

blockchain program is trusted for correctness and availabil-

ity but not for privacy. In particular, the blockchain wrapper

exposes the blockchain program’s internal state to any party

that makes a query.

• Time and batched processing of messages. In popular de-

centralized cryptocurrencies such as Bitcoin and Ethereum,

time progresses in block intervals marked by the creation

of each new block. Intuitively, our G(·) wrapper captures

the following fact. In each round (i.e., block interval), the

blockchain program may receive multiple messages (also

referred to as transactions in the cryptocurrency literature).

The order of processing these transactions is determined

by the miner who mines the next block. In our model, we

allow the adversary to specify an ordering of the messages

collected in a round, and our blockchain program will then

process the messages in this adversary-specified ordering.

• Rushing adversary. The blockchain wrapper G(·) naturally

captures a rushing adversary. Specifically, the adversary

can first see all messages sent to the blockchain program

by honest parties, and then decide its own messages for

this round, as well as an ordering in which the blockchain

program should process the messages in the next round.

Modeling a rushing adversary is important, since it captures

a class of well-known front-running attacks, e.g., those that

exploit transaction malleability [11], [27]. For example, in

855855

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

F(idealP) functionality

Given an ideal program denoted idealP, the F(idealP) functionality is defined as below:

Init: Upon initialization, perform the following:

Time. Set current time T := 0. Set the receive queue rqueue := ∅.

Pseudonyms. Set nyms := {(P1, P1), . . . , (PN , PN)}, i.e., initially every party’s true identity is recorded as a default

pseudonym for the party.

Ledger. A ledger dictionary structure ledger[P] stores the endowed account balance for each identity P ∈ {P1, . . . , PN}.

Before any new pseudonyms are generated, only true identities have endowed account balances. Send the array ledger[]
to the ideal adversary S .

idealP.Init. Run the Init procedure of the idealP program.

Tick: Upon receiving tick from an honest party P : notify S of (tick, P). If the functionality has collected tick

confirmations from all honest parties since the last clock tick, then

Call the Timer procedure of the idealP program.

Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.

For each (m, P̄) ∈ rqueue in the permuted order, invoke the delayed actions (in gray background) defined by ideal

program idealP at the activation point named “Upon receiving message m from pseudonym P̄”. Notice that the program

idealP speaks of pseudonyms instead of party identifiers. Set rqueue := ∅.

Set T := T + 1

Other activations: Upon receiving a message of the form (m, P̄) from a party P :

Assert that (P̄ , P) ∈ nyms.
Invoke the immediate actions defined by ideal program idealP at the activation point named “Upon receiving message
m from pseudonym P̄”.

Queue the message by calling rqueue.add(m, P̄).

Permute: Upon receiving (permute, perm) from the adversary S , record perm.

GetTime: On receiving gettime from a party P , notify the adversary S of (gettime, P), and return the current time T
to party P .

GenNym: Upon receiving gennym from an honest party P : Notify the adversary S of gennym. Wait for S to respond with

a new nym P̄ such that P̄ /∈ nyms. Now, let nyms := nyms ∪ {(P, P̄)}, and send P̄ to P . Upon receiving (gennym, P̄)

from a corrupted party P : if P̄ /∈ nyms, let P̄ := nyms ∪ {(P, P̄)}.

Ledger operations: // inner activation
Transfer: Upon receiving (transfer, amount, P̄r) from some pseudonym P̄s:

Notify (transfer, amount, P̄r, P̄s) to the ideal adversary S .

Assert that ledger[P̄s] ≥ amount.
ledger[P̄s] := ledger[P̄s]− amount
ledger[P̄r] := ledger[P̄r] + amount

/* P̄s, P̄r can be pseudonyms or true identities. Note that each party’s identity is a default pseudonym for the party. */
Expose: On receiving exposeledger from a party P , return ledger to the party P .

Fig. 10. The F(idealP) functionality is parameterized by an ideal program denoted idealP. An ideal program idealP can specify two types of activation points,
immediate activations and delayed activations. Activation points are invoked upon recipient of messages. Immediate activations are processed immediately,
whereas delayed activations are collected and batch processed in the next round. The F(·) wrapper allows the ideal adversary S to specify an order perm in
which the messages should be processed in the next round. For each delayed activation, we use the leak notation in an ideal program idealP to define the
leakage which is immediately exposed to the ideal adversary S upon recipient of the message.

a “rock, paper, scissors” game, if inputs are sent in the

clear, an adversary can decide its input based on the other

party’s input. An adversary can also try to maul transactions

submitted by honest parties to potentially redirect payments

to itself. Since our model captures a rushing adversary,

we can write ideal functionalities that preclude such front-

running attacks.

Ideal functionality wrapper F: An ideal functionality

F(idealP) takes in an ideal program denoted idealP. Specif-

ically, the wrapper F(·) part defines standard features such

as time, pseudonyms, a public ledger, and money transfers

between parties. Our ideal functionality wrapper is formally

presented in Figure 10.

Protocol wrapper Π: Our protocol wrapper allows us to

modularize the presentation of user protocols. Our protocol

wrapper is formally presented in Figure 12.

Terminology. For disambiguation, we always refer to the

user-defined portions as programs. Programs alone do not

have complete formal meanings. However, when programs

are wrapped with functionality wrappers (including F(·)

856856

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

G(B) functionality

Given a blockchain program denoted B, the G(B) functionality is defined as below:

Init: Upon initialization, perform the following:

A ledger data structure ledger[P̄] stores the account balance of party P̄ . Send the entire balance ledger to A.

Set current time T := 0. Set the receive queue rqueue := ∅.

Run the Init procedure of the B program.

Send the B program’s internal state to the adversary A.

Tick: Upon receiving tick from an honest party, if the functionality has collected tick confirmations from all honest

parties since the last clock tick, then

Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.

Call the Timer procedure of the B program.

Pass the reordered messages to the B program to be processed. Set rqueue := ∅.

Set T := T + 1

Other activations:
• Authenticated receive: Upon receiving a message (authenticated, m) from party P :

Send (m,P) to the adversary A
Queue the message by calling rqueue.add(m,P).

• Pseudonymous receive: Upon receiving a message of the form (pseudonymous,m, P̄ , σ) from any party:

Send (m, P̄ , σ) to the adversary A
Parse σ := (nonce, σ′), and assert Verify(P̄ .spk, (nonce, T, P̄ .epk,m), σ′) = 1
If message (pseudonymous,m, P̄ , σ) has not been received earlier in this round, queue the message by calling

rqueue.add(m, P̄).

• Anonymous receive: Upon receiving a message (anonymous, m) from party P :

Send m to the adversary A
If m has not been seen before in this round, queue the message by calling rqueue.add(m).

Permute: Upon receiving (permute, perm) from the adversary A, record perm.

Expose: On receiving exposestate from a party P , return the functionality’s internal state to the party P . Note that this

also implies that a party can query the functionality for the current time T .

Ledger operations: // inner activation
Transfer: Upon recipient of (transfer, amount, P̄r) from some pseudonym P̄s:

Assert ledger[P̄s] ≥ amount
ledger[P̄s] := ledger[P̄s]− amount
ledger[P̄r] := ledger[P̄r] + amount

Fig. 11. The G(B) functionality is parameterized by a blockchain program denoted B. The G(·) wrapper mainly performs the following: i) exposes all of
its internal states and messages received to the adversary; ii) makes the functionality time-aware: messages received in one round and queued and processed
in the next round. The G(·) wrapper allows the adversary to specify an ordering to the messages received by the blockchain program in one round.

and G(·)), we obtain functionalities with well-defined formal

meanings. Programs can also be wrapped by a protocol

wrapper Π to obtain a full protocol with formal meanings.

B. Modeling Time

At a high level, we express time in a way that conforms

to the Universal Composability framework [21]. In the ideal

world execution, time is explicitly encoded by a variable

T in an ideal functionality F(idealP). In the real world

execution, time is explicitly encoded by a variable T in our

blockchain functionality G(B). Time progresses in rounds. The

environment E has the choice of when to advance the timer.

We assume the following convention: to advance the timer,

the environment E sends a “tick” message to all honest parties.

Honest parties’ protocols would then forward this message

to F(idealP) in the ideal-world execution, or to the G(B)

functionality in the real-world execution. On collecting “tick”

messages from all honeset parties, the F(idealP) or G(B)
functionality would then advance the time T := T + 1. The

functionality also allows parties to query the current time T .

When multiple messages arrive at the blockchain in a time

interval, we allow the adversary to choose a permutation

to specify the order in which the blockchain will process

the messages. This captures potential network attacks such

as delaying message propagation, and front-running attacks

(a.k.a. rushing attacks) where an adversary determines its own

message after seeing what other parties send in a round.

C. Modeling Pseudonyms

We model a notion of “pseudonymity” that provides a form

of privacy, similar to that provided by typical cryptocurren-

cies such as Bitcoin. Any user can generate an arbitrary

857857

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

Π(UserP) protocol wrapper in the G(B)-hybrid world

Given a party’s local program denoted prot, the Π(prot) functionality is defined as below:

Pseudonym related:
GenNym: Upon receiving input gennym from the environment E , generate (epk, esk) ← Keygenenc(1

λ), and (spk, ssk) ←
Keygensign(1

λ). Call payload := prot.GenNym(1λ, (epk, spk)). Store nyms := nyms ∪ {(epk, spk, payload)}, and output

(epk, spk, payload) as a new pseudonym.

Send: Upon receiving internal call (send, m, P̄):

If P̄ == P : send (authenticated, m) to G(B). // this is an authenticated send
Else, // this is a pseudonymous send

Assert that pseudonym P̄ has been recorded in nyms;
Query current time T from G(B). Compute σ′ := Sign(ssk, (nonce, T, epk,m)) where ssk is the recorded secret signing

key corresponding to P̄ , nonce is a freshly generated random string, and epk is the recorded public encryption key

corresponding to P̄ . Let σ := (nonce, σ′).
Send (pseudonymous,m, P̄ , σ) to G(B).

AnonSend: Upon receiving internal call (anonsend, m, P̄): send (anonymous, m) to G(B).
Timer and ledger transfers:

Transfer: Upon receiving input (transfer, $amount, P̄r, P̄) from the environment E :

Assert that P̄ is a previously generated pseudonym.

Send
(
transfer, $amount, P̄r

)
to G(B) as pseudonym P̄ .

Tick: Upon receiving tick from the environment E , forward the message to G(B).
Other activations:

Act as pseudonym: Upon receiving any input of the form (m, P̄) from the environment E :

Assert that P̄ was a previously generated pseudonym.

Pass (m, P̄) the party’s local program to process.

Others: Upon receiving any other input from the environment E , or any other message from a party: Pass the input/message

to the party’s local program to process.

Fig. 12. Protocol wrapper.

(polynomially-bounded) number of pseudonyms, and each

pseudonym is “owned” by the party who generated it. The

correspondence of pseudonyms to real identities is hidden

from the adversary.

Effectively, a pseudonym is a public key for a digital

signature scheme, and the corresponding private key is known

by the party who “owns” the pseudonym. The blockchain

functionality allows parties to publish authenticated messages

that are bound to a pseudonym of their choice. Thus each inter-

action with the blockchain program is, in general, associated

with a pseudonym but not to a user’s real identity.

We abstract away the details of pseudonym management

by implementing them in our wrappers. This allows user-

defined applications to be written very simply, as though

using ordinary identities, while enjoying the privacy benefits

of pseudonymity.

Our wrapper provides a user-defined hook, “gennym”, that

is invoked each time a party creates a pseudonym. This

allows the application to define an additional per-pseudonym

payload, such as application-specific public keys. From the

point-of-view of the application, this is simply an initialization

subroutine invoked once for each participant.

Our wrapper provides several means for users to communi-

cate with a blockchain program. The most common way is for

a user to publish an authenticated message associated with one

of their pseudonyms, as described above. Additionally, “anon-

send” allows a user to publish a message without reference to

any pseudonym at all.

In spite of pseudonymity, it is sometimes desirable to assign

a particular user to a specific role in a blockchain program

(e.g., “auction manager”). The alternative is to assign roles

on a “first-come first-served” basis (e.g., as the bidders in an

auction). To this end, we allow each party to define generate

a single “default” pseudonym which is publicly-bound to

their real identity. We allow applications to make use of this

through a convenient abuse of notation, by simply using a

party identifier as a parameter or hardcoded string. Strictly

speaking, the pseudonym string is not determined until the

“gennym” subroutine is executed; the formal interpretation is

that whenever such an identity is used, the default pseudonym

associated with the identity is fetched from the blockchain

program. (This approach is effectively the same as taken by

Canetti [22], where a functionality FCA allows each party to

bind their real identity to a single public key of their choice).

Additional appendices are supplied in the online full ver-

sion [37].

858858

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 03,2024 at 15:10:15 UTC from IEEE Xplore. Restrictions apply.

