
A Practical Oblivious Map Data Structure
with Secure Deletion and History Independence

Daniel S. Roche, Adam Aviv, Seung Geol Choi
Computer Science Department

United States Naval Academy

{roche,aviv,choi}@usna.edu

Abstract—We present a new oblivious RAM that supports
variable-sized storage blocks (vORAM), which is the first ORAM
to allow varying block sizes without trivial padding. We also
present a new history-independent data structure (a HIRB tree)
that can be stored within a vORAM. Together, this construction
provides an efficient and practical oblivious data structure (ODS)
for a key/value map, and goes further to provide an additional
privacy guarantee as compared to prior ODS maps: even upon
client compromise, deleted data and the history of old operations
remain hidden to the attacker. We implement and measure the
performance of our system using Amazon Web Services, and the
single-operation time for a realistic database (up to 256K entries)
is less than 1 second. This represents a 100x speed-up compared
to the current best oblivious map data structure (which provides
neither secure deletion nor history independence) by Wang et
al. (CCS 14).

I. INTRODUCTION

A. Motivation

Increasingly, organizations and individuals are storing large

amounts of data in remote, shared cloud servers. For sensitive

data, it is important to protect the privacy not only of the

data itself but also of the access to the metadata that may

contain which records have been accessed and when, thereby

revealing properties of the underlying data, even if that data is

encrypted. There are multiple points of potential information

leakage in this setting: an adversary could observe network

communication between the client and server; an adversary

could compromise the cloud itself, observing the data stored

at the server, possibly including mirrored copies or backups;

an adversary could observe the computations performed by

the remote server; the adversary may compromise the locally-

stored client data; or, finally, the adversary may compromise

the data in multiple ways, e.g., a complete compromise of

both the remotely stored cloud storage and locally-stored client

storage1.

While a complete compromise will inevitably reveal private

data, we seek data storage mechanisms which maximize

privacy while maintaining reasonable, practical efficiency,

at any level of compromise. For generality, we assume a

computationally-limited server which may only store and

retrieve blocks of raw data, and we focus on the most basic

(and perhaps most important) data structure: a key/value map.

1We assume an honest-but-curious server throughout, and leave achieving
an ODS with malicious servers as an open problem.

Oblivious RAM (ORAM). With a computationally-limited

server, the access pattern of client-server communication

reveals the entire history of the remote data store. This access

pattern, even if the actual data is encrypted, may leak sensitive

information about the underlying stored data, such as keyword

search queries or encryption keys [1]–[3].

A generic solution to protect against access pattern leakage

is oblivious RAM (ORAM) [4], which obscures the operation

being performed (read/write), the address on which it operates,

and the contents of the underlying data. Any program (with

the possible necessity of some padding) can be executed using

an ORAM to hide the access patterns to the underlying data.

A great number of ORAM schemes have been recently

proposed, most aiming to improve the efficiency as it relates

to the recursive index structure, which is typically required

to store the hidden locations of items within the ORAM

(for example [5]–[10] and references therein). However, an

important aspect overlooked by previous work is the size of

data items themselves. The vORAM construction we propose

provides an affirmative answer to the following question:

Can an oblivious RAM hide the size of varying-sized
items, with greater efficiency than that achieved by
trivial padding?

Oblivious data structure (ODS). Recently, Wang et al. [11]

showed that it is possible to provide obliviousness more

efficiently if the specifics of the target program are considered.

In particular, among other results, Wang et al. achieved an

oblivious data structure (ODS) scheme for a key-value map,

by constructing an AVL tree on a non-recursive ORAM with-
out using the position map. Their scheme requires Õ(log n)
ORAM blocks of client storage, where n is the maximum

number of allowable data items. More importantly, due to

lack of position map lookups, the scheme requires only

O(log2 n) blocks of communication bandwidth, which con-

stituted roughly an O(log n)-multiplicative improvement in

communication bandwidth over the generic ORAM solution.

We will briefly explain “the pointer-based technique" they

introduced to eliminate the position map in Section I-C.

The practicality of oblivious data structures are challenging,

however, owing to the combination of inefficiencies in the data

structures compounded with that of the underlying ORAM. In

our experimental results presented in Section VI, and Table I

specifically, we found that the AVL ODS suffers greatly from

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.19

178

2016 IEEE Symposium on Security and Privacy

© 2016, Daniel S. Roche. Under license to IEEE.

DOI 10.1109/SP.2016.19

178

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

a high round complexity, and also that the per-operation

bandwidth exceeds the total database size (and hence a trivial

alternative implementation) until the number of entries exceeds

1 million.

Similar observations for ORAMs more generally were made

recently by Bindschaedler et al. [12], who examined existing

ORAM alternatives in a realistic cloud setting, and found

many theoretical results lacking in practice. We ask a related

question for ODS, and answer it in the affirmative with our

HIRB data structure stored in vORAM:

Can an oblivious map data structure be made prac-
tically useful in the cloud setting?

Catastrophic attack. In the cloud storage scenario, obliv-

iousness will protect the client’s privacy from any observer

of network traffic or from the cloud server itself. However,

if the attacker compromises the client and obtains critical

information such as the encryption keys used in the ODS,

all the sensitive information stored in the cloud will simply be

revealed to the attacker.

We call this scenario a catastrophic attack, and it is im-

portant to stress that this attack is quite realistic. The client

machine may be stolen or hacked, or it may even be legally

seized due to a subpoena.

Considering the increasing incidence of high-profile catas-

trophic attacks in practice (e.g., [13], [14]), and that even

government agencies such the CIA are turning to third-party

cloud storage providers [15], it is important to provide some

level of privacy in this attack scenario. Given this reality, we

ask and answer the following additional question:

Can we provide any privacy guarantee even under
a catastrophic attack?

Specifically, our vORAM+HIRB construction will provide

strong security for deleted data, as well as a weaker (yet

optimal) security for the history of past operations, after

complete client compromise.

B. Security Requirements

Motivated by the goals outlined previously, we aim to

construct a cloud database system that provides the following

two security properties:

• Obliviousness: The system should hide both the data and

the access patterns from an observer of all client-server

communication (i.e., be an ODS).

• Secure Deletion and History Independence: The system,

in the face of a catastrophic attack, should ensure that

no previously deleted data, the fact that previous data

existed, or the order in which extant data has been

accessed, is revealed to an attacker.

Additionally, we require that the system be practically useful,

meaning it should be more efficient (w.r.t. communication
cost, access time, and round complexity) than previous ODS
schemes, even those that do not necessarily provide secure

deletion nor history independence.

Each required security notion has individually been the

focus of numerous recent research efforts (see Section II). To

the best of our knowledge, however, there is no previous work
that considers all the properties simultaneously. We aim at

combining the security properties from obliviousness, secure
deletion, and history independence into a new, unified system

for secure remote cloud storage. The previous ODS schemes

do not provide history-independence nor secure deletion and

are inefficient for even small data stores. Previous mechanisms

providing secure deletion or history independence are more

efficient, but do not hide the access pattern in remote cloud

storage (i.e., do not provide obliviousness). And unfortunately,

the specific requirements of these constructions means they

cannot trivially be combined in a straightforward way.
To better understand the necessity of each of the security

requirements, consider each in kind.

Obliviousness: The network traffic to a remote server reveals

to an attacker, or to the server itself, which raw blocks

are being read and written. Even if the block contents

are encrypted, an attacker may be able to infer sensitive

information from this access pattern itself. Like previous

ODS schemes, our system will ensure this is not the case;

the server-level access pattern reveals nothing about the

underlying data operations that the user is performing.

History independence: By inspecting the internal structure of

the currently existing data in the cloud after a catastrophic

attack, the attacker may still be able to infer information

about which items were recently accessed or the likely

prior existence of a record even if that record was

previously deleted [16]. However, if an ODS scheme

provides perfect history independence, the catastrophic

attacker cannot infer which sequence of operations was

applied, among all the sequences that could have resulted

in the current set of the data items. Interestingly, we

show that it is impossible to achieve perfect history in-

dependence in our setting with a computationally-limited

server; nonetheless, providing �-history independence is

still desirable, where only the most recent � operations

are revealed but nothing else.

Secure deletion: Given that only bounded history indepen-

dence is possible, the privacy of deleted data must be

considered. It is desirable that the catastrophic attacker

should not be able to guess information about deleted

data. In practice, data deleted from persistent media, such

as hard disk drives, is easily recoverable through stan-

dard forensic tools. In the cloud setting, the problem is

compounded because there is normally no direct control

of how and where data is stored on physical disks, or

backed up and duplicated in servers around the globe.

We follow a similar approach as [17], where secure

deletion is accomplished by re-encrypting and deleting

the old encryption key from local, erasable memory such

as RAM.

C. Our Work

Pointer-based technique. Wang et al. [11] designed an ODS

scheme for map by storing an AVL tree on top of the non-

recursive Path ORAM [9] using the pointer-based technique, in

179179

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

which the ORAM position tags act as pointers, and the pointer

to each node in the AVL tree is stored in its parent node. With

this technique, when the parent node is fetched, the position

tags of its children are immediately obtained. Therefore, the
position map lookups are no more necessary.

Similarly, in our ODS scheme, we will overlay a data

structure on a non-recursive ORAM using a pointer-based

technique for building the data structure.

We stress that the non-recursive Path ORAM still remains

the best choice when we would like to embed our data

structure in an ORAM with the pointer-based technique, in

spite of all the recent improvements on ORAM techniques.

This is mainly because all ORAM improvement techniques

consider the setting where an ORAM runs in a stand-alone

fashion, unlike our setting where the ORAM actions, in

particular with position map lookups, depend on the upper-

layer data structure. In particular, with the non-recursive Path

ORAM, each ORAM operation takes only a single round of

communication between the client and server, since there is

no position map lookup; moreover, each operation transfers

O(log n) blocks where the size of each block can be arbi-

trarily small up to Ω(logn). To compare the non-recursive

Path ORAM with the most recent stand-alone ORAMs, each

operation of the constant communication ORAM [18] transfers

O(1) blocks each of which should be of size Ω(log4 n), and it

additionally uses computation-intensive homomorphic encryp-

tions. For Ring ORAM [19], it still refers to the position map,

and although its online stage may be comparable to the non-

recursive Path ORAM, it still has the additional offline stage.

The non-recursive version of these ORAMs has essentially the

same efficiency as the non-recursive Path ORAM.

Impracticality of existing data structures. Unfortunately,

no current data structure exists that can meet our security and

efficiency requirements:

• It should be a rooted tree. This is necessary, since we

would like to use the pointer-based technique. Because

the positions are randomly re-selected on any access to

that node, the tree structure is important in order to avoid

dangling references to old pointers.

• The height of the tree should be O(log n) in the worst
case. To achieve obliviousness, all operations must ex-

ecute with the same running time, which implies all

operations will be padded to some upper bound that is

dependent on the height of the tree.

• The data structure itself should be (strongly) history-
independent, meaning the organization of nodes depends

only on the current contents, and not the order of op-

erations which led to the current state. As a negative

example, consider an AVL tree, which is not history

independent. Inserting the records A, B, C, D in that

order; or B, C, D, A in that order; or A, B, C, D, E

and then deleting E; will each result in a different state of

the data structure, thereby revealing (under a catastrophic

attack) information on the insertion order and previous

deletions.

To the best of our knowledge, there is no data struc-

ture satisfying all of the above conditions. Most tree-based

solutions, including AVL trees and B-trees, are not history

independent. Treaps and B-treaps are rooted trees with history

independence, but they have linear height in the worst case.

Skip-lists and B-Skip-lists are history independent and tree-

like, but technically they are not rooted trees and thereby not

amenable to the pointer-based technique. That is, Skip-lists

and B-Skip-lists have multiple incoming links, requiring linear

updates in the ORAM to maintain the pointers and position

tags in the worst case.

HIRB. We developed a new data structure, called a HIRB tree

(history independent, randomized B-tree), that satisfies all the

aforementioned requirements. Conceptually, it is a fixed height
B-tree such that when each item is inserted, the level in HIRB

tree is determined by logβ n trials of (pseudorandom) biased

coin flipping where β is the block factor. The tree may split

or merge depending on the situation, but it never rotates. The

fixed height of the tree, i.e. H = 1+logβ n, is very beneficial

for efficiency. In particular, every operation visits at most 2H
nodes, which greatly saves on padding costs, compared to the

ODS scheme of [11] where each AVL tree operation must be

padded up to visiting 3 · 1.44 · lg n nodes.

The HIRB is described more carefully in Section V, with

full details in the appendix.

vORAM. One challenge with HIRB trees is that number of

items that each tree node contains are variable, and in the

unlucky case, it may become too large for an ORAM bucket

to store.

This challenge is overcome by introducing vORAM

(ORAM with variable-size blocks). The design of vORAM

is based on the non-recursive version of Path ORAM where

the bucket size remains fixed, but each bucket may contain as

many variable-size blocks (or parts of blocks) as the bucket

space allows. Blocks may also be stored across multiple

buckets (in the same path).

We observe that the irregularity of the HIRB node sizes can

be smoothed over O(log n) buckets from the vORAM root to

an vORAM leaf, and we prove that the stash size on the client

can still be small Õ(log n) with high probability. We note that

vORAM is the first ORAM that deals with variable size blocks,

and may be of independent interest.

The vORAM is described carefully in Section IV, and the

full details are provided in the appendix.

Secure deletion. Finally, for secure deletion, a parent

vORAM bucket contains the encryption keys of both children.

When a bucket is modified, it is encrypted with a fresh key;

then the encryption keys in the parent are accordingly modi-

fied, which recursively affects all its ancestors. However, we

stress that in each vORAM operation, leaf-to-root refreshing
takes place anyway, and adding this mechanism is bandwidth-
free. Additionally, instead of using the label of each item

directly in HIRB, we use the hash of the label. This way,

we can remove the dependency between the item location in

180180

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

HIRB and its label (with security proven in the random oracle

model).

Imperfect history independence. Our approach does not

provide perfect history independence. Although the data struc-

ture in the vORAM is history independent, the vORAM is

not. Indeed, in any tree-based or hierarchical ORAM, the

items near the root have been more likely recently accessed as

compared to items near the leaves. The catastrophic adversary

can observe all the ORAM structure, and such leakage breaks

perfect history independence. We show a formal lower bound

for the amount of leakage in Section III.

Experiments and efficiency of our scheme. In order to

empirically measure the performance of our construction, we

first performed an analysis to determine the smallest constant

factor overhead to achieve high performance with negligible

likelihood of failure. Following this, we implemented our

system in the cloud with Amazon Web Services as the cloud

provider and compared it to alternatives that provide some,

but not all of the desired security properties. To the best of

our knowledge, there has been no previous work that imple-
ments and tests any ODS system in the actual cloud setting.

As argued in Bindschaedler et al. [12], who independently

compared various ORAM systems in the cloud, it is important

to see how systems work in the actual intended setting. As

comparison points, we compare our system with the following

implementations:

• ORAM+AVL: We reimplemented the ODS map by Wang

et al. [11] that provides obliviousness but not secure

deletion nor history independence.

• SD-B-Tree: We implemented a remotely stored block-

level, encrypted B-Tree (as recommend by the secure

deletion community [17]) that provides secure deletion

but not history independence nor obliviousness.

• Naive approach: We implemented a naive approach that

achieves all the security properties by transferring and

re-encrypting the entire database on each access.

In all cases the remotely stored B-Tree is the fastest

as it requires the least amount of communication cost (no

obliviousness). For similar reasons, vORAM+HIRB is much

faster than the baseline as the number of items grows (starting

from 214 items), since the baseline requires communication

that is linear in the number of items. We also describe a

number of optimizations (such as concurrent connections and

caching) that enables vORAM+HIRB to be competitive with

the baseline even when storing as few as 29 items. It should be

noted, without optimizations, the access time is on the order

of a few seconds, and with optimizations, access times are less

than one second.

Surprisingly, however, the vORAM+HIRB is 20x faster than
ORAM+AVL, irrespective of the number of items, even though

ORAM+AVL does not support history independence or secure

deletion. We believe this is mainly because vORAM+HIRB

requires much smaller round complexity. Two factors drive

the round complexity improvement:

Much smaller height: While each AVL tree node contains

only one item, each HIRB node contains β items on

average, and is able to take advantage of slightly larger

buckets which optimize the bandwidth to remote cloud

storage by storing the same amount of data in trees with

smaller height.

Much less padding: AVL tree operations sometimes get com-

plicated with balancing and rotations, due to which each

operation should be padded up to 3 · 1.44 lgn node

accesses. However, HIRB operations are simple, do not

require rotations, and thus, each operation accesses at

most 2 logβ n nodes.

Although the Path-ORAM bucket for ORAM+AVL is four

times smaller than the vORAM bucket in our implementation,

it affects bandwidth but not the round complexity. The fully

optimized vORAM+HIRB protocol is about 100x faster than
ORAM+AVL. We describe the details of our experiments in

Section VI.

Summary of our contributions. To summarize, the contri-

butions of this paper are:

• New security definitions of history independence and

secure deletion under a catastrophic attack.

• The design and analysis of an oblivious RAM with

variable size blocks, the vORAM;

• The design and analysis of a new history independent and

randomized data structure, the HIRB tree;

• A lower bound on history independence for any ORAM

construction with sub-linear bandwidth;

• Improvements to the performance of mapped data struc-

tures stored in ORAMs;

• An empirical measurement of the settings and perfor-

mance of the vORAM in the actual cloud setting;

• The implementation and measurement of the

vORAM+HIRB system in the actual cloud setting.

II. RELATED WORK

We discuss related work in oblivious data structures, history

independence, and secure deletion. Our system builds upon

these prior results and combines the security properties into a

unified system.

ORAM and oblivious data structures. ORAM protects the

access pattern from an observer such that it is impossible

to determine which operation is occurring, and on which

item. The seminal work on the topic is by Goldreich and

Ostrovsky [4], and since then, many works have focused on

improving efficiency of ORAM in both the space, time, and

communication cost complexities (for example [5]–[10] just

to name a few; see the references therein).

There have been works addressing individual oblivious

data structures to accomplish specific tasks, such as prior-

ity queues [20], stacks and queues [21], and graph algo-

rithms [22]. Recently, Wang et al. [11] achieved oblivious

data structures (ODS) for maps, priority queues, stacks, and

queues much more efficiently than previous works or naive

implementation of the data structures on top of ORAM.

181181

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

Our vORAM construction builds upon the non-recursive

Path ORAM [11] and allows variable sized data items to be

spread across multiple ORAM buckets. Although our original

motivation was to store differing-sized B-tree nodes from the

HIRB, there may be wider applicability to any context where

the size (as well as contents and access patterns) to data needs

to be hidden.

Interestingly, based on our experimental results, we believe

the ability of vORAM to store partial blocks in each bucket

may even improve the performance of ORAM when storing

uniformly-sized items. However, we will not consider this

further in the current investigation.

History independence. History independence of data struc-

tures requires that the current organization of the data

within the structure reveals nothing about the prior opera-

tions thereon. Micciancio [23] first considered history inde-

pendence in the context of 2-3 trees, and the notions of

history independence were formally developed in [24]–[26].

The notion of strong history independence [24] holds if for

any two sequences of operations, the distributions of the

memory representations are identical at all time-points that

yield the same storage content. Moreover, a data structure is

strongly history independent if and only if it has a unique
representation [25]. There have been uniquely-represented

constructions for hash functions [27], [28] and variants of

a B-tree (a B-treap [29], and a B-skip-list [30]). We adopt

the notion of unique representation for history independence

when developing our history independent, randomized B-tree,

or HIRB tree.

We note that history independence of these data structures

considers a setting where a single party runs some algorithms

on a single storage medium, which doesn’t correctly capture

the actual cloud setting where client and server have separate

storage, execute protocols, and exchange messages to maintain

the data structures. Therefore, we extend the existing history

independence and give a new, augmented notion of history

independence for the cloud setting with a catastrophic attack.

Independently, the recent work of [31] also considers a

limited notion of history independence, called Δ-history inde-

pendence, parameterized with a function Δ that describes the

leakage. Our definition of history independence has a similar

notion, where the leakage function Δ captures the number

of recent operations which may be revealed in a catastrophic

attack.

Secure deletion. Secure deletion means that data deleted

cannot be recovered, even by the original owner. It has been

studied in many contexts [32], but here we focus on the cloud

setting, where the user has little or no control over the physical

media or redundant duplication or backup copies of data. In

particular, we build upon secure deletion techniques from the

applied cryptography community. The approach is to encrypt

all data stored in the cloud with encryption keys stored locally

in erasable memory, so that deleting the keys will securely

delete the remote data by rendering it non-decryptable.

Boneh and Lipton [33] were the first to use encryption to

securely remove files in a system with backup tapes. The

challenge since was to more effectively manage encrypted

content and the processes of re-encryption and erasing de-

cryption keys. For example, Di Crescenzo et al. [34] showed a

more efficient method for secure deletion using a tree structure

applied in the setting of a large non-erasable persistent medium

and a small erasable medium. Several works considered secure

deletion mechanisms for a versioning file system [35], an

inverted index in a write-once-read-many compliance stor-

age [36], and a B-tree (and generally a mangrove) [17].

III. PRELIMINARIES

We assume that readers are familiar with security notions

of standard cryptographic primitives [37]. Let λ denote the

security parameter.

Modeling data structures. Following the approach from the

secure deletion literature, we use two storage types: erasable
memory and persistent storage. Contents deleted from erasable

memory are non-recoverable, while the contents in persistent

storage cannot be fully erased. We assume the size of erasable

memory is small while the persistent storage has a much larger

capacity. This mimics the cloud computing setting where cloud

storage is large and persistent due to lack of user control, and

local storage is more expensive but also controlled directly.

We define a data structure D as a collection of data that

supports initialization, insertion, deletion, and lookup, using

both the erasable memory and the persistent storage. Each

operation may be parameterized by some operands (e.g.,

lookup by a label). For a data structure D stored in this model,

let D.em and D.ps denote the contents of the erasable memory

and persistent storage, respectively. For example, an encrypted

graph structure may be stored in D.ps while the decryption key

resides in D.em. For an operation op on D, let acc←D.op()
denote executing the operation op on the data structure D
where acc is the access pattern over the persistent storage

during the operation. The access pattern to erasable memory

is assumed to be hidden. For a sequence of operations −→op =
(op1, . . . , opm), let −→acc←D.−→op() denote applying the opera-

tions on D, that is, acc1←D.op1(), . . . , accm←D.opm(),
with −→acc = (acc1, . . . , accm). We note that the access pattern−→acc completely determines the state of persistent storage D.ps.
Obliviousness and history independence. Obliviousness

requires that the adversary without access to erasable memory

cannot obtain any information about actual operations per-

formed on data structure D other than the number of oper-

ations. This security notion is defined through an experiment

obl-hi, given in Figure 1, where D, λ, n, h, b denote a data

structure, the security parameter, the maximum number of

items D can contain, history independence, and the challenge

choice.

In the experiment, the adversary chooses two sequences

of operations on the data structure and tries to guess which

sequence was chosen by the experiment with the help of access

182182

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

EXPobl-hi
A1,A2

(D, λ, n, h, b)
acc0←D.Init(1λ, n);
(−→op(0),−→op(1), ST)←A1(1

λ, acc0);−→acc←D.−→op(b)();
if h = 1:

return A2(ST,−→acc,D.em);
else

return A2(ST,−→acc);

EXPsdel
A1,A2,A3

(D, λ, n, b)
acc0 ← D.Init(1λ, n);
d0 ← A1(1

λ, 0);
d1 ← A1(1

λ, 1);
(−→opd0,d1 , S)←A2(acc0, d0, d1);−→acc←D.(−→opd0,d1 ��S db)();
return A3(acc0,

−→acc,D.em);

Figure 1: Experiments for security definitions

patterns. The data structure provides obliviousness if every

polynomial-time adversary has only a negligible advantage.

Definition 1. For a data structure D, consider the experiment
EXPobl-hi

A (D, λ, n, 0, b) with adversary A = (A1,A2). We
call the adversary A admissible if A1 always outputs two
sequences with the same number of operations storing at most
n items. We define the advantage of the adversary A in this
experiment as:

Advobl
A (D, λ, n) =

∣∣∣∣ Pr[EXPobl-hi
A (D, λ, n, 0, 0) = 1]

−Pr[EXPobl-hi
A (D, λ, n, 0, 1) = 1]

∣∣∣∣ .
We say that D provides obliviousness if for any sufficiently
large λ, any n ∈ poly(λ), and any PPT admissible adversary
A, we have Advobl

A (D, λ, n) ≤ negl(λ).

Now we define history independence. As we will see,

perfect history independence is inherently at odds with obliv-

iousness and sub-linear communication cost. Therefore, we

define parameterized history independence instead that allows

for a relaxation of the security requirement. The parameter de-

termines the allowable leakage of recent history of operations.

One can interpret a history-independent data structure with

leakage of � operations as follows: Although the data structure

may reveal some recent � operations applied to itself, it does

not reveal any information about older operations, except that

the total sequence resulted in the current state of data storage.

The experiment in this case is equivalent to that for obliv-

iousness, except that (1) the two sequences must result in

the same state of the data structure at the end, (2) the last

� operations in both sequences must be identical, and (3) the

adversary gets to view the local, erasable memory as well as

the access pattern to persistent storage.

Definition 2. For a data structure D, consider the experiment
EXPobl-hi

A (D, λ, n, 1, b) with adversary A = (A1,A2). We call
the adversary A �-admissible if A1 always outputs sequences−→op(0) and −→op(1) which have the same number of operations and
result in the same set storing at most n data items, and the last
� operations of both are identical. We define the advantage of
an adversary A in this experiment above as:

Advhi
A(D, λ, n) =

∣∣∣∣ Pr[EXPobl-hi
A (D, λ, n, 1, 0) = 1]

−Pr[EXPobl-hi
A (D, λ, n, 1, 1) = 1]

∣∣∣∣ .
We say that the data structure D provides
history independence with leakage of � operations if

for any sufficiently large λ, any n ∈ poly(λ), and any PPT �-
admissible adversary A, we have Advhi

A(D, λ, n) ≤ negl(λ).

Lower bound on history independence. Unfortunately,

the history independence property is inherently at odds with

the nature of oblivious RAM. The following lower bound

demonstrates that there is a linear tradeoff between the amount

of history independence and the communication bandwidth of

any ORAM mechanism.

Theorem 1. Any oblivious RAM storage system with a
bandwidth of k bytes per access achieves at best history
independence with leakage of Ω(n/k) operations in storing
n blocks.

The intuition behind the proof2 is that, in a catastrophic

attack, an adversary can observe which persistent storage

locations were recently accessed, and furthermore can decrypt

the contents of those locations because they have the keys from

erasable memory. This will inevitably reveal information to the

attacker about the order and contents of recent accesses, up to

the point at which all n elements have been touched by the

ORAM and no further past information is recoverable.

Admittedly this lower bound limits what may be achievable

in terms of history independence. But still, leaking only a

known maximum number of prior operations is better than

(potentially) leaking all of them!

Consider, by contrast, an AVL tree implemented within a

standard ORAM as in prior work. Using the fact that AVL tree

shapes reveal information about past operations, the adversary

can come up with two sequences of operations such that (i)

the first operations of each sequence result in a distinct AVL

tree shape but the same data items, and (ii) the same read

operations, as many as necessary, follow at the end. With

the catastrophic attack, the adversary will simply observe the

tree shape and make a correct guess. This argument holds

for any data structure whose shape reveals information about

past operations, which therefore have no upper bound on the

amount of history leakage.

Secure deletion. Perfect history independence implies se-

cure deletion. However, the above lower bound shows that

complete history independence will not be possible in our

setting. So, we consider a complementary security notion that

requires strong security for the deleted data. Secure deletion

is defined through an experiment sdel, given in Figure 1.

In the experiment, A1 chooses two data items d0 and d1
at random, based on which A2 outputs (−→opd0,d1 , S). Here,−→opd0,d1 denotes a vector of operations containing neither d0
nor d1, and S = (s1, s2, . . . , sm) is a monotonically increasing

sequence. −→opd0,d1
��S db denotes injecting db into −→opd0,d1

according to S. In particular, “insert db" is placed at position

s1; for example, if s1 is 5, this insert operation is placed right

before the 6th operation of −→opd0,d1 . Then, “look-up db" is

placed at positions s2, . . . , sm−1, and finally “delete db" at

sm.

2Full proofs for the main theorems may be found in Appendix C.

183183

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

Definition 3. For a data structure D, consider the experiment
EXPsdel

A1,A2,A3
(D, λ, n, b) with adversary A = (A1,A2,A3).

We call the adversary A admissible if for any data item d that
A1(1

λ, 0) (resp., A1(1
λ, 1)) outputs, the probability that A1

outputs d is negligible in λ, i.e., the output A1 forms a high-
entropy distribution; moreover, the sequence of operations
from A2 must store at most n items. We define the advantage
of A as:

Advsdel
A (D, λ, n) =

∣∣∣∣ Pr[EXPsdel
A (D, λ, n, 0) = 1]

−Pr[EXPsdel
A (D, λ, n, 1) = 1]

∣∣∣∣ .
We say that the data structure D provides secure deletion if
for any sufficiently large λ, any n ∈ poly(λ), and any PPT
admissible adversary A, we have Advsdel

A (D, λ, n) ≤ negl(λ).

Note that our definition is stronger than just requiring that

the adversary cannot recover the deleted item; for any two high

entropy distributions chosen by the adversary, the adversary

cannot tell from which distribution the deleted item was drawn.

IV. ORAM WITH VARIABLE-SIZE BLOCKS (VORAM)

The design of vORAM is based on the non-recursive version

of Path ORAM [9], but we are able to add more flexibility by

allowing each ORAM bucket to contain as many variable-size

blocks (or parts of blocks) as the bucket space allows. We

will show that vORAM preserves obliviousness and maintains

a small stash as long as the size of variable blocks can be

bounded by a geometric probability distribution, which is the

case for the HIRB that we intend to store within the vORAM.

To support secure deletion, we also store encryption keys

within each bucket for its two children, and these keys are re-

generated on every access, similarly to other work on secure

deletion [17], [34].

Parameters. The vORAM construction is governed by the

following parameters:

• The height T of the vORAM tree: The vORAM is

represented as a complete binary tree of buckets with

height T (the levels of the tree are numbered 0 to T), so

the total number of buckets is 2T+1 − 1. T also controls

the total number of allowable data blocks, which is 2T .

• The bucket size Z: Each bucket has Z bits, and this Z
must be at least some constant times the expected block
size B for what will be stored in the vORAM.

• The stash size parameter R: Blocks (or partial blocks)

that overflow from the root bucket are stored temporarily

in an additional memory bank in local storage called the

stash, which can contain up to R ·B bits.

• Block collision parameter γ: Each block will be assigned

a random identifier id; these identifiers will all be distinct

at every step with probability 1− negl(γ).

Bucket structure. Each bucket is split into two areas: header

and data. See Figure 2 for a pictorial description. The header

area contains two encryption keys for the two child buckets.

The data area contains a sequence of (possibly partial) blocks,

each preceded by a unique identifier string and the block

k1 k2 id1 l1 blk1 . . . id� l� blk� 0

header l1 bytes l� bytes

Figure 2: A single vORAM bucket with � partial blocks.

Figure 3: A sample vORAM state with partial blocks with
id0, id1, id2, id3: Note that the partial blocks for id0 are
opportunistically filled up the vORAM from leaf to root and
then remaining partial blocks are placed in the stash.

data length. The end of the data area is filled with 0 bits,

if necessary, to pad up to the bucket size Z.

Each idi uniquely identifies a block and also encodes the

path of buckets along which the block should reside. Partial

blocks share the same identifier with each length l indicating

how many bytes of the block are stored in that bucket.

Recovering the full block is accomplished by scanning from

the stash along the path associated with id (see Figure 3). We

further require the first bit of each identifier to be always 1

in order to differentiate between zero padding and the start

of next identifier. Moreover, to avoid collisions in identifiers,

the length of each identifier is extended to 2T + γ + 1 bits,

where γ is the collision parameter mentioned above. The

most significant T + 1 bits of the identifier (including the

fixed leading 1-bit) are used to match a block to a leaf, or

equivalently, a path from root to leaf in the vORAM tree.

vORAM operations. Our vORAM construction supports the

following operations.

• insert(blk) �→ id. Inserts the given block blk of data into

the ORAM and returns a new, randomly-generated id to

be used only once at a later time to retrieve the original

contents.

• remove(id) �→ blk. Removes the block corresponding to

id and returns the original data blk as a sequence of bytes.

• update(id, callback) �→ id+. Given id and a user-defined

function callback, perform insert(callback(remove(id)))
in a single step.

Each vORAM operation involves two phases:

1) evict(id). Decrypt and read the buckets along the path

from the root to the leaf encoded in the identifier id,

and remove all the partial blocks along the path, merging

partial blocks that share an identifier, and storing them in

the stash.

184184

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

2) writeback(id). Encrypt all blocks along the path encoded

by id with new encryption keys and opportunistically

store any partial blocks from stash, dividing blocks as

necessary, filling from the leaf to the root.

An insert operation first evicts a randomly-chosen path,

then inserts the new data item into the stash with a sec-

ond randomly-chosen identifier, and finally writes back the

originally-evicted path. A remove operation evicts the path

specified by the identifier, then removes that item from the

stash (which must have had all its partial blocks recombined

along the evicted path), and finally writes back the evicted path

without the deleted item. The update operation evicts the path

from the initial id, retrieves the block from stash, passes it to

the callback function, re-inserts the result to the stash with a

new random id+, and finally calls writeback on the original

id. A full pseudocode description of all these operations is

provided in Appendix A.

Security properties.

Theorem 2. The vORAM provides obliviousness.

For obliviousness, any insert, remove, update operation is

computationally indistinguishable based on its access pattern

because the identifier of each block is used only once to re-

trieve that item and then immediately discarded. Each remove
or update trivially discards the identifier after reading the

path, and each insert evicts buckets along a bogus, randomly

chosen path before returning a fresh id+ to be used as the

new identifier for that block.

Theorem 3. The vORAM provides secure deletion.

Secure deletion is achieved via key management of buckets.

Every evict and writeback will result in a path’s worth of

buckets to be re-encrypted and re-keyed, including the root

bucket. Buckets containing any removed data may persist,

but the decryption keys are erased since the root bucket

is re-encrypted, rendering the data unrecoverable. Similarly,

recovering any previously deleted data reduces to acquiring the

old-root key, which was securely deleted from local, erasable

memory.

However, each evict and writeback will disclose the

vORAM path being accessed, which must be handled care-

fully to ensure no leakage occurs. Fortunately, identifiers

(and therefore vORAM paths as well) are uniformly random,

independent of the deleted data and revealing no information

about them.

Theorem 4. The vORAM provides history independence with
leakage of O(n log n+ λn) operations.

Regarding history independence, although any removed

items are unrecoverable, the height of each item in the

vORAM tree, as well as the history of accesses to each

vORAM tree bucket, may reveal some information about the

order, or timing, of when each item was inserted. Intuitively,

items appearing closer to the root level of the vORAM are

more likely to have been inserted recently, and vice versa.

However, if an item is inserted and then later has its path

entirely evicted due to some other item’s insertion or removal,

then any history information of the older item is essentially

wiped out; it is as if that item had been removed and re-

inserted. Because the identifiers used in each operation are

chosen at random, after some O(n log n) operations it is likely

that every path in the vORAM has been evicted at least once.

In fact, we can achieve asymptotically optimal leakage

with only a constant-factor blowup in the bandwidth. Every

vORAM operation involves reading and writing a single

path. Additionally, after each operation, we can evict and

then re-write a complete subtree of size lg n which contains

(lgn)/2 − 1 leaf buckets in a deterministicly chosen dummy

operation that simply reads the buckets into stash, then rewrites

the buckets with no change in contents but allowing the blocks

evicted from the dummy operation and those evicted from the

access to all move between levels of the vORAM as usual. The

number of nodes evicted will be less than 2 lgn, to encompass

the subtree itself as well as the path of buckets to the root of

the subtree, and hence the total bandwidth for the operation

remains O(log n).
The benefit of this approach is that if these dummy subtree

evictions are performed sequentially across the vORAM tree

on each operation, any sequence of n/ lg n operations is

guaranteed to have evicted every bucket in the vORAM at least

once. Hence this would achieve history independence with

only O(n/ log n) leakage, which matches the lower bound of

Theorem 1 and is therefore optimal up to constant factors.

Stash size. Our vORAM construction maintains a small stash

as long as the size of variable blocks can be bounded by a

geometric probability distribution, which is the case for the

HIRB that we intend to store within the vORAM.

Theorem 5. Consider a vORAM with T levels, collision
parameter γ, storing at most n = 2T blocks, where the length
l of each block is chosen independently from a distribution
such that E[l] = B and Pr[l > mB] < 0.5m. Then, if the
bucket size Z satisfies Z ≥ 20B, for any R ≥ 1, and after
any single access to the vORAM, we have

Pr[|stash| > RB] < 28 · (0.883)R.
Note that the constants 28 and 0.883 are technical artifacts

of the analysis, and do not matter except to say that 0.883 < 1
and thus the failure probability decreases exponentially with

the size of stash.

As a corollary, for a vORAM storing at most n blocks, the

cloud storage requirement is 40Bn bits, and the bandwidth

for each operation amounts to 40B lg n bits. However, this is

a theoretical upper bound, and our experiments in Section VI

show a smaller constants suffice. namely, setting Z = 6B
and T = �lg n − 1	 stabilizes the stash, so that the actual

storage requirement and bandwidth per operation are 6Bn and

12B lg n bits, respectively.

Furthermore, to avoid failure due to stash overflow or col-

lisions, the client storage R and collision parameter γ should

both grow slightly faster than log n, i.e., R, γ ∈ ω(log n).

185185

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

V. HIRB TREE DATA STRUCTURE

We now use the vORAM construction described in the

previous section to implement a data structure supporting the

operations of a dictionary that maps labels to values. In this

paper, we intentionally use the word “labels” rather than the

word “keys” to distinguish from the encryption keys that are

stored in the vORAM.

Motivating the HIRB. Before describing the construction

and properties of the history independent, randomized B-Tree

(HIRB), we first wish to motivate the need for the HIRB as it

relates to the security and efficiently requirements of storing

it within the vORAM:

• The data structure must be easily partitioned into blocks

that have expected size bounded by a geometric distribu-

tion for vORAM storage.

• The data structure must be pointer-based, and the struc-

ture of blocks and pointers must form a directed graph

that is an arborescence, such that there exists at most one
pointer to each block. This is because a non-recursive

ORAM uses random identifiers for storage blocks, which

must change on every read or write to that block.

• The memory access pattern for an operation (e.g., get,
set, or delete) must be bounded by a fix parameter to

ensure obliviousness; otherwise the number of vORAM

accesses could leak information about the data access.

• Finally, the data structure must be uniquely represented
such that the pointer structures and contents are deter-

mined only by the set of (label, value) pairs stored within,

up to some randomization performed during initialization.

Recall that strong history independence is provided via a

unique representation, a sufficient and necessary condi-

tion [25] for the desired security property.

In summary, we require a uniquely-represented, tree-based

data structure with bounded height. While a variety of uniquely

represented (or strongly history independent) data structures

have been proposed in the literature [24], [29], we are not

aware of any that satisfy all of the requisite properties.

While some form of hash table might seem like an obvious

choice, we note that such a structure would violate the second

condition above; namely, it would be impossible to store a

hash table within an ORAM without having a separate position
map, incurring an extra logarithmic factor in the cost. As it

turns out, our HIRB tree does use hashing in order to support

secure deletion, but this is only to sort the labels within the

tree data structure.

Overview of HIRB tree. The closest data structure to the

HIRB is the B-Skip List [30]; unfortunately, a skip list does

not form a tree. The HIRB is essentially equivalent to a B-

Skip List after sorting labels according to a hash function and

removing pointers between skip-nodes to impose a top-down

tree structure.

Recall that a typical B-tree consists of large nodes, each

with an array of (label, value) pairs and child nodes. A B-tree

node has branching factor of k, and we call it a k-node, if the

node contains k − 1 labels, k − 1 values, and k children (as

in Figure 4). In a typical B-tree, the branching factor of each

node is allowed to vary in some range [B + 1, 2B], where

B is a fixed parameter of the construction that controls the

maximum size of any single node.

label1, value1 label2, value2 · · · labelk−1, valuek−1

child1 child2 child3 · · · childk
Figure 4: B-tree node with branching factor k

HIRB tree nodes differ from typical B-tree nodes in two

ways. First, instead of storing the label in the node a cryp-

tographic hash3 of the label is stored. This is necessary to

support secure deletion of vORAM+HIRB even when the

nature of vORAM leaks some history of operations; namely,

revealing which HIRB node an item was deleted from should

not reveal the label that was deleted.

The second difference from a normal B-tree node is that the

branching factor of each node, rather than being limited to a

fixed range, can take any value k ∈ [1,∞). This branching

factor will observe a geometric distribution for storage within

the vORAM. In particular, it will be a random variable

X drawn independently from a geometric distribution with

expected value β, where β is a parameter of the HIRB tree

construction.

The height of a node in the HIRB tree is defined as the

length of the path from that node to a leaf node; all leaf nodes

are the same distance to the root node for B-trees. The height

of a new insertion of (label, value) in the HIRB is determined

by a series of pseudorandom biased coin flips based on the

hash of the label4. The distribution of selected heights for

insertions uniquely determines the structure of the HIRB tree

because the process is deterministic, and thus the HIRB is

uniquely-represented.

Parameters and preliminaries. Two parameters are fixed at

initialization: the expected branching factor β, and the height
H . In addition, throughout this section we will write n as the

maximum number of distinct labels that may be stored in the

HIRB tree, and γ as a parameter that affects the length of hash

digests5.

A HIRB tree node with branching factor k consists of k−1
label hashes, k − 1 values, and k vORAM identifiers which

represent pointers to the child nodes. This is described in

Figure 5 where hi indicates Hash(labeli).
Similar to the vORAM itself, the length of the hash function

should be long enough to reduce the probability of collision

below 2−γ , so define |Hash(label)| = max(2H lg β + γ, λ),

3We need a random oracle for formal security. In practice, we used a SHA1
initialized with a random string chosen when the HIRB tree is instantiated.

4Note that this choice of heights is more or less the same as the randomly-
chosen node heights in a skip list.

5The parameter γ for HIRB and vORAM serves the same purpose in
avoiding collisions in identifiers so for simplicity we assume they are the
same

186186

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

id0 h1 value1 id1 . . . hk valuek idk

Figure 5: HIRB node with branching factor k.

and define nodesizek to be the size of a HIRB tree node with

branching factor k, given as

nodesizek = (k+1)(2T +γ+1)+k(|Hash(label)|+ |value|),
where we write |value| as an upper bound on the size of the

largest value stored in the HIRB. (Recall that the size of each

vORAM identifier is 2T + γ + 1.) Each HIRB tree node will

be stored as a single block in the vORAM, so that a HIRB

node with branching factor k will ultimately be a vORAM

block with length nodesizek.

As β reflects the expected branching factor of a node, it

must be an integer greater than or equal to 1. This parameter

controls the efficiency of the tree and should be chosen

according to the size of vORAM buckets. In particular, using

the results of Theorem 5 in the previous section, and the

HIRB node size defined above, one would choose β according

to the inequality 20nodesizeβ ≤ Z, where Z is the size of

each vORAM bucket. According to our experimental results

in Section VI, the constant 20 may be reduced to 6.

The height H must be set so that H ≥ logβ n; otherwise

we risk the root node growing too large. We assume that H
is fixed at all times, which is easily handled when an upper

bound n is known a priori.

HIRB tree operations. As previously described, the entries

in a HIRB node are sorted by the hash of the labels, and the

search path for a label is also according to the label hashes.

A lookup operation for a label requires fetching each HIRB

node along the search path from the vORAM and returning

the matching value.

Initially, an empty HIRB tree of height H is created, as

shown in Figure 6. Each node has a branching factor of 1 and

contains only the single vORAM identifier of its child.

�

�
...

�

H + 1 nodes

Figure 6: Empty HIRB with height H .

Modifying the HIRB with a set or delete operation on

some label involves first computing the height of the label.
The height is determined by sampling from a geometric

distribution with probability (β−1)/β, which we derandomize

by using a pseudorandom sequence based on Hash(label).
The distribution guarantees that, in expectation, the number

of items at height 0 (i.e., in the leaves) is β−1
β n, the number

of items at height 1 is β−1
β2 n, and so on.

Inserting or removing an element from the HIRB involves

(respectively) splitting or merging nodes along the search path

.

. . .

.

. . .

. X

. . .

. . . �

. . .

. . .

Figure 7: HIRB insertion/deletion of X = (Hash(label),
value): On the left is the HIRB without item X , displaying only
the nodes along the search path for X , and on the right is the
state of the HIRB with X inserted. Observe that the insertion
operation (left to right) involves splitting the nodes below X
in the HIRB, and the deletion operation (right to left) involves
merging the nodes below X .

from the height of the item down to the leaf. This differs from

a typical B-tree in that rather than inserting items at the leaf

level and propagating up or down with splitting or merging, the

HIRB tree requires that the heights of all items are fixed. As

a result, insertions and deletions occur at the selected height

within the tree according to the label hash. A demonstration

of this process is provided in Figure 7.

In a HIRB tree with height H , each get operation requires

reading exactly H+1 nodes from the vORAM, and each set or

delete operation involves reading and writing at most 2H +1
nodes. To support obliviousness, each operation will require

exactly 2H + 1, accomplished by padding with “dummy”

accesses so that every operation has an indistinguishable

access pattern.

One way of reading and updating the nodes along the search

path would be to read all 2H + 1 HIRB nodes from the

vORAM and store them in temporary memory and then write

back the entire path after any update. However, properties of

the HIRB tree enable better performance because the height of

each HIRB tree element is uniquely determined, which means

we can perform the updates on the way down in the search

path. This only requires 2 HIRB tree nodes to be stored in

local memory at any given time.

Facilitating this extra efficiency requires considerable care

in the implementation due to the nature of vORAM identifiers;

namely, each internal node must be written back to vORAM

before its children nodes are fetched. Fetching children nodes

will change their vORAM identifiers and invalidate the point-

ers in the parent node. The solution is to pre-generate new

random identifiers of the child nodes before they are even

accessed from the vORAM.

The full details of the HIRB operations can be found in

Appendix B.

HIRB tree properties. For our analysis of the HIRB

tree, we first need to understand the distribution of items

among each level in the HIRB tree. We assume a subroutine

chooseheight(label) evaluates a random function on label

187187

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

to generate random coins, using which it samples from a

truncated geometric distribution with maximum value H and

probability (β − 1)/β.

Assumption 6. If label1, . . . , labeln are any n distinct labels
stored in a HIRB, then the heights

chooseheight(label1), . . . , chooseheight(labeln)

are independent random samples from a truncated geometric
distribution over {0, 1, . . . , H} with probability (β − 1)/β,
where the randomness is determined entirely by the the random
oracle and the random function upon creation of the HIRB.

In practice, the random coins for chooseheight(label) are

prepared by computing coins = PRG(SHA1(seed‖label)),
where seed is a global random seed, and PRG is a pseudo-

random generator. With SHA1 modeled as a random oracle,

the coins will be pseudorandom.

Theorem 7. The HIRB tree is a dictionary data structure that
associates arbitrary labels to values. If it contains n items,
and has height H ≥ logβ n, and the nodes are stored in a
vORAM, then the following properties hold:
• The probability of failure in any operation is at most 2−γ .
• Each operation requires exactly 2H + 1 node accesses,

only 2 of which need to be stored in temporary memory
at any given time.

• The data structure itself, not counting the pointers, is
strongly history independent.

The first property follows from the fact that the only way

the HIRB tree can fail to work properly is if there is a

hash collision. Based on the hash length defined above, the

probability that any 2 keys collide amongst the n labels in the

HIRB is at most 2−γ . The second property follows from the

description of the operations get, set, and delete, and is crucial

not only for the performance of the HIRB but also for the

obliviousness property. The third property is a consequence of

the fact that the HIRB is uniquely represented up to the pointer

values, after the hash function is chosen at initialization.

vORAM+HIRB properties. We are now ready for the main

theoretical results of the paper, which have to do with the

performance and security guaranteed by the vORAM+HIRB

construction.

Theorem 8. Suppose a HIRB tree with n items and height
H is stored within a vORAM with L levels, bucket size Z,
and stash size R. Given choices for Z and γ > 0, set the
parameters as follows:

T ≥ lg(4n+ lg n+ γ)

β = max{β|Z ≥ 20 · nodesizeβ}
R ≥ γ · nodesizeβ
H ≥ logβ n

Then the probability of failure due to stash overflow or
collisions after each operation is at most

Pr[vORAM+HIRB failure] ≤ 30 · (0.883)γ .

The parameters follow from the discussion above. Again

note that the constants 30 and 0.883 are technical artifacts of

the analysis.

Theorem 9. Suppose a vORAM+HIRB is constructed with
parameters as above. The vORAM+HIRB provides oblivious-
ness, secure deletion, and history independence with leakage
of O(n+ nλ/(log n)) operations.

The security properties follow from the previous results on

the vORAM and the HIRB. Note that the HIRB structure

itself provides history independence with no leakage, but when

combined with the vORAM, the pointers may leak information

about recent operations. The factor O(log n) difference from

the amount of leakage from vORAM in Theorem 4 arises

because each HIRB operation entails O(log n) vORAM opera-

tions. Following the discussion after Theorem 4, we could also

reduce the leakage in vORAM+HIRB to O(n/ log2 n), with

constant-factor increase in bandwidth, which again is optimal

according to Theorem 1.

VI. EVALUATION

We completed two empirical analyses of the

vORAM+HIRB system. First, we sought to determine

the most effective size for vORAM buckets with respect

to the expected block size, i.e., the ratio Z/B. Second, we

made a complete implementation of the vORAM+HIRB and

measured its performance in storing a realistic dataset of

key/value pairs of 22MB in size. The complete source code

of our implementation is available upon request.

A. Optimizing vORAM parameters

A crucial performance parameter in our vORAM construc-

tion is the ratio Z/B between the size Z of each bucket and

the expected size B of each block. (Note that B = nodesizeβ
when storing HIRB nodes within the vORAM.) This ratio is a

constant factor in the bandwidth of every vORAM operation

and has a considerable effect on performance. In the Path

ORAM, the best corresponding theoretical ratio is 5, whereas

it has been shown experimentally that a ratio of 4 will also

work, even in the worst case [9].

We performed a similar experimental analysis of the ra-

tio Z/B for the vORAM. Our best theoretical ratio from

Theorem 5 is 20, but as in related work, the experimental

performance is better. The goal is then to find the optimal,

empirical choice for the ratio Z/B: If Z/B is too large, this

will increase the overall communication cost of the vORAM,

and if it is too small, there is a risk of stash overflow and loss

of data or obliviousness.

For the experiments described below, we implemented a

vORAM structure without encryption and inserted a chosen

number of variable size blocks whose sizes were randomly

sampled from a geometric distribution with expected size 68

bytes. To avoid collisions, we ensured the identifier lengths

satisfied γ ≥ 40.

Stash size. To analyze the stash size for different Z/B ratios,

we ran a number of experiments and monitored the maximum

188188

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

��

���

����

�����

������

�������

������

�� �� �	 �� �
 ��� ���

�
��
��
��
��
��
	

��
��

	
��
��
��
��
���
�	
��
�

�

��
��
�������������������������
����������

� ���
� ����
� �����
� ������

Figure 8: Maximum stash size, scaled by lg n, observed across
50 simulations of a vORAM for various Z/B values.

24
26
28

210
212
214
216
218
220

 0 2 4 6 8 10 12M
ea

n
Nu

m
. o

f O
pe

r.
Un

til
 S

ta
sh

 S
iz

e

Stash Size (KB)

218 items, total 2MB
219 items, total 4MB
220 items, total 8MB

Figure 9: Average time until stash overflow, for varying
vORAM and stash sizes. Stash size is linear-scale, number of
operations in log-scale. Higher is better. For each vORAM size
n, we performed 2n operations to gather sufficient experimental
data.

|

stash size observed at any point throughout the experiment.

Recall, while the stash will typically be empty after every

operation, the max stash size should grow logarithmically with

respect to the number of items inserted in the vORAM. The

primary results are presented in Figure 8.

This experiment was conducted by running 50 simulations

of a vORAM with n insertions and a height of T = lg n. The

Z/B value ranged from 1 to 50, and results in the range 1

through 12 are presented in the graph for values of n ranging

from 102 through 105. The graph plots the ratio R/ lg n, where

R is the largest max stash size at any point in any of the 50

simulations. Observe that between Z/B = 4 and Z/B = 6
the ratio stabilizes for all values of n, indicating a maximum

stash of approximately 100 lgn.

In order to measure how much stash would be needed in

practice for much larger experimental runs, we fixed Z/B = 6
and for three large database sizes, n = 218, 219, 220, For

each size, we executed 2n operations, measuring the size

of stash after each. In practice, as we would assume from

the theoretical results, the stash size is almost always zero.

Figure 10: Utilization at different levels of ORAM

However, the stash does occasionally become non-empty, and

it is precisely the frequency and size of these rare events that

we wish to measure.

Fig. 9 shows the result of our stash overflow experiment. We

divided each test run of roughly 2n operations into roughly n
overlapping windows of n operations each, and then for each

window, and each possible stash size, calculated the number of

operations before the first time that stash size was exceeded.

The average number of operations until this occurred, over

all n windows, is plotted in the graph. The data shows a

linear trend in log-scale, meaning that the stash size neces-

sary to ensure low overflow probability after N operations

is O(logN), as expected. Furthermore, in all experiments

we never witnessed a stash size larger than roughly 10KB,

whereas the theoretical bound of 100 lgn items would be

16KB for the largest test with 220 8-byte items.

Bucket utilization. Stash size is the most important parameter

of vORAM, but it provides a limited view into the optimal

bucket size ratio, in particular as the stash overflow is typically

zero after every operation, for sufficiently large buckets. We

measured the utilization of buckets at different levels of the

vORAM with varied heights and Z/B values. The results are

presented in Figure 10 and were collected by averaging the

final bucket utilization from 10 simulations. The utilization at

each level is measured by dividing the total storage capacity

of the level by the number of bytes at the level. In all cases,

n = 215 elements were inserted, and the vORAM height

varied between 14, 15, and 16. The graph shows that with

height lg n = 15 or higher and Z/B is 6 or higher, utilization

stabilizes throughout all the levels (with only a small spike at

the leaf level).

The results indicate, again, that when Z/B = 6, the

utilization at the interior buckets stabilizes. With smaller ratios,

e.g., Z/B = 4, the utilization of buckets higher in the tree

dominates those lower in the tree; essentially, blocks are not

able to reach lower levels resulting in higher stash sizes (see

previous experiment). With larger ratios, which we measured

all the way to Z/B = 13, we observed consistent stabilization.

In addition, our data shows that decreasing the number of

189189

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

levels from lg n to lg n− 1 (e.g., from 15 to 14 in the figure)

increases utilization at the leaf nodes as expected (as depicted

in the spike in the tail of the graphs), but when Z/B ≥ 6
the extra blocks in leaf nodes do not propagate up the tree

and affect the stash. It therefore appears that in practice, the

number of levels T could be set to lg n− 1, which will result

in a factor of 2 savings in the size of persistent (cloud) storage

due to high utilization at the leaf nodes. This follows a similar

observation about the height of the Path ORAM made by [9].

B. Measuring vORAM+HIRB Performance

We measured the performance of our vORAM+HIRB im-

plementation on a real data set of reasonable size, and

compared to some alternative methods for storing a remote

map data structure that provide varying levels of security

and efficiency. All of our implementations used the same

client/server setup, with a Python3 implementation and AWS

as the cloud provider, in order to give a fair comparison.

Sample dataset. We tested the performance of our imple-

mentation on a dataset of 300,000 synthetic key/value pairs

where keys were variable sizes (in the order of 10–20 bytes)

and values were fixed at 16 bytes. The total unencrypted data

set is 22MB in size. In our experiments, we used some subset

of this data dependent on the size of the ORAM, and for each

size, we also assumed that the ORAM user would want to

allow the database to grow. As such, we built the ORAM to

double the size of the initialization.

Optimized vORAM+HIRB implementation. We fully

implemented our vORAM+HIRB map data structure using

Python3 and Amazon Web Services as the cloud service

provider. We used AES256 for encryption in vORAM, and

used SHA1 to generate labels for the HIRB. In our setting,

we considered a client running on the local machine that

maintained the erasable memory, and the server (the cloud)

provided the persistent storage with a simple get/set interface

to store or retrieve a given (encrypted) vORAM bucket.

For the vORAM buckets, we choose Z/B = 6 based on

the prior experiments, and a bucket size of 4K, which is the

preferred back-end transfer size for AWS, and was also the

bucket size used by [12]. One of the advantages of the vORAM

over other ORAMs is that the bucket size can be set to match

the storage requirements with high bucket utilization. The

settings for the HIRB were then selected based on Theorem 8

and based on that, we calculated a β = 12 for the sample data

(labels and values) stored within the HIRB. The label, value,

and associated vORAM identifiers total 56 bytes per item.

In our experiments, we found that the round complexity of

protocols dominate performance and so we made a number

of improvements and optimizations to the vORAM access

routines to compensate. The result is an optimized version

of the vORAM. In particular:

• Parallelization: The optimized vORAM transfers buckets

along a single path in parallel over simultaneous con-

nections for both the evict and writeback methods. Our

experiments used up to T threads in parallel to fetch and

send ORAM block files, and each maintained a persistent

sftp connection.

• Buffering: A local buffer storing 2T top-most ORAM

buckets was used to facilitate asynchronous path reading

and writing by our threads. Note the size of the client

storage still remains O(log n) since T = O(log n). This

had an added performance benefit beyond the paralleliza-

tion because the top few levels of the ORAM generally

resided in the buffer and did not need to be transferred

back and forth to the cloud after every operation.

These optimizations had a considerable effect on the per-

formance. We did not include the cost of the ≈ 2 second

setup/teardown time for these SSL connections in our results

as these were a one-time cost incurred at initialization. Many

similar techniques to these have been used in previous work to

achieve similar performance gains (e.g., [38], [39]), although

they have not been previously applied to oblivious data struc-

tures.

Comparison baselines. We compared our optimized

vORAM+HIRB construction with four other alternative im-

plementations of a remote map data structure, with a wide

range of performance and security properties:

• Un-optimized vORAM+HIRB. This is the same as our

normal vORAM+HIRB construction, but without any

buffering of vORAM buckets and with only a single

concurrent sftp connection. This comparison allows us to

see what gains are due to the algorithmic improvements

in vORAM and HIRB, and which are due to the network

optimizations.

• Naive Baseline: We implemented a naive approach that

provides all three security properties, obliviousness, se-

cure deletion, and history independence. The method

involves maintaining a single, fixed-size encrypted file

transferred back and forth between the server and client

and re-encrypted on each access. While this solution is

cumbersome for large sizes, it is the obvious solution

for small databases and thus provides a useful baseline.

Furthermore, we are not aware of any other method (other

than vORAM+HIRB) to provide obliviousness, secure-

deletion, and history independence.

• ORAM+AVL: We implemented the ODS proposed by

[11] of an AVL embedded within an non-recursive Path

ORAM. Note that ORAM+AVL does not provide secure

deletion nor history independence. We used the same

cryptographic settings as our vORAM+HIRB implemen-

tation, and used 256 byte blocks for each AVL node,

which was the smallest size we could achieve without

additional optimizations. As recommended by [9], we

stored Z = 4 fixed-size blocks in each bucket, for a

total of 1K bucket size. Note that this bucket size is

less than the 4K transfer size recommended by the cloud

storage, which reflects the limitation of ORAM+AVL in

that it cannot effectively utilize larger buckets. We add

the observation that, when the same experiments were

run with 4K size buckets (more wasted bandwidth, but

190190

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

�����

����

��

���

����

�����

������

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
	

��
��
�
��
��
��
	

�
��
��

�
���
��
��
��

����	��
�������	����
�����	�

�������!�"���#����$	%�
�������!�"��&�'�#����$	%�

������()
*+'"',�		

����	�"��	���	

Figure 11: Median of 100 access times for different number of
entries

matching the other experiments), the timings did not

change by more than 1 second, indicating that the 4K

bucket size is a good choice for the AWS back-end.

• SD-B-Tree: As another comparison point, we imple-

mented a remotely stored B-Tree with secure deletion

where each node is encrypted with a key stored in the

parent with re-keying for each access, much as described

by Reardon et al. [17]. While this solution provides secure

deletion, and stores all data encrypted, it does not provide

obliviousness nor history independence. Again, we used

AES256 encryption, with β = 110 for the B-tree max

internal node size in order to optimize 4K-size blocks.

In terms of security, only our vORAM+HIRB as well as

the naive baseline provide obliviousness, secure deletion, and

history independence. The ORAM+AVL provides oblivious-

ness only, and the SD-B-Tree is most vulnerable to leaking

information in the cloud, as it provides secure deletion only.

In terms of asymptotic performance, the SD-B-Tree is

fastest, requiring only O(log n) data transfer per operation.

The vORAM+HIRB and ORAM+AVL both require O(log2 n)
data transfer per operation, although as discussed previously

the vORAM+HIRB saves a considerable constant factor. The

naive baseline requires O(n) transfer per operation, albeit with

the smallest possible constant factor.

Experimental results. The primary result of the experiment

is presented in Figure 11 where we compared the time (in

seconds) for a single access. Unsurprisingly, the SD-B-Tree

implementation is fastest for sufficiently large database sizes.

However, our optimized vORAM+HIRB implementation was

competitive to the SD-B-Tree performance, both being less

than 1 second across our range of experiments.

Most striking is the access time of ORAM+AVL compared

to the vORAM+HIRB implementations. In both the optimized

and un-optimized setting, the vORAM+HIRB is orders of

magnitude faster than ORAM+AVL, 20X faster un-optimized

and 100X faster when optimized. Even for a relatively small

number of entries such as 211, a single access of ORAM+AVL

takes 35 seconds, while it only requires 1.3 seconds of un-

optimized vORAM+HIRB and 0.2 second of an optimized

Size 210

Total storage Bandwidth Rounds
Naive baseline 8.2 KB 8.2 KB 1
Secure deletion B-tree 36.9 KB 12.3 KB 2
ORAM+AVL 8.4 MB 4.0 MB 968
vORAM+HIRB 127.0 KB 102.4 KB 3

Size 215

Total storage Bandwidth Rounds
Naive baseline 262.1 KB 262.1 KB 1
Secure deletion B-tree 1.1 MB 20.5 KB 3
ORAM+AVL 268.4 MB 8.6 MB 2096
vORAM+HIRB 4.2 MB 286.7 KB 4

Size 220

Total storage Bandwidth Rounds
Naive baseline 8.4 MB 8.4 MB 1
Secure deletion B-tree 33.8 MB 20.5 KB 3
ORAM+AVL 8.6 GB 15.1 MB 3675
vORAM+HIRB 134.2 MB 553.0 KB 5

Size 225

Total storage Bandwidth Rounds
Naive baseline 268.4 MB 268.4 MB 1
Secure deletion B-tree 1.1 GB 28.7 KB 4
ORAM+AVL 274.9 GB 23.2 MB 5668
vORAM+HIRB 4.3 GB 901.1 KB 6

Size 230

Total storage Bandwidth Rounds
Naive baseline 8.6 GB 8.6 GB 1
Secure deletion B-tree 34.6 GB 36.9 KB 5
ORAM+AVL 8.8 TB 33.3 MB 8122
vORAM+HIRB 137.4 GB 1.5 MB 8

Table I: Storage and communication cost comparisons. Total
storage is the amount of space required for the server, and the
bandwidth and rounds are counted per operation. Each stored
item consists of a 4-byte label and 4-byte value.

implementation. It is not until 219 entries that ORAM+AVL

even outperforms the naive O(n) baseline solution.

As described previously, we attribute much of the speed

to decreasing the round complexity. The HIRB tree requires

much smaller height as compared to an AVL tree because each

HIRB node contains β items on average as compared to just a

single item for an AVL tree. Additionally, the HIRB’s height

is fixed and does not require padding to achieve obliviousness.

Each AVL operation entails 3 ·1.44 lgN ORAM operations as

compared to just 2 logβ N vORAM operations for the HIRB.

This difference in communication cost is easily observed in

Table I. Overall, we see that the storage and communication

costs for vORAM+HIRB are not too much larger than that for

a secure deletion B-tree, which does not provide any access

pattern hiding as the oblivious alternatives do.

(The values in this table were generated by considering

the worst-case costs in all cases, for our actual implemen-

tations, but considering only a single operation. Note that, for

constructions providing obliviousness, every operation must

actually follow this worst case cost, and so the comparison is

fair.)

Put simply, the vORAM+HIRB and SD-B-Tree are the

only implementations which can be considered practical for

real data sizes, and the benefit of vORAM+HIRB is its

considerable additional security guarantees of oblivious and

bounded history independence.

191191

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

In this paper, we have shown a new secure cloud storage

system combining the previously disjoint security properties

of obliviousness, secure deletion, and history independence.

This was accomplished by developing a new variable block

size ORAM, or vORAM, and a new history independent,

randomized data structure (HIRB) to be stored within the

vORAM.

The theoretical performance of our vORAM+HIRB con-

struction is competitive to existing systems which provide

fewer security properties. Our implemented system is up to

100X faster (w.r.t. access time) than current best oblivious map

data structure (which provides no secure deletion or history

independence) by Wang et al. (CCS 14), bringing our single-

operation time for a reasonable-sized database (> 219) to less

than 1 second per access.

There much potential for future work in this area. For

example, one could consider data structures that support a

richer set of operations, such as range queries, while preserv-

ing obliviousness, secure deletion, and history independence.

Additionally, the vORAM construction in itself may provide

novel and exciting new analytic results for ORAMs generally

by not requiring fixed bucket sizes. There is a potential

to improve the overall utilization and communication cost

compared to existing ORAM models that used fixed size

blocks.

Finally, while we have demonstrated the practicality in

terms of overall per-operation speed, we did not consider some

additional practical performance measures as investigated by

[12], such as performing asynchronous operations and opti-

mizing upload vs download rates. Developing an ODS map

considering these concerns as well would be a useful direction

for future work.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval

Research through awards N0001415WX01532 and

N0001415WX01532, and by the National Science Foundation

through awards #1406177 and #1319994.

REFERENCES

[1] X. Zhuang, T. Zhang, and S. Pande, “HIDE: an infrastructure for effi-
ciently protecting information leakage on the address bus,” in ASPLOS
2004, 2004, pp. 72–84.

[2] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation,” in
NDSS 2012. The Internet Society, Feb. 2012.

[3] J. L. Dautrich Jr and C. V. Ravishankar, “Compromising privacy in
precise query protocols,” in Proceedings of the 16th International
Conference on Extending Database Technology. ACM, 2013, pp. 155–
166.

[4] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996. [Online].
Available: http://doi.acm.org/10.1145/233551.233553

[5] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly secure oblivious
RAM without random oracles,” in TCC 2011, ser. LNCS, Y. Ishai, Ed.,
vol. 6597. Springer, Mar. 2011, pp. 144–163.

[6] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious RAM
simulation,” in 23rd SODA, Y. Rabani, Ed. ACM-SIAM, Jan. 2012,
pp. 157–167.

[7] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in)security of hash-
based oblivious RAM and a new balancing scheme,” in 23rd SODA,
Y. Rabani, Ed. ACM-SIAM, Jan. 2012, pp. 143–156.

[8] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious ram,”
in NDSS, 2012.

[9] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in ACM CCS 13. ACM Press, Nov. 2013, pp. 299–310.

[10] J. L. D. Jr., E. Stefanov, and E. Shi, “Burst ORAM:
minimizing ORAM response times for bursty access patterns,”
in Proceedings of the 23rd USENIX Security Symposium, 2014,
pp. 749–764. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/dautrich

[11] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov,
and Y. Huang, “Oblivious data structures,” in ACM CCS 14, G.-J. Ahn,
M. Yung, and N. Li, Eds. ACM Press, Nov. 2014, pp. 215–226.

[12] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Prac-
ticing oblivious access on cloud storage: the gap, the fallacy and the
new way forward,” in ACM CCS 15, 2015, to appear.

[13] M. Isaac, “Nude photos of jennifer lawrence are latest front
in online privacy debate,” New York Times, Sept. 2, 2014,
http://www.nytimes.com/2014/09/03/technology/trove-of-nude-photos-
sparks-debate-over-online-behavior.html.

[14] “Lastpass security notice,” https://blog.lastpass.com/2015/06/lastpass-
security-notice.html/.

[15] F. Konkel, “The details about the CIA’s deal
with Amazon,” The Atlantic, Jul. 17, 2014,
http://www.theatlantic.com/technology/archive/2014/07/the-details-
about-the-cias-deal-with-amazon/374632/.

[16] S. Bajaj and R. Sion, “Ficklebase: Looking into the future to erase
the past,” in 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013, 2013, pp. 86–97.

[17] J. Reardon, H. Ritzdorf, D. A. Basin, and S. Capkun, “Secure data
deletion from persistent media,” in ACM CCS 13. ACM Press, Nov.
2013, pp. 271–284.

[18] T. Moataz, T. Mayberry, and E. Blass, “Constant communication ORAM
with small blocksize,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO,
USA, October 12-6, 2015, 2015, pp. 862–873.

[19] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk,
and S. Devadas, “Constants count: Practical improvements to oblivious
RAM,” in 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., 2015, pp. 415–430.

[20] T. Toft, “Brief announcement: Secure data structures based on multi-
party computation,” in 30th ACM PODC, C. Gavoille and P. Fraigniaud,
Eds. ACM, Jun. 2011, pp. 291–292.

[21] J. C. Mitchell and J. Zimmerman, “Data-oblivious data structures,”
in 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), 2014, pp. 554–565. [Online]. Available:
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.554

[22] M. Blanton, A. Steele, and M. Aliasgari, “Data-oblivious graph algo-
rithms for secure computation and outsourcing,” in ASIACCS 13. ACM
Press, May 2013, pp. 207–218.

[23] D. Micciancio, “Oblivious data structures: Applications to cryptogra-
phy,” in 29th ACM STOC. ACM Press, May 1997, pp. 456–464.

[24] M. Naor and V. Teague, “Anti-presistence: History independent data
structures,” in 33rd ACM STOC. ACM Press, Jul. 2001, pp. 492–501.

[25] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. C.
Rocke, “Characterizing history independent data structures,” Algorith-
mica, vol. 42, no. 1, pp. 57–74, 2005.

[26] N. Buchbinder and E. Petrank, “Lower and upper bounds on obtaining
history independence,” Inf. Comput., vol. 204, no. 2, pp. 291–337,
2006. [Online]. Available: http://dx.doi.org/10.1016/j.ic.2005.11.001

[27] G. E. Blelloch and D. Golovin, “Strongly history-independent hashing
with applications,” in 48th FOCS. IEEE Computer Society Press, Oct.
2007, pp. 272–282.

[28] M. Naor, G. Segev, and U. Wieder, “History-independent cuckoo hash-
ing,” in ICALP 2008, Part II, ser. LNCS, L. Aceto, I. Damgård, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds.,
vol. 5126. Springer, Jul. 2008, pp. 631–642.

[29] D. Golovin, “B-treaps: A uniquely represented alternative to B-trees,”
in ICALP 2009, Part I, ser. LNCS, vol. 5555. Springer, Jul. 2009, pp.
487–499.

192192

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

[30] ——, “The B-skip-list: A simpler uniquely represented alternative to
B-trees,” CoRR, vol. abs/1005.0662, 2010.

[31] S. Bajaj, A. Chakraborti, and R. Sion, “Practical foundations of history
independence,” CoRR, vol. abs/1501.06508, 2015.

[32] J. Reardon, D. A. Basin, and S. Capkun, “Sok: Secure data deletion,”
in 2013 IEEE Symposium on Security and Privacy, SP 2013, 2013, pp.
301–315. [Online]. Available: http://dx.doi.org/10.1109/SP.2013.28

[33] D. Boneh and R. J. Lipton, “A revocable backup
system,” in Proceedings of the 6th USENIX Security
Symposium, 1996. [Online]. Available: https://www.usenix.org/
conference/6th-usenix-security-symposium/revocable-backup-system

[34] G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson, “How
to forget a secret,” in STACS, 1999, pp. 500–509.

[35] Z. N. J. Peterson, R. C. Burns, J. Herring, A. Stubblefield, and A. D.
Rubin, “Secure deletion for a versioning file system,” in Proceedings
of the FAST ’05 Conference on File and Storage Technologies, 2005.
[Online]. Available: http://www.usenix.org/events/fast05/tech/peterson.
html

[36] S. Mitra, M. Winslett, and N. Borisov, “Deleting index entries from
compliance storage,” in EDBT 2008, 11th International Conference
on Extending Database Technology, 2008, pp. 109–120. [Online].
Available: http://doi.acm.org/10.1145/1353343.1353361

[37] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
and Hall/CRC Press, 2007.

[38] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman,
“Shroud: ensuring private access to large-scale data in the data center.”
in FAST, vol. 2013, 2013, pp. 199–213.

[39] X. Yu, L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. Devadas,
“Enhancing oblivious ram performance using dynamic prefetching,”
IACR Cryptology ePrint Archive, vol. 2014, p. 234, 2014.

[40] E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. F. L. Ren, X. Yu,
and S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” CoRR, vol. abs/1202.5150v3, 2014. [Online]. Available:
http://arxiv.org/abs/1202.5150v3

[41] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Statist. Assoc., vol. 58, pp. 13–30, 1963. [Online].
Available: http://www.jstor.org/stable/2282952

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, September 2001.

APPENDIX A

VORAM OPERATION DETAILS

We give the pseudocode of vORAM helper functions.
idgen()

1: Choose r ← {0, 1}2T+γ
.

2: return 1‖r.

loc(id, t)

1: return the location of the node at level t along the path from
the root to the leaf node identified by id. This is is simply the
index indicated by the (t+ 1) most significant bits of id.

evict(id)

1: key ← rootkey � rootkey : enc key for root bucket
2: B ← empty list
3: for t = 0, 1, . . . T do
4: remove bucket at loc(id, t) from persistent storage

decrypt it with key
5: Append all partial blocks in the bucket to the end of B
6: key ← child key from bucket according to loc(id, t+ 1)
7: end for
8: for each partial block (id∗, �, blk) in B do
9: if (id∗, �0, blk0) is in stash already

10: then replace with (id∗, �0 + �, blk0 blk) � merge
11: else Add (id∗, �, blk) to stash
12: end for
writeback(id)

1: key ← nil
2: for t = T, T − 1, . . . , 0 do
3: W←{(id∗, �, blk) ∈ stash : loc(id∗, t) = loc(id, t)}

� W is the partial blocks storable in the bucket
4: create empty bucket with new child key key

(other child key remains the same)
5: while W is not empty and bucket is not full do
6: (id∗, �, blk)← arbitrary element from W
7: (id∗, �1, blk1)← largest partial block of the above, fitting

in the bucket with blk = blk0 blk1 and |blk1| = �1.
8: Add (id∗, �1, blk1) to the bucket
9: if �1 = �

10: then remove (id∗, �, blk) from W and from stash
11: else replace (id∗, �, blk) in stash with (id∗, �− �1, blk0).

� split a partial block
12: end while
13: key ← {0, 1}λ chosen uniformly at random
14: insert Enckey(bucket) at loc(id, t) in persistent storage.
15: end for
16: rootkey ← key

Now, we give the pseudocode of the vORAM operations:
insert(blk)

1: id0 ← idgen()
2: evict(id0)
3: id+ ← idgen()
4: insert (id+, |blk|, blk) into stash
5: writeback(id0)
6: return id+

remove(id)

1: evict(id)
2: remove (id, �, blk) from stash
3: writeback(id)
4: return blk

update(id, callback)

1: evict(id)
2: remove (id, �, blk) from stash
3: id+ ← idgen()
4: blk+ ← callback(blk)
5: insert (id+, |blk+|, blk+) into stash
6: writeback(id)
7: return id+

APPENDIX B

HIRB OPERATION DETAILS

All the HIRB tree operations depend on a subroutine

HIRBpath, which given a label hash, HIRB root node iden-

tifier, and vORAM, generates tuples (�, v0, v1, cid
+
1) corre-

sponding to the search path for that label in the HIRB. In

each tuple, � is the level of node v0, which is along the search

path for the label. In the initial part of the search path, that

is, before the given label hash is found, node v1 is always nil,
a dummy access used to preserve obliviousness. The value

cid+1 is the pre-generated identifier of the new node that will

be inserted on the next level, for possible inclusion in one

of the parent nodes as a child pointer. This pre-generation is

important, as discussed in Section V, so that only 2 nodes

need to be stored in local memory at any given time.

When the given label hash is found, the search path splits

into two below that node, and nodes v0 and v1 will be the

nodes on either side of that hash label. Note that in the

actual implementation of HIRBpath, v0 (resp. v1, if defined)

corresponds to a vORAM block, evicted with identifier id0

193193

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

(resp. id1) and taken out from vORAM stash. When each tuple

(�, v0, v1, cid
+
1) is returned from the generator, the two nodes

can be modified by the calling function, and the modified

nodes will be written back to the HIRB. If v1 is returned

from HIRBpath as nil, but is then modified to be a normal

HIRB node, that new node is subsequently inserted into the

HIRB.
HIRBpath(h, rootid,M) � M is vORAM

1: (id0, id+0)← (rootid, M.idgen())
2: rootid← id+0
3: (id1, id+1)← (M.idgen(), M.idgen()) � dummy access
4: found← false
5: for � = 0, 1, 2, . . . , H do
6: M.evict(id0)
7: M.evict(id1)
8: if � = H then (cid+0 , cid+1)← (nil, nil)
9: else (cid+0 , cid+1)← (M.idgen(), M.idgen())

10: remove (id0, |v0|, v0) from M.stash
11: if found = true then
12: remove (id1, |v1|, v1) from M.stash
13: (cid0, v0.childlast)← (v0.childlast, cid+0)
14: (cid1, v1.child0)← (v1.child0, cid+1)

� v1 is right next to v0 at level �
15: else
16: v1 ← nil � only fetched after the target is found.
17: i← index of h in v0 � v0.hi−1 < h ≤ v0.hi

18: (cid0, v0.childi)← (v0.childi, cid+0)
19: if v0.hi = h then
20: found← true
21: (cid1, v0.childi+1)← (v0.childi+1, cid+1)

� split path: cid0 = v0.childi, cid1 = v0.childi+1

22: else
23: cid1 ← M.idgen() � dummy access until found
24: end if
25: end if
26: yield (�, v0, v1, cid

+
1)

� Return to the caller, who may modify nodes.
27: insert (id+0 , |v0|, v0) into M.stash
28: if v1 �= nil then insert (id+1 , |v1|, v1) into M.stash
29: M.writeback(id0)
30: M.writeback(id1)
31: (id0, id+0)← (cid0, cid+0)
32: (id1, id+1)← (cid1, cid+1)
33: end for

The update operation simply looks in each returned v0
along the search path for the existence of the indicated label

hash, and if found, the corresponding data value is passed to

the callback function, possibly modifying it.
As with update, the insert operation uses subroutine

HIRBpath as a generator to traverse the HIRB tree. Inserting

an element from the HIRB involves splitting nodes along the

search path from the height of the item down to the leaf. That

is, for each tuple (�, v0, v1) with � > �h, where �h is the height

of the label hash h, if v1 is nil, then a new node v1 is created,

and the items in v0 with a label greater than h are moved to

a new node v1.
The remove operation works similarly, but instead of split-

ting each v0 below the level of the found item, the values in

v0 and v1 are merged into v0, and v1 is removed by setting it

to nil.
hirbinit(H,M)

1: rootid← nil

2: salt← {0, 1}λ. Initialize Hash with salt.
3: for � = H,H − 1, . . . , 0 do
4: node← new 1-ary HIRB node with child id rootid
5: rootid← M.insert(node)
6: end for
7: return rootid

chooseheight(label)

1: h← Hash(label)
2: Choose coins (c0, c1, . . . , cH−1) ∈ {0, 1, . . . , β − 1}H by

evaluating PRG(h).
3: return The largest integer � ∈ {0, 1, . . . , H} such that c1 =

c2 = · · · = c� = 0.

insert(label, value, rootid,M)

1: (h, �h)← (Hash(label), chooseheight(label))
2: for (�, v0, v1, cid

+
1) ∈ HIRBpath(h, rootid,M) do

3: i← index of h in v0 � v0.hi−1 < h ≤ v0.hi

4: if v0.hi = h then
5: v0.valuei ← value
6: else if � = �h then
7: Insert (h, value, cid+1) before

(v0.hi, v0.valuei, v0.childi)
� Other items in v0 are shifted over

8: else if � > �h and v1 = nil then
9: v1 ← new node with v1.child0 ← cid+1

10: Move items in v0 past index i into v1
11: end if
12: end for

remove(label, rootid,M)

1: (h, �h)← (Hash(label), chooseheight(label))
2: for (�, v0, v1, cid

+
1) ∈ HIRBpath(label, rootid,M) do

3: if h ∈ v0 then
4: Remove h and its associated value and subtree from v0
5: else if � > �h and v1 �= nil then
6: Add all items in v1 except v1.child0 to v0
7: v1 ← nil
8: end if
9: end for

update(label, callback, rootid,M)

1: h← Hash(label)
2: for (�, v0, v1) ∈ HIRBpath(h, rootid,M) do
3: i← index of h in v0
4: if v0.hi = h then v0.valuei ← callback(v0.valuei)
5: end for

APPENDIX C

PROOFS OF IMPORTANT THEOREMS

A. Proof of Theorem 1

Let D be any system that stores blocks of data in persistent

storage and erasable memory and supports insert and remove
operations, accessing at most k bytes in persistent or local

storage in each insert or remove operation.

Let n ≥ 36 and k ≤ √n/2. For any � ≤ n/(4k), we

describe a PPT adversary A = (A1,A2) that breaks history

independence with leakage of � operations.

Supposing all operations are insertions, D must access the

location where that item’s data is actually to be stored during

execution of the insert operation, which is required to correctly

store the data somehow. However, it may access some other

locations as well to “hide” the access pattern from a potential

194194

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

attacker. This hiding is limited of course by k, which we will

now exploit.

The “chooser”, A1, randomly chooses n items which will

be inserted; these could simply be random bit strings of

equal length. Call these items (and their arbitrary order)

a1, a2, . . . , an. The chooser also randomly picks an index

j ∈ {1, 2, . . . , n− �− 1} from the beginning of the sequence.

The operation sequence −→op(0) returned by A1 consists of n
insertion operations for a1, . . . , an in order:

a1, . . . , aj−1, aj , aj+1, . . . , an−�−1, an−�, an−�+1, . . . , an,

whereas the second operation sequence −→op(1) returned by A1

contains the same n insertions, with only the order of the j’th

and (n− �)’th insertions swapped:

a1, . . . , aj−1, an−�, aj+1, . . . , an−�−1, aj , an−�+1, . . . , an.

The adversary A1 includes the complete list of a1 up to an,

along with the distinguished index j, in the ST which is passed

to A2. As the last � operations are identical (insertion of items

an−�+1 up to an), A1 is �-admissible.

The “guesser“, A2, looks back in the last (�+1)k entries in

the access pattern history of persistent storage −→acc, and tries to

opportunistically decrypt the data in each access entry using

the keys from D.em (and, recursively, any other decryption

keys which are found from decrypting data in the access

pattern history). Some of the data may be unrecoverable, but

at least the �+ 1 items which were inserted in the last �+ 1
operations must be present in the decryptions, since their

data must be recoverable using the erasable memory. Then

the guesser simply looks to see whether aj is present in the

decryptions; if aj is present then A2 returns 1, otherwise if

aj is not present then A2 returns 0.

In the experiment EXPobl-hi
A (D, λ, n, 1, 1), aj must be

among the decrypted values in the last (�+1)k access entries,

since aj was inserted within the last �+1 operations and each

operation is allowed to trigger at most k operations on the per-

sistent storage. Therefore Pr[EXPobl-hi
A (D, λ, n, 1, 1) = 1] = 1.

In the experiment EXPobl-hi
A (D, λ, n, 1, 0), we know that

each item an−�, . . . , an must be present in the decryptions,

and there can be at most (� + 1)(k − 1) other items in the

decryptions. Since the index j was chosen randomly from

among the first n − � − 1 items in the list, the probability

that aj is among the decrypted items in this case is at most

(�+ 1)(k − 1)

n− �− 1
.

From the restriction that � ≤ n/(4k), and k ≤ √n/2 ≤ n/12,

we have

(�+ 1)(k − 1) < (�+ 1)k = �k + k ≤ n
4 + n

12 = n
3 .

In addition, we have n − � − 1 > n/2, so the probability

that aj is among the decrypted items is at most 2
3 , and we

have Pr[EXPobl-hi
A (D, λ, n, 1, 0) = 1] ≤ 2/3, and therefore

Advhi
A(D, λ, n) ≥ 1/3. According to the definition, this

means that D does not provide history independence with

leakage of � operations.

B. Proof of Theorem 5

Our proofs on the distribution of block sizes in the ORAM

and on the number of HIRB nodes depend on the following

bound on the sum of geometric random variables. This is a

standard type of result along the lines of Lemma 6 in [11].

Lemma 10. Let X =
∑

1≤i≤n Xi be the sum of n ≥ 1 inde-
pendent random variables Xi, each stochastically dominated
by a geometric distribution over {0, 1, 2, . . .} with expected
value E[Xi] ≤ μ. Then there exists a constant c0 > 0 whose
value depends only on μ such that, for any a ≥ 2 and b ≥ 0,
we have

Pr[X ≥ (μ+ 1)(an+ b)] < exp(−c0(an+ b)).

Proof. By linearity of expectation, E[X] =
∑

i∈[n] E[Xi] ≤
nμ.

Recall that a geometric random variable with expected value

μ is equivalent to the number of independent Bernoulli trials,

each with probability p = 1/(μ+ 1), before the first success.

If X ≥ (μ+1)(an+b), this is equivalent to having fewer than

n successes over k = (μ+ 1)(an+ b) independent Bernoulli

trials with probability p.

Using this formulation, we can apply the Hoeffding inequal-

ity to obtain

Pr[X ≥ k] = Pr[Binomial(k, p) ≤ n− 1] < exp(−2ε2k),
where ε is defined such that n− 1 = (p− ε)k; namely

ε = p− n−1
k = 1

μ+1 − n−1
k .

We do some manipulation:

2ε2k = 2k
(μ+1)2 ·

(
1− (n−1)(μ+1)

k

)2

= 2(an+b)
μ+1 ·

(
1− n−1

an+b

)2

.

Because a ≥ 2 and b ≥ 0, we have

n−1
an+b < n

an ≤ 1
2 ,

and so

exp(−2ε2k) < exp
(
− 1

2(μ+1) (an+ b)
)
.

The stated result follows with the constant defined by

c0 = 1
2(μ+1) . (1)

�

Outline of proof of Theorem 5. We will mostly follow the

proof of the small-stash-size theorem in Path ORAM [9]. The

proof of the theorem consists of several steps.

1) We recall the definition of ∞-ORAM (ORAM with

infinitely large buckets) and show that stash usage in an

∞-ORAM with post-processing is the same as that in the

actual vORAM.

2) We rely on results from the most recent version of [40] to

show that the stash usage after post-processing is greater

195195

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

than R if and only if there exists a subtree for which its

usage in ∞-ORAM is more than its capacity.

3) We bound the total size of all blocks in any such subtree

by combining two separate measure concentrations on the

number of blocks in any such subtree, and the total size

of any fixed number of variable-length blocks.

4) We complete the proof by connecting the measure con-

centrations to the actual stash size, in a similar way to

[40].

Note that the first and third steps are those that differ most

substantially from prior work, and where we must incorporate

the unique properties of the vORAM.

Proof of Theorem 5. We now give the proof.

Step 1:∞-ORAM. The∞-ORAM is the same as our vORAM

tree, except that each bucket has infinite size. In any writeback
operation all blocks will go as far down along the path as their

identifier allows.

After simulating a series of vORAM operations on the ∞-

ORAM, we perform a greedy post-processing to restore the

block size condition:

• Repeatedly select a bucket storing more than Z bytes.

Remove a partial block from the bucket, and let b be the

number of remaining bytes stored in the bucket.

• If Z − b is greater than the size of metadata per partial

block (identifier and length), then there is some room left

in the bucket. In this case, split the removed block into

two parts. Place the last Z−b bytes into the current bucket

and the remainder into the parent bucket. Otherwise, if

there is insufficient room in the bucket, place the entire

block into the parent bucket, or into the stash if the current

bucket is the root.

By continuing this process until there are no remaining buckets

with greater than Z bytes, we have returned to a normal

vORAM with bucket size Z. Furthermore, there is an ordering

of the accesses, with the same identifiers and block lengths,

that would result in the same vORAM. Since the access order

of the ∞-ORAM does not matter, this shows that the two

models are equivalent after post-processing.

Observe that we are ignoring the metadata (block identifiers

and length strings). This is acceptable, as the removal process

in the actual vORAM always ensures that each partial block

of a given block, except possibly for the first (highest in the

vORAM tree), has size at least equal to the size of its metadata.

In that way, at most half the vORAM is used for metadata

storage, and so the metadata has only a constant factor effect

on the overall performance.

Step 2: Overflowing subtrees. Consider the size of vORAM

stash after any series of vORAM operations that result in a

total of at most n blocks being stored. Similarly to [40, Lemma

2], the stash size at this point is equal to the total overflow

from some subtree of the ∞-ORAM buckets that contains the

root. If we write τ for that subtree, then we have

|stash| > BR iff∑
node v∈τ (size of v in ∞-ORAM) ≥ Z|τ |+BR.

Step 3: Size of subtrees. We prove a bound on the total size

of all blocks in any subtree τ in the ∞-ORAM in two steps.

First we bound the number of blocks in the subtree, which

can use the same analysis as the Path ORAM; then we bound

the total size of a given number of variable-length blocks; and,

finally, we combine these with a union bound argument.

To bound the total number of blocks that occur in τ , because

the block sizes do not matter in the ∞-ORAM, we can

simply recall from [40, Lemma 5] that, for any subtree τ ,

the probability that τ contains more than 5|τ | + R/4 blocks

is at most
1

4|τ| · (0.9332)|τ | · (0.881)R. (2)

Next we consider the total size of 5|τ |+R/4 variable-length

blocks. From the statement of the theorem, each block size

is stochastically dominated by BX , where B is the expected

block size and X is a geometric random variable with expected

value μ = 1. From Lemma 10, the total size of all 5|τ |+R/4
blocks exceeds 2(a(5|τ |+R/4))B with probability at most

exp (−c0a (5|τ |+R/4)) .

From (1), we can take c0 = 1/4, and by setting a = 2 >
(4/5) ln 4, the probability that the total size of 5|τ | + R/4
blocks exceeds (20|τ | + R)B is at most exp

(− 5
2 |τ | − 1

8R
)
,

which in turn is less than

1
4|τ| · (0.329)|τ | · (0.883)R. (3)

Finally, by the union bound, the probability that the total

size of all blocks in τ exceeds (20|τ | + R)B is at most the

sum of the probabilities in (2) and (3), which is less than

2
4|τ| · (0.9332)|τ | · (0.883)R. (4)

Step 4: Stash overflow probability. As in [40, Section 5.2],

the number of subtrees of size i is less than 4i, and therefore

by another application of the union bound along with (4), the

probability of any subtree τ having total block size greater

than (20|τ |+R)B is at most∑
i≥1

4i 2
4i · (0.9332)i · (0.883)R

< 28 · (0.883)R.
C. Proof of Theorem 8

We now utilize Lemma 10 to prove the two lemmata on the

distributions of the number and size of HIRB tree nodes.

Lemma 11. Suppose a HIRB tree with n items has height
H ≥ logβ n, and let X be the total number of nodes in the
HIRB, which is a random variable over the choice of hash
function in initializing the HIRB. Then for any m ≥ 1, we
have

Pr [X ≥ H + 4n+m] < 0.883m.

In other words, the number of HIRB nodes in storage at

any given time is O(n) with high probability. The proof is a

fairly standard application of the Hoeffding inequality [41].

196196

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

Proof. The HIRB has H nodes initially. Consider the n
items label1, . . . , labeln in the HIRB. Because the tree is

uniquely represented, we can consider the number of nodes

after inserting the items in any particular order.
When inserting an item with labeli into the HIRB, its height

h = chooseheight(labeli) is computed from the label hash,

where 0 ≤ h ≤ H , and then exactly h existing HIRB nodes

are split when labeli is inserted, resulting in exactly h newly

created nodes.
Therefore the total number of nodes in the HIRB after

inserting all n items is exactly H plus the sum of the heights

of all items in the HIRB, which from Assumption 6 is the

sum of n iid geometric random variables, each with expected

value 1/(β − 1). Call this sum Y .
We are interested in bounding the probability that Y exceeds

4n+m. Writing μ = 1/(β−1) for the expected value of each

r.v., we have μ + 1 = β/(β − 1), which is at most 2 since

β ≥ 1. This means that 4n +m ≥ (μ + 1)(2n + m/2), and

from Lemma 10,

Pr[X ≥ H + 4n+m] = Pr[Y ≥ 4n+m]

≤ Pr[Y ≥ (μ+ 1)(2n+m/2)]

< exp(−c0(2n+m/2))

< exp(−c0m/2).

Because μ + 1 ≤ 2, c0 = 1/(2(μ + 1)) ≥ 1/4. Numerical

computation confirms that exp(−1/8) < 0.883, which com-

pletes the proof. �
Along with the bound above on the number of HIRB nodes,

we also need a bound on the size of each node.

Lemma 12. Suppose a HIRB tree with n items has height
H ≥ logβ n, and let X , a random variable over the choice of
hash function, be the size of an arbitrary node in the HIRB.
Then for any m ≥ 1, we have

Pr[X ≥ m · nodesizeβ] < 0.5m.

The proof of this lemma works by first bounding the

probability that the number of items in any node is at most

mβ and applies the formula for node size, i.e.,

nodesizek =
(k + 1)(2T + γ + 1) + k(|Hash(label)|+ |value|). (5)

Proof. We first show that the probability that any node’s

branching factor is more than mβ is at most 0.5m. This first

part requires a special case for the root node, and a general

case for any other node. Then we show that any node with

branching factor at most mβ has size less than m · nodesizeβ .
First consider the items in the root node. These items all

have height H , which according to Assumption 6 occurs for

any given label with probability 1/βH . Therefore the number

of items in the root node follows a binomial distribution with

parameter 1/βH . It is a standard result (for example, Theorem

C.2 in [42]) that a sample from such a distribution is at least

k with probability at most(
n

k

)
1

βHk
<

nk

2k−1βHk
.

From the assumption H ≥ logβ n, nk ≤ βHk, so the bound

above becomes simply 2−k+1. Setting k = mβ, the probability

that the root node has at least k items and hence branching

factor greater than mβ, is seen to be at most 2−mβ+1, which

is always at most 2−m because m ≥ 1 and β ≥ 2..

Next consider any nonempty HIRB tree node at height �,
and consider a hypothetically infinite list of possible label

hashes from the HIRB which have height at least � and could

be in this node. The actual number of items is determined

by the number of those labels whose height is exactly equal

to � before we find one whose height is at least � + 1.

From Assumption 6, and the memorylessness property of the

geometric distribution, these label heights are independent

Bernoulli trials, and each height equals � with probability

(β − 1)/β.

Therefore the size of each non-root node is a geometric

random variable over {0, 1, . . .} with parameter 1/β. The

probability that the node contains at least mβ items, and

therefore has banching factor greater than mβ, is exactly(
β−1
β

)mβ

< exp(−m) < 0.5m.

Here we use the fact that (1− 1
x)

ax < exp(−a) for any x ≥ 1
and any real a.

All that remains is to say that a node with branching factor

mβ has size less than m · nodesizeβ , which follows directly

from m ≥ 1 and the definition of nodesizeβ in (5). �
Finally, we prove the main theorems on the vORAM+HIRB

performance and security.

Proof of Theorem 8. We step through and motivate the

choices of parameters, one by one.

The expected branching factor β must be at least 2 for the

HIRB to work, which means we must always have H ≤ lg n,

and so T = lg(4n + lg n + γ) ≤ lg(4n + H + γ). Then

Lemma 11 guarantees that the number of HIRB nodes is less

than H+4n+γ with probability at least (0.883)γ . This means

that T is an admissible height for the vORAM according to

Theorem 5 with at least that probability.

The choice of β is such that Z ≥ 20 · nodesizeβ , using the

inequality

H ≤ lg n < lg(4n) < T.

Therefore, by Lemma 12, the size of blocks in the HIRB will

be admissible for the vORAM according to Theorem 5.

This allows us to say from the choice of R and Theorem 5

that the probability of stash overflow is at most 28 · (0.883)γ .

Choosing H as we do is required to actually apply Lem-

mas 11 and 12 above.

Finally, the probability of two label hashes in the HIRB

colliding is at most 2−γ . The stated result follows from the

union bound over the three failure probabilities.

197197

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 20:32:13 UTC from IEEE Xplore. Restrictions apply.

