
Resilient Delegation Revocation with Precedence
for Predecessors is NP-Complete

Marcos Cramer∗, Pieter Van Hertum†, Ruben Lapauw†, Ingmar Dasseville† and Marc Denecker†
∗ University of Luxembourg † KU Leuven

Abstract—In ownership-based access control frameworks with
the possibility of delegating permissions and administrative
rights, chains of delegated accesses will form. There are different
ways to treat these delegation chains when revoking rights,
which give rise to different revocation schemes. One possibility
studied in the literature is to revoke rights by issuing negative
authorizations, meant to ensure that the revocation is resilient to
a later reissuing of the rights, and to resolve conflicts between
principals by giving precedence to predecessors, i.e. principals
that come earlier in the delegation chain. However, the effects of
negative authorizations have been defined differently by different
authors. Having identified three definitions of this effect from
the literature, the first contribution of this paper is to point
out that two of these three definitions pose a security threat.
However, avoiding this security threat comes at a price: We
prove that with the safe definition of the effect of negative
authorizations, deciding whether a principal does have access
to a resource is an NP-complete decision problem. We discuss
two limitations that can be imposed on an access-control system
in order to reduce the complexity of the problem back to a
polynomial complexity: Limiting the length of delegation chains
to an integer m reduces the runtime complexity of determining
access to O(nm), and requiring that principals form a hierarchy
that graph-theoretically forms a rooted tree makes this decision
problem solvable in quadratic runtime. Finally we discuss an
approach that can mitigate the complexity problem in practice
without fully getting rid of NP-completeness.

Index Terms—access control, delegation, revocation, resilience,
negative authorization, denial, predecessor takes precedence,
complexity

I. INTRODUCTION

In ownership-based frameworks for access control, it is

common to allow principals (users or processes) to grant both

permissions and administrative rights to other principals in the

system. Often it is desirable to grant a principal the right to

further grant permissions and administrative rights to other

principals. This may lead to delegation chains starting at a

source of authority (the owner of a resource) and passing on

certain permissions to other principals in the chain [12], [14],

[5], [15].

Furthermore, such frameworks commonly allow a principal

to revoke a permission that she granted to another principal

[10], [16], [5], [2]. Depending on the reasons for the revo-

cation, different ways to treat the chain of principals whose

permissions depended on the second principal’s delegation

rights can be desirable [10], [6]. For example, if one is

revoking a permission given to an employee because he is

moving to another position in the company, it makes sense

to keep in place the permissions of principals who received

their permissions from this employee; but if one is revoking

a permission from a user who has abused his rights and is

hence distrusted by the user who granted the permission,

it makes sense to delete the permissions of principals who

received their permission from this user. Any algorithm that

determines which permissions to keep intact and which per-

missions to delete when revoking a permission is called a

revocation scheme. Revocation schemes are usually defined

in a graph-theoretical way on the graph that represents which

authorizations between the principals are intact.

Hagström et al. [10] have presented a framework for

classifying possible revocation schemes along three different

dimensions: the extent of the revocation to other grantees

(propagation), the effect on other grants to the same grantee

(dominance), and the permanence of the negation of rights (re-

silience). This classification was based on revocation schemes

that had been implemented in database management systems

[9], [7], [4], [3].

The resilience dimension in Hagström et al.’s framework

distinguishes revocation by removal (deletion) of positive

authorizations from revocation by issuing a negative autho-

rization which just inactivates positive authorizations. When

defining which positive authorizations get inactivated by neg-

ative authorizations, Hagström et al. have not taken care to

ensure that the outcome is as desired when multiple nega-

tive authorizations interact: A system implementing negative

revocations as defined by Hagström et al. would in certain

scenarios grant access to an access-requesting principal even

though all delegation chains linking the owner of the resource

to the access-requesting principal contain a principal that

has issued a negative authorization to the access-requesting

principal. As discussed in subsection III-D, we consider this

a security threat. The first definition of negative revocation

schemes that avoids this threat was provided by Cramer et al.

[6].

This paper has three main contributions (the third of which

consists of three parts):

• In section III, we compare different definitions of the

effect of negative authorizations from the literature, show

that the definitions in [10] and [1] pose a security threat,

while the definition in [6] avoids this threat.

• However, there is a computational price to pay: In section

IV, we prove that deciding whether a principal does have

access to a resource in a system allowing for negative

authorizations that behave as defined in [6] is an NP-

complete decision problem, i.e. it is both in NP and NP-

hard.

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Marcos Cramer. Under license to IEEE. 432

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Marcos Cramer. Under license to IEEE.

DOI 10.1109/CSF.2016.37

432

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

• In sections V, VI and VII, we describe three ways of

solving or handling this complexity problem:

– In section V, the complexity of the problem is

reduced to polynomial complexity by limiting the

length of delegation chains.

– In section VI, the complexity of the problem is

reduced to quadratic by requiring that principals form

a hierarchy that graph-theoretically forms a rooted

tree.

– In section VII, we present a method that can mitigate

the complexity problem in practice without fully

getting rid of NP-completeness.

II. PRELIMINARIES AND RELATED WORK

Hagström et al. [10] have introduced three dimensions

according to which revocation schemes can be classified.

These are called propagation, dominance and resilience:

Propagation. The decision of a principal i to revoke an

authorization previously granted to a principal j may either be

intended to affect only the direct recipient j or to propagate

and affect all the other users in turn authorized by j. In the

first case, we say that the revocation is local, in the second

case that it is global.
Dominance. This dimension deals with the case when a

principal losing a permission in a revocation still has permis-

sions from other grantors. If these other grantors’ revocation

rights are dependent on the revoker, the revoker can dominate

over these grantors and revoke the permissions from them.

This is called a strong revocation. The revoker can also choose

to make a weak revocation, where permissions from other

grantors to a principal losing a permission are kept.

Resilience. This dimension distinguishes revocation by re-

moval (deletion) of positive authorizations from revocation by

issuing a negative authorization which just inactivates positive

authorizations. In the first case another principal may grant

a similar authorization to the one that had been revoked, so

the effect of the revocation does not persist in time. In the

second case a negative authorization will overrule any (new)

positive permission given to the same principal, so its effect

will remain until the negative permission is revoked. We call a

revocation of the first kind a delete or non-resilient revocation,

and a revocation of the second kind a negative or resilient
revocation.

Since there are two possible choices along each dimension,

Hagström et al.’s framework allows for eight different revoca-

tion schemes.

Hagström et al. defined their eight revocation schemes semi-

formally. As is explained in detail in section 3.1 of [6], these

definitions contradict some of the properties that Hagström

et al. claim the revocation schemes to have. Aucher et al.

[1] formalized Hagström et al.’s framework in a dynamic

propositional logic, removing some of these problems in

Hagström et al.’s definitions.

As explained in subsection III-D below, both Hagström et

al.’s and Aucher et al.’s definition of the effect of revocations

via negative authorizations pose a serious security threat.

Cramer et al. [6] have proposed and formalized a refined

revocation framework that builds on Hagström et al.’s frame-

work and avoids this security threat. Among other differences,

Cramer et al.’s definitions of the revocation schemes differ

from Hagström et al.’s and Aucher et al.’s definitions in how

interacting revocations are handled. This is discussed in detail

in the next section.

A. Conflict resolution policies

Delegation frameworks that allow issuing negative autho-

rization can bring about a state in which a conflict may

arise. If a principal is granted both a positive and a negative

authorization for the same object, then we say that these two

authorizations conflict each other. A system’s conflict resolu-
tion policy determines how to resolve such a conflict. Here is

a list of possible conflict resolution policies as described by

Ruan and Varadharajan [13]:

Negative-takes-precedence: If there is a conflict occurring

on the authorization for some object, the negative authoriza-

tions will take precedence over the positive one.

Positive-takes-precedence: Positive authorizations from i
to j take precedence over negative authorizations from k to j
for all k �= i. This means that a negative authorization from i
to j directly inactivates only positive authorizations from i to

j, and leaves other permission to j active.

Strong-and-Weak: Authorizations are categorized in two

types, strong and weak. The strong authorizations always

take precedence over the weak ones. Conflicts among strong

authorizations are not allowed. In conflicts between weak

authorizations negative ones take precedence. Note that the

intended meaning of strong and weak in this policy differs

from their meaning in Hagström et al.’s dominance dimension.

Time-takes-precedence: New authorizations take prece-

dence over previously existing ones. Note that this policy will

make negative authorizations non-resilient.

Predecessor-takes-precedence: If the principal i delegates

(possibly transitively) some right to principal j, then autho-

rizations issued by i to some other principal k concerning that

right will take precedence over authorizations issued by j to

k. In other words, the priority of subjects decreases as the

privilege is delegated forward.

Note that according to Hagström et al.’s definition of a

strong revocation mentioned above, the effect of a strong

revocation is supposed to be the same as the effect that issuing

a negative authorization in the context of a predecessor-takes-

precedence conflict resolution policy. However, Hagström et

al. do not assume the conflict resolution policy of the system to

be prdecessor-takes-precedence. Instead, they consider the ef-

fect of the revocation schemes they defined in both a positive-

takes-precedence and a negative-takes-precedence conflict res-

olution policy. They achieve the effect that a single negative

authorization has in a predecessor-takes-precedence conflict

resolution policy by potentially producing multiple negative

authorizations in the course of a single strong revocation.

When Hagström et al.’s definition of a strong revocation is

applied in the context of a negative-takes-precedence policy,

the effect of a strong revocation is not as described in

Hagström et al.’s definition of a strong revocation mentioned

433433

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

above, since with this policy a negative authorization from i
to j dominates all positive authorizations granted to j, not just

the ones granted by a principal dependent on i.
Cramer et al. [6] have incorporated the choice of how to

resolve conflicts into the dominance dimension by extending

Hagström et al.’s dominance dimension into a dimension

involving three instead of just two choices:

• Weak revocations. These have the same intended be-

haviour as Hagström et al.’s weak revocations in a

positive-takes-precedence policy: The principal perform-

ing the revocation only dominates over direct autho-

rizations granted by herself, authorizations from other

grantors are kept intact.

• Predecessor-takes-precedence (p-t-p) revocations.
These have the same intended behaviour as Hagström’s

et al.’s strong revocations in a positive-takes-precedence

policy: The principal performing the revocation

dominates over other grantors’ authorizations that are

dependent on her.

• Strong revocations. These have the same intended be-

haviour as any of Hagström’s et al.’s revocations in a

negative-takes-precedence policy: The principal perform-

ing the revocation dominates over all other grantors’

authorizations.

In this paper we focus on revocations that are on the

domoinance dimension like Hagström et al.’s strong revoca-

tions and like Cramer et al.’s predecessor-takes-precedence

revocations.

B. Revocations and denials

A revocation of a principal’s rights removes rights that the

principal already has. A denial of rights on the other hand

can be issued even when the principal does not yet have the

concerning rights, and has the effect that other principals will

no longer be able to effectively grant rights to the affected

principal.

Negative authorizations can function as a form of denial.

When, for example, j does not yet have the rights in question

and i issues a negative authorization for those rights to j, this

negative authorization functions like a denial rather than like

a revocation.

The work in this paper applies to negative authorizations

independently of whether they are used to revoke existing

rights or deny rights. We will for the rest of this paper only

use the term “revocation” and not “denial”, in order to be

consistent with the terminology used in the papers that we

extensively refer to in this paper.

III. REVOCATION VIA NEGATIVE AUTHORIZATION

In this section we introduce the notion of a negative
authorization and of revocation via negative authorization.

After explaining the motivation behind negative authorizations,

we define a graph-theoretic framework in subsection III-A

that allows us to talk formally about the effects of negative

authorizations. In subsections III-B and III-C we present two

accounts from the literature of defining the effects of negative

authorizations. In subsection III-D we present a serious secu-

rity threat that both of these accounts face. In subsection III-E

we explain how this problem has been solved by Cramer et

al. [6], and briefly explain why their approach is immune to

this kind of security threats.

The idea behind a negative authorization is that it does not

only take away a certain permission or administrative right

from a user, but also blocks the user from getting this access

from another user, at least from a user dependent on the issuer

of the negative authorization. For example, if Alice distrusts

Bob and wants to do all that she can to ensure that Bob

will not get access to a certain file, she can issue a negative

authorization towards Bob, thus ensuring that even if someone

whom she granted the right to further grant access rights to

that file does grant Bob access right, Bob will still be blocked

from accessing the file.

This paper is only about delegation revocation via negative

authorizations, so we will not say anything about delegation

revocation by deletion of authorizations. A revocation scheme

based on issuing a negative revocation is called a negative
revocation scheme. In Hagström et al.’s framework, there are

four different negative revocation schemes, because there are

four possible choices to be made along the dominance and

propagation dimensions of their framework (see section II).

The behaviour of weak negative authorizations is clear and

does not pose any of the problems discussed below. So in

our discussion, we will focus on revocation schemes that are

called strong by Hagström et al. [10] and Aucher et al. [1]

and called predecessor-takes-precedence (p-t-p) by Cramer et

al. [6]. The problems discussed below apply equally to global

and local revocation schemes; for the sake of simplicity, we

will concentrate on global revocation schemes in this paper.

So for the rest of the paper, the only revocation scheme we

consider is what Hagström et al. [10] and Aucher et al. [1]

call a Strong Global Negative revocation, and what Cramer et

al. [6] call a P-t-p Global Resilient revocation.

A. Graph-theoretic framework

Even though this revocation scheme called Strong Global

Negative in [10] and [1] and P-t-p Global Resilient in [6] is

intended to be basically the same revocation scheme and does

behave identically in simple scenarios, the formal definitions

of this revocation scheme are somewhat different across these

papers, resulting in a different behaviour especially when

multiple revocations interact. In order to compare these dif-

ferent definitions, we describe the possible effects of negative

authorizations in graph-theoretic terms. To this end, let us first

define the notion of a delegation-revocation graph:

Definition 1: A delegation-revocation graph is a graph G =
(V,SOA, E+, E−) consisting of a set V of vertices, also called

principals, a distinguished vertex SOA ∈ V called the source
of authority, a set E+ ⊆ V 2 of positive edges, also called

positive authorizations, and a set E− ⊆ V 2 of negative edges,

also called negative authorizations.

Here an example of a simple delegation-revocation graph:

Example 1: A delegation-revocation graph for a resource

owned by user A

434434

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

Unbroken straight edges denote positive authorizations.
Dotted bent edges denote negative authorizations.

A B

C

D

E

The delegation-revocation graph keeps track of which pos-

itive and negative authorization concerning a certain resource

have been issued between the principals in the system. For

example, the delegation-revocation graph 1 expresses that

B has issued both a positive and a negative authorization

towards D, but only a positive authorization towards C. The

source of authority is the owner of the resource in question:

All permissions emanate from the source of authority, i.e. a

principal can have a permission only if there is a delegation
chain from the source of authority to that user.

Since in this paper we are only considering revocation

schemes for which the temporal order of the issuing of the

authorizations is irrelevant, the authorization in a delegation-

revocation graph do not have timestamps.

Hagström et al. [10], Aucher et al. [1] and Cramer et

al. [6] all distinguish between positive authorizations that

only grant access and positive authorizations that additionally

grant delegation rights. In a delegation chain starting at the

source of authority, all but the last positive authorization

along the chain have to grant delegation rights. The issues

discussed in this paper arise from the granting of delegation

rights and are independent of whether the system allows users

to grant access rights without granting delegation rights. In

order to keep the exposition simple, we consider all positive

authorizations to grant delegation rights. This is why we have

only one kind of positive authorizations in our definition of

a delegation-revocation graph. The results presented in this

paper can easily be extended to systems that do have positive

authorizations that only grant access rights additionally to the

positive authorizations that also grant delegation rights.

Given that we have only one kind of positive authorizations,

the definition of a delegation chain is very simple:

Definition 2: In a delegation-revocation graph, a delegation
chain is a chain of positive authorizations starting at the source

of authority.

B. Hagström et al.’s Strong Global Negative revocation

Hagström et al. [10] define the effect of Strong Global

Negative revocations using the notion of a principal being

independent of another principal i, i.e. possessing delegation

rights in a way that is not dependent on i:
Definition 3: A principal k is independent of a principal i

iff there is a delegation chain ending in k that does not pass

through i.
Note in particular that a principal k is never independent of

k.

Hagström et al. [10] use this notion of independence to

define the effect of a Strong Global Negative revocation by

defining which positive authorizations are inactivated by a

negative authorization. There are two ways that a positive

authorization can be inactivated in their definition:

1) A negative authorization from i to j inactivates a positive

authorization from k to j if k is not independent of i.
2) Furthermore a positive authorization issued by a prin-

cipal k is inactivated if there is no active positive

authorization granting k delegation rights.

Case 1 takes care that the principal targeted by the Strong

Global Negative revocation loses her delegation rights if her

rights are not supported in a way independent of the principal

performing the revocation. Case 2 takes care of propagating

forward the effect of the revocation (given that it is a global

rather than a local revocation).

For example, in the delegation-revocation graph in Example

1, the negative authorization from B to D inactivates (based

on case 1) the positive authorization from B to D, because B

is not independent of B. Furthermore it inactivates (also based

on case 1) the positive authorization from C to D, because C

is not independent of B: The only delegation chain ending in

C goes through B. Once the positive authorizations from B to

D and from C to D are inactivated, the authorization from D

to E is also inactivated (based on case 2), as there is no active

positive authorization left that grants D delegation rights.

C. Aucher et al.’s Strong Global Negative revocation

Definition 3 is problematic, because it does not correctly

formalize the intended meaning of independent: Suppose there

is precisely one delegation chain ending in k and not passing

through i, but this delegation chain contains inactive autho-

rizations. In that case, this delegation chain does not in any

way support the rights of k. But according to definition 3, this

delegation chain would ensure that k is independent of i. The

problem is, of course, that definition 3 does not specify that

the delegation chain should be active, i.e. not contain inactive

authorizations.

In their formalization of Hagström et al.’s framework in

a dynamic propositional logic, Aucher et al. [1] corrected

this problem of Hagström et al.’s definition. However, instead

of defining the effect a negative authorization by defining

which positive authorizations it inactivates, they add auxiliary

negative authorizations to get the same result concerning

which users lose their access and delegation rights:

They define a Strong Global Negative revocation from i to

j to consist of issuing a negative authorization from i to j and

additionally adding auxiliary negative authorizations from k to

j for for every k that is not independent of i. They define k to

be independent of i iff there is a rooted delegation chain from

the SOA to i that does not contain i. A rooted delegation
chain is defined to be a delegation chain such that for any

two consecutive principals p, q along this delegation chain,

there is no negative authorization from p to q. A principal i
is defined to have access and delegation rights iff there is a

rooted delegation chain from the SOA to i.
The fact that the definition of independence refers only to

rooted delegation chains rather than to any delegation chains

removes the problem with Hagström et al.’s definition of

independence.

435435

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

For example, the issuing of the negative authorization from

B to D in the delegation-revocation graph 1 would in the

case of a Strong Global Negative revocation entail adding an

auxiliary negative authorization from C to D (because C is not

independent of B). Hence none of the two delegation chains

from A to D are rooted delegation chains, so D does no longer

have delegation rights, as expected. Similarly, none of the two

delegation chains from A to E are rooted delegation chains,

so also E does no longer have delegation rights.

D. A security threat
Even though Aucher et al. removed one problem in

Hagström et al.’s definition of the effect of Strong Global

Negative revocations, there remains another problem that is

present in both Aucher et al.’s and Hagström et al.’s framework

and that poses a security threat. This subsection describes this

security threat.
Consider the following delegation-revocation graph:
Example 2:

A

B

C

D E

The only two delegation chains from the SOA to E are

ABDE and ACDE. Both of these delegation chains contain a

principal that has issued a negative authorization towards E. By

issuing a negative authorization to E, B and C have expressed

distrust in E and intended to avoid that E gets access and

delegation rights through a user dependent on them. Hence E

should not have access and delegation rights in this scenario.
But according to the effect of negative authorizations as

defined by Hagström et al. [10] and Aucher et al. [1], E would

actually have access and delegation rights in this situation:

D is independent of B, because there is a delegation chain

ACD not going through B; and D is independent of C,

because there is a delegation chain ABD not going through

C. So neither the negative authorization from B to E nor the

negative authorization from C to E can inactivate the positive

authorization from D to E (in Hagström et al.’s account) or

lead to the addition of an auxiliary negative authorization from

D to E (in Aucher et al.’s account).
The problem is that in their definitions of the effect of a

negative authorization, both Hagström et al. and Aucher et

al. only accounted for the desired effect of a single negative

authorization, without taking into account what the desired

outcome should be when multiple negative authorizations

interact. In example 2, the two negative authorizations work

together to discredit user E; neither of the two negative

authorizations by itself should have any negative effect on E.
This problem poses a security threat because it allows prin-

cipals to have access and delegation rights that they should not

have. For instance, in example 2, Hagström et al.’s and Aucher

et al.’s frameworks would grant E access and delegation rights

even though E should not be granted these rights.

E. Solving the problem
One way to explain the problem is to point out that both

Hagström et al. and Aucher et al. have limited their notion of

independence to independence from a single user. But one can

also define the notion of a user being independent from a set

of users:
Definition 4: A principal i is defined to be independent of

a set S of principals iff there is an active delegation chain

(i.e. a delegation chain all of whose positive authorizations are

active) from the SOA to i that does not include any principal

in S.
Now one can replace Hagström et al.’s first way of inac-

tivating positive authorizations by the following definition of

inactivation: When there is a set S of principals such that from

every principal i ∈ S there is a negative authorization towards

j, and k is not independent of S, then a positive authorization

from k to j gets inactivated.
This desired effect of multiple interacting negative autho-

rizations can also be phrased in more simple terms, without

reference to the notions of independence and inactivation:

When all delegation chains linking the source of authority to

j contain a principal that has issued a negative authorization

to j, then j should not have access or delegation rights.
This way of defining the effect of multiple interacting

negative authorizations was introduced by Cramer et al. [6].

Formally, the effect can be defined by postulating that a

principal i should have access and delegation rights iff there

is a good delegation chain from the SOA to i, where a good
delegation chain is defined as follows:

Definition 5: Let G = (V,SOA, E+, E−) be a delegation-

revocation graph. A good delegation chain in G is a sequence

of vertices v0, . . . , vn such that v0 = SOA, (vi, vi+1) ∈ E+

for 0 ≤ i < n, and (vi, vj) /∈ E− for any 0 ≤ i ≤ j ≤ n.
In other words, a good delegation chain is a delegation

chain with the property that no principal in the chain has

issued a negative authorization towards a principal later in

the delegation chain.
In order to explicitly distinguish Cramer et al.’s definition

of when a principal has access right from Hagström et al.’s

and Aucher et al.’s definitions, we will say that a principal has

safe access right if she has access right according to Cramer

et al.’ definition:
Definition 6: Let G = (V,SOA, E+, E−) be a delegation-

revocation graph, and let p ∈ V be a principal. We say that p
has safe access right iff there is a good delegation chain in G
that ends in p.

In Example 2, the delegation chain ABDE is not a good

delegation chain, because there is a negative authorization

from B to E, and B occurs in ABDE before E. Similarly,

ACDE is not a good delegation chain because of the negative

authorization from C to E. So there is no good delegation

chain from the SOA to E, i.e. E does not have safe access

right.
So Cramer et al. [6] have removed the security threat that

we have identified in subsection III-D. But can we be sure

that no similar security threat is still faced by Cramer et al.’s

definition? In order to clear up such doubts, Cramer et al. [6]

have developed a formal framework based on the notions of

436436

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

trust and distrust for reasoning about the reasons for delegating

and revoking. This formal framework allowed them to for-

mally define the desired behaviour of interacting revocations.

This desired behaviour includes avoiding security threats like

the one identified in subsection III-D, but generalizes the

eschewal of such threats to arbitrary complex scenarios. They

established that the above definition of the effect of negative

authorizations has this desired behaviour, while the definitions

by Hagström et al. and Aucher et al. do not have this desired

behaviour.

The downside of Cramer et al.’s definition of the effect of

negative authorizations is that it makes the decisions problem

of deciding whether a principal has access or delegation right

NP-complete, as we will see in the following section. In the

case of Hagström et al.’s and Aucher et al.’s definition, on the

other hand, there is an algorithm with runtime quadratic in

the number of principals that decides whether a principal has

access or delegation rights.

IV. NP-COMPLETENESS

In the previous section we saw that the revocation frame-

works by Hagström et al. [10] and Aucher et al. [1] have

posed a security threat, and that this problem has been solved

by Cramer et al. [6] by giving a new definition of the effect of

negative authorizations. In this section we show that Cramer

et al.’s solution comes at a price: Whereas in Hagström et

al.’s and Aucher et al.’s framework it could be determined in

quadratic runtime whether a principal has access or delegation

right, in Cramer et al.’s framework the decisions problem of

deciding whether a principal p has safe access right is NP-

complete.

For this we need to show that this decision problem is both

in NP and NP-hard. It can be easily seen to be in NP, because

a good delegation chain from the SOA to p is a witness for

this decision problem: p has safe access right iff there is a

good delegation chain from the SOA to p, and determining

whether a given sequence of principals is a good delegation

chain can clearly be checked in polynomial time (namely in

quadratic time).

In order to prove that this decision problem is NP-hard, we

reduce 3-SAT [11] to this decision problem. Let a1, . . . , an
be propositional variables, and let C1 ∧ · · · ∧Cm be a 3-SAT

problem in a1, . . . , an, i.e. each Ci is a clause of the form

li1∨li2∨li3, where each lij is a literal of the form ak or ¬ak. We

need to construct a delegation-revocation graph such that for

some specific principal p in this graph, p has safe access right

iff C1 ∧ · · · ∧ Cm is satisfiable. We describe the construction

of this delegation-revocation graph for the general case, and

illustrate it in figure 3 with the delegation-revocation graph

corresponding to the 3-SAT problem (a1 ∨ a2 ∨ a3) ∧ (¬a1 ∨
a2∨¬a3). It can be easily seen that the order of the delegation-

revocation graph is linear in the size of the 3-SAT problem

(more precisely, if n denotes the number of clauses of the 3-

SAT problem, the order of the delegation-revocation graph is

always less than or equal to 10n+ 2).

The delegation-revocation graph has the following princi-

pals:

• SOA

• ai and ¬ai for 1 ≤ i ≤ n
• lij for 1 ≤ i ≤ m and 1 ≤ j ≤ 3
• SATi for 0 ≤ i ≤ m

The graph has the following positive edges:

• From SOA to a1 and to ¬a1
• From ai to ai+1 and ¬ai+1, for 1 ≤ i < n
• From ¬ai to ai+1 and ¬ai+1, for 1 ≤ i < n
• From an and ¬an to SAT0.

• From SATi to li+1
j for 0 ≤ i < m and 1 ≤ j ≤ 3

• From lij to SATi for 1 ≤ i ≤ m and 1 ≤ j ≤ 3

The graph has the following negative edges:

• From ak to any lij that is of the form ¬ak
• From ¬ak to any lij that is of the form ak

Example 3: The delegation-revocation graph corresponding

to the 3-SAT problem (a1 ∨ a2 ∨ a3) ∧ (¬a1 ∨ a2 ∨ ¬a3)

SOA

a1 ¬a1

a2 ¬a2

a3 ¬a3

SAT0

l11 l12 l13

SAT1

l21 l22 l23

SAT2

The following lemma establishes the desired result that

determining safe access right for principal SATm in the

constructed delegation-revocation graph amounts to solving

the 3-SAT problem for C1 ∧ · · · ∧ Cm:

Lemma 1: SATm has safe access right iff C1 ∧ · · · ∧Cm is

satisfiable.

Proof: First note that every path from SOA to SAT0

corresponds to an assignment of truth values to a1, . . . , an:

For each a ≤ i ≤ n, each such path goes through precisely

one of ai and ¬ai, and we assign ai the truth value True in the

corresponding truth value assignment iff the path goes through

ai.
Every path from SOA to SATm consists of a path from

SOA to SAT0 followed by a path from SAT0 to SATm. The

subpath from SAT0 to SATm goes through precisely one of

li1, li2 and li3 for each 1 ≤ i ≤ m. The path from SOA to SATm

can only be a good delegation chain if for every 1 ≤ i ≤ m,

the literal lij through which the path goes is assigned the truth

437437

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

value T under the truth value assignment corresponding to the

subpath from SOA to SAT0.

So SATm has safe access right

• iff there is a good delegation chain from SOA to SATm

• iff there is a path from SOA to SAT0 and a path from

SAT0 to SATm such that for every 1 ≤ i ≤ m,

the literal lij through which the from SAT0 to SATm

goes is assigned the truth value T under the truth value

assignment corresponding to the subpath from SOA to

SAT0

• iff there is an assignment of truth values to a1, . . . , an
and a choice of lij ∈ {li1, li2, li3} for every 1 ≤ i ≤ m
such that for every 1 ≤ i ≤ m, lij is true under this truth

value assignment

• iff C1 ∧ · · · ∧ Cn is satisfiable.

Hence we have established the following theorem:

Theorem 1: The decision problem of determining whether

a principal p in a delegation-revocation graph has safe ac-

cess right is NP-complete with respect to the order of the

delegation-revocation graph.

V. BOUNDED DELEGATION DEPTH

Given that deciding safe access right in an access-control

framework with no limitations on delegations is NP-complete,

it is of interest to study sensible limitations that can be

imposed on an access-control framework in order to reduce the

complexity of this decision problem to polynomial time. In this

section we consider the possibility of limiting the maximum

delegation depth, i.e. the maximum length of delegation chain,

by a constant integer.

Multiple access control frameworks allow for limiting the

delegation depth [16], [12]. However, in these frameworks the

maximum delegation chain can be freely chosen by the source

of authority, and there is no upper bound for the integers that

the source of authority may choose for this purpose.

The limitation that we consider in this section is different

in nature: We suppose that a fixed integer m is defined

in the access control policy to be the universal maximum

delegation depth, and no source of authority can allow for

deeper delegation of the rights that he or she delegate to

others. We call this fixed integer m the bound on delegation
depth. The following theorem establishes that if there is such

a bound on delegation depth, then the complexity of deciding

safe access right is polynomial in the number of principals:

Theorem 2: Let m be the bound on the length of delegation

chains. Then the runtime complexity of deciding whether a

principal has safe access right is at most O(nm), where n
denotes the number of principals.

Proof: Assuming that the length of delegation chains may

not be more than m, Algorithm 1 decides whether a principal

p has safe access right. It does this by checking for every

sequence of principals of length at most m whether it is a

good delegation chain from SOA to p: After selecting such

a sequence σ, the value of the Boolean b′ is set to True

(line 3). If some reason is found for concluding that σ is not

a good delegation chain from SOA to p, the value of b′ is

Algorithm 1 Determining safe access with bounded dele-
gation chain length
Input: delegation-revocation graph G = (V,SOA, E+, E−),

principal p ∈ V
Output: a Boolean b stating whether p is granted safe access

right or not

1: b← False

2: for σ a sequence of principals in G with length(σ) ≤ m
do

3: b′ ← True

4: if σ[0] �= SOA or σ[length(σ)− 1] �= p then
5: b′ ← False

6: else
7: for i ∈ {0, . . . , length(σ)− 2} do
8: if (σ[i], σ[i+ 1]) /∈ E+ then
9: b′ ← False, break

10: if b′ = True then
11: for j ∈ {i, . . . , length(σ)− 1} do
12: if (σ[i], σ[j]) ∈ E− then
13: b′ ← False, break
14: if b′ = False then
15: break
16: if b′ = True then
17: b← True, break

changed to False (lines 4-13): This can happen either because

the sequence does not start at SOA or does not end at p (lines

4-5), because some principal in the sequence has not granted

a positive authorization to the next principal in the sequence

(lines 8-9), or because there is a negative authorization from

one principal to a later principal in the sequence (11-13). The

breaks in lines 9, 13 and 15 ensure that once it has been

established that a sequence is not a good delegation chain,

the algorithm immediately stops considering this sequence. As

soon as a good delegation chain has been found, access right

is granted and the algorithm stops (lines 16-17).

Now we show that the algorithm’s runtime is at most k ·
nm for some constant k. First note that there are less than

m · nm sequences of principals of length at most m. Hence

it is enough to show that the time needed for the execution

of lines 3-17 (checking whether a given sequence is a good

delegation chain) has a constant upper bound. This follows

from the fact that both in the for-loop starting in line 7 and

in the for-loop starting in line 11, the number of iterations is

bounded by the constant m.

VI. DELEGATION REVOCATION IN A HIERARCHICAL

SETTING

In this section we consider another limitation that can be

imposed onto the access-control framework in order to avoid

the NP-completeness of deciding safe access right. Roughly

speaking, the limitation is that principals form a hierarchy that

graph-theoretically forms a rooted tree, and that all delegation

and revocation has to respect this hierarchy. After making

this limitation more precise, we show that it reduces the

complexity of deciding safe access right for principal p to

438438

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

runtime quadratic in the hierarchical depth of of principal p
(this depth is at most the number of principals in the system,

but usually much less).

Let us first motivate the limitation that we impose in this

section: Suppose that a company wants to use an access-

control framework that allows for delegation. Suppose for sim-

plicity that every principal in the company’s computer system

is a human user. Furthermore, suppose that the employees

of the company form a hierarchy in which everyone apart

from the company’s CEO has precisely one direct boss. So

the employees of the company form a hierarchy like the one

depicted in example 4 that has the graph-theoretical structure

of a rooted tree. In other words, when depicting the employees

as vertices and the relation between an employee and her direct

subordinate by a directed edge, the result is a directed graph

with a distinguished vertex, the root, corresponding to the

company’s CEO, such that there is precisely one path from

the root to any other vertex in the graph.

Example 4: Example of a hierarchy with the graph-

theoretical structure of a rooted tree with root A

A

B C D

E F G

H I J

In example 4, A is the direct boss of B, C and D; C is the

direct boss of E, F and G; E is the direct boss of H and I; and

G is the direct boss of J.

In practice, there will also be principals that do not corre-

spond to employees of the company but to processes in the

company’s computer network. Nevertheless, it might still be

possible to impose such a tree-like hierarchical structure onto

the principals.

The idea now is to limit delegation, i.e. the issuing of

positive authorizations, and revocation, i.e. the issuing of

negative authorizations, in the following way: A principal i
may only issue a positive authorization to principal j if i is

directly above j in the hierarchy. For negative authorizations

the restriction is less strict: A principal i may only issue

a negative authorization to principal j if i is (directly or

indirectly) above j in the hierarchy , i.e. if there is a path

from i to j in the directed graph that represents the hierarchy.

Thus in example 4, A can issue positive authorizations to B,

C and D, and negative authorizations to everyone, whereas,

for example, C can issue positive authorizations to E, F and

G, and negative authorizations to E, F, G, H, I and J.

The distinction between the more strict limitation on pos-

itive authorizations and the less strict limitation on negative

authorizations can be motivated as follows: In order to get

some permission, one’s direct boss should consent. But for

taking away a permission there should be more flexibility,

because for avoiding security threats it is important to react

quickly when a principal is identified as not trustworthy: If

only the direct boss could take away someone’s permission,

this would cause additional delay, for example if the direct

boss of the problematic principal is currently not available.

By allowing the boss’s boss, the boss’s boss’s boss etc. to

also take away a principal’s permission, a quick reaction to

the identification of a principal as harmful is more likely.
We are not making any assumptions about whether the

tree-like hierarchical structure is constant or can be modified

over time. We don’t even have to assume that the same

hierarchical structure is used for all rights: There could in

principle be different hierarchical structures corresponding to

different delegatable rights.
When we focus on the authorizations issued for one par-

ticular access right, the only part of the hierarchy tree that is

relevant is the subtree of the hierarchy tree that consists of

the source of authority for that access right and all principals

(directly or indirectly) below this source of authority. This

subtree is again a rooted tree, now with the source of authority

at its root. The rest of the hierarchical tree is not relevant for

determining this access right and will be ignored for the rest

of the discussion in this section. So any reference to a rooted

tree from now onwards will concern this subtree of the original

hierarchical tree.
The following notion of a hierarchical delegation-

revocation graph formalizes the situation in which we have to

determine access given the hierarchical limitation on issuing

authorizations discussed above:
Definition 7: A hierarchical delegation-revocation graph

is a graph G = (V,SOA, H,E+, E−) consisting of a set

V of vertices, also called principals, a distinguished vertex

SOA ∈ V called the source of authority, a set H ⊆ V 2 of

hierarchy edges, a set E+ ⊆ V 2 of positive edges, also called

positive authorizations, and a set E− ⊆ V 2 of negative edges,

also called negative authorizations, satisfying the following

properties:

1) For every principal p ∈ G there is precisely one path of

hierarchy edges connecting SOA to p.

2) E+ ⊆ H .

3) Whenever (p1, p2) ∈ E−, there is a path of hierarchy

edges from p1 to p2.

This definition extends definition 1 of a delegation-
revocation graph from subsection III-A by adding a set H
of hierarchy edges. Property 1 ensures that the principals and

hierarchy edges form a rooted tree with the SOA as root.

Properties 2 and 3 ensure that authorizations have only been

issued in accordance with the limitation defined above: By

property 2, a positive authorization from p1 to p2 can only

have been issued if p1 is directly above p2 in the hierarchy,

i.e. if (p1, p2) ∈ H . By property 3, a negative authorization

from p1 to p2 can only have been issued if p1 is (directly or

indirectly) above p2 in the hierarchy, i.e. if there is a path of

hierarchy edges from p1 to p2.
The definitions for good delegation chains and safe access

in hierarchical delegation-revocation graphs are the same as

the corresponding definitions for non-hierarchical delegation-

revocation graphs in subsection III-E above:
Definition 8: Let G = (V,SOA, H,E+, E−) be a hierarchi-

cal delegation- revocation graph. A good delegation chain in

439439

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

G is a sequence of vertices v0, . . . , vn such that v0 = SOA,

(vi, vi+1) ∈ E+ for 0 ≤ i < n, and (vi, vj) /∈ E− for any

0 ≤ i ≤ j ≤ n.

Definition 9: Let G = (V,SOA, H,E+, E−) be a hier-

archical delegation- revocation graph, and let p ∈ V be a

principal. We say that p has safe access right iff there is a

good delegation chain in G that ends in p.

In order to state the theorem about the complexity of

determining safe access right, we need the notion of the

hierarchical depth of a principal:

Definition 10: Let G = (V,SOA, H,E+, E−) be a hier-

archical delegation- revocation graph, and let p ∈ V be a

principal. The hierarchical depth of p in G is the length of

the unique path of hierarchy edges from SOA to p.

The following theorem establishes that the runtime com-

plexity of determining safe access right of a principal p is

quadratic in the hierarchical depth of principal p:

Theorem 3: Let G = (V,SOA, H,E+, E−) be a hierarchical

delegation-revocation graph, and let p ∈ V be a principal. Let

n denote the hierarchical depth of p in G. Then the runtime

complexity of deciding whether a principal has safe access

right is at most O(n2).
Proof: Algorithm 2 decides whether principal p has safe

access right. It does this by looking at the unique path

[p1, . . . , pn] from SOA to p (so p1 = SOA and pn = p) and

determining whether it is a good delegation chain (there cannot

be any other good delegation chain by the restrictions imposed

on hierarchical delegation-revocation graphs). For this, two

properties have to be satisfied:

• Positive authorizations have to be in place along the

whole path [p1, . . . , pn], i.e. (pi, pi+1) ∈ E+ for 1 ≤
i ≤ n: This is checked in lines 3-5 of Algorithm 2. Note

that the algorithm actually checks whether this property

fails for some i, setting the Boolean b to False and halting

if it fails for some i.
• No negative authorizations may be in place from an

earlier to a later principal in the path [p1, . . . , pn], i.e.

for no 1 ≤ i ≤ j ≤ n, (pi, pj) ∈ E−: This is checked

in lines 7-10 of Algorithm 2. The algorithm searches for

such a negative authorization (pi, pj), and if one is found,

b is set to True and the algorithm halts.

Algorithm 2 clearly has runtime at most quadratic in the

hierarchical depth n of p: Finding the unique path from SOA

to p (line 2) is actually linear in n. So is the procedure in

lines 3-5. The time needed for executing lines 7-10 is at most

O(n2) given that both the for-loop starting in line 7 and the

for-loop starting in line 8 have at most n iterations.

VII. A PRACTICAL APPROACH TO MITIGATING THE

PROBLEM

The limitations discussed in sections V and VI can be used

to significantly reduce the computational cost of determining

safe access right. However, depending on the institutional and

technical setting in which the access control framework is to

be used, these limitations may or may not be desirable. If they

are not desirable, other approaches to mitigating the problem

need to be adopted. In this section we therefore consider a

Algorithm 2 Determining safe access in a hierarchical
delegation-revocation graph
Input: hierarchical delegation-revocation graph

G = (V,SOA, H,E+, E−), principal p ∈ V
Output: a Boolean b stating whether p is granted safe access

right or not

1: b← True

2: [p1, . . . , pn]← the unique path from SOA to p
3: for 1 ≤ i ≤ n do
4: if (pi, pi+1) /∈ E+ then
5: b← False, break
6: if b = True then
7: for 1 ≤ i ≤ n do
8: for i ≤ j ≤ n do
9: if (pi, pj) ∈ E− then

10: b← False, break

further approach to mitigate the problem of the computational

cost of deciding safe access right, which does not remove NP-

completeness completely, but ensures that it can only rarely

cause significant delays.

This approach is motivated by the idea that there should

normally be objective reasons for issuing a negative autho-

rization. If Alice issues a negative authorization towards Bob,

this means that Alice distrusts Bob to use the access right

in question. Alice should of course have some reason for

this distrust. If this reason is objective rather than subjective,

then Alice should be able to convince the source of authority

of the distrustworthiness of Bob. But if the SOA can be

made to distrust Bob, then the SOA herself should issue

a negative authorization towards Bob. And when there is a

negative authorization from the SOA to Bob, Bob can under

no circumstances get access right, so the negative authorization

from Alice to Bob is no longer required.

In other words, a negative authorization from i to j should

under normal circumstances be replaced by a negative autho-

rization from the SOA to j.

At this point an attentive reader may ask why principals

other than the SOA should be allowed to issue negative

authorizations in the first place. The reason is very simple:

Once Alice finds out something about Bob that suggests Bob

is to be distrusted, it is important for Alice to ensure quickly

that Bob does not use his access right obtained through Alice

for malicious action. If only the SOA could issue negative

authorizations, Alice would first have to convince the SOA

of the distrustworthiness of Bob, which would give Bob

additional time for performing something malicious.

This suggests that the following approach to negative au-

thorization may be taken in practice: Principals other than the

SOA can issue negative authorizations in order to ensure quick

action upon the discovery of a distrustworthy principal. When

issuing a negative authorization, a principal should report to

the SOA the reasons for issuing this negative authorization.

The SOA then decides whether the negative authorization is

justified or not. If yes, the SOA herself issues a negative

authorization towards the distrusted principal; this makes the

original negative authorization obsolete, so that it can be

440440

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

removed. If not, the original authorization should also be re-

moved. This means that under normal circumstances, negative

authorizations issued by principals other than the SOA only

exist for short moments of time, and most of the time the only

negative authorizations in place are issued by the SOA.
This motivates the following definitions: We say that the

delegation-revocation graph is in a stable state when all

negative authorizations in place are issued by the SOA; else

we say it is in an unstable state.
A further idea behind our approach is that access requests

should in general be treated quickly, so it is not desirable

to have the whole computational burden of finding good

delegation chains being performed at runtime in response to

an access request. Instead, this computational burden can be

partly tackled offline independently of specific access requests.
The method described for the rest of this section keeps

track of access rights and of some good delegation chains

witnessing these access rights offline, updating the information

whenever a new authorization is added. In the ideal case, the

access right information is already updated at the moment an

access request is received by the reference monitor, so that

access can be granted or denied quickly. The method works

efficiently at stable states, so that access requests occurring

while the delegation-revocation graph is in a stable state can

always be treated quickly. At an unstable state, the method

may face a computationally expensive subroutine, which can

lead the system to be unsure as to the access right status of

some principals. If an access request from such a principal

arrives at such a moment, significant delays may occur.
First we describe how the method works when the

delegation-revocation graph constantly stays in a stable state.

For every stable state the delegation-revocation graph is in,

the method determines a set Access of principals that currently

have access right, and a function WitnessingChain that assigns

one good delegation chain to each principal in Access in such a

way that for every p ∈ Access, the chain WitnessingChain(p)
witnesses the access right of principal p. At the beginning,

there are no authorizations and only the SOA has access right,

so the initial value of Access is {SOA}, and the function

WitnessingChain is initially defined only at on the domain

{SOA} by setting the value of WitnessingChain(SOA) to the

empty chain.
When a positive authorization from i to j is added to the

delegation-revocation graph, the method checks whether i and

j are in Access. If i ∈ Access but j /∈ Access, the sets Access

and WitnessingChain are updated as follows:

• Access is set to Access ∪ {j}.
• WitnessingChain(j) is set to be WitnessingChain(i) +

j, i.e. the chain resulting from extending the chain

WitnessingChain(i) by principal j.

If a negative authorization from SOA to j is added to

the delegation-revocation graph, the method calls Algorithm

3 as a subroutine. Algorithm 3 updates the set Access and

the function WitnessingChain by first determining (in lines

1-4) which chains in the co-domain of WitnessingChain are

no longer good delegation chains because of the new negative

authorization, and then (in lines 6-11) trying to find alternative

good delegation chains that may substitute the invalidated

Algorithm 3 Updating the set Access and the function
WitnessingChain when the SOA issues a negative autho-
rization towards j

Input: delegation-revocation graph G = (V,SOA, E+, E−),
principal j ∈ V , Access, WitnessingChain

Output: updated values for Access and WitnessingChain

1: GoodChainMissing ← {}
2: for C in the co-domain of WitnessingChain do
3: if principal j occurs in the chain C then
4: GoodChainMissing ← GoodChainMissing ∪

{the last element of C}
5: Access ← Access \ GoodChainMissing

6: for 1 ≤ i ≤ |GoodChainMissing| do
7: for p ∈ Access do
8: for p′ ∈ GoodChainMIssing do
9: if (p, p′) ∈ E+ and (SOA, p′) /∈ E− then

10: Access ← Access ∪ {p′}
11: WitnessingChain(p′) ← WitnessingChain(p) +

p′

delegation chains. GoodChainMissing is the set of principals

p for which good delegation chains are missing after the

new negative authorization from SOA to j invalidated the

delegation chain witnessing the access right of p. After access

has been temporarily removed in line 5 from every principal

whose delegation chain has been invalidated, the method

defined in lines 6-11 for finding alternative good delegation

chains for these principals works by iteratively giving back

access right to all principals that have received a positive

authorization from someone with access right and that have not

received a negative authorization from the SOA. After iterating

this procedure |GoodChainMissing| times (i.e. as often as

the number of principals that may need to be given back

their access right), every principal with safe access right is

guaranteed to be in Access.

It can easily be seen that the runtime of Algorithm 3 is in

the worst case cubic in the number of principals (because of

the three nested for-loops in lines 6-11).

In the case of these modifications that leave the delegation-

revocation graph in a stable state, the computations required

for updating Access and WitnessingChain are reasonably fast,

so that we can assume that these updates are always computed

before any access request made after the modification to the

graph is handled.

But when the delegation-revocation graph becomes unstable

because of the addition of a negative authorization from i
to j for i �= SOA, the procedure of updating Access and

WitnessingChain is NP-complete. We refrain from specifying a

particular procedure for updating Access and WitnessingChain

in this case; this update should be done using some method

oriented at solving NP-hard problems, like a state-of-the-art

SAT-solver [8]. Note that this update procedure may take

a considerable amount of time and an access request may

be made during this time. In this case, priority should be

given to determining the access right of the requester before

determining the access right of other principals. Of course,

determining the access right of the requester is also NP-

441441

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

complete, so if the delegation-revocation graph is big and

complex and the SAT-solver happens not to find a good

delegation graph in a reasonable amount of time, the requester

may have to wait until the delegation-revocation graph returns

to a stable state before getting a response to his access request.

When the delegation-revocation graph returns to a stable

state from an unstable state, the values of the set Access and

the function WitnessingChain are determined based on their

values at the last stable state and the changes that have been

made to the delegation-revocation graph with respect to this

last stable state.

VIII. CONCLUSION

In an access-control framework with the possibility to

delegate permissions, it is desirable to have a possibility

to revoke delegated permissions. In the literature, multiple

revocation schemes have been studied and compared. One

class of revocation schemes are negative revocation schemes,

i.e. revocation schemes that function by issuing a negative

authorization. In section III, we have compared three different

ways that have been proposed to define the effect of negative

authorizations. In subsection III-D, we have pointed out that

two of these three definitions pose a security threat by not

properly defining the effect of multiple interacting negative

authorizations. However, the definition from Cramer et al. [6]

that avoids this threat comes at a price: It makes determining

access right an NP-complete problem, as we have shown in

section IV.

Given that the other two definitions of the effect of negative

authorizations pose a security threat, it is certainly not a

good idea to avoid this complexity problem by using these

definitions instead of the safe definition by Cramer et al. [6].

Instead, we have considered three possible ways of solving or

handling this complexity problem:

• In section V we established that bounding delegation

depth to an integer m reduces runtime complexity to a

polynomial of degree m.

• In section VI we have shown that a limitation in delega-

tion and revocation based on a hierarchical structure of

the principals makes the runtime complexity of determin-

ing access for a principal p quadratic in the hierarchical

depth of p.

• In section VII we have discussed an approach to mitigate

the problem of computational cost in praxis, based on

the idea that negative authorizations issued by principals

other than the source of authority should only be con-

sidered temporary measures. We have defined a method

that keeps track of who has access right offline, i.e.

independently of access requests. The updates defined

in this method take time at most cubic in the number

of principals when the negative authorizations in place

are all issued by the source of authority, but significant

delays may occur when other principals issue negative

authorizations that are not quickly replaced by negative

authorizations issued by the source of authority.

REFERENCES

[1] Aucher, G., Barker, S., Boella, G., Genovese, V., van der Torre, L.:
Dynamics in Delegation and Revocation Schemes: A Logical Approach.
In: Li, Y. (ed.) Data and Applications Security and Privacy XXV, Lecture
Notes in Computer Science, vol. 6818, pp. 90–105. Springer Berlin
(2011), http://dx.doi.org/10.1007/978-3-642-22348-8 9

[2] Barker, S., Boella, G., Gabbay, D., Genovese, V.: Reasoning about
delegation and revocation schemes in answer set programming. Journal
of Logic and Computation (2014)

[3] Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model
for relational databases. Knowledge and Data Engineering, IEEE Trans-
actions on 9(1), 85–101 (Jan 1997)

[4] Bertino, E., Jajodia, S., Samarati, P.: A Non-timestamped Authorization
Model for Data Management Systems. In: Proceedings of the 3rd ACM
Conference on Computer and Communications Security. pp. 169–178.
CCS ’96, ACM, New York, NY, USA (1996), http://doi.acm.org/10.
1145/238168.238211

[5] Chander, A., Dean, D., Mitchell, J.C.: Reconstructing trust management.
Journal of Computer Security (2004)

[6] Cramer, M., Ambrossio, D.A., van Hertum, P.: A Logic of Trust for
Reasoning about Delegation and Revocation. In: Proceedings of the
20th ACM Symposium on Access Control Models and Technologies.
pp. 173–184 (2015), http://doi.acm.org/10.1145/2752952.2752968

[7] Fagin, R.: On an Authorization Mechanism. ACM Trans. Database Syst.
3(3), 310–319 (Sep 1978), http://doi.acm.org/10.1145/320263.320288

[8] Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability
Solvers. In: Van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook
of Knowledge Representation, pp. 89–134. Elsevier (2008)

[9] Griffiths, P.P., Wade, B.W.: An Authorization Mechanism for a Rela-
tional Database System. ACM Trans. Database Syst. 1(3), 242–255 (Sep
1976), http://doi.acm.org/10.1145/320473.320482

[10] Hagström, Å., Jajodia, S., Parisi-Presicce, F., Wijesekera, D.: Revoca-
tions – A Classification. In: Proceedings of the 14th IEEE Workshop on
Computer Security Foundations. pp. 44–. CSFW ’01, IEEE Computer
Society, Washington, DC, USA (2001), http://dl.acm.org/citation.cfm?
id=872752.873508

[11] Kleinberg, J., Tardos, É.: Algorithm Design. Pearson International
Edition (2006)

[12] Li, N., Grosof, B.N., Feigenbaum, J.: Delegation Logic: A Logic-
based Approach to Distributed Authorization. ACM Transaction on
Information and System Security (2003)

[13] Ruan, C., Varadharajan, V.: Resolving Conflicts in Authorization Del-
egations. In: Batten, L.M., Seberry, J. (eds.) ACISP. Lecture Notes
in Computer Science, vol. 2384, pp. 271–285. Springer (2002), http:
//dblp.uni-trier.de/db/conf/acisp/acisp2002.html#RuanV02

[14] Tamassia, R., Yao, D., Winsborough, W.H.: Role-Based Cascaded Del-
egation. In: Proceedings of the 9th ACM symposium on Access control
models and technologies (2004)

[15] Yao, D., Tamassia, R.: Compact and Anonymous Role-Based Autho-
rization Chain. ACM Transactions on Information and System Security
(2009)

[16] Zhang, L., Ahn, G.J., Chu, B.T.: A rule-based framework for role-
based delegation and revocation. ACM Transactions on Information and
System Security (2003)

442442

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

