
Quantitative Verification and Synthesis
of Attack-Defence Scenarios

Zaruhi Aslanyan, Flemming Nielson
DTU Compute

Technical University of Denmark

Denmark

Email: {zaas,fnie}@dtu.dk

David Parker
School of Computer Science

University of Birmingham

Birmingham, United Kingdom

Email: d.a.parker@cs.bham.ac.uk

Abstract—Attack-defence trees are a powerful technique for
formally evaluating attack-defence scenarios. They represent in
an intuitive, graphical way the interaction between an attacker
and a defender who compete in order to achieve conflicting
objectives. We propose a novel framework for the formal analysis
of quantitative properties of complex attack-defence scenarios,
using an extension of attack-defence trees which models
temporal ordering of actions and allows explicit dependencies
in the strategies adopted by attackers and defenders. We adopt
a game-theoretic approach, translating attack-defence trees to
two-player stochastic games, and then employ probabilistic
model checking techniques to formally analyse these models.
This provides a means to both verify formally specified security
properties of the attack-defence scenarios and, dually, to
synthesise strategies for attackers or defenders which guarantee
or optimise some quantitative property, such as the probability
of a successful attack, the expected cost incurred, or some
multi-objective trade-off between the two. We implement our
approach, building upon the PRISM-games model checker, and
apply it to a case study of an RFID goods management system.

Keywords: attack-defence trees, stochastic games, formal
verification, probabilistic model checking

I. INTRODUCTION

Keeping systems secure against the threat of attacks is

a crucial problem, which becomes increasingly difficult as

attacks become more sophisticated and systems more complex.

This necessitates thorough investigations of the possible attack

scenarios for a system, along with the appropriate response

mechanisms needed. Formal graphical models can help iden-

tify and understand the security threats to the system and to

study the possible countermeasures.

One such approach is attack trees, a widely used graphical

modelling formalism introduced by Schneier [1] for repre-

senting and evaluating the security of attack scenarios in a

structured, hierarchical way. The main intuition behind attack

trees is to split a complex goal into sub-goals and basic

actions [1]. Various approaches have also been proposed for

the automatic construction of attack trees from descriptions of

attack scenarios [2], [3].

However, attack trees describe only the attacker’s behaviour

and do not consider possible defences undertaken to counter

the attacks. To overcome this limitation, further extensions of

attack trees for capturing the defender’s behaviour have been

studied. Attack-defence trees, introduced by Kordy et al. [4],

−→∧

Infect Computer

−→∧
virus file

on system ∧execute

∨ ∼

send
e-mail with
attachment

se

distribute
USB
stick

usb

run

anti-virus

rav

execute
file

ef

∼

restore
registry

rr

Fig. 1. An example of an attack-defence tree for infecting a computer.

are an extension of the formalism with countermeasures.

They enhance attack trees with the options available to a

defender. Attack-defence trees have been used to evaluate

real-life scenarios such as an RFID goods management sys-

tem [5] and various case studies within the European project

TREsPASS [6]. Other applications of attack-defence trees are

investigated in the research project ADT2P [7]. A simple

example of an attack-defence tree, which we will return to as

running example throughout the paper, is shown in Figure 1.

It represents a scenario in which an attacker attempts to infect

a computer with a virus: circle nodes denote the attacker’s

actions and square nodes denote the defender’s actions.

In addition to capturing the relationship between attacker

and defender actions, attack-defence trees can be augmented

with attributes, representing a variety of quantitative measures

of interest, such as the success probability or cost associated

with basic actions [8]. A bottom-up traversal of the tree can

then be performed to identify, for example, attacks that suc-

ceed with high probability or incur minimal costs. Typically,

such an analysis focuses on one specific aspect of the system,

however it is also possible to consider optimisation of multiple

criteria, for example using Pareto efficiency [9].

In this paper, we propose a novel framework for the formal

analysis of quantitative properties of attack-defence scenarios

using an extension of attack-defence trees. We allow the trees

to incorporate information about the temporal ordering of

some actions or subgoals (similar ideas have been put forward

in, for example, [10]). We then propose a novel class of at-

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Zaruhi Aslanyan. Under license to IEEE. 105

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Zaruhi Aslanyan. Under license to IEEE. 105

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Zaruhi Aslanyan. Under license to IEEE.

DOI 10.1109/CSF.2016.15

105

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

tack/defence strategies that incorporate dependencies, allowing

decisions about which actions are taken by the attacker or

defender to be based on which actions have been taken earlier

and the outcomes of those actions.

Formally, these strategies are defined as decision trees. For

an attack-defence scenario, modelled as an attack-defence tree,

and specific strategies for both the attacker and defender, we

give an operational semantics defining the resulting behaviour.

We allow attack-defence trees to be annotated with the prob-

ability of success or failure of individual basic actions, so the

semantics takes the form of a Markov model, more precisely

a discrete-time Markov chain.

In order to formally analyse attack-defence scenarios mod-

elled in this way, we employ quantitative verification tech-

niques, in particular probabilistic model checking. This uses

variants of temporal logic to formally specify quantitative mea-

sures of interest of the system, which can then be automatically

checked against a state-based probabilistic model.

These techniques, and associated verification tools have

been developed for a wide range of probabilistic models. For

attack-defence trees, it is natural to model the interactions

between attacker and defender as a two-player game [11].

So, in our setting, where quantitative and probabilistic as-

pects are essential, we use stochastic two-player games [12],

building upon the probabilistic model checking techniques for

stochastic games proposed in [13], [14], and implemented in

the PRISM-games model checking tool [15].

This approach uses a temporal logic called rPATL (proba-

bilistic alternating-time temporal logic with rewards), a gen-

eralisation of the well known logic ATL (alternating temporal

logic). rPATL allows us to explicitly reason about the strategies

available to the competing players, and provides a variety of

operators to specify quantitative properties of these strategies

relating to the probability of certain events occurring, or a cost

or reward measure associated with them.

Probabilistic model checking of rPATL on stochastic games

allows us to take two distinct approaches to the analysis of

an attack-defence scenario: we can verify security properties

of them (e.g., “whatever the attacker does, the defender can

always guarantee that the probability of a successful attack

is at most 0.001”); or we can synthesise strategies for a

player with respect to some goal (e.g., “what strategy for

the attacker maximises the probability of a successful attack,

regardless of the actions employed by the defender?”). These

logics provide expressiveness which goes beyond the standard

queries typically used on attack-defence scenarios [8]. Further-

more, we use an extension of the basic rPATL-based approach

for multi-objective probabilistic model checking of stochastic

games [14]. This allows us to analyse multiple, conflicting

objectives (e.g., “what strategy minimises the cost incurred

by the attacker, whilst guaranteeing a successful attack with

probability at least 0.5?”), and also to compute the Pareto

curve associated with the objectives.

In order to use these game-theoretic verification techniques

within our proposed framework, we define a translation from

attack-defence trees to stochastic two-player games. This

model captures the set of all strategies available to the

attacker and defender players, and the resulting (Markov

chain) semantics that results for each pair of such strategies.

Using probabilistic model checking, we can either verify a

security property on this game model, or synthesise a strategy

achieving or optimising a desired property. In the latter case,

a player strategy generated from the stochastic game as a

result is then converted into a decision tree for either the

attacker or defender. We implement our approach and illustrate

it on an example of a Radio-Frequency Identification (RFID)

warehouse goods management system [5].

Organisation of the paper. In Sect. II we provide background

material on stochastic systems and the logic rPATL. Our

formalism for attack-defence trees and strategies, as well as

their meaning is presented in Sect. III. In Sect. IV we describe

our proposed translation from attack-defence trees to two-

player stochastic games. The results of the evaluation are

discussed on a case study for a RFID system in Sect V. We

describe related work in Sect. VI and conclude in Sect. VII.

II. PRELIMINARIES

We begin with some background on the probabilistic models

used in the paper, Markov chains and stochastic two-player

games, and their analysis using probabilistic model checking.

A. Discrete-time Markov Chains

Definition 1 (DTMC) A discrete-time Markov chain (DTMC)
is a tuple D = (S, s0, P, AP,L), where:
• S is a set of states and s0 ∈ S is an initial state;
• P : S × S → [0, 1] is a transition probability function

such that
∑

s′∈S P (s, s
′) = 1 for all states s ∈ S;

• AP is a set of atomic propositions; and
• L : S → 2AP is a labelling function.

The transition probability function indicates the probability

P (s, s′) of moving from state s to state s′ in a single transition.

A path through a DTMC is a sequence of states π = s0s1 · · ·
where si ∈ S and P (si, si+1) > 0 for all i ≥ 0. We write

Paths for the set of all infinite-length paths starting in a state

s. To reason about quantitative properties of a DTMC, we use

a probability measure Prs over the set Paths of infinite paths,

which can be defined in standard fashion [16].

We also define reward structures of the form r : S × S →
R≥0, which we use as a mechanism to model both costs and

rewards associated with a DTMC model.

B. Stochastic Two-Player Games

Definition 2 (STG) A (turn-based) stochas-
tic two-player game is a tuple M =
(Π, S, s0, α, (SA, SD, SP , S�), P, T,AP,L), where:
• Π = {A,D} is a set of players,
• S = SA � SD � SP � S� is a finite set of states,

partitioned into attacker states (SA), defender states
(SD), probabilistic states (SP) and final states (S�)

• s0 ∈ S is an initial state,
• α is a finite, non-empty set of actions,

106106106

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

• P : SP × S → [0, 1] is a probabilistic transition
function such that for all probabilistic states s ∈ SP ,∑

s′∈S P (s, s
′) = 1,

• T : (SA ∪ SD)× α→ S is a transition function,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labelling function.

An STG has two players, which, for this paper, we fix as

A (attacker) and D (defender). Each player controls a subset

of the states: A chooses between available actions a ∈ α in

states s ∈ SA, while D does so for states s ∈ SD. The choice

between outgoing transitions in probabilistic states s ∈ SP is

made probabilistically, by the probabilistic transition function

P . States in S� are terminating and have no transitions. As for

DTMCs, paths are (finite or infinite) sequences of connected

states. The sets of all infinite and finite paths starting in state

s are Paths and Pathfin
s , respectively.

A strategy for player i ∈ Π is a function σi : S∗Si →
Dist(α), where Dist(α) is the set of discrete probability

distributions over α. Informally, the strategy resolves the

choice of actions for the player during their turns, based on the

previous history of the STG. A strategy σi is memoryless if

for any π, π′ ∈ S∗ and s ∈ Si, σi(πs) = σi(π
′s) = σi(s). A

strategy is deterministic if it always selects actions with prob-

ability 1, and randomised otherwise. The set of all strategies

for player i is denoted Σi.

Given a pair σA, σD of strategies for both players, the

resulting behaviour of the STG is represented by an induced

DTMC, from which we can obtain a probability measure

PrσA,σD
s over Paths. If the strategies are both memoryless,

the induced DTMC has the same state space S as the STG.

Like for DTMCS, we also consider reward structures. For

an STG, these take the form rA : SA × α → R≥0 and rD :
SD × α → R≥0, annotating the transitions controlled by the

attacker and defender, respectively.

C. Probabilistic Model Checking

In this paper, we use probabilistic model checking, which

provides automated analysis of quantitative properties, for-

mally specified in temporal logic, against various probabilistic

models, including DTMCs and STGs. For DTMCs, we can use

the logic PCTL [17] and its extensions with cost and reward

operators [18]. Mostly, in this paper, we apply probabilistic

model checking to STGs, the basis for which is the temporal

logic rPATL [13], which combines PCTL (plus rewards) with

alternating temporal logic (ATL).

Definition 3 (rPATL Syntax) The syntax of rPATL is:

φ ::= true | a | ¬φ | φ∧φ | 〈〈C〉〉P��q(ψ) | 〈〈C〉〉Rr
��x(F

∗φ)
ψ ::= Xφ | φU≤kφ | φUφ

where a ∈ AP , C ⊆ Π, �� ∈ {<,≤, >,≥}, q ∈ Q ∩ [0, 1],
x ∈ Q≥0, r is a reward structure, ∗ ∈ {0,∞, c} and k ∈ N.

The coalition operator 〈〈C〉〉Φ means that the coalition of

the players C ⊆ Π has a strategy to satisfy Φ, regardless of

the strategies of the players Π\C. In this work, C is either

{A} or {D}. Using shorthand Fφ ≡ true U φ, an example

formula is 〈〈A〉〉P≥0.1(F success), which is true if the attacker

player has a strategy that guarantees to reach a state labelled

with success (e.g., denoting a successful attack), regardless

of the strategy of the defender. The R operator reasons about

expected cumulated reward (or cost) until a φ-state is reached.

The parameter ∗ specifies the result if φ is not reached, but is

not needed in this paper. We refer the reader to [13] for full

details of the semantics of rPATL.

In this paper, we use several other types of properties. First,

we use numerical queries, such as 〈〈A〉〉Pmax=?(F success),
which directly returns the optimal value associated with the

property (e.g., in this case, the maximum probability of a

successful attack achievable by the attacker, given any possible

strategy of the defender). Secondly, we use the multi-objective

extensions [14] of rPATL provided by the PRISM-games

model checker [15]. For example: 〈〈A〉〉(RrA
≤500[F end] ∧

P≥0.005[F success]) asks if there is an attacker strategy which

reaches success with probability at least 0.005 and with

an expected total cost of at most 500. For all the types

of properties explained here, PRISM-games also synthesises

strategies with the specified properties.

III. ATTACK-DEFENCE TREES

In this section, we present the key ingredients of our

formalism: attack-defence trees, to represent attack-defence

scenarios, and strategies (in the form of decision graphs), to

represent the behaviour of the attacker and defender. We start

by defining the syntax and terminology for each of these, in

Sect. III-A and III-B, respectively. Then, in Sect. III-C, we

describe their formal semantics.

A. Attack-Defence Trees

An attack-defence tree is a graphical model representing the

interaction between two players (denoted by τ): the attacker

(τ = A) and the defender (τ = D). The root of the tree

represents the main goal of an attack-defence scenario for a

given player τ (e.g., for the attacker, it represents a successful

attack of the system). The leaves of the tree represent the basic
actions that players can perform in order to achieve their goals.

If performed, each basic action can either succeed or fail, the

likelihood of which is specified by a separate annotation with

probabilities (see Sect. III-C). The internal nodes of the tree

show how the basic actions can be combined and how they

interact with each other.

The abstract syntax of an attack-defence tree is presented

in the top part of Table I, and is split into rules for a tree t
and a non-sequential tree nt (see below). A tree is either a

leaf or the application of a tree operator to one or two sub-

trees. A leaf a is a basic action of either the attacker or the

defender. We denote the attacker’s and defender’s sets of basic

actions by ActA and ActD, respectively. We assume these are

disjoint and write Act = ActA � ActD for the set of all basic

actions. The special leaves true and false represent trivially

successful and trivially failed actions, respectively.

107107107

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE SYNTAX OF ATTACK-DEFENCE TREES AND THE TYPE SYSTEM FOR

DEFINING WELL-FORMED TREES.

t ::= nt | −→∧ (t1, t2) | −→∨ (t1, t2)

nt ::= a | ∧(nt1, nt2) | ∨(nt1, nt2) | ∼ nt | true | false

� a : A if a ∈ ActA � a : D if a ∈ ActD

� t1 : τ � t2 : τ

� −→∧ (t1, t2) : τ

� t1 : τ � t2 : τ

� −→∨ (t1, t2) : τ

� nt1 : τ � nt2 : τ

� ∧(nt1, nt2) : τ
� nt1 : τ � nt2 : τ

� ∨(nt1, nt2) : τ
� nt : τ

� ∼ nt : τ ′
τ ′ = τ−1

� true : τ � false : τ

Tree operators include the standard conjunction ∧ and

disjunction ∨, as well as three additional operators: sequential

conjunction
−→∧ , sequential disjunction

−→∨ and the ∼ con-

struct representing player alternation. The conjunction operator

nt = ∧(nt1, nt2) requires that the goals of both nt1 and nt2
are achieved in order for the goal of nt to be achieved. The

disjunction operator nt = ∨(nt1, nt2) requires that at least

one sub-tree nt1 or nt2 is achieved.

The sequential variants additionally impose an ordering on

the sub-trees. Sequential conjunction t =
−→∧ (t1, t2) requires

that the goals of both t1 and t2 are achieved and that the

former is performed before the latter. Sequential disjunction

t =
−→∨ (t1, t2) similarly requires t1 to be performed before

t2 (assuming both of them are). Intuitively, in a sequential

disjunction it only makes sense to attempt t2 after failing in

achieving t1. In order to simplify the technical developments,

we require that the sequential operators only occur above
the conjunction and disjunction operators in a tree. Thus, we

disallow trees such as ∧(−→∧ (a, b), c) for basic actions a, b, c.
This is imposed by the division of the syntax into trees t and

non-sequential trees nt.

Each node of attack-defence tree is associated with one of

the two players. The ∼ operator changes the goal of a tree

by changing it to the opposite player (i.e., switching between

attacker and defender). For instance, if t = ∼ t′ and t′ belongs

to the attacker, then the tree t belongs to the defender.

Well-formedness. The syntax in Table I is overly liberal since

it does not explicitly associate players to nodes. The bottom

part of Table I shows a simple type system which enforces

such an association by defining a well-formedness condition

for trees. We assign type τ to all basic actions of the player

τ . Both variants of the conjunction and disjunction operators

have the same type as both of their sub-trees. Finally, the ∼
operator flips the type of its sub-tree from τ to τ−1 (where

A−1 = D and D−1 = A).

Phases. In an attack-defence tree t of the form described

above, we associate each maximal non-sequential sub-tree

with a phase. We say that the maximal non-sequential sub-

trees nt1, · · · , ntn divide the tree t into phases p1, · · · , pn,

where any two non-sequential sub-trees are connected with

a sequential operator. Thus, the number of phases in a tree

is one more than the number of sequential operators. We

denote by Phases the set of all phases in a tree. We indicate

by Actpi,A and Actpi,D, respectively, the set of attacker and

defender basic actions in phase pi (non-sequential tree nti),
and by Actpi the set of all basic actions in phase pi, i.e.,

Actpi
= Actpi,A � Actpi,D.

Example 1 Let us introduce an example that we will develop
throughout the paper. We consider a modified version of a
simple scenario borrowed from [19], where an attacker wants
to infect a computer with a virus. In order to do so, the
attacker needs to put the virus file on the system and only
after that execute it. The attacker can transmit the virus either
by sending an e-mail with an attachment or by distributing a
USB stick to a user of the system. The defender, on the other
hand, can try to prevent the attack by running an anti-virus
program. Once the virus file is on the computer, the attacker
can execute it either directly or through a third person. The
defender can counteract this by restoring the registry to a
previous checkpoint. The corresponding attack-defence tree is
shown in Figure 1, where we label leaves for ease of reference.
The syntactic term corresponding to the full tree is:

t =
−→∧ (
−→∧ (∨(se, usb),∼ rav),∧(ef,∼ rr))

The tree t has three non-sequential sub-trees: t1 = ∨(se, usb),
t2 =∼ rav, and t3 = ∧(ef,∼ rr) and thus three phases.

B. Strategies as Decision Trees

In the standard model of attack-defence trees [4], a possible

attack (or defence) is a set of basic actions for one player

which will be performed. Given an attack and a defence, the

tree defines the success or failure of these according to the way

that the basic actions are combined within the attack-defence

tree (e.g., if the root node belongs to the attacker, the attack

is successful if the tree evaluates to true).

In this work, we take a different approach, proposing a

more powerful class of strategy for attackers and defenders

which can incorporate dependencies on events that happened

previously when deciding which basic action to perform. In

particular, a strategy’s choice can depend on the attempt,

success or failure of another basic action from an earlier phase.

We represent these strategies, for either attacker or defender,

by means of decision trees, which illustrate the relationship

between phases in an intuitive way.

The abstract syntax of a decision tree is presented in

Table II. We assume that this defines a strategy for an attack-

defence tree with n phases p1, · · · , pn and, for convenience,

we add a “dummy” phase pn+1 denoting the end of the

strategy. In the syntax, dτi represents a sub-tree defining a

strategy for player τ (where τ = A,D) which starts in phase

pi. So the root node of a decision tree is of the form dτ1 .

In phase pi (for 1 ≤ i ≤ n), a sub-tree can be either:

(i) an action node B.dτi+1, indicating that player τ performs

108108108

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE SYNTAX OF A DECISION TREE

dτi ::= B.dτi+1 where B ⊆ Actpi,τ
dτi ::= if(cτi , d

′τ
i , d′′τi)

dτn+1 ::= stop

cτi ::= a? if τ = A and a ∈ Actpi,D
cτi ::= pj? if 1 ≤ j < i

cτi ::= c′τi ∧ c′′τi
cτi ::= c′τi ∨ c′′τi
cτi ::= ¬c′τi

(a) stop node

d′
B

(b) action node

pi
d′

d′′

c
T

F

(c) decision node

Fig. 2. Graphical representation of decision tree nodes.

the (possibly empty) set of basic actions B ⊆ Actpi,τ in that

phase and then proceeds to sub-tree dτi+1; or (ii) a decision
node of the form if(cτi , d

′τ
i , d

′′τ
i), which branches based on the

condition cτi . Once n phases have passed, the decision tree

moves to a stop node, representing the end.

Decision nodes represent conditional dependencies: decid-

ing whether to perform some basic actions or to move to

another phase can be conditional on events that have already

occurred. For instance, in phase pi, a player may wish to only

perform an action in the case of a failed attempt at performing

some action in phase pi−1. A decision node consists of a

condition cτi and two possible sub-trees, where execution of

the strategy moves to the first subtree d′τi if the condition is

true, or the second sub-tree d′′τi otherwise.

Conditions are expressed as Boolean expressions over

atomic conditions of two types, pj? or a?. A condition of

the form pj?, in a phase pi decision tree node (where j < i),
asks about the success of an earlier phase. The success of a

phase is determined by an evaluation of the corresponding

node of the subtree (more precisely, the root node of the

corresponding maximal non-sequential tree), which we will

define more precisely in the next section.

In the case of a decision tree for an attacker strategy

(i.e., where τ = A), we also allow conditions a? that ask

whether some defender action a ∈ Actpi,D was performed

within the current phase pi (note that we ask whether it was

attempted, not whether it was successful, since the latter is

not yet known). We do not allow the reverse: where defenders

ask about attacker action’s performed in the same phase.

In our work, we assume that the attacker has slightly more

power/information than the defender in this respect, favouring

a conservative approach to verifying the absence of attacks.

Graphical representation. The graphical representation of each

p1 p2 p3 p4

{se} ∅ p1?∧p2?

T

F

{ef}

∅

Fig. 3. An attacker strategy for the attack-defence tree of Fig 1.

node in a strategy is shown in Figure 2. A stop node is

represented by a black dot, and occurs only as a leaf at

the end of the tree. An action node B.d′ is represented

by a black square with an outgoing edge to the successor

node d′ labelled with the set of performed actions B. A

conditional node if(c, d′, d′′) is drawn as a black diamond.

It has an outgoing transition labelled with the condition c
and two transitions, labelled with “T ” (true) and “F ” (false),

corresponding to the “then” and “else” branches of the “if”

statement. In the rightmost node in Figure 2 (the decision

node), we also illustrate the use of vertical dashed lines to

mark the boundaries of phases.

Randomisation. Although, for clarity, we omit it from the pre-

sentation above, we also consider randomisation in decision

trees. More precisely, instead of just allowing the attacker

or defender to choose to execute a set of actions B in a

given phase, we allow them to probabilistically select between

several different action sets. In terms of the syntax, in addition

to action nodes d = B.d′ for B ⊆ Actpi,τ , we allow

d = μ.d′, where μ is a discrete probability distribution over

Actpi,τ , indicating that each action set Bi may be picked, with

probability μ(Bi), before proceeding to the sub-tree d′.

Example 2 Figure 3 illustrates a possible attacker strategy
for the tree in Figure 1. The strategy is represented by the
decision tree with the following syntactic term:

dA1 = {se}.∅.if(p1? ∧ p2?, {ef}.stop, ∅.stop)
According to the strategy dA1 , in the first phase, the attacker
sends an e-mail with an attachment. As there are no attacker
actions in the second phase, the attacker does nothing and
moves to the third phase. Before performing an action in the
third phase, the attacker checks the success of the previous
phases p1, p2. In case of success, i.e., if the attacker success-
fully sent an e-mail in phase p1 and the defender did nothing
or failed to run the anti-virus program in phase p2, the attacker
executes the file; otherwise, they do nothing.

Example 3 Figure 4 illustrates a possible defender strategy
for the same tree. The difference for a defender strategy
with respect to an attacker strategy is that in each phase the
defender knows about the success of the previous phases but
not about actions attempted by attacker in that phase. The
defender strategy is represented by the following term:

dD1 = ∅.if(p1?, {rav}.if(p1?∧p2?, {rr}.stop, ∅.stop), ∅.∅.stop)

109109109

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

p1 p2 p3 p4

∅ p1?

T

F

{rav}

∅

p1?∧p2?
T

F

{rr}

∅

∅

Fig. 4. A defender strategy for the attack-defence tree of Fig 1.

In the first phase, the defender does not have any actions to
perform. In the second, it runs the anti-virus program if p1
was successful, that is, if the attacker succeeded in sending
a virus over e-mail; otherwise, they do nothing. In the third
phase, depending on the success of the previous phases, the
defender either restores the registry or does nothing.

C. Semantics of Attack-Defence Trees

So far we have presented the syntax of attack-defence

trees and explained how strategies can be represented by

means of decision trees. We now formalise, given a tree

and strategies for both players, the semantics of the resulting

attack-defence scenario. In classical attack-defence trees, this

means determining the value for the root node of the attack

tree. The computation depends on the type of semantics chosen

for the basic actions, e.g., Boolean, probabilistic, etc. Various

evaluation approaches can be used. For example, a bottom-up

evaluation (without sequential operator) for the Boolean and

probabilistic case can be found in [8] and for multi-objective

(Pareto) analyses in [9].

Since our attack-defence trees incorporate temporal ordering

(through the sequential operators) and our strategies involve

dependencies on earlier events, we define our semantics as a

state-based model capturing the possible sequences of events

that can unfold. As discussed below, basic actions can fail

stochastically, so the semantics is in fact represented as a

(discrete-time) Markov chain. We will also annotate this model

with costs or rewards (e.g., to represent the cost of implement-

ing a strategy) and, later, will show how the semantic model

can be analysed against a range of quantitative measures using

probabilistic model checking. This will allow us to check for

the existence (or absence) of particular strategies, for example:

“what is the maximum probability of a successful attack?” or

“can the expected cost of an attack be less than 500 whilst

maintaining an attack success probability of at least 0.005?”.

Probabilities and costs. We associate each basic action a
with a probability p(a) that it is achieved successfully if a
is performed. Moreover, we assume that each basic action a
has a cost c(a) of performing it.1 Note that, the probabilities

of individual basic actions are all assumed to be independent

of each other. Similarly, the costs incurred by each action and

by each player are all independent. The relationship between

1Determining realistic estimates for the probabilities and costs for basic
actions is a research topic in itself and is outside the scope of this work.

actions (and the resulting impact this has in terms of, e.g., the

probability of a successful attack) is captured by the structure

of the attack tree.

Semantics. We define the DTMC semantics for attack-defence

tree t, with n phases, represented by non-sequential trees t =
t1, . . . , tn, probability and cost functions p and c, and decision

trees dD1 , d
A
1 . The semantics is given by the function build in

Table III. It constructs the DTMC, which takes the form of a

tree, recursively, each call returning a new root state.

Within a phase of an attack tree, the order in which players

perform actions is not determined. But in the DTMC, this

needs to be made explicit. Since we assume, as discussed

earlier, that the attacker knows the actions attempted by the

defender in the current phase, in the DTMC semantics, the

defender is the first to move in each phase.

The build function operates recursively over

the two decision trees: each call is of the form

build(dτ , dτ
−1

, τ, Succp,Donei, Succi), where the parameters

have the following meaning. The first two parameters

correspond to a player’s decision tree dτi and the opposite

player’s decision tree dτ
−1

i that still have to be evaluated.

The third parameter represents the next player to move, and

is used to identify the end of each phase, i.e, it is the end

of the phase if τ = A. The remaining parameters record

the phases that were successful (Succp), the set of actions

attempted in the current phase (Donei) and the ones that

succeeded (Succi). At the top-level, the function is called as

build(dD1 , d
A
1 , D, ∅, ∅, ∅).

If the decision tree is an if -clause, dτi = if(cτi , d
′τ
i , d

′′τ
i),

we evaluate the condition cτi over the success of the previous

phases and, when τ = A, also over the set of actions attempted

in the current phase. The evaluation [[cτi]](Succp,Donei) is a

standard Boolean evaluation, where cτi is a Boolean expression

and (Succp,Donei) give the truth values of the variables. If

τ = D we can omit the component Donei from the evaluation.

The DTMC is constructed recursively, from either d′τi or d′′τi ,

depending on whether cτi evaluates to true.

If the root of the decision tree is an action node containing

action a, i.e., dτi = (B ∪ {a}).dτ−1

i , we create a DTMC state

labelled with a, with outgoing transitions corresponding to the

success or failure of executing a (with probability p(a) and

1−p(a)). We also label the transitions with the cost c(a). The

successor states are constructed recursively, adding a to Donei
and, if appropriate, Succi.

If the set of actions in the action node is empty, dτi = ∅.dτi+1,

and the current player is D, it means that the defender does

not have any more moves in phase i and we need to start

exploring the attacker decision tree.

On the contrary, if the action set is empty and the current

player is A, then we are at the end of the phase. Hence,

we evaluate the success of phase i based on the set Succi,
[[ti]](Succi), where [[ti]] is the Boolean formula of which the

non-sequential sub-tree ti is a parse tree and the actions in

the formula are 1 if the actions are in the set Succi and 0

otherwise. If phase i was successful, we add pi to the set

110110110

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE FUNCTION build DESCRIBING THE SEMANTICS OF AN

ATTACK-DEFENCE TREE AS A DTMC.

build(if(cτi , d
′τ
i , d′′τi), dτ

−1

i , τ, Succp,Donei, Succi) ={
build(d′τi , dτ

−1

i , τ, Succp,Donei, Succi) if [[cτi]](Succp,Donei)
build(d′′τi , dτ

−1

i , τ, Succp,Donei, Succi) if ¬[[cτi]](Succp,Donei)

build((B ∪ {a}).dτi+1, d
τ−1

i , τ, Succp,Donei, Succi) = new state s with:

L(s) = {a}, P (s, s′) = p(a), P (s, s′′) = 1−p(a) where:

s′ = build(B.dτi+1, d
τ−1

i , τ, Succp,Donei ∪ {a}, Succi ∪ {a})
s′′ = build(B.dτi+1, d

τ−1

i , τ, Succp,Donei ∪ {a}, Succi)
and: r(s, s′) = r(s, s′′) = c(a)

build(∅.dτi+1, d
τ−1

i , D, Succp,Donei, Succi) =

build(dτ
−1

i , dτi+1, A, Succp,Donei, Succi)

build(∅.dτi+1, d
τ−1

i+1 , A, Succp,Donei, Succi) ={
build(dτ

−1

i+1 , d
τ
i+1, D, Succp∪{pi}, ∅, ∅) if [[ti]](Succi)

build(dτ
−1

i+1 , d
τ
i+1, D, Succp, ∅, ∅) if ¬[[ti]](Succi)

build(stop, stop,A, Succp,Donei, Succi) = new state s with:
L(s) = {success} if [[t]](Succp, Succi) and {failure} otherwise

TABLE IV
PROBABILITIES AND COSTS FOR THE BASIC ACTIONS IN THE EXAMPLE.

Label Name of the Node Success probability Cost
se send e-mail with attachment 0.2 20

usb distribute USB stick 0.6 80

rav run anti-virus 0.7 70

ef execute file 0.75 50

rr restore registry 0.85 65

Succp. We start the new phase pi+1 with player D to move

next, and resetting the sets Donei and Succi to empty.

Finally, if the decision trees for both players consist of the

stop node, and A is to move next, then we are at the end

of both strategies. We create a final node in the DTMC and

label it with the result of the evaluation of the tree t over the

success of all phases.

Randomisation. As mentioned in Sect. III-A, we also consider

random selection of actions in decision trees. These can be

added to the semantics in Table III in straightforward fashion:

a node d = μ.d′ results in a single DTMC state with one

outgoing transition for each element of the support of μ, each

of which is a normal action node of the form d′′ = B.d′.

Properties of DTMCs. Once we have obtained a DTMC, we

can verify the properties of interest by means of probabilistic

model checking [20]. Below, we will see some examples of

security properties verified on the DTMC corresponding to the

tree given in Figure 1.

Example 4 Consider the example attack-defence tree given
in Figure 1, the strategies for attacker and defender given in
Figures 3 and 4, and the probability and cost values for basic
actions listed in Table IV. Figure 5 shows the resulting DTMC
semantics. We verify the following security properties: “What

se

rav

failure

failure

rr

ef

ef

failure

failure

success

failure

0.2(20)

0.8(20)

0.7(70)

0.3(70)

0.85(65)

0.86(65)

0.75(50)

0.25(50)

0.75(50)

0.25(50)

Fig. 5. The DTMC for attack-defence tree from Figure 1 and decision trees
dA1 , dD1 from Figures 3 and 4 (see Example 4).

is the success probability of an attack?” and “Is the expected
cost of an attack smaller than or equal to 500 while the success
probability is greater than or equal to 0.005?”. The first one
is expressed in PCTL as the formula P=?[F success] and the
obtained result is 0.00675, while the second one is expressed
in PCTL as the formula R≤500[F success]∧P≥0.005[F success]
which evaluates to true.

IV. GAME-BASED VERIFICATION

AND STRATEGY SYNTHESIS

In this paper, we use probabilistic model checking tech-

niques to evaluate attack-defence scenarios using the for-

malism proposed in the previous section. In particular, we

aim to verify whether certain types of attack are impossible,

or to synthesise attack or defence strategies satisfying some

formally specified property. The basic idea is to transform

an attack-defence tree into a stochastic two-player game, in

which the players are the attacker and defender, and strategies

(in the sense of the stochastic game) correspond to strategies

represented by decision trees over an attack tree.

In this section, we explain the transformation of an attack

tree to a game and describe how probabilistic model checking

can be applied to answer the kinds of questions posed above.

We also then explain how to extract decision tree strategies

from the results of model checking.

A. Construction of the Stochastic Game

Given an attack-defence tree t with n non-sequential sub-

trees (phases) we transform the tree t to a stochastic two-player

game (STG) in two steps. First we transform each sub-tree to a

game and then combine the games by means of the sequential

composition, mimicking the behaviour of a sequential operator

connecting corresponding non-sequential sub-trees.

Before explaining the algorithm, it is worthwhile discussing

the behaviour of the players in the trees. Each sub-tree

represents the static behaviour of the players, i.e., each player

makes a choice of their actions independently and the outcome

of each action affects only the overall result of the sub-tree

and not the other basic actions. Thus, in a game corresponding

to a sub-tree, we consider the set of attempted actions for each

player instead of one action at a time. Moreover, similarly to a

DTMC, we cannot generate games without fixing an order of

the players. We assume that the attacker has more information

111111111

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

than the defender, thus in a game the defender will be the

first to move. On the contrary, a tree consisting of two non-

sequential sub-trees t1, t2 combined with a sequential operator

illustrates the dynamic behaviour of the players. Here, the

choices of the basic actions in t2 might depend on the outcome

of t1. We take care of this in the sequential composition of

two sub-trees, formalised below.

Algorithm 1 displays how to transform a non-sequential

tree ti to a game. The transformation first considers all

nondeterministic transitions of the defender and of the attacker,

and then the probabilistic transitions. We start with the initial

state s0 belonging to the defender. For all subsets B ⊆ Actpi,D

of the defender actions we have an outgoing edge from s0
entering an attacker state labelled with the subset B. The

outgoing edges are labelled with the sum of the costs of the

actions in the subset B,
∑

a∈B c(a). For each attacker state we

do a similar construction, i.e., each attacker state has as many

outgoing edges as the subsets C ⊆ Actpi,A of the attacker

actions. Similarly, the edges are labelled with the sum of

the costs
∑

a∈C c(a) and they enter the probabilistic states

labelled with the corresponding subset C. Each probabilistic

state has two outgoing edges. One of the edges enters the final

state labelled with success and is labelled with the sum of

the success probabilities of the actions that evaluates the tree

ti to true. The other edge enters the final state labelled with

failure and is labelled with the sum of the failure probabilities.

The final states labelled with success and failure are also

instrumented with pi = T meaning that the phase pi was

successful, and pi = F meaning that the phase pi failed,

respectively.

So far we have described how to transform each non-

sequential sub-trees to a stochastic two-player game. We com-

bine the games corresponding to sub-trees by means of the se-

quential composition. Consider two sub-trees t1, t2 connected

with a sequential operator op ∈ {−→∧ ,−→∨}, t = op(t1, t2), and

the corresponding games M1,M2. The sequential compo-

sition of two games is presented in Algorithm 2, and is as

follows. Assume M1 has m final states. We create m disjoint

copies of M2, denoted M1
2, · · · ,Mm

2 . For each final state j
of M1 labelled with success we connect Mj

2 with M1 by

replacing the final state j of M1 with the starting state of

Mj
2 and adding the label pi = T to the starting state of Mj

2.

Similarly, for each final state j of M1 labelled with failure we

connect Mj
2 with M1 by replacing the final state j of M1

with the starting state of Mj
2 and add the label p1 = F to

the starting state of Mj
2. We evaluate and re-label (if needed)

each final state of Mj
2 based on the set Done of performed

actions on the path from the starting state of M1 till the final

state, [[t]](Done), where [[t]] is the Boolean formula of which

the tree t is a parse tree.

In the special case where there are only sequential con-

junctions, we can optimise the construction of the game by

merging together all final states labelled with success and all

final states labelled with failure. Observe that merging the final

states together does not cause a lose of information in the

history of a game.

Algorithm 1 Transformation of non-sequential tree to STG.

Input: a non-sequential tree ti with probabilistic func-

tion p and cost function c for basic actions, and

Actpi,A,Actpi,D,Act = Actpi,A � Actpi,D sets

Output: STG (Π, S, s0, α, (SA, SD, SP , S�), P, T,AP,L)

Π← {A,D}; α← 2Act; AP ← Act � {success, failure};
P ← ∅; T ← ∅; F1 ← ∅; F2 ← ∅;
SA ← ∅; SD ← ∅; SP ← ∅; S� ← ∅;
Create state sD; SD ← SD ∪ {sD}; s0 ← sD;
for all B ⊆ Actpi,D do

Create state sA; SA ← SA ∪ {sA}; F1 ← F1 ∪ {sA};
T (sD, B)← sA; L(sA)← B;
rD(sD, B)←∑

a∈B c(a);
end for
for all sA ∈ F1 do

for all C ⊆ Actpi,A do
Create state sP ; SP ← SP ∪{sP }; F2 ← F2∪{sP };
T (sA, C)← sP ;
L(sP)← C ∪B where B ⊆ L(sA);
rA(sA, C)←

∑
a∈C c(a);

end for
end for
Create states ss, sf ; S� ← S� ∪ {ss, sf};
L(ss)← {success, pi = T}; L(sf)← {failure, pi = F};
for all sP ∈ F2 do

let p =
∑

E⊆BCs.t.eval(t,E)

∏
a∈E p(a)

∏
a∈BC\E 1 −

p(a) where BC ⊆ L(sP);
P (sP , ss)← p; P (sP , sf)← 1− p;

end for
S ← SA � SD � SP � S�;

Algorithm 2 Sequential composition of two sub-trees.

Input: an attack-defence tree t = op(t1, t2), op ∈ {−→∧ ,−→∨}
and corresponding STGs M1,M2

Output: STG (Π, S, s0, α, (SA, SDSP , S�), P, T,AP,L)

Let m be the numer of final states in M1;

Create m disjoint copies M1
2, · · · ,Mm

2 of M2;

Merge M1,M1
2, · · · ,Mm

2 ;

Replace each final state j labelled with “success” of M1

with the starting state of Mj
2;

Add the label p1 = T to the starting state of Mj
2;

Replace each final state j labelled with “failure” of M1

with the starting state of Mj
2;

Add the label p1 = F to the starting state of Mj
2;

Change the label of each final state of Mj
2 base on the

evaluation [[t]](Done);

Example 5 Let us construct a stochastic two-player game
from the tree t, displayed in Figure 1, by following the steps
described above. First we transform each basic sub-tree to a
game through Algorithm 1. Figure 6 presents the constructed
games for each basic sub-tree. As we can see, each game
has first the nondeterministic transitions of the defender, then

112112112

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

the nondeterministic transitions of the attacker and finally the
probabilistic transitions. We combine the constructed games
by means of the sequential composition, as explained in
Algorithm 2. As the tree has only sequential conjunction, we
merge the final states with same label during the sequential
composition. The full game for the attack-defence tree t is
illustrated in Figure 7.

B. Probabilistic Model Checking of Stochastic Games

In the previous section we proposed a transformation from

attack-defence trees to stochastic two-player games. The main

focus of this section is to show how to evaluate security

properties over all possible strategies and how to synthesise

optimal attack (or defence) strategies. We start with a discus-

sion of the security properties of interest and then discuss their

representation in the temporal logic rPATL. This allows us to

perform our analysis of attack-defence trees using the existing

model checking techniques implemented in PRISM-games.

Security properties. We can phrase a great many useful quanti-

tative questions on attack-defence scenarios, concerning either

one player or both players. It is worth observing that a question

might refer to one or both players depending on the parameters

they are formulated over. For example, cost-related questions

refer to one player: for computing the cost of an attack we

do not require the cost of the defender actions. On the other

hand, probability-related questions refer to both players, i.e.,

if the attacker succeeds with probability p then the defender

succeeds with probability 1− p.

In this work we characterise the basic actions of an attack-

defence scenario with the success probability and the cost of

an attack and a defence. We then study properties both with

one objective, e.g., “is there an attack which is successful

with probability greater than or equal to 0.03?” or “what is

the maximum success probability of an attack?”, and with

multiple objectives, such as “can we achieve an attack with

an expected cost of at most 500 and a success probability of

at least 0.005?”.

Verification of security properties. Formal verification is used

to determine whether or not the system under study ex-

hibits certain precisely specified properties. For verifying

security properties of stochastic two-player games, we ex-

ploit probabilistic model checking of rPATL (probabilistic

alternating-time temporal logic with rewards) [13]. This logic

allows us to express a wide range of properties. For in-

stance, the first single-objective property above is expressed

in rPATL as the formula 〈〈A〉〉P≥0.03[F success], while the

property with multiple objectives is expressed as the formula

〈〈A〉〉(RrA
≤500[F success] ∧ P≥0.005[F success]).

Model checking systematically explores all states and tran-

sitions in the model to check whether it satisfies the given

property. Moreover, probabilistic model checking of rPATL

also allows us to synthesise strategies for a player with respect

to a given property. For instance, we can determine which is

the optimal strategy for the attacker in terms of maximising

the success probability of the attack, for all possible strategies

that the defender may choose. In fact, we can also determine,

at the same time, what the best strategy for the defender to

ensure that the probability of success does not exceed this.

For verification of multi-objective properties we use an

extension of rPATL model checking [14]. The extension allows

us both to verify security properties and to synthesise strategies

for a player, e.g., “what strategy of the attacker ensures that

the expected cost of an attack is at most 500, while the success

probability is at least 0.005?”. In addition, we can compute the

Pareto curve of achievable objectives.

The model checking techniques described here are all imple-

mented in PRISM-games [15], which we therefore employ for

verification and strategy synthesis problems on attack-defence

trees. PRISM-games also generates optimal strategies and, in

the case of multi-objective queries, can compute and display

graphically the Pareto curve associated with two objectives.

Correctness. We conclude this section by sketching the cor-

rectness of our approach, i.e., that the construction and anal-

ysis of the stochastic game described above yields the right

answers to questions phrased in terms of attack-defence trees.

This relies on the correspondence between an attack-defence

tree t, as formalised in Sect. III, and the stochastic two-player

game M whose construction is outlined in Sect.IV-A. More

precisely, this depends on a correspondence between decision

trees for t and their corresponding attacker or defender player

strategies in the stochastic game M.

In Sect. III-C, we gave a precise definition of the semantics

of a pair of attacker/defender decision trees dA, dD in terms

of a discrete-time Markov chain. Each decision tree dτ has an

equivalent strategy, say στ , for player τ in M. As mentioned

in Sect. II-B, the behaviour of M under a pair of strategies

σA, σD is also represented by a discrete-time Markov chain. It

is the equivalence of these two Markov chains which underlies

the correctness of the overall approach. An important issue

here is the class of stochastic game strategies that we need to

consider. For the properties used in this paper (those in the

logic rPATL, and its multi-objective extension), it suffices to

consider memoryless strategies, which makes the equivalence

of the two Markov chains relatively straightforward.2 The

relationship between stochastic game strategies and decision

is expanded upon in the following section.

Example 6 Consider the game given in Figure 7. We
use the tool PRISM-games to verify the security proper-
ties mentioned above. For example, the verification of the
query 〈〈A〉〉P≥0.03[F success] returns “false”, meaning that
there is no attack with success probability greater than or
equal to 0.03. The verification of the quantitative query
〈〈A〉〉Pmax=?[F success]) computes the maximum success
probability of an attack, which is 0.0229. Figure 7 also shows
an optimal attacker strategy, marked in bold. We verify also
multi-objective queries, such as 〈〈A〉〉(RrA

≤500[F success] ∧
P≥0.005[F success]). The property evaluates to “true” mean-

2Multi-objective queries in stochastic games need infinite-memory in gen-
eral [14], but our games are trees (or DAGs) so memoryless strategies suffice.

113113113

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

{}

{se, usb}

{se}

{usb}

{}

success,

p1 = T

failure,

p1 = F

{se, usb}(100)

{se}(20)

{usb}(80)

{}(0)

0.68

0.32

0.2

0.8

0.6

0.4

1

(a) An STG for t1 = ∨(se, usb)

{}

{rav}

{}

success,

p2 = T

failure,

p2 = F

{rav}(0)

{}(0)

0.3

0.7
1

(b) An STG for t2 =∼ rav

{}

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

success,

p3 = T

failure,

p3 = F

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

0.11

0.89

1

0.75

0.25

1

(c) An STG for t3 = ∧(ef,∼ rr)

Fig. 6. Transformation of basic sub-trees to games (attacker/defender/probabilistic states shown as diamonds/rectangles/circles).

{}

{se, usb}

{se}

{usb}

{}

{},

p1 = T

{rav}

{}

{},

p1 = F

{rav}

{}

{},

p2 = T

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

{},

p2 = F

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

success

failure

{se, usb}(100)

{se}(20)

{usb}(80)

{}(0)

0.68

0.32

0.2

0.8

0.6

0.4

1

{rav}(0)

{}(0)

0.3

0.7

1

{rav}(0)

{}(0)

1

1

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

0.11

0.89

1

0.75

0.25

1

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

1

1

1

1

Fig. 7. The stochastic two-player game for attack-defence tree t, from Figure 1. An optimal strategy for the attacker player is marked in bold.

ing that there is an attack with cost at most 500 and success
probability at least 0.005. Finally, Figure 8 illustrates the
Pareto curve computed by PRISM-games when maximising
probabilities and minimising cost of an attack.

C. Synthesising Strategies as Decision Trees

After synthesising an optimal strategy from the stochastic

game, as described above, we can transform it to a corre-

sponding decision tree. This provides a high-level, syntactic

description of the strategy, in particular, capturing the depen-

dencies within the strategy on the outcomes of earlier actions

and choices by players. We now describe this process, first for

an attacker, and then for a defender.

Attacker strategies. Synthesis of an attacker decision tree, from

an STG M and attack strategy σA, is done using the recursive

function generateAD(s, i), shown in Table V, which operates

over the structure of M. The first parameter s is a state of M
and the second parameter i keeps track of the current phase (to

114114114

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

0 0.01 0.01 0.02 0.02

0

20

40

60

80

100

120

Attack success probability

E
x
p
ec

te
d

at
ta

ck
co

st

Fig. 8. Pareto curve illustrating the trade-off between attack success proba-
bility and expected attack cost over strategies in the running example.

be precise, the phase i associated with the decision tree node

currently being created). At the top-level, we call the function

as generateAD(s0, 1), where s0 is the initial state of M.

By construction of the game M (see Sect.IV-A), its states

are grouped by phase, and within each phase there are (possi-

bly) defender and then (possibly) attacker states, followed by

probabilistic states at the end of the phase. We treat the three

classes of state separately.

If s is a defender state, s = sD ∈ SD, then the strategy

σA will not have resolved the choice of actions in sD and

we need to consider each of the possible outgoing branches.

These will be translated into if statements in the decision

tree, which can ask whether a defender action was performed

in the current phase (see Sect. III-B). This is done by calling

construct(sD, i, Actpi,D, ∅), explained below.

If the state s is an attacker state, s = sA ∈ SA, we create

an action node with the set of attacker actions performed in

state sA, as specified by the strategy choice σA(sA), and the

next node in the decision tree is generated recursively for the

successor state T (sA, σA(sA)), which, by construction of the

game, will be a probabilistic state.

For a probabilistic state, s = sP ∈ SP , we have reached

at the end of current phase in the STG. We create a decision

node whose condition depends on the success of the phase, and

then recursively construct the decision tree for the successor

states of sP corresponding to the scenarios where the phase

succeeded or failed. Notice that we create a decision node for

phase i (i.e., a node dAi from Table II) which queries the state

of the preceding phase pi−1. Once we reach the end of the

phases (indicated by i = n+1), we have reached the end of

the STG and there are no further actions to be taken so we

create a stop node in the decision tree.

As mentioned above, defender states sD are treated using an

auxiliary recursive function construct(sD, i,LA,Done), which

is also given in Table V. The first two parameters are as for

generateAD, the third, LA, is the set of the defender actions

to be performed and the last, Done, is the set of actions

already performed. The function iterates over the actions in LA
(initially, the set Actpi,D of all defender actions for phase i),
each time removing an action a and creating a decision node

TABLE V
generateAD: CONSTRUCTION OF ATTACKER DECISION TREE FROM STG

AND ATTACKER PLAYER STRATEGY.

generateAD(sD, i) = construct(sD, i, Actpi,D, ∅)
generateAD(sA, i) = σA(sA).generateAD(sP , i+ 1)

where sP = T (sA, σA(sA))

generateAD(sP , i) = if(pi−1?, generateAD(s′, i), generateAD(s′′, i))
where P (sP , s′) > 0 ∧ “pi−1 = T” ∈ L(s′)

and P (sP , s′′) > 0 ∧ “pi−1 = F” ∈ L(s′′)
generateAD(sP , n+ 1) = stop

construct(sD, i, LA ∪ {a},Done) =
if(a?, construct(sD, i, LA,Done ∪ {a}), construct(sD, i, LA,Done))

construct(sD, i, ∅,Done) ={
generateAD(s′, i) if s′ = T (sD,Done) ∈ SA

∅.generateAD(s′, i+ 1) if s′ = T (sD,Done) ∈ SP

TABLE VI
generateDD: CONSTRUCTION OF DEFENDER DECISION TREE FROM STG

AND DEFENDER PLAYER STRATEGY.

generateDD(sD, i,DA) = σD(sD).generateDD(s′, i+ 1, AD)

where s′ = T (sD, σD(sD))

generateDD(sA, i, AD) = generateDD(sP , i+ 1, AD)

where s′ = T (sA, B) for some B

generateDD(sA, i,DA) = ∅.generateDD(sP , i+ 1, AD)

where sP = T (sA, B) for some B

generateDD(sP , i, AD) =
if(pi−1?, generateDD(s′, i,DA), generateDD(s′′, i,DA))

where P (sP , s′) > 0 ∧ “pi−1 = T” ∈ L(s′)
and P (sP , s′′) > 0 ∧ “pi−1 = F” ∈ L(s′′)

generateDD(sP , n+ 1, AD) = stop

with condition a? and recursively building the decision tree

for the cases where the condition is true or false. This creates

decision nodes that branch over the possible combinations.

Once, the parameter LA is empty, we recursively construct the

next part of the decision tree, using the outgoing transitions

of the sD state. These will either go to an attacker state sA or

directly to a probabilistic state sP . In the latter case, we add

an action node with an empty action set, indicating that the

attacker performs no actions in this phase.

Defender strategies. The generation of a defender decision

tree from a game and a defender tree is slightly different,

since, here, the defender can ask only about the success of

the previous phases, not any attacker actions from the current

phase. Again, we use a recursive function operating over the

states of the game M. This function, generateDD(s, i,DA) is

shown in Table VI and constructs a decision tree for a strategy

σD of the defender player in M. Parameters s and i are the

current state and phase, as for generateAD, above; parameter

ττ−1 is used to keep track of the player. At the top-level, we

call the function as generateDD(s0, 1, DA).
If the state is a defender state, s = sD ∈ SD, we create an

action node with the set of actions performed by the defender

in sD, obtained from the defender strategy σD, and proceed

recursively using the successor of sD chosen by σD.

115115115

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

p1 p2 p3 p4

{se,usb} p1?

T

F

∅

∅

p2?
T

F

p2?
T

F

{ef}

∅

∅

∅

Fig. 9. An attack decision tree for the optimal attacker strategy highlighted
in the stochastic game shown in Figure 7.

If the state is an attacker state, s = sA ∈ SA, and the order

of the players is AD, we just move to the next probabilistic

state sP . The state sP is chosen nondeterministically. Note,

that for any choice of sP further construction on the decision

tree is the same. If the order of the players is DA, this means

that there is no defender action in the current phase. Thus, we

create an empty set in the decision tree and move to the next

probabilistic state sP .

On probabilistic states, the function generateDD behaves

the same as the function generateAD, as described above.

Finally, we note that the decision tree constructed as above

can subsequently be optimised by merging identical subtrees

and removing decision nodes with identical then/else branches.

Randomisation. As described in Sect. III, we also consider

decision trees that incorporate randomisation. This is because

optimal strategies for multi-objective properties may be ran-

domised. Here, that means that strategy σA (or σD) may

select a distribution over actions in a state sA (or sD), rather

than a single action. The decision tree synthesis algorithms in

Tables VI and V thus remain unchanged but the rules for sA
and sD states, respectively generate random action nodes.

Example 7 The stochastic game in Figure 7 also shows an
optimal attacker strategy marked in bold. We show in Figure 9
the (optimised) attacker decision tree corresponding to the
optimal attacker strategy.

V. IMPLEMENTATION AND RESULTS

We have developed a prototype implementation of our

techniques, comprising a converter from attack-defence trees,

specified in XML, into stochastic games modelled in the input

language of PRISM-games [15], available from [21]. The

output of the tool can then be used to perform verification

and strategy synthesis as described earlier.

We applied our approach to a real-life scenario studied

in [5]: we consider part of a Radio-Frequency Identification

(RFID) goods management system for a warehouse, modified

by introducing temporal dependencies between actions.

The warehouse uses RFID tags to electronically identify

all goods. In the attack-defence scenario that we consider,

0 0.1 0.2 0.3 0.4

0

100

200

300

400

500

Attack success probability

E
x
p
ec

te
d

at
ta

ck
co

st

Fig. 10. Pareto curve illustrating the trade-off between attack success
probability and expected attack cost over strategies for the RFID example.

the attacker aims to physically remove some RFID tags after

infiltrating the building.

In order to achieve this goal, the attacker has to first get

into the premises and then into the warehouse. For getting

into the premises the attacker can climb over the fence or

enter through the main gate. The defender can protect against

climbing by setting some barbed wire on the fence. To protect

against the barbed wire the attacker can guard against barbs

either by using a carpet over the barbs or by wearing protective

cloths. Once the attacker succeeds in accessing the premises,

they have to get into the warehouse. The attacker can achieve

this subgoal either by entering through the door or by entering

through the loading dock. The former action can be defended

against by monitoring the door with biometric sensors.

The defender can prevent the attacker from attaining the

main goal by monitoring the premises with security cameras.

In order to overcome the camera issue the attacker can disable

them either by shooting a strong laser at the cameras or by

video looping the camera feed. The defender, in turn, can

employ guards in order to patrol the premises and counter

this kind of attack.

The corresponding attack-defence tree is given in Figure 11.

The leaves (basic attack and defence actions) of the tree are

decorated with success probability and cost values. The attack-

defence tree has three phases: the first phase corresponds to the

sub-tree with the root “get into premises”, the second phase

is the “get into warehouse” sub-tree, and the last phase is the

sub-tree on the right of the main goal with the defender action

on the root. The syntactic term corresponding to each phase

and to the full tree is:

t1 = ∨(∧(ef,∼ ∧(bw,∼ ∨(uc, pc))), tg)
t2 = ∨(∧(ed,∼ bs), ld)
t3 = ∼ ∧(sc,∼ ∨(lc,∧(vc,∼ eg)))

t =
−→∧ (
−→∧ (t1, t2), t3)

The resulting stochastic game generated from the attack-

defence by our approach has 1072 states and 2052 transitions.

We verified a variety of properties, including the numerical

property 〈〈A〉〉Pmax=?[F success]) that computes the maxi-

mum success probability of an attack (equal to 0.41), and the

116116116

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

−→∧

Infiltrate building

−→∧

break

and
enter ∼

∨
get into
premises ∨

get into
warehouse

∧climb
enter

through
gate

tg

(.4,60)
climb
over
fence

cf

(.75,60)

∼

∧barbed

barbed

wire

bw

(.6,0)

∼

∨
guard

against
barbs

use
carpet on

barbs

uc

(.6,80)

wear
protective
clothing

pc

(.7,100)

∧door
enter

through
loading

door

ld

(.6,75)enter
through

door

ed

(.5,50)

∼

monitor

with biometric
sensors

bs

(.7,0)

∧monitor

monitor with

security
cameras

sc

(.8,0)

∼

∨
disable
cameras

laser

cameras

lc

(.65,70)

∧video

video
loop

cameras

vc

(.75,70)

∼

employ

seguard

eg

(.8,0)

Fig. 11. Attack-defence tree for breaking and entering a building.

multi-objective qualitative property 〈〈A〉〉(RrA
≤150[F success]∧

P≥0.1[F success]) (which evaluates to true, meaning that there

is an attack with cost at most 150 and success probability

at least 0.1). We also examine the trade-off between the

probability of a successful attack at the expected cost of doing

so. The Pareto curve generated for this pair of properties is

shown in Figure 10.

VI. RELATED WORK

We now expand on the comparison with related work given

in Sect. I. As mentioned earlier, Schneier developed attack

trees as an approach to analyse the security of complex

systems [1]. Various extensions of this model have been

developed, including those that model dependencies between

actions: Lv and Li [22] extended attack trees with sequential

conjunction, considering the order on the execution of the

basic actions in the tree; and Jhawar et al [10] gave a formal

semantics of attack trees with sequential conjunction.

While most extensions study static attack trees, a few con-

sider dynamic aspects. Arnold et al. [23] analysed the timing of

attack scenarios using continuous-time Markov chains, but do

not reason about strategies; [24] used priced time automata and

the Uppaal model checker to analyse attack trees, but without

probabilities. More recently, [25] explored how stochastic

timed automata can be used to study attack-defence scenarios

where timing plays a central role. None of these approaches

use game-based models.

While attack trees focus on evaluating attack scenarios,

other tree-structure representations incorporate countermea-

sures. Kordy et al. [4] formalised attack-defence trees for this

purpose and they can be interpreted with various semantics to

answer questions such as the vulnerability of the system to an

attack or the minimum cost of an attack [4]. A formalisation

of attack-defence trees similar to the one we used has been

presented by Aslanyan and Nielson [9], where they proposed

evaluation techniques for analysing trees with multiple con-

flicting parameters in terms of Pareto efficiency. Further devel-

opments on attack-defence trees have been carried out, such

as combining the tree methodology with Bayesian networks

for analysing probabilistic measures of attack-defence trees

with dependent actions [19] and studying the relationship

between such trees and binary zero-sum two-player games

[11]. Moreover, Bistarelli et al. [26] used strategic games

for analysing attack-defence scenarios presented with defence

trees, an extension of attack trees with countermeasures only

on the leaves.

Elsewhere, various studies have explored a game-theoretic

approach to modelling security aspects of a system. In partic-

ular, stochastic games [12] have proven useful to model uncer-

tainty and randomisation of security scenarios, and have been

explored in several application domains. Lye and Wing [27]

modelled the security of computer network as a stochastic

game and computed Nash equilibrium strategies for the play-

ers. Ma et al. [28] presented a game-theoretic approach for

studying rational attackers and defenders in the security of

cyber-physical systems. Along similar lines, Vigo et al. [29]

proposed a framework for modelling and analysing the security

of cyber-physical systems by means of stochastic games.

117117117

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

Attack-defence trees are a useful tool to study attack-

defence scenarios and present the interaction between an

attacker and a defender in an intuitive way. Security attributes,

associated with the basic actions of attack-defence trees,

provide the basis for various types of quantitative analysis.

In this paper, we explored the relationship between attack-

defence trees and stochastic two-player games. We proposed a

framework for evaluating security properties of attack-defence

scenarios, by developing an extension of attack-defence trees

in which temporal dependencies among subgoals can be

expressed. In order to formally represent strategies for the

players in presence of such dependencies, we have defined

the novel concept of decision trees, whose semantics we have

given in terms of discrete-time Markov chains. Moreover,

we have shown how to encode an attack-defence tree into a

stochastic two-player game, where it becomes natural to study

the interaction between players and to account for quantitative

and probabilistic aspects of a scenario. This allows us to

exploit the power of probabilistic model checking techniques

and tools, to verify security properties automatically and

synthesise strategies for attacks and defences. These strategies

can be converted to decision trees, linking the outcome of the

verification on the game model to the original attack-defence

tree, facilitating communication of the results to end-users.

We implemented our approach in a prototype tool and

applied it to the example of an RFID goods management

system, where the analysis gives insights on the points of

the system open to attack and the corresponding effort to the

attacker and likelihood of success.

Our current approach requires that sequential operators only

occur above non-sequential operators in an attack-defence tree.

In future work, we plan to generalise the approach and allow

sequential operators to occur anywhere in a tree. Moreover,

we plan to move from fully-observable games to partially-

observable ones.

ACKNOWLEDGEMENTS

Part of the research leading to these results has received

funding from the European Union Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement no. 318003

(TRESPASS). Special thanks also go to Roberto Vigo for

valuable comments.

REFERENCES

[1] B. Schneier, “Attack Trees: Modeling Security Threats,” Dr. Dobb’s
Journal of Software Tools, vol. 24, no. 12, pp. 21–29, 1999.

[2] R. Vigo, F. Nielson, and H. R. Nielson, “Automated generation of attack
trees,” in IEEE 27th Computer Security Foundations Symposium, CSF
2014, Vienna, Austria, 19-22 July, 2014, 2014, pp. 337–350.

[3] M. G. Ivanova, C. W. Probst, R. R. Hansen, and F. Kammüller, “Attack
tree generation by policy invalidation,” in Information Security Theory
and Practice - 9th IFIP WG 11.2 International Conference, WISTP 2015
Heraklion, Crete, Greece, August 24-25, 2015 Proceedings, 2015, pp.
249–259.

[4] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, “Foundations
of attack-defense trees,” in Formal Aspects of Security and Trust - 7th
International Workshop, FAST 2010, 2010, pp. 80–95.

[5] A. Bagnato, B. Kordy, P. H. Meland, and P. Schweitzer, “Attribute
decoration of attack-defense trees,” IJSSE, vol. 3, no. 2, pp. 1–35, 2012.

[6] The TREsPASS Consortium, “Project web page,” Available at
http://www.trespass-project.eu.

[7] The ADT2P Consortium, “Project web page,” Available at
http://wwwen.uni.lu/snt/research/research projects2/adt2p.

[8] B. Kordy, S. Mauw, and P. Schweitzer, “Quantitative questions on attack-
defense trees,” in Information Security and Cryptology - ICISC 2012 -
15th International Conference, Seoul, Korea, November 28-30, 2012,
Revised Selected Papers, 2012, pp. 49–64.

[9] Z. Aslanyan and F. Nielson, “Pareto efficient solutions of attack-defence
trees,” in Principles of Security and Trust - 4th International Conference,
POST 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, 2015, pp. 95–114.

[10] R. Jhawar, B. Kordy, S. Mauw, S. Radomirovic, and R. Trujillo-Rasua,
“Attack trees with sequential conjunction,” in ICT Systems Security and
Privacy Protection - 30th IFIP TC 11 International Conference, SEC
2015, Hamburg, Germany, May 26-28, 2015, Proceedings, 2015, pp.
339–353.

[11] B. Kordy, S. Mauw, M. Melissen, and P. Schweitzer, “Attack-defense
trees and two-player binary zero-sum extensive form games are equiv-
alent,” in Decision and Game Theory for Security - First International
Conference, GameSec 2010, Berlin, Germany, November 22-23, 2010.
Proceedings, 2010, pp. 245–256.

[12] L. S. Shapley, “Stochastic games,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 39, no. 10, p. 1095,
1953.

[13] T. Chen, V. Forejt, M. Z. Kwiatkowska, D. Parker, and A. Simaitis, “Au-
tomatic verification of competitive stochastic systems,” Formal Methods
in System Design, vol. 43, no. 1, pp. 61–92, 2013.

[14] T. Chen, V. Forejt, M. Z. Kwiatkowska, A. Simaitis, and C. Wiltsche,
“On stochastic games with multiple objectives,” in Mathematical Foun-
dations of Computer Science 2013 - 38th International Symposium,
MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings,
2013, pp. 266–277.

[15] M. Kwiatkowska, D. Parker, and C. Wiltsche, “Prism-games 2.0: A
tool for multi-objective strategy synthesis for stochastic games,” in
Proc. 22nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’16), ser. LNCS. Springer,
2016.

[16] J. Kemeny, J. Snell, and A. Knapp, Denumerable Markov Chains,
2nd ed. Springer-Verlag, 1976.

[17] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[18] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in Formal Methods for the Design of Computer, Communication
and Software Systems: Performance Evaluation (SFM’07), ser. LNCS
(Tutorial Volume), M. Bernardo and J. Hillston, Eds., vol. 4486.
Springer, 2007, pp. 220–270.

[19] B. Kordy, M. Pouly, and P. Schweitzer, “A probabilistic framework
for security scenarios with dependent actions,” in Integrated Formal
Methods - 11th International Conference, IFM 2014, Bertinoro, Italy,
September 9-11, 2014, Proceedings, 2014, pp. 256–271.

[20] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for Performance Evaluation, 7th In-
ternational School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007, Bertinoro, Italy, May
28-June 2, 2007, Advanced Lectures, 2007, pp. 220–270.

[21] Http://www2.compute.dtu.dk/~zaas/ADT2PRISM.zip.
[22] W.-p. Lv and W.-m. Li, “Space based information system security risk

evaluation based on improved attack trees,” in Multimedia Information
Networking and Security (MINES), 2011 Third International Conference
on. IEEE, 2011, pp. 480–483.

[23] F. Arnold, H. Hermanns, R. Pulungan, and M. Stoelinga, “Time-
dependent analysis of attacks,” in Principles of Security and Trust - Third
International Conference, POST 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, 2014, pp. 285–305.

[24] R. Kumar, E. Ruijters, and M. Stoelinga, “Quantitative attack tree
analysis via priced timed automata,” in Formal Modeling and Analysis
of Timed Systems - 13th International Conference, FORMATS 2015,
Madrid, Spain, September 2-4, 2015, Proceedings, 2015, pp. 156–171.

118118118

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

[25] H. Hermanns, J. Krämer, J. Krcál, and M. Stoelinga, “The value of
attack-defence diagrams,” in Principles of Security and Trust - 5th
International Conference, POST 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, 2016, pp.
163–185.

[26] S. Bistarelli, M. Dall’Aglio, and P. Peretti, “Strategic games on defense
trees,” in Formal Aspects in Security and Trust, Fourth International
Workshop, FAST 2006, Hamilton, Ontario, Canada, August 26-27, 2006,
Revised Selected Papers, 2006, pp. 1–15.

[27] K.-w. Lye and M. J. Wing, “Game strategies in network security,”
International Journal of Information Security, vol. 4, no. 1, pp. 71–86,
2005.

[28] C. Y. Ma, N. S. Rao, and D. K. Yau, “A game theoretic study of attack
and defense in cyber-physical systems,” in Computer Communications
Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE,
2011, pp. 708–713.

[29] R. Vigo, A. Bruni, and E. Yüksel, “Security games for cyber-physical
systems,” in Secure IT Systems - 18th Nordic Conference, NordSec 2013,
Ilulissat, Greenland, October 18-21, 2013, Proceedings, 2013, pp. 17–
32.

119119119

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 14:55:07 UTC from IEEE Xplore. Restrictions apply.

