
Research Report: Mitigating LangSec Problems
With Capabilities

Nathaniel Wesley Filardo
Johns Hopkins University

Baltimore, MD

nwf@cs.jhu.edu

Abstract—Security and privacy of computation, and the related
concept of (deliberate) sharing, have, historically, largely been
afterthoughts. In a traditional multi-user, multi-application web
hosting environment, typically applications are public by default.
Applications wishing to offer a notion of private resources must
take it upon themselves to independently manage authentication
and authorization of users, leading to difficult and disjointed
notions of access and sharing. In such a context, LangSec-based
vulnerabilities threaten catastrophic loss of privacy for all users
of the system, likely even of non-vulnerable applications. This is
a tragic state of affairs, but is thankfully not inevitable! We
present the Sandstorm system, a capability-based, private-by-
default, tightly-sandboxing, proactively secure environment for
running web applications, complete with a single, pervasive
sharing mechanism. Sandstorm, and capability systems, are
likely of interest to the LangSec community: LangSec bugs are
mitigated through the robust isolation imposed by the Sandstorm
supervisor, and the mechanism of capability systems offers the
potential to turn difficult authorization decisions into LangSec’s
bread and butter, namely syntactic constraints on requests: every
well-formed request which can be stated is authorized. We present
aspects of the Sandstorm system and show how those aspects
have, by building systematic protection into several levels of
the system, dramatically reduced the severity of LangSec bugs
in hosted applications. To study the range of impact, we will
characterize addressed vulnerabilities using MITRE’s Common
Weakness Enumeration (CWE) scheme.

I. INTRODUCTION

Sandstorm1 bills itself as “an open source operating system

for personal and private clouds.” Key among its features

is proactive, robust inter-application and inter-user default

isolation: users can install a wide variety of applications, of

various degrees of trust-worthiness, and should be confident

that any malicious or errant application will be limited in

the damage it can do. At the same time, Sandstorm offers

an expressive framework for explicitly sharing access to

resources and auditing how far resources have been shared. It

is important to note that Sandstorm is not a “Web Application

Firewall:” the applications under its supervision run largely

as is, and Sandstorm simply routes requests and responses

without altering the display content thereof.

The Sandstorm organization maintains a collection of

“Security non-events”2 which enumerates many Common

1https://sandstorm.io/
2https://docs.sandstorm.io/en/latest/using/security-non-events/; this paper

specifically references the revision as of March 16, 2016 made as Sandstorm
commit https://github.com/sandstorm-io/sandstorm/commit/1a06f547.

Vulnerabilities and Exposure (CVE) identifiers [8] that have

allegedly been completely obviated or largely mitigated by

Sandstorm’s isolation infrastructure. The Sandstorm project

undertook an effort to collect all 2014 and 2015 CVEs affecting

a subset of the applications that had been ported to use

Sandstorm, namely Etherpad, WordPress, Roundcube, and Tiny

Tiny RSS; for WordPress specifically, CVEs were selected only

from those with an associated “severity score” of 6 or more

(out of 10, the most severe). This resulted in a list of 20 CVEs.

Additionally, 27 of the 224 CVEs reported against the Linux

kernel between 2014 and 2016 are enumerated; we presume

that the remainder have simply not been evaluated. The present

paper reviews these CVEs, evaluating the protection afforded by

Sandstorm and affirms the Sandstorm project’s claim that “95%

of (application) security issues automatically mitigated, before

they were discovered.”3 We will categorize the CVEs using

MITRE’s Common Weakness Enumeration (CWE) scheme [9]

to study the range of Sandstorm’s impact.

This paper primarily hopes to stimulate further study both of

the applicability of language security to authorization, beyond

its traditional application to input languages and, dually, of

the applicability of system design for mitigation of traditional

LangSec vulnerabilities. We argue that many vulnerabilities

present in software are only as severe as they are due to

language security issues pertaining to (implicit) authorization

assertions. We argue that the object-capability model of autho-

rization [1, 2] offers a more LangSec-friendly approach which

is less prone to adversarial tampering and misinterpretation.

A. Authorization

Broadly, authorization is a time-varying relation between

agents and entities in a system and might be summarized as

“who can do what to whom when?” Lampson, in [6], formalizes

this (without an explicit notion of time variance) using the

concept of an access matrix, a hypothetical data structure

indexed by both agent (“domain”) and target entity (“object”)

and storing the “rights” (or “permissions”) afforded to that agent

about the target entity. While one might imagine a universal

ontology of rights, it is more common to have the type of

rights be defined by the target entity. Perhaps the most popular

rendering of this data structure in real systems is as “Access

Control Lists” (ACL) whereby each object has associated with

3https://sandstorm.io/news/2016-02-29-security-track-record

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Nathaniel Wesley Filardo. Under license to IEEE.

DOI 10.1109/SPW.2016.57

189

2016 IEEE Security and Privacy Workshops

© 2016, Nathaniel Wesley Filardo. Under license to IEEE.

DOI 10.1109/SPW.2016.57

189

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

it a list of agents and their rights to that object. Capability

systems use a transposed view, wherein each agent is associated

with its list of rights to objects.

An important and subtle concept when discussing authoriza-

tion is ambient authorization: authority granted implicitly, used

without explicit justification. On a POSIX system, for example,

any process may grow its memory allocation via sbrk; it

may request to open files relative to the system-wide root

directory; etc.4 By contrast, we could imagine a POSIX-like

system where the only way to open a file was to name it

relative to an existing file descriptor, or where sbrk was a

message written to a (kernel-provided) file descriptor. In this

modified POSIX, some processes may retain access to the real

root directory and/or the ability to invoke sbrk, but it becomes

possible to construct processes which do not, by virtue of not

possessing the requisite explicit witness of authorization, that

is, without the capability to act.

B. Object Capabilities

Object-capabilities, in the sense used here, are references

to a target object together with an enumeration of rights

to that object [1, 2]. In OO terms, they can be considered

as references to an implementation instance of an interface,

a subset of the methods exported by the pointed-to object.

Crucially, capabilities are first-class components of the system

and may be passed between agents, bestowing a subset of one

agent’s authorization upon another. The issuer of a capability

may revoke it, making it inert, no longer authorizing anything.

Capabilities may be delegated, copying the authorization of

one capability to a new capability which may be revoked by

the delegator. Revoking a capability revokes all its copies and

any delegated versions, recursively. Rights may be attenuated
(i.e., reduced) during delegation; e.g., having read/write access

allows delegation of read-only access in addition to read/write

access.5

Secure object capability systems must use tamper-resistant
and unforgeable capabilities. The former property can be

summarized as requiring that an agent holding a capability

may not change anything about that capability: there should

be no general mechanism for the agent to change which object

is referenced or the rights afforded by this capability. The

latter property requires that, at creation, only the creator of

an object holds a reference to the created object, and the only

4This is a remarkably simplified view. POSIX defines rlimits for
limiting acquisition of memory and open files, SUSv2 defines chroot, a
privileged mechanism of creating process hierarchies whose root directory is
a subdirectory of the system-wide root directory, etc. We trust that readers
will forgive us the imprecision for the sake of example; the point remains that
it is always possible to request a sbrk operation and there is always some
root directory for a process.

5The target and rights of a capability are sometimes viewed as constants, set
once at capability creation time and unchanging until the capability is revoked
or discarded, but some systems permit agents to change these properties.
Smalltalk [3], an early OO language, permits objects to “become” other
objects, transparently forwarding all references; Smalltalk permits this generally,
allowing any agent to replace any object to which it has a reference, but a
secure version could be engineered. Coyotos [13] has no built-in notion of
rights and instead attaches to each capability a “protected payload” whose
semantics are up to the recipient object.

way for another agent to gain a reference is for one to be

explicitly passed.6 These are very LangSec-esque properties.

From a formal language perspective we can imagine an infinite

collection of reference symbols, with creation operations

returning never-before-seen elements and all other operations

only able to pass around existing symbols. In practice, a variety

of techniques, sketched below as needed, are used to observably

emulate or approximate such an infinite set.

C. Capabilities and LangSec

Capability designs and LangSec approaches are both proac-
tive approaches to security: they seek to render particular classes

of vulnerabilities impossible by construction. LangSec seeks

to make correct input validation a fundamental part of input
parsing, rather than as a second step, so that parsers correctly

“imbue input with trust” [4]. Capability systems are designed

with the goal of enabling very fine-grained authorization and

pushing this authorization into the computational substrate,

rather than as a second step. We believe the requisite effort

to properly eliminate ambient authority within a capability

system, so that the fine-grainedness is not merely illusory, is in

kinship with the LangSec call to eliminate “weird machines”;7

the goal of capability engineering is to simplify the input

validation effort of computational agents, to make it the case

that any well-formed request which can be stated is authorized.

Thus, after checking that a request is syntactically well-formed,

there should be no need for additional authorization logic. We

contend that systems designed with this goal in mind will

have better security by construction: certain failure modes

can be entirely ruled out and large classes of vulnerabilities,

LangSec-esque and otherwise, will be reduced in severity.

D. Typical Multi-user, Multi-application Web Hosting

In order to properly contrast Sandstorm with what has come

before, we must spend some words detailing the dire typical

state of multi-user, multi-application web application hosting.

In such a setting, applications live side-by-side, in the same

file hierarchy as each other, and are invoked by a single shared

web server; persistent data for multiple users and multiple

applications cohabitate in the same database engine. Inter-

application isolation is achieved by coarse-grained mechanisms,

available only to system administrators, including running

applications as different (kernel) users, setting permissions

in the filesystem appropriately, providing multiple (database)

users within each shared database, etc.

Because isolation mechanisms require privilege far in excess

of what we intend for hosted applications, applications must

typically do without and each manage several users’ data.

Intra-application isolation is implemented separately, within

each application (e.g., files uploaded by one user are readable

by the application when acting on behalf of another user; it

6One may, perhaps, allow components of the trusted computing base, such
as a trusted garbage collector or, in this case, the Sandstorm core, to have
references to created objects, as well. These components are assumed to not
expose their references to untrusted agents of the system. In practice, this is,
historically, somewhat difficult but not impossible.

7http://www.cs.dartmouth.edu/∼sergey/wm/ and http://langsec.org/occupy/

190190

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

is up to the application to ensure that it will not read that

file if it is not intended). Absent privilege, there are no or

few system-level mitigations available: one typically cannot

dynamically create a new (kernel or database) user for each

application user, file system permissions are granular only at

the level of applications, etc. Worryingly, if an application is

vulnerable to remote code injection attacks, the application

often has nearly arbitrary access to the network, allowing

any point of compromise to become a springboard for further

compromises. Further, the (shared) web server and kernels

hosting the application process are themselves large, complex

pieces of software with large surface areas which may be

probed for vulnerabilities by injected code.

With that bleak world in mind, let us proceed on to the

Sandstorm system and particular classes of vulnerabilities

mitigated by its architecture. In the next section, we will focus

on server-side vulnerabilities, largely neglecting the client and

instead focusing on the effects of extremely strong sandboxing,

which make up the bulk of Sandstorm’s “security non-events.”

The section thereafter will turn to concerns of client-server,

inter-application, and multi-user interaction.

II. GRANULARITY IN SANDSTORM

We begin our discussion by focusing on an individual

instance of an application hosted within Sandstorm, focusing

on Sandstorm’s unusually tight sandboxing of application

code. The capability system used for communication with and

within Sandstorm obviates the need for much of the traditional

(POSIX) machinery (e.g., the BSD sockets API) and thereby

enables what might otherwise be seen as impossibly prohibitive

sandboxing, which is, as we now show, able to mitigate many

LangSec-style bugs.

A. Sandstorm User Interface

The Sandstorm user interface is focused on a list of grains:

instances of installed applications. While users may install

new applications, create new grains of installed applications,

and delete grains they have created, the most typical action is

to search for and select an existing grain (to which the user

has access) for further interaction. Like a typical web-server,

Sandstorm launches the application and connects it with the

user’s web browser.

By way of concrete example, to begin authoring a document

such as this in a Sandstorm hosted installation of ShareLaTeX, a

collaborative LATEX document editor,8 this author authenticated

to a local deployment of Sandstorm, instructed the server

to retrieve the ShareLaTeX application from the Sandstorm

market9 and install it, and then requested a new ShareLaTeX

grain. That grain hosts only this document and does not concern

itself with others. When returning to the task of writing this

document, it sufficed to select the appropriate grain from the list

and wait for ShareLaTeX to start up. While that grain existed,

the deployment of Sandstorm, of course, concurrently ran other

8https://www.sharelatex.com/
9Direct uploads of packaged applications are also possible; the marketplace

is a convenience, not requirement.

ShareLaTeX grains as well as grains of other applications

entirely, to which this grain had no access.

We will discuss sharing access in Sandstorm more later, but

a few points are important here. When a user creates a grain,

Sandstorm ensures that she alone has a capability to access

it; this capability conveys full authority to the grain. That is,

all grains start off private by default. Any user with access to

given grain may ask Sandstorm to generate a URL that acts as a

capability to access the grain. These capabilities are, of course,

revocable and their rights are a dynamically attenuable subset of

the creator’s.10 Sandstorm has largely-unused plumbing features

to enable delegating access on a more precise model than per-

grain sharing; since these features, collectively known as the

“powerbox”, are not used yet by any apps on the Sandstorm

app market, this paper does not consider them.

B. The View Within A Grain

Sandstorm provides proactive security by offering differ-

ent semantics than we sketched in § I-D; in a sense it

is the notion of (POSIX) software sandboxing taken to an

extreme.11 Relatively new features of the Linux kernel, such as

seccomp-bpf12 private mount name-spaces13 and network

namespaces14 are used to reduce the application’s access

to the system and the network: only a subset of system

calls are permitted, few “device” files exist (and no more

may be created), the only visible network interface(s) are

loopbacks, the application software is mounted read-only, and

only per-instance resources are mounted read-write. The sole

mechanism for communication with the external world is a

Cap’n Proto15 socket to the Sandstorm supervisor, running

outside the sandbox.16 Thus, the ambient authority of an

application hosted within Sandstorm is dramatically reduced

by comparison to a typical UNIX-style process. One could

imagine this entire exercise as a dramatic reduction in the

power of the language that the application speaks with the

system: fewer operations are possible on fewer objects than

10Two subtle points merit brief mention. First: sharing URLs created this
way are not directly usable by application grains, so, for example, even if
one is using Roundcube under Sandstorm to send one’s mail, the Roundcube
grain does not come to hold capabilities transiting it. Second: Sandstorm’s
capability system will transitively re-attenuate rights when it needs to. That is,
if A grants read/write access to B and B grants read/write access to C, but
then A dynamically attenuates the capability held by B to be read-only, then
the capability held by C will also be read-only.

11See https://docs.sandstorm.io/en/latest/using/security-practices/.
12See Linux’s Documentation/prctl/seccomp_filter.txt
13Linux’s Documentation/filesystems/sharedsubtree.txt

may be the appropriate starting point; this feature is remarkably under-
documented. For an overview of name-spaces in UNIX-like systems more
generally, the curious should start with [11].

14See the manual page for Linux’s clone(2) system call, and in particular
the CLONE_NEWNET flag.

15https://capnproto.org/
16The Cap’n Proto serialization and de-serialization code is automatically

generated from schema descriptions and can be robustly tested independently
of its role in the target application, following good LangSec practices. Live
capabilities in Cap’n Proto are rendered on the wire as integers, with no
other structure or meaning to any agent other than the other participant
in the connection; each end of the socket maintains tables mapping wire
representations to pointers. A consequence of this representation is that live
capabilities cannot be transferred without the active participation of other end.

191191

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

in the traditional hosting configuration, thereby resulting in a

dramatically simpler kernel-side protocol state machine [12].

C. Granularity As Editorial Decision

In light of the above view, one could intuit that exploits

of application vulnerabilities are already limited: they are

confined to a grain and to the resources available to that

grain. Under fine-grained instances, many vulnerabilities turn

out to not be significant in practice. At one extreme, grains

may host individual documents; at the other extreme, an

entire file storage system (e.g., Davros17) may be a single

grain. The decision of what constitutes a grain is thus up to

the application author and/or packager. Currently, Sandstorm

functions under a per-grain access model, so we see grain

boundaries drawn around sets of objects which are closely

related and which have approximately covarying permissions.

Especially simple cases include when users have read-only or

read/write access to the entire ensemble, but options such as

“read-only for document objects and read/write comments” often

found in document editors are also possible. Thus, for simple

applications like ShareLaTeX, there is a natural, maximally-

fine-grained packaging which puts each document (and its

multiple source files) in an individual grain. Similarly, wiki

engines tend to have rights that apply to all pages within,

perhaps also with limited “administrative” access for some

users, making it appropriate to use a grain for related pages

within some domain of administration, but inappropriate for

multiple administrative domains to share such a grain.

When sharing of individual objects, as defined by particular

applications, becomes available in Sandstorm (as the “power-

box”), we should expect grain boundaries to settle wherever

the risk of accidental exposure or mishandling of material

by the application within the grain outweighs the cost of

crossing the grain boundary. Users may be advised, for example,

to have separate file-hosting grains for widely-shared family

photographs and for narrowly-shared financial documents, so

that Sandstorm’s inter-grain isolation continues to provide

security even if an application’s intra-grain isolation fails.

D. Security Impact

1) Path Traversal Vulnerabilities: Several of the vulnerabil-

ities mitigated by Sandstorm fall under “CWE-22: Improper

Limitation of a Pathname to a Restricted Directory (‘Path

Traversal’).” Path traversal vulnerabilities are authorization

language security issues: the existence of such a vulnerability

requires that an agent be able to access a path outside the set

intended by the application’s authors for this agent in spite of

whatever protections are in place within the application. The

fine-grained isolation approach afforded by capability systems

defangs LangSec bugs; the goal is that encapsulated software

cannot carry out actions that significantly impact user data

privacy or security, even if it incorrectly parses input file paths.

The mechanism of action of a (POSIX system) path traversal

vulnerability provides an example of ambient authority: as

17https://github.com/mnutt/davros/

hinted at in § I-A the POSIX API does not offer a mechanism

for an unprivileged application to confine its actions in the

filesystem to a sub-tree. Absolute paths refer to an (explicitly

named) object relative to an implicitly named, omnipresent root

directory; even the (relatively) modern POSIX openat system

call is specified to interpret absolute paths relative to this root

rather than the provided dirfd. Moreover, by definition, every

directory has a reference to its parent directory available, as

“..”.18 Therefore, if we mean to manipulate or expose only a

particular directory or subtree of the filesystem in a context

where arbitrary paths may be given, we must be careful to

normalize away and eliminate these possibilities that would

escape the subtree, as the kernel will not enforce our desire

for paths to be confined.

All of that to say, path traversal vulnerabilities are also in

the domain of (traditional) LangSec: canonicalizing away “..”

and preventing the initial “/” of an absolute path are obviously

syntactic matters. The design of the POSIX API, with its lack

of confining operations, all but ensures that parsing bugs are

security vulnerabilities.19 We now discuss the path traversal

vulnerabilities in Sandstorm’s non-events list.

a) CVE-2015-0933: ShareLaTeX did not properly restrict

LATEX’s \include facilities, allowing users to read arbitrary

files. The result, again, is arbitrary client-controlled reads of

files on the server. The CWE ontology appears to lack a

designator for this kind of directive-based file-read vulnerability

in general; perhaps “CWE-22” (“Path Traversal”) remains the

most appropriate designation, despite its lack of specificity.

In order to exploit this vulnerability, a user requires write

authority to a document, to insert an \include directive.

Recall from § II-C that each ShareLaTeX document runs in its

own grain on Sandstorm. A user with write authority to that

grain’s single document also, by necessity, has read authority

to that document and the ShareLaTeX application software

itself, and by construction there are no other files in the grain.

Thus we see a common end of vulnerabilities when run under

Sandstorm: users can attack themselves but have no ability to

forge capabilities to other grains to attack.

b) CVE-2015-3297 and -4085: Etherpad, a real-time

collaborative document editor,20 normalized then transformed

18This reference may not be removed and the only way to prevent its
traversal appears to be to prevent search of the directory or its parent as a
whole, which is rather extreme.

19For brief contrast, a more capability-system style design would be that all
path traversals are confined relative to an explicitly stated directory and that
applications would explicitly hold “cursors” into the system; there would be
no “..” references in the filesystem itself. While such a model may make it
difficult to ask if a particular file is below some path in the file system, there
is very little call to know the answer. Oddly, many UNIX shells manually
interpret “..” internally, to prevent user confusion in the face of links [10].

20http://etherpad.org/

192192

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

client-controlled strings representing filesystem paths.21 In

CWE terms, the first bug is an instance of “CWE-172: Encoding

Error”, specifically “CWE-180: Incorrect Behavior Order:

Validate Before Canonicalize.” In the second case, “CWE-182:

Collapse of Data into Unsafe Value” appears to be the correct

designation. In both cases, clients can craft paths to reference,

and cause the server to read for the client, arbitrary files on

the server system. In Sandstorm, each Etherpad document is

a separate grain, so as with ShareLaTeX, users could exploit

pads to which they have access but no others.

c) CVE-2015-5382 (AKA CVE-2015-8794): The

Roundcube web-mail program22 contained an inadvertent

implementation of cat: an authenticated user could request

an arbitrary absolute file name and the server would read

back the contents.23 This may be an example of “CWE-36:

Absolute Path Traversal” (if the intent was to allow only

relative paths) or “CWE-73: External Control of File Name

or Path” (if restrictions were intended but never implemented).

Again, clients can construct requests to read arbitrary files on

the server, including other users’ mail. Each Sandstorm grain

of Roundcube manages but one user’s mail, rendering this

moot: a user can read only that which they could already read.

We can see that the path traversal vulnerabilities take many

forms, but that the unusually fine-grained sandboxing of

Sandstorm mitigates the problem. Applications which, unlike

the examples given above, continue to maintain differing

permissions for different subsets of agents and objects will

continue to be at risk of bugs which unintentionally bestow

rights to agents, including accidental information disclosure

and unintended path traversals in particular. While one can

hope to mitigate the damage, ultimately, sandboxing cannot

eliminate the burden of correctness within a grain. However,

often (admittedly, not always), the need for such difficult

authorization juggling is precisely the lack of fine-grained

partitioning! All three applications listed above, when run

outside of Sandstorm, attempt to restrict users to access only

their objects (i.e., documents and email); wrapping these

applications in a capability system removes this need as, within

a grain, there is no longer any information which a user is not

authorized to see.

2) Other Information Disclosures: CVE-2015-5383 is a case

of “CWE-532: Information Exposure Through Log Files” (as

well as possibly “CWE-117: Improper Output Neutralization for

Logs”) in Roundcube; log files were visible to unauthenticated

users. The Roundcube log occasionally contains authentication

cookie text; this would allow anyone to impersonate a legitimate

21The fix to the first CVE is https://github.com/ether/etherpad-lite/commit/
9d4e5f6 and corrects backslash characters’ replacement with slashes (an attempt
to reconcile different platforms’ directory separators) after checking that the
path had not escaped the server’s intended directory. (In passing, we note
that CVE-2015-3309, not enumerated on the Sandstorm non-events page, is a
follow-up to this being an incomplete fix, missing identical code elsewhere in
the software.) The second is fixed by https://github.com/ether/etherpad-lite/
commit/5409eb3; here, a client-controlled suffix was concatenated to a server
prefix with only the first occurrence of “..” eliminated and no validation was
performed.

22https://roundcube.net/
23http://trac.roundcube.net/ticket/1490379

user.24 The Sandstorm port of Roundcube hosts only one user’s

mailbox, largely mooting this vulnerability. Generally speaking,

log leakage from within a Sandstorm sandbox is unlikely to

be catastrophic due to the fine-grained nature of instances

and Sandstorm’s access control.25 However, Sandstorm sharing

URLs intended for user distribution may be unintentionally

shared through such leaks (e.g., if Roundcube improperly

included one email body in a message to another address); the

only silver lining there are the possibility of auditing to reveal

the flow of (unintentional) delegation and the ease of revocation.

3) Code Injection: In addition to mitigating “passive” attacks

like path traversals, fine-grained sandboxing and the attendant

permissions management performed by the Sandstorm core

largely moots many code injection exploits wherein an attacker

comes to run adversarially-chosen instructions server-side.

Often, the only possible attackers are users with full access to

the grain, and the Sandbox should prevent cross-grain attacks.

CVE-2015-0934 is a case of “CWE-77: Improper Neutral-

ization of Special Elements used in a Command (’Command

Injection’),” wherein ShareLaTeX could execute arbitrary

commands when given file names involving back-quotes. Only

users with write access can trigger this bug, and each grain

contains only one document, rendering it useless.

TinyTinyRSS (TTRSS), a RSS reader,26 suffered a SQL

injection (“CWE-89: Improper Neutralization of Special Ele-

ments used in an SQL Command (’SQL Injection’)”) attack,27

enabling authenticated users to take complete control of the

server. On Sandstorm, each TTRSS grain is typically unshared,

the sole capability to it held by its creator.

Last, CVE-2014-5203 in the WordPress web framework28 is

a classic language security problem: it is a case of “CWE-502:

Deserialization of Untrusted Data” due to “CWE-354: Improper

Validation of Integrity Check Value;” in particular, the integrity

check was done after deserialization.29 (Further, the hash used

was MD5, making this “CWE-327: Use of a Broken or Risky

Cryptographic Algorithm,” too.) This bug, too, required write

access to exploit.

As with path traversal vulnerabilities (§ II-D1), these

particular vulnerabilities are not terribly interesting: they either

require write access or are to grains typically kept private to

a user. In principle, however, code injection attacks could be

used to escalate permissions. If, for example, read access to

one object is sufficient authority to invoke the code injection

bug, then a user intended to have only that authority in fact

has read/write access to the entire application.

4) Kernel Vulnerabilities: Sandstorm is a shared-hosting

infrastructure: it potentially hosts applications on behalf of

24http://trac.roundcube.net/ticket/1490378
25Once the aforementioned “powerbox” features are more widely used,

grains will hold capabilities to other objects in the system. These capabilities
will be bound by Sandstorm to be useful only to the grain that holds them,
making them un-leakable by information disclosure.

26https://tt-rss.org
27No CVE is assigned for this vulnerability; see http://security.szurek.pl/

tiny-tiny-rss-blind-sql-injection.html;
28https://wordpress.com/
29http://openwall.com/lists/oss-security/2014/08/13/3

193193

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

multiple users. As such, in addition to mitigating attacks

against applications by users or third parties, must protect

applications from other applications resident on the same host.

Because all communication is forced through the Sandstorm

core, applications see each other as foreign agents, so there is

no risk of inadvertent cross-application escalation of privileges

due to seeing requests from loopback addresses or similar (a

common form of “CWE-266: Incorrect Privilege Assignment”).

However, the local kernel is a high-value target for malicious

applications: successful compromise offers unlimited control of

the entire hosting machine, including the Sandstorm supervisor

and all applications running there. The Sandstorm security

non-events page enumerates 24 CVEs completely obviated

by Sandstorm’s use of system-call filtering (seccomp-bpf).

This filter is obviously effectively reducing the Linux kernel’s

attack surface.

However, system call filtering is not a panacea: at least three

kernel-vulnerability CVEs remain possibly applicable (CVE-

2014-9090 and -9322, possibly best categorized as “CWE-755:

Improper Handling of Exceptional Conditions,” and CVE-2016-

2069, a particularly exotic form of “CWE-416: Use After Free”).

These bugs are fundamental problems in the kernel’s state ma-

chine and no user-land mitigation is possible. Some small solace

can be taken from the apparent difficulty of reliable exploitation.

III. MULTI-USER SANDSTORM

A. Sandstorm Multi-User Interface

Revisiting the ShareLaTeX example above, when the owner

of a grain (hosting a single document, recall) is ready to share

the document with collaborators (in a read-write manner) or

for review (in a read-only manner), she asks the Sandstorm

core itself, not ShareLaTeX, to grant access to this grain and

is given a URL representing the appropriate level of access.

A single-document ShareLaTeX grain is particularly

amenable to the kinds of permissions that Sandstorm un-

derstands well: there is just one permission bit (write or

not) beyond access to a grain. Thus, the Sandstorm port

of ShareLaTeX no longer maintains its own notion of user

authentication and user authorization, though it retains the

notions of concurrent access to one document by multiple

agents and the authority required by particular requests (i.e.,

read or write). Our goal that all well-formed requests are

authorized means that the sole check of a request to determine

authority is one of syntax: any request to mutate the document

must be stamped with a Sandstorm header that indicates that the

requestor has write access. If this is so, it must be authorized

according to the Sandstorm core capability system; if not, the

request is not well-formed and can be aborted as such.

Sandstorm’s capability system contains an unusual feature

intended to make human understanding of delegation simpler:

if a user comes to hold multiple capabilities to a grain (or

object, more generally), their rights are the union of the

rights conferred by any of those capabilities. Any request

made by that user to that grain will be labeled with this

union. Revocation or dynamic attenuation will prompt the

recomputation of a user’s rights, as expected. The net effect

is a familiar user interface: when a user visits a grain, they

are always able to use all permissions given to them, even if

those permissions were granted separately. This glosses over

the capability implementation details of Sandstorm.30

B. Implementation

When references must be serialized for presentation, such as

when users wish to share a grain by URL, Sandstorm provides

to the users an opaque, unforgeable sharing URL. These long,

random bit-strings are the computational approximation of the

infinite formal language of § I-B and their opacity ensures

an absence of LangSec bugs such as path traversals.31 The

Sandstorm supervisor is responsible for mapping these URLs

back to capabilities within the system (and is the sole agent

in the system that can), including checking for validity and

revocation. This life-cycle management is entirely implemented

in the Sandstorm core;32 applications are largely oblivious and

are simply told what (application-defined) rights are associated

with every incoming request.33

Apps that run on Sandstorm can leverage these trusted

headers to make it easier to audit them for security. Note that

there is a syntactic LangSec opportunity here! The application

(and its API) should be structured so that it is easy to deduce

from the request what rights are required, so that this can

be compared against the set of rights asserted by Sandstorm.

In a traditional web application, this is often the case, by

recommendation: POST and PUT verbs are used for things

requiring some kind of mutation authority while GET is

typically used for read-only actions, and, moreover the path of a

URL often straightforwardly corresponds to more refined rights

(e.g. objects within an /admin/ path may require greater

permission to access than other paths). Sandstorm replaces the

application’s “weird machine” which maps requests to users

to authority with a (hopefully) simpler machine which maps

30This does increase the risk of a “confused deputy” attack [5], in which a
user is tricked to into carrying out operations on a grain by another agent that
does not have the requisite authority. The tradeoff in favor of simplicity is
probably justified in that we may expect humans to exercise better judgement
than autonomous software agents. This unioning of rights does not happen for
capabilities held by software.

31There are emerging interfaces in Sandstorm for sharing different views
of an application, including access to specific objects (recall § II-C); here,
Sandstorm hides the application’s potentially insecure object identifier (e.g.,
row ID in a database) behind its unforgeable URL.

32A major design requirement is that Sandstorm be aware of all capability
passing within the system it constructs. The restrictions on tokens ensure,
among other things, that applications which are permitted to exchange data
(using capabilities) cannot exchange capabilities without explicit authorization.
This mitigates accidental leakage and enables auditing of permissions, and
is crucial for enforcing the “*-property” of confinement [7]. That is, merely
knowing the bytes of a Sandstorm capability representation is not necessarily
sufficient to use that capability.

33Sandstorm additionally informs the application of the “display name” of
the user making the request and, for legacy applications’ use, provides a hash
of the user’s identity as a surrogate “user name”. While not viewed as ideal
by all Sandstorm developers, some applications’ Sandstorm ports use this
information to update the application’s authorization database and then run
existing code unmodified, as if the user had logged in.

194194

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

requests to required authority which is then checked against a
trusted part of the request itself.34

1) Authorization Vulnerabilities: CVE-2015-2298 is an

information disclosure vulnerability in Etherpad whereby a

request to export a pad’s contents by its server-side identifier

exports the contents of all pads whose identifiers contain the

requested one as a substring, regardless of the requesting agent’s

authority.35 It is, in one sense, a standard LangSec-esque bug,

a failure to normalize input into a lookup so that it carried

out exact, rather than substring match, but we prefer to think

of it as a missing autorization check. Like the path traversals

in Etherpad, this bug is completely neutralized in Sandstorm:

each grain has only one document and so even overzealous

selection code can only select that one document. A user with

sufficient privileges to request export already has sufficient

rights to read that document directly.

CVE-2015-9038 is a WordPress vulnerability in which

an unauthenticated attacker can induce WordPress to make

HTTP requests of itself. WordPress, like many other programs,

recognizes these “loopback” connections and endows them

with additional rights under the premise that only a machine

administrator could cause them to be made. That is, these

connections are given ambient authority merely by virtue of

their source, and requests from the application itself, naturally,

share that source. This particular vulnerability is exploitable

under Sandstorm only by users holding editor or administrative

access to the WordPress grain, largely rendering it unimportant:

an attacker gains no more authority than they previously had.

Applications should be discouraged, as a general rule, from

providing ambient authority to loopback connections and should

instead ensure that there is some explicit token indicating that

the request came from an administrator.

While the above bugs have straightforward resolution under

Sandstorm, missing or broken authorization checks are a real

risk. Sandstorm’s simplified story of being able to replace all

authorization checks with simpler syntactic-well-formedness

tests on requests has the potential to make it much easier to

not only audit, manually or mechanistically, that the checks are

in place, but, potentially, to automatically generate them from

high-level specifications. For example, it may be possible to

verify that all code paths leading to SQL INSERT statements

first check the trusted Sandstorm headers.

2) Authentication Vulnerabilities: Three of the CVEs doc-

umented (CVE-2015-9037, CVE-2014-9033, and CVE-2014-

0166) are in code involved in authenticating users or associated

functionality within WordPress. CVE-2014-9033 is a CSRF

vulnerability, a class we will address in the next section. CVE-

34When all is said and done, a HTTP application running under Sandstorm’s
supervision is given a “X-Sandstorm-Permissions” header as part of its requests.
This header is generated by the Sandstorm HTTP bridge from information
carried within the Cap’n Proto encoding of the request from the supervisor
and, ultimately, its content derives from the capabilities held by the agent
making the request. Crucially, the client may not influence the value of this
header; it would not transit the HTTP application component of the Sandstorm
core. Its format is a comma-separated list of alphanumeric identifiers; it is
designed to be easy to unambiguously parse.

35https://github.com/ether/etherpad-lite/commit/a0fb6520

2014-0166 and CVE-2015-9037 both arise as a result of PHP’s

implicit coercion for comparisons (“type juggling”);36 here, an

MD5 output from a password hashing function could be coerced

and compared incorrectly (“CWE-187: Partial Comparison”).

However, the vulnerable code is simply unused on Sandstorm,

where user authentication and authorization logic is centralized

to the core and therefore reusable across all applications and

independently testable.

IV. SESSIONS AS CAPABILITIES

The Web is a scary platform on which to build secure

software, as it was largely not designed with security in mind;

the attack surface of a modern web application is not only the

endpoints running on the server but also its JavaScript running

client-side (as well as any JavaScript that could be loaded from

the same host, even from a different application, due to the

web’s “same origin policy”37), the client JavaScript engine, any

unintended interactions between resources within the client,

etc. We discuss some of the effort Sandstorm invests in closing

Web-specific bugs, the CVEs mitigated and not, and briefly

look towards future plans for increasing platform security.

A. Implementation

In order to ensure that only the anticipated user may access

a particular grain, every session (i.e., an individual user’s

access to individual grain) is given a cryptographically-random

hostname and old names are expired from the Sandstorm core

quickly; Sandstorm itself uses a session cookie to authorize

access to a particular generated hostname.38 Thus, despite

Sandstorm not altering the display content of grains, a measure

of unforgability is introduced into all requests. While the

hostnames are leaked by the client in clear-text (due to DNS and

TLS SNI), they are still difficult for off-network-path attackers

to forge. The session cookie is guarded against evesdroppers

by wire cryptography and against exfiltration by the user’s

web browser. While not a complete solution, these tricks do

mitigate real security vulnerabilities.

B. Security Impact

1) CSRF vulnerabilities: A popular attack vector against

(web) applications is “CWE-352: Cross-Site Request Forgery,”

(CSRF or XSRF) wherein a resource provided by one server (A)

causes the client to make requests of another server (B). This

kind of linkage is fundamental to the Web’s success, but care

must be taken to ensure that privileged requests (of B) are not

merely authorized (i.e., made by a client with sufficient access

to B) but deliberate. Failure to properly vet requests is rampant;

the Sandstorm security non-events page enumerates five in its

sampling (CVE-2014-5204, CVE-2014-5205, CVE-2014-9033,

CVE-2014-9587, and CVE-2015-5731).

36As documented at http://php.net/manual/en/language.types.type-juggling.
php. The author contends that this “feature” could not have been better designed
to produce LangSec issues.

37https://www.w3.org/Security/wiki/Same Origin Policy
38See “Client Sandboxing” at https://docs.sandstorm.io/en/latest/using/

security-practices/.

195195

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

CSRF vulnerabilities can be viewed in at least two lights.

First, as LangSec bugs: (web) applications, with their open

channels of communication (where nearly arbitrary clients may

make requests) must ensure that multi-stage communication

with their clients recognizably bind together the client’s

next answer to the application’s previous response. A web

application must generate content for the client that will, in

turn, cause the client’s next request to attest continuity of

conversation. That is, CSRF protection amounts to a recognizer

of requests that are authorized to convey a user’s authority.

Second, we may also understand CSRF attacks as a failure

of the web to offer unforgeable capabilities to make requests

bearing the user’s authorization: the attacker is able, with

cooperation of the client (and its authorization by B) to convert

a sequence of bytes into a capability they should not hold.

Indeed, popular mitigations are excitingly similar to those used

by capability systems; most often, CSRF protection involves

embedding cryptographically random nonces in ways that will

be echoed back to the server by legitimate requests but will

be omitted or incorrect in forged requests.

Sandstorm’s creation of a unique hostname for each session

implies that a would-be attacking server A must either guess

the hostname (impractical if Sandstorm’s randomness is not

severely flawed) or obtain the hostname by sniffing client traffic

(requiring that the attacker be in a position to do so; CSRFs

are powerful in most settings precisely because they do not

typically have this requirement). Because CSRF requests are,

ultimately, made by the user’s client, the session cookie will

be passed along with them. While less ideal than correct CSRF

protection, the use of unguessable hostnames still raises the

bar of exploitation and acts as a form of failsafe.

2) XSS attacks: The web as a platform is also vulnerable to

so-called “Cross-site Scripting” (almost always abbreviated as

XSS) attacks, designated “CWE-79: Improper Neutralization

of Input During Web Page Generation (’Cross-site Scripting’).”

The simplest sub-class of XSS are “reflected XSS” attacks

in which a malicious agent crafts a URL to a vulnerable

server in such a way that the server embeds attacker-controlled

content into the material the server feeds to the client, escaping

the intended grammar of the server’s response: a classic

LangSec problem. When the client loads this URL, it will

consider the provided material to be server-originated, and so

any scripts therein will run with appropriate privileges. The

Sandstorm security non-events page contains two reflected XSS

attacks (CVE-2015-2213 and CVE-2015-5381 (confusingly,

also known as CVE-2015-8793)), mitigated by Sandstorm in

the same way as CSRF requests: the malicious agent must know

the name of the vulnerable application host, which is unlikely.

The third XSS attack on the security non-events page is

CVE-2015-1433 and is correctly listed as not mitigated at

all. This is a vulnerability in Roundcube’s display of email

to clients, allowing attackers to email victims JavaScript that

will be executed when the mail is rendered.39 As Sandstorm

does not alter the content served by applications to clients,

39http://trac.roundcube.net/ticket/1490227

this exploit continues to work. Future work on Sandstorm

will strengthen the client-side sandboxing, rendering similar

XSS attacks unable to communicate outside the vulnerable

application. Despite that, these more advanced (“non-reflected”)

XSS vulnerabilities represent a serious threat to all web

applications, even when within Sandstorm’s sandbox, as there

appears to be little possibility of automatic, external mitigation

that would eliminate unintended actions within the application

given the design of the web platform.40

However, the platform is changing with time. The W3C has

defined a “Content Security Policy” (CSP) mechanism41 to

address XSS vulnerabilities. CSP achieves its protection by

allowing web resources to specify, in their response headers,

origins for resources, including JavaScript and CSS, that may

be legitimately referenced by the body content; of particular

note is the ability to disable so-called “inline” and “data URI”

resources. This raises the bar of XSS attacks: the response

body often deliberately contains text from numerous sources

(including email messages, as we see with CVE-2015-1433),

requiring extensive LangSec mitigation to ensure that the

composite XML/HTML document ascribes to the structure

intended by the application, while the response headers are

likely specified fully by the application itself.42 Sandstorm

does not yet support CSP, but support is planned.

V. CONCLUSION

Security and privacy of computation has, historically, largely

been an afterthought, both within individual products, where

having something that works is more important than something

secure, and within the discipline of computing as a whole,

where most efforts originated in small groups of mostly-

mutually-trusting individuals. Most systems are, thus, either

through design or oversight, “public by default.” Capability

systems, with their goal of minimizing ambient authority, offer a

vision of a “private by default” world. Moreover, the mechanism

of capability systems offers the potential to turn authorization

decisions into easily verified syntactic constraints on requests:

every well-formed request which can be stated is authorized.

Sandstorm builds on such a system and allows users to track

how far access has been shared (i.e., what incoming capabilities

exist to each grain) as well as revoke access at any time. The

strong reduction in ambient authority imposed on applications

hosted within Sandstorm can further mitigate or eliminate

many flaws in application software. Expressed another way,

Sandstorm-like supervisors potentially reduce the difficulty of
developing secure multi-user software.

40It is similarly possible for an application to suffer from “non-reflected
CSRF” vulnerabilities, too, if, for example, it is possible to embed attacker-
controlled relative URLs into displayed documents.

41https://www.w3.org/TR/CSP2/
42Of course, the design of the web platform is such that response bodies

make frequent indirect reference to other resources, i.e. by URL. http and
https schemes do not have a mechanism for binding to the expected response
body; for security-sensitive resources, such as JavaScript and CSS, this loss
of binding between intended resource and name could be leveraged into code
injection by an attacker. An emerging technology called “Subresource Integrity”
(SRI; https://www.w3.org/TR/SRI/) allows pairing a URL with the hash of
the expected response body.

196196

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

MITRE’s CWE vulnerability ontology is an interesting

intellectual exercise but encourages a reactive, point-wise

approach to security, fixing individual exploits as they are

discovered. Many of its entries are predicated on the existence

of structured, malleable remote references, such as exposed

local file paths. By reinforcing the notion that the problem

is merely in how these references are filtered, we worry that

CWE encourages perpetuation of dangerous designs rather than

proposing alternatives which cannot, by construction, suffer

from these flaws.

VI. ACKNOWLEDGEMENTS

We are deeply indebted to Asheesh Laroia, Kenton Varda,

and Drew Fisher for their work on Sandstorm and many, useful

suggestions for this paper. We would like to thank, as well,

our anonymous reviewers for their excellent feedback.

REFERENCES

[1] Jack B. Dennis and Earl C. Van Horn. Programming

semantics for multiprogrammed computations. Commun.
ACM, 9(3):143–155, March 1966. ISSN 0001-0782. URL

http://doi.acm.org/10.1145/365230.365252.

[2] M. S. Doerrie. Confidence in Confinement: An Axiom-free,
Mechanized Verification of Confinement in Capability-
based Systems. PhD thesis, Johns Hopkins Univer-

sity, July 2015. URL http://www.doerrie.us/assets/

doerrie-dissertation-jhu.pdf.

[3] Adele Goldberg and David Robson. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1983.

ISBN 0-201-11371-6.

[4] Robert David Graham and Peter C. Johnson. Finite state

machine parsing for internet protocols: Faster than you

think. In Proceedings of the 2014 IEEE Security and
Privacy Workshops, SPW ’14, pages 185–190, Washing-

ton, DC, USA, 2014. IEEE Computer Society. ISBN

978-1-4799-5103-1. URL http://www.cs.dartmouth.edu/
∼pete/pubs/LangSec-2014-fsm-parsers.pdf.

[5] Norm Hardy. The confused deputy: (or why capabilities

might have been invented). SIGOPS Oper. Syst. Rev., 22

(4):36–38, October 1988. ISSN 0163-5980.

[6] Butler W. Lampson. Protection. SIGOPS Oper. Syst.
Rev., 8(1):18–24, January 1974. ISSN 0163-5980. URL

http://doi.acm.org/10.1145/775265.775268.

[7] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capa-

bility myths demolished. Technical report, 2003. URL

http://zesty.ca/capmyths/usenix.pdf.

[8] Common Vulnerability Enumeration: The Standard for
Information Security Vulnerability Names. MITRE Inc.,

1999. URL https://cve.mitre.org/index.html.

[9] Common Weakness Enumeration: A Community-
Developed Dictionary of Software Weakness Types.

MITRE Inc., 2006. URL https://cwe.mitre.org/index.html.

[10] Rob Pike. Lexical file names in plan 9 or getting dot-

dot right. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’00.

USENIX Association, 2000. URL http://plan9.bell-labs.

com/sys/doc/lexnames.html.

[11] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey,

and Phil Winterbottom. The use of name spaces in

plan 9. In Proceedings of the 5th Workshop on ACM
SIGOPS European Workshop: Models and Paradigms for
Distributed Systems Structuring, EW 5, New York, NY,

USA, 1992. ACM. URL http://plan9.bell-labs.com/sys/

doc/names.html.

[12] E. Poll, J. D. Ruiter, and A. Schubert. Protocol state

machines and session languages: Specification, imple-

mentation, and security flaws. In Security and Privacy
Workshops (SPW), 2015 IEEE, pages 125–133, May 2015.

URL http://cs.ru.nl/E.Poll/papers/langsec draft.pdf.

[13] Jonathan Shapiro, Michael Scott Doerrie, Eric Northup,

Swaroop Sridhar, and Mark Miller. Towards a

verified, general-purpose operating system kernel,

2004. URL http://www.coyotos.org/docs/osverify-2004/

osverify-2004.html.

197197

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 21:02:06 UTC from IEEE Xplore. Restrictions apply.

