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Abstract—TCP suffers from low throughput and high latency
because of its expensive timeout based loss recovery mechanism
in data center networks (DCNs). In this paper, we propose TCP
with Adaptive Complementary Coding (TCP-ACC) to effectively
address these problems. Without revising existing TCP congestion
control, we first design a light-weight complementary coding
scheme to avoid TCP timeout which will result in higher
throughput and lower latency. In our scheme, the redundancy
setting is adaptive to the real-time packet loss rate. Then we
introduce Lyapunov optimization framework to find the optimal
number of redundant coding packets for TCP-ACC, and we also
prove that TCP-ACC can reduce the flow timeout probability
close to that of the optimal complementary coding solution.
Extensive NS2 simulations show that, compared with other three
solutions for TCP’s problems in DCNs, TCP-ACC can reduce the
flow completion time by 45% and improve the flow throughput
by 40% on average.

I. INTRODUCTION

TCP is the dominant transport protocol in today’s data
center networks (DCNs) which have been the infrastructures
for Internet and cloud computing. However, the widespread
TCP has many inadequacies in meeting the throughput and
latency demand of Internet applications and cloud services.
First, TCP Incast [1], which refers to throughput collapse in
many-to-one communication pattern, has risen to be a critical
problem in DCNs. Since the many-to-one communication
pattern widely exists in many Internet applications and cloud
services (eg., web search and Map-Reduce), this problem
could badly degrade their performance. Second, in DCNs,
short TCP flows often suffer from high delays when long TCP
flows occupy the link bandwidth for a long time. Since a large
portion of traffic in DCNs is short flows which are latency
sensitive and latency inversely correlates with business profit
(Amazon estimates every 100ms of latency costs them one
percent profit [2]), this problem is also critical for TCP in
DCNs.

Actually, both of the two problems are highly related with
TCP timeout. In the case where TCP Incast occurs, since no
TCP sender can transfer a new data unit to the receiver until
all senders finish transferring their current data units, even one
flow’s timeout can significantly reduce the whole throughput
of all the flows. Moreover, timeout can easily prolong the flow
completion time (FCT), which is the main metric of latency.
Unfortunately, TCP timeout is common in today’s DCNs. The
authors of Corrective take a measurement of billions of TCP

connections from clients to Google DCNs and found that
about 10% of the TCP flows beget at least one packet loss.
Furthermore, among all the losses in the measurement, 77%
are recovered by timeout [3].

To improve TCP performance on throughput and latency
in DCNs, many solutions that focus on avoiding timeout are
provided [4]–[8]. Compared with transport layer solutions
which need to make changes on switches or network interfaces
(e.g., DCTCP [5], ICTCP [7] and ICaT [8]) and application
layer solutions which spend expensive overhead costs in global
real-time scheduling (e.g., [9], [10]), redundant transmission
based solutions show great advantages in deployment and
system overhead, and thus become research hotspots.

Existing redundant transmission based solutions for avoid-
ing TCP timeout in DCNs can be grouped into two categories.
The first is pure redundant transmission, which means that
the redundancy is original flow [11], [12] or packet [1]. The
second is coding redundant transmission, which means that the
redundancy is coded packet (mixed by original packets [3].
Compared with pure redundant transmission, coding redun-
dant transmission could be more efficient, since the coded
redundant packet can recover any original packet mixed in
it [13]. However, the existing coding redundant retransmission
based solution (e.g., Corrective [3]) still has weaknesses and
can be improved.

In this paper, we present a novel coding redundant transmis-
sion based solution named TCP with Adaptive Complementary
Coding (TCP-ACC) to improve TCP performance on through-
put and latency in DCNs. Without revising TCP’s congestion
control mechanism, we first design a light-weight coding
scheme to prevent timeout and ensure consist transmission for
flows. Compared with Corrective, TCP-ACC is more flexible
in redundancy setting and can recover multiple losses in one
window. Second, to determine the optimal number of redun-
dant coding packets in our scheme, we model and analyze
the tradeoff between avoiding TCP timeout and aggravating
network congestion by a Lyapunov optimization method [14].
By fast solving this model, TCP-ACC can adapt its coding
redundancy to the real-time packet losses in an near optimal
way, and thus can effectively improve TCP performance on
both throughput and latency. Analysis on this model also
proves that TCP-ACC can reduce the flow timeout probability
close to that of the optimal complementary solution. To the
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best of our knowledge, this is the first work that shows how
to apply the Lyapunov optimization method to schedule the
coding process. We carry out extensive simulations on NS2
to compare the performance of TCP-ACC with other three
solutions for TCP’s problems in DCNs. Simulation results
show that TCP-ACC can nearly halve the FCT and double
the throughput with different flow arrival rates and flow sizes.

The remainder of this paper is organized as follows. We
first introduce the related works in Section II. In Section III,
we present the details of our TCP-ACC scheme. We further
provide a Lyapunov optimization model for our complemen-
tary coding scheme and analyze it in Section IV. We evaluate
the performance of the proposed schemes in Section V and
conclude our work in Section VI.

II. RELATED WORKS

As mentioned before, the transport layer solutions for avoid-
ing TCP timeout in DCNs include DCTCP [5], ICTCP [7] and
ICaT [8]. DCTCP employs the early congestion notification
(ECN) scheme to keep a small switch queue length. ICTCP
utilizes the dynamical Advertised Window (awnd) to help
adjusting the sending rate. ICaT proposes admission control
for TCP flows to ensure that the flow number would not
exceed the capacity of the network. However, they need to
make changes in network devices such as routers, switches
and network interfaces. What’s more, these new protocols
are far less mature in robustness. For example, ICTCP only
focuses on the incast scenarios where the last hop must be the
bottleneck and DCTCP preforms poorly when the number of
nodes becomes large [7]. ICaT does not provide differentiated
services, some short flows may have no chance to get the
transmitting admission with a great probability. Being differ-
ent with the transport layer solutions, the application layer
solutions including [9], [10] manage to schedule the transfer
time of each TCP flow appropriately to avoid timeout, without
any modifications on switches or network interfaces. However,
the scheduling work is performed by a centralized server,
and also needs real-time information about all TCP flows
and the network status. This brings great system overhead on
computation and measurements.

Compared with the above solutions, redundant transmission
based solutions for avoiding TCP timeout in DCNs have great
advantages in deployment and system overhead. As mentioned
before, the pure redundant transmission based solutions in-
clude pure flow redundant transmission Repflow [11], More-is-
less [12] and pure packet redundant transmission scheme GIP
(Guaranteeing Important Packet) [1]. In data center networks,
the need of low latency outweighs the demand to save band-
width for short flows which are delay sensitive [5]. Repflow
and More-is-less replicate short flows to reduce their delay.
GIP redundantly transmits the last packet of a stripe unit to
avert timeout for fast retransmission. However, they can only
recover the specific losses which are redundantly transmitted.
The coding redundant transmission based solutions include
Corrective [3], which adds a random linear combination of
the packets in the congestion window as the transmission

redundancy. Corrective can recover single packet loss in one
window without loss detect delay and retransmission delay.
Compared with the pure redundant transmission based solu-
tions, Corrective can provide better transmission reliability,
loss-tolerance and faster loss recovery. However, Corrective
still has two major shortcomings. First, it cannot adapt to
the case in which more than one packet in one window
losses. Second, its coding redundancy is fixed (e.g., one coded
packet for each congestion window), which should be more
flexible to network status. For example, when the TCP timeout
probability is not high, the redundancy may be unnecessary,
since it can not only influence TCP’s congestion control but
also make the congestion even worse.

The above weaknesses motivate us to propose a novel
coding redundant transmission based solution, which will be
introduced in the next sections.

III. DESIGN OF THE ADAPTIVE COMPLEMENTARY
CODING SCHEME

In this section, we first introduce the framework and no-
tations of TCP-ACC, and then present the details about the
sender and receiver operations in our scheme respectively.

A. Framework and notations

The compatibility is essential to the design of TCP exten-
sions. Middle-boxes are widely used but hard to handle, which
make the design of TCP with coding technology more com-
plex [15]. TCP-ACC retains the framework of TCP/NC [13]
which contributes to good compatibility with existing protocol
stacks. Inspired by TCP/NC, the ACC layer in TCP-ACC is
added between the TCP and IP layer to implement the light-
weight coding. It can make full use of the TCP information on
loss and congestion to estimate the online timeout probability,
and then adaptively generates complementary coding packets
for loss recovery.

At the sender side of TCP-ACC, we store TCP packets
in a buffer queue and remove them when they are acknowl-
edged. TCP-ACC adopts the simple random linear coding by
applying the header structure of the coding layer proposed
in TCP/NC [13]. In the coding header, the sequence number
of the newest acknowledged packet is denoted as base. The
packets whose sequence number is less than base will never
be coded and can be removed safely from the ACC layer.
The number of packets involved in the linear combination of
coding is denoted as n. Specially, we set n as zero when the
packet is an original TCP packet.

The TCP/NC is primarily designed for lossy wireless net-
works, in which every TCP packet should be coded to over-
come the random wireless losses. However, DCNs are known
as high-throughput and low-latency networks [5], [7], where
applying such a heavy coding technology would incur high
computation and transmission overheads. Hence different from
TCP/NC, the sender of TCP-ACC will transmit redundant
coding packets only when it detects a high timeout probability,
otherwise, it sends original packets. This is what comple-
mentary coding means: coding when needed to complement
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the losses. In this work, we will show that a light-weight
coding technology is possible and effective to improve TCP
performance in DCNs.

At the receiver side, we additionally add the number of
losses (denoted as d) in the newly generated ACKs, which in
turn helps the sender to compute the real-time loss rate and
adjust the coding redundancy. Once the sender gets the loss
number d form the feedback, it can recover multiple losses in
a same congestion window during single RTT. This is because
the loss recovery of coding does not require the information
about which packets are lost [13]. However, even Corrective
and other standard TCP variants, like TCP NewReno which is
popular in DCNs, can only recover one loss during one RTT.

For clarity, we list the notations and their meanings used in
the later subsections as below.

• d: the loss number of packets at the receiver.
• dlast: the last value of d.
• dnew: the difference loss number between two contiguous

ACKs.
• p: flow loss rate.
• w: the size of TCP congestion window.
• P t: flow timeout probability.
• c1: the number of complementary coding packets at the

end of a TCP congestion window.
• c2: the number of complementary coding packets when

there are packet losses.
• cmax: the max number of complementary coding packets.
• lc: the latest coded packet’s sequence number.
• all acked: a boolean variable to indicate whether the

packets in the last congestion window are all acknowl-
edged. Its initial value is true.

B. Sender operations in complementary coding design

At the sender side, TCP-ACC uses the light-wight coding
redundancy to reduce the flow timeout probability while
keeping necessary congestion control. The sender utilizes the
new loss number dnew and the size of TCP congestion window
w to calculate the real-time loss rate p and the timeout
probability P t. Then it adds proper complementary coding
for flow transmission.

The sender will handle two different events at the ACC
layer. First, Event I is triggered by packets arriving from the
upper TCP layer. In this event, the sender will not only send
the original TCP packet but also generate coding redundancy
at the end of a congestion window if the current value of P t is
high. Second, Event II is triggered by ACKs from the receiver,
in this event the ACC sender will update the estimation of P t

based on d.
According to TCP’s congestion control, a flow will meet

timeout at two situations: (1) There are too many packets are
lost in a TCP congestion window (usually more than three); (2)
When packet losses occur, unfortunately, the retransmission
packets from the sender are also lost [8]. Correspondingly,
we should make complementary coding to address the flow
timeout problems in both of the two situations. The number

of complementary coding packets in Event I and Event II is
denoted as c1 and c2 respectively.

1) Operations in Event I: The core idea of the sender-
side operations in ACC is to properly schedule the coding
process based on real-time TCP timeout probability. In this
way, a flow can keep stable transmission while avoiding simple
retransmissions caused by expensive timeouts. However, we do
not make complimentary for every TCP congestion window,
because we should guarantee necessary congestion window
reduction for complying with the mandatory TCP congestion
control. Therefore, to help accurate TCP window adjustments,
there is no extra complimentary when the timeout probability
is low. In Event I, the sender should make c1 complementary
coding packets at the end of a congestion window to protect
flows with small TCP congestion window. It prevents the
delay-sensitive short flows from suffering large timeouts as the
switch buffer is often kept being occupied by long flows [5].

Since the TCP congestion window can not be obtained
directly at the ACC layer, we define Coding Congestion
Window (CCW) instead, in which the sender will generate
complementary coding to avoid the fisrt timeout situation. We
also use a variable all acked to help update the proper CCW.
When the packets in the last CCW are all acknowledged, the
packets which are sent but not acknowledged form the new
CCW. Therefore, when all acked is true, the current buffer
becomes a new CCW. When we send the coding packets from
the new CCW, the all acked flag is set as false.

When a packet arrives from TCP, the sender of ACC will
work as the following steps:

1) If the packet is a control packet used for connection
management, deliver it to the IP layer.

2) If the packet is a data packet
a) Add the packet to the buffer in ACC layer.
b) Add the ACC header base and set n = 0. Send it.
c) If all acked is true

i) Generate c1 coding packets mixing the packets in
the current CCW and

ii) Add the ACC header base and set n as the number
of original packets coded in the coding packets.

iii) Send the coding packets and update lc as the
sequence number of the last packet in CCW,
all acked as false.

2) Operations in Event II: When an ACK arrives, the
sender will check whether the last CCW is empty. Only when
the packet with sequence number lc is acknowledged, the
packets in the last CCW are all acknowledged. The current
buffer becomes the new CCW. In Event II the sender should
make c2 complementary coding packets to guarantee the
reliability of the retransmission packets when the sender senses
packet losses.

When an ACK arrives at the sender, it will work as the
following steps:

1) If lc is less than the sequence of the ACK, then update
all acked is true.

2) Remove the acknowledged packet from the CCW.
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3) Extract the loss number d and hand over the packet to
the TCP sender.

4) Update p and loss number d.
5) Set the new loss number dnew as dlast − d.
6) If dnew > 0

a) Generate c2 coding packets mixing the packets in the
current CCW and send the packets.

b) Add the ACC header base and set n as the number
of original packets coded in the coding packets.

c) Send the coding packets and set dnew = 0 and
dlast = d.

According to the above process, the sender will determine
the value of c2 based on the loss number provided by the
receiver. Intuitively, c2 can be set directly as the value of dnew.
However, c2 should be higher than the loss number in reality
because the coded packets may also be lost.

One key point of ACC is to determine the proper values
of c1 and c2. In ACC, the exact number of complementary
coding packets is not fixed but adaptive to the network state.
Specifically, the values of c1 and c2 can be adjusted according
to the detected packet loss probability p. Intuitively, c1 and
c2 should also increase as p increases, since more redundant
packets will be more effective to recover losses and avoid
timeout. However, this is not always the case because too many
redundant packets will further deteriorate network congestion
when the packet loss probability is already high. Therefore,
for ACC, there is a tradeoff between the ability of avoiding
Timeout and aggravating Congestion (named as T-C tradeoff
in the later), and the values of c1 and c2 should be determined
with a careful tradeoff. We develop an optimization model
for this tradeoff and solve it by the Lyapunov optimization
method, which will be presented in the next section (see
Section IV).

C. Receiver operations in complementary coding design

At the receiver side, there are two types of packets to handle,
the original packets and coded packets. When a new TCP
packet arrives, the receiver should first check whether it is
coded. Only when the value of n in the coding header is larger
than zero, it is a coded packet and requires decoding. The
detailed operations at the receiver are described as follows.

When a packet arrives at the receiver of ACC,
1) If the packet is a control packet used for connection

management, deliver it to TCP sink.
2) If the packet is a data packet

a) Remove the ACC header of the packet and remove
the packets whose sequence number is less than base
from ACC buffer.

b) If n is 0, add the the packet to the nc buffer. Deliver
it to the TCP sink.

c) If n is larger than 0, decode it by Gaussian-Jordan
elimination and deliver the decoded packets to TCP
sink.

d) Generate a new TCP ACK with the information of
the current loss number d and send it.

IV. DETERMINING THE OPTIMAL COMPLEMENTARY
NUMBER

In this section, we first model the T-C tradeoff through the
Lyapunov optimization method. By solving this model, TCP-
ACC can get the proper values of c1 and c2. Then we analyze
this model and prove the finiteness of the timeout probability
and the network congestion extent resulted from our scheme.

A. T-C tradeoff optimization

Consider the high performance requirements of distributed
applications in DCN, we take into account both the flow
transmission performance and coding overhead. To solve the
T-C tradeoff, we schedule a fast and effective complementary
coding process by introducing the Lyapunov optimization
framework, which is generally used as an online scheduler
design principle for optimizing two tradeoff factors [14].

The Lyapunov scheduler needs to decide the transmission
rate of complementary coding packets based on TCP timeout
probability which is decided by TCP loss rate p, the new loss
number dnew and congestion window size w. For the first
timeout situation, there are less than three duplicate ACKs to
trigger fast retransmission recovery for a congestion window.
Then the timeout probability P t1 is computed as follow:

P t1(w, p, c1) =

2∑
i=0

Cc1+w−i
c1+w pc1+w−i(1− p)i (1)

For the second timeout situation, when there are dnew new
losses occur, the retransmission packets are also lost. The
timeout probability P t2 is as follow:

P t2(dnew, p, c2) = 1−
c2∑
j=0

Cjc2+wp
j(1− p)c2+w−j (2)

Hence we have

P t(dnew, w, p, C) =

{
P t1(w, p, c1) , if the 1st timeout case

P t2(dnew, p, c2) , if the 2nd timeout case
(3)

To apply the Lyapunov optimization in our system, we
assume that the sender generates λ(t) coding packets every
RTT and we have a virtual buffer with capacity size of S
coding packets. The compensation packets we send to the
receiver every RTT is C(t). Consider a queueing network
Q(t) that denotes the remaining space of virtual buffer at
time t. We have to note that the definition of queue here is
not a conventional queue that used for buffering packets. It
is defined as the remaining space of virtual buffer deployed
at the source server. Note that Q(t) is a queueing network
that evolves in discrete time with normalized time. We can
visually see that as the queue gets longer(which means more
compensation packets are sent), the congestion will get heavier
but the timeout probability will get lower. Therefore, Q(t)
directly describes the congestion extent caused by sending
coding packets into the network.

Following the Lyapunov framework [14], to optimally con-
trol our dynamical system, the Lyapunov function can be
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defined as
L(t) =

1

2
Q2(t) (4)

Then the queue length change over time as below:

Q(t+ 1) = max[Q(t) + C(t)− λ(t), 0] (5)

where λ(t) and C(t) are arrivals and sending rates of comple-
mentary coding packets at time slot t respectively.

Denote the queue length as the performance cost of the
coding overhead at time t. Then the one-step Lyapunov drift
∆(t) is defined as:

∆(t) = L(t+ 1)− L(t) (6)

We add the timeout probability minimization objective into the
Lyapunov drift by the drift-plus-penalty form ∆(t) + V P t(t)
and generate the following lemma:

Lemma 1: Assume that the data arrival process λ(t), and
the transmission process C(t) have finite expectation, i.e., ∃
constants λ̃ and C̃ such that E{λ(t)} ≤ λ̃ and E{C(t)} ≤ C̃.
We have

∆(t) + V E{P t(t)}
≤ B + E{C(t)Q(t) + V P t(t)|Q(t)}+ λ̃Q(t)] (7)

where B , 1
2{λ̃

2 + C̃2}.
Based on Equ. (3), (4), (5) and (6), we can easily obtain the

above Lemma. Following the Lyapunov optimization theory,
we need to minimize the RHS of Equ. (7) at each time slot
t. It is equivalent to choose the optimal transmission rate
C(t) of the complementary coding packets for the following
optimization problem

Minimize C(t)Q(t) + V P t(t) (8)

where V is a constant control parameter and Q(t) is the queue
length that can be easily obtained at time t. P t(t) is the
exponential function of C(t) shown in equation (3).

Since P t(t) in the objective equation (8) has an exponential
form of the decision variable C(t) (shown in the equations
(1) and (2)), solving the optimal solution of C(t) to the
minimization problem will introduce a high computation over-
head. Considering the tradeoff between coding benefit and
computation overhead, we limit C(t) to be within a constant
value Cmax and thus enable a fast search of the suboptimal
solution of C(t) for the minimization problem. In this way,
we can set the value of c1 and c2 as C(t) at time slot t
corresponding to Event I and Event II respectively. On the
other hand, when there are dnew new losses occur, we should
take full advantage of coding technology to accelerate the loss
recovery. That is, if dnew < Cmax, the fast search of the
suboptimal solution of C(t) should be performed in the range
of [dnew, Cmax). In this way, we can transmit at least dnew
coding packets for fast retransmission.

B. T-C tradeoff analysis

In this section, we analyze the bound properties for both
the timeout probability and the queue length when using the

above Lyapunov-based method.
Theorem 1: Assume that the data arrival rate is strictly

within the network capacity region, and the above online
scheduling decision is applied at each time slot. For any
control parameter V > 0, it generates the time-average timeout
probability P t and time-average queue length Q satisfying:

P t = lim
Γ→∞

sup
1

Γ

Γ−1∑
τ=0

E{P t(τ)} ≤ P ∗ +
B

V
(9)

Q = lim
Γ→∞

sup
1

Γ

Γ−1∑
τ=0

E{Q(τ)} ≤ B + V P ∗

ε
(10)

where B and ε are positive constants. P ∗ is the theoretical
optimal time-average timeout probability.

Proof of Theorem 1: Since the arrival process is strictly
within the network capacity region, there exists one stationary
randomized control policy that can stabilize the queue [14],
which satisfies the following properties:

E{P t(t)} = P ∗ (11)
E{C(t)} ≥ λ, i.e., E{C(t)} = λ+ ε, (ε > 0). (12)

where P ∗ is the minimum achievable timeout probability using
any control policy that achieves the queue stability.

By applying (11) and (12) to (7), we have:

∆(t) + V E{P t(t)} ≤ B − εQ(t) + V P ∗ (13)

By taking the expection of (13) and applying iterative
expectation law, we have:

E{L(t+ 1)− L(t)}+ V E{P t(t)} ≤ B − εE{Q(t)}+ V P ∗

(14)
By summing (14) over all time slots t ∈ {0, 1, ...,Γ − 1}

and dividing by the time period Γ, we have:

E{L(Γ)− L(0)}
Γ

+
V

Γ

Γ−1∑
τ=0

E{P t(τ)} ≤ B− ε
Γ

Γ−1∑
τ=0

E{Q(τ)}+V P ∗

(15)
Since both the Lyapunov function and P t(t) are non-

negative, based on (15), we have:

1

Γ

Γ−1∑
τ=0

E{Q(τ)} ≤ B + V P ∗ + E{L(0)}/Γ
ε

(16)

1

Γ

Γ−1∑
τ=0

E{P t(τ)} ≤ P ∗ +
B

V
+

E{L(0)}
V Γ

(17)

Taking the limit as Γ→∞ for (16) and (17), we can obtain
the average timeout probability bound (9) and queue length
bound (10) respectively. This completes the proof.

According to Theorem 1, we can see that the time-average
timeout probability and the time-average queue length both
have a definite upper bound. This means that, based on the
Lyapunov optimization method, our complementary coding
scheme will not cause the worst case in which the timeout
probability or the network congestion extent is out of control.
More importantly, we can also see that when the control
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(a) Overall: Avg FCT
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(b) Short flow: Avg FCT
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(c) 99-th percentile: FCT

Fig. 1: Average FCT with multiple arrival rates
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(a) Overall: Avg Throughput
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(b) Long flow: Avg Throughput

Fig. 2: Average throughput with multiple arrival rates

parameter V is increasing, the uppper-bound of timeout proba-
bility P t is converging to the optimal value P ∗. This theoreti-
cally proves that TCP-ACC can reduce the timeout probability
close to that of the optimal complementary coding solution.
However, at the same time, the upper-bound of Q is also
increasing, which means more complementary packets are sent
and thus aggravating the network congestion. Therefore, the
control parameter V should be adjusted to effectively minimize
the timeout probability while avoiding intolerable network
congestion. Actually, there is no optimal setting of V if we do
not define what the optimal term here means in a mathematic
way. Since V is a trade-off parameter between avoiding the
timeout and the congestion, it represents a preference weight
on which factor the system desire a better performance. If we
desire avoiding the timeout more than relieve the congestion,
we should put a larger V value; Otherwise, we should put a
smaller V value. In reality, to consider a comfortable trade-off
between the two metrics, we test them under different input
environment factors, such as different flow arrival patterns,
flow sizes. We do not search the optimal V value as an
exact number under different input parameters. In another way,

through extensive simulations, we find that the two metrics are
both good under the range [2000, 5000], which reveals the
range of the pareto optimal points of these two metrics.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of TCP-
ACC against three state-of-art transmission strategies through
extensive simulations on NS-2.

A. Simulation setup

We simulate an DCN as a commonly used 3-layer Fat-Tree
topology with 8 pods [16], where the link bandwidth is set
as 1Gbps. The topology consists of 32 ToR (Top-of-Rack)
switches, and each ToR switch connects to 4 hosts, i.e., the
network accommodates totally 128 hosts. The buffer size of
each switch in this topology is 32 kB.

For comparative analysis, we evaluate four transmission
schemes: (1) our adaptive complementary coding scheme
TCP-ACC, (2) the pure redundant transmission scheme
GIP [1], (3) the coding redundant transmission scheme CCR
(i.e., the coding solution of Corrective) proposed in [3] , (4) the
original DCNs’ transmission scheme TCP NewReno [17]. We
study the impact of different workloads on all the transmission
schemes by scaling the average flow arrival rate and flow size.
For the input traffic, we apply the flow model in [18] where
flows arrive independently in a uniformly random way. Spe-
cially, previous measurements [5] reveal traffic in data center
networks usually consists of delay-sensitive short messages
(100KB to 1MB), and throughput-sensitive long flows (1MB
to 100MB). Hence we additionally analyze the FCT for short
flows whose size is smaller than 1MB and the throughput for
long flows whose size is larger than 1MB respectively. To
eliminate the long tail effect in DCN traffic, the performance
of 99% flows is also evaluated. The detailed parameter setup
of flow arrival rate and flow size is shown in Table I. During
the simulations, when one factor is changed, the other factor
is set to their default values. The values of the parameters of
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Fig. 3: Average FCT with multiple flow sizes

the Lyapunov optimization based T-C tradeoff model are set
as follows. V is 3000, Cmax is 5, λ is 4, and the capacity size
S of the virtual buffer is 1000 packets.

B. Simulation results with multiple arrival rates

Fig. 1 shows the FCT performance for all the transmission
schemes under various flow arrival rates. Overall, we can see
that TCP-ACC obtains much lower FCT than all peer schemes.
Compared to the other schemes, the average FCT of TCP-
ACC is reduced by about 50%, while the FCT of short flows
is reduced by about 60%. It shows that TCP-ACC is more
effective to protect the transmission of short flows, which are
generally very sensitive to delays in DCNs. We can also see
that, compared with TCP-Newreno, GIP and CCR can reduce
the FCT, especially for short flows. This shows that adding
redundancy actually gains higher benefits on FCT for short
flows than long flows. However, their FCT performance for
the 99th percentile is still similar with that of TCP-Newreno,
which indicates a poor performance on eliminating the long
tail effect.

Fig. 2 shows the throughput performance of all the schemes
under different flow arrival rates. We can see that TCP-
ACC achieves much higher throughput than all peer schemes.
Specifically, the average throughput of all flows and that of
long flows are both increased by about 45%. Results in Fig. 1
and Fig. 2 show that, as the network get congested with
increasing flow arrival rate, TCP-ACC can always achieve the
best performance on both latency and throughput.

C. Simulation results with multiple flow sizes

Fig. 3 shows the FCT performance for all the transmission
schemes under various flow sizes. Overall, we can see that

TABLE I: Evaluation Parameters Setup

Parameters Values Default
Average Arrival rate 200,400,600,800,1000 600

Average Flow size(MB) 500,1000,1500,2000,25000 1500
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Fig. 4: Average throughput with multiple flow sizes

TCP-ACC wins much lower FCT than all peer schemes.
Compared to the other schemes, the average FCT of TCP-
ACC is reduced by about 41%, while the FCT of short flows
is reduced by about 52%. It shows again that TCP-ACC is
much more effective to protect the transmission of short flows,
although the increasing flow size would directly prolong the
FCT for all flows. We can also see that, compared to TCP-
Newreno, GIP and CCR have no obvious advantages on the
FCT performance, even for short flows. This shows that their
redundant transmission schemes cannot work effectively if the
average flow size increases. Fig.3c shows that TCP-ACC is the
most effective one to avoid the long tail effect as the average
flow size increases.

Fig. 4 shows the throughput of all the schemes under
various flow sizes. We can see that TCP-ACC achieves much
higher throughput than all peer schemes. Specifically, the
average throughput of all flows and that of long flows are
both increased by about 43%. We can also see that, for all
schemes, the throughput performance does not change much
as the flow size increases. This is because the network will not
get more congested if the number of flows does not increase.
Results in Fig.3 and Fig.4 show that, as the flow size increases,

301
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 14:02:50 UTC from IEEE Xplore.  Restrictions apply. 



TCP-ACC can always achieve the best performance on both
latency and throughput.

The above presented great performance advantages of TCP-
ACC over other schemes can be interpreted as follows. First,
its complementary coding scheme can ensure continuous flow
transmission without losing necessary congestion control. This
is important when the network get congested. Second, based
on the Lyapunov optimization model, its adaptive coding
scheme can ensure the optimal number of redundant packets,
which achieves a good equilibrium of the tradeoff between re-
ducing timeout probability and increasing network congestion
extent.

VI. CONCLUSION

In this paper, we proposed an coding redundant transmis-
sion based solution named TCP-ACC (TCP with Adaptive
Complementary Coding) to improve TCP performance on
throughout and latency in DCNs. TCP-ACC is implemented
in a new light-weight coding layer between the TCP and
IP layer, which keeps its good compatibility to existing the
protocol stacks. With flexible redundancy setting, TCP-ACC
can avoid timeout effectively even for multiple losses in
one window and thus ensure continuous flow transmission.
To address the tradeoff between avoiding TCP timeout and
aggravating network congestion for TCP-ACC, we introduced
Lyapunov framework to model and optimize this tradeoff. By
the Lyapunov optimizaiton method, TCP-ACC can determine
the optimal number of coding redundant packets according
to the real-time packet losses. We also theoretically proved
that TCP-ACC can reduce the timeout probability close to
that of the optimal complementary coding solution. We carried
out extensive simulations by implementing the complete TCP-
ACC coding layer in the original NS2-platform. Our evalua-
tions show that, compared with other three solutions for TCP’s
problems in DCNs, TCP-ACC can always achieve the best
performance both on throughput and latency in a wide range
of flow arrival rates and sizes. Specially, it can reduce the flow
completion time by 45% and improve the flow throughput by
40% on average.

Since our solution and all the other compared solutions
do not make direct changes to TCP congestion window, to
make a fair comparison, we only implement part of the whole
Corrective solution. Specifically, we implement CCR as the
key coding solution of Corrective, but does not implement the
congestion control mechanism of Corrective which is similar
to explicit congestion notification (ECN). In this way, we
are easy to illustrate the effects of different coding solutions
with comparable analysis results, rather than just show the
performance of the whole simulated solution without useful
analysis. We will compare the complete implementation of
whole Corrective solution in the future work. We are also
targeting for a real-world implementation of TCP-ACC in

DCNs.
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