
Systemic Support for Transaction-Based Spatial-
Temporal Programming of Mobile Robot Swarms

Daniel Graff, Daniel Röhrig, Reinhardt Karnapke
Communication and Operating Systems Group

Technische Universität Berlin
10587 Berlin, Germany

Email: {daniel.graff, daniel.roehrig, karnapke}@tu-berlin.de

Abstract—In this paper, we present an approach to support
transaction-based spatial-temporal programming of mobile robot
swarms on a systemic level. We introduce a programming model
for swarms of mobile robots. Swarm applications consist of
concurrent, distributed and context-aware actions. We provide
distributed transactions in order to guarantee atomic execution of
a set of dependent actions. We distinguish between schedulability
and executability of a set of actions. In order to guarantee exe-
cutability of a distributed transaction of spatial-temporal actions,
we present the concept of path alternatives and a time-based two-
phase commit protocol in order to assure consistency. We show
the feasibility of our approach by a proof-of-concept.

I. INTRODUCTION

There is a rapid increase in the number of electronic devices
ranging from deeply embedded sensors and actuators over
wearable devices to fully autonomous robots. These devices
form distributed sensing and actuating platforms that are highly
interconnected. Based on different device manufacturers and
system developers, a variety of different hardware, different
system software with different system interfaces exists, expos-
ing heterogeneity.

There are numerous applications that require access to spe-
cialized sensors and actuators in order to gather data (e.g.,
wind speed, temperature, humidity, seismographic activity, ..).
Examples include: Traffic management systems that require
access to traffic data and weather data. Flood prediction systems
that require access to weather data and data about the water
level of a certain river section. Long-term bridge monitoring
systems that require access to traffic data, weather data and
seismographic data. Robot-based exploration or observation
systems that require access to specialized cameras and probes.

All these applications have in common that they require
context awareness concerning physical space and time since
their functional outcome heavily depends on these context pa-
rameters. Considering the above mentioned applications, there
is a noticeable fraction of the applications that require similar
or even the same sensors and actuators. Current approaches
tend to set up their own infrastructure (interconnected hard-
ware components) that are perfectly tailored to solely run one
application.

We propose to share hardware resources and execute appli-
cations on the same physical infrastructure. An advantage of
sharing resources in a timely manner is a significant reduction
of deployment and maintenance costs. In order to achieve this,

we consider the sum of all those heterogeneous devices as
one emerging system (the swarm) and build a swarm operating
system on top of it that manages and coordinates its resources.
Applications are scheduled and managed by the swarm oper-
ating system. In order to allow multi-program operation, we
use the concept of virtualization on resource level. Application
developers profit from our approach since the operating system
hides all heterogeneity, is responsible for resource management,
synchronization and coordination and provides one clear de-
fined interface against which applications are implemented. The
operating system schedules all applications according to their
needs in space and time.

This paper is structured as follows: Section II introduces a
programming model for the swarm and describes how swarm
applications are developed. Swarm applications consist of
distributed transactions whose elements are spatial-temporal
actions (Section III). Section IV gives an evaluation while
Section V gives an overview about related work in this field
and Section VI summarizes the paper.

II. SWARM PROGRAMMING MODEL

The programming model describes how applications are
implemented against the system. The model supports to make
applications context-aware to physical space and time which is
a necessity in cyber-physical systems while maintaining impor-
tant transparencies in distributed systems such as distribution-,
motion and concurrency transparency.

We differentiate between the application model and the sys-
tem model as depicted in Figure 1: The system model describes
the capabilities and properties that the system provides. Each
device has its own description of capabilities and properties
that contributes to the global system. A capability description
can be for instance {Camera: Resolution: 1024x768, Color:
RGB, FPS: 25} or {Temperature-Sensor: Range: [-50, +50],
Resolution: 0.1}. A property describes the devices geometry,
e.g., the shape of a robot and its maximum velocity. Stationary
devices have a velocity of 0.

In order to use the capabilities of the system, we use the
concept of the lib / driver model. All capabilities are operated
by a dedicated driver that accesses the hardware and delivers the
requested data. On the software engineering side, we provide a
library that makes capabilities accessible for applications. The
library communicates with the driver.

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6773-8/15/$31.00 ©2015 IEEE 730
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 22,2024 at 13:55:07 UTC from IEEE Xplore.  Restrictions apply. 



The application model states how applications are devel-
oped. The model consists of three elements: SwarmApplication,
SwarmAction and ActionSuite. For simplicity, we refer in the
following only to applications, actions and suites. The applica-
tion consists of loosely coupled actions. Each action is a library
function that is executed on a certain capability. An action
can be for instance take picture or measure temperature. Each
action can be restricted in space and time by spatial-temporal
constraints. Constraints can be absolute or relative to each
other. Thus, an action could be measure temperature at location
X1 and at time t1. Due to this programming semantic, the
programmer is able to specify arbitrary compositions of actions,
e.g., perform a uniformly distributed monitoring of an area at
the same time t and repeat this every time interval tI . In this
example it becomes clear that, given the same time constraint,
it is not possible to execute the actions on a single device since
all location constraints for the actions differ. Thus, the amount
of actions are distributed to several devices, executed on the
devices and the result is sent back. All necessary distribution,
coordination and synchronization is hidden beyond the systems
interface. If a robot has to be moved in order to execute the
actions, then also the entire movement process in hidden from
the programmer and coordinated by the system.

Applications consist of systemic descriptions, more precisely
a specification of actions and their corresponding constraints.
The system provides a schedule() operation (system call)
that requests system resources that are necessary for executing
the application. For this the system schedules the actions in
space and time. If an action becomes scheduled, a certain time
slot of the executing device is reserved and, thus, the execution
is guaranteed.

In many cases, there is a correlation between actions: actions
depend on each other (sense-and-react) or a group of actions
shall be executed at the same point in time and / or at certain
locations. There are cases in which a non-executed action out
of a group of actions has a significant impact on the overall
outcome. Therefore, we introduce the transaction concept for
spatial-temporal programming.

ActionSuites are containers for actions. All actions have to
reside in exactly one suite. The suite is contained in the library
and provides the transaction semantic for actions. Every suite
is, therefore, a distributed transaction.

III. TRANSACTIONS

Every SwarmAction is encapsulated into an ActionSuite.
Depending actions must reside in the same suite, inter-suite
communication is not possible. Usually, the failure of one
action causes depending actions to be not executable and,
therefore, the entire suite fails. Thus, a suite is a distributed
transaction. We guarantee that if a suite is scheduled and finally,
all participating nodes have commonly voted for commit, then
the suite will be executed atomically. Hence, the application is
aware in advance if a suite will fail or will execute successfully.
Guarantees can only be given according to a given fault model.
We assume here that no additional link or node failures will
appear, i.e., there might be failures before the scheduling and

Systemic Description
of Application

Capability Description
of Resources

Capabilities

ResourceHost

SwarmResources

ActionSuite

SwarmApplication

SwarmAction

Application Model System Model

Lib Driver

Fig. 1. Software Component Description

the voting, but, once the voting is done and the application is
notified that the suite is committed for execution, we assume
that no additional failures occur to the involved nodes of the
distributed transaction.

In order to guarantee the proper execution of an ActionSuite,
we have to cope with schedulability and executability:

• Schedulability: The scheduler has to check general
schedulability of the actions contained in the ActionSuite.
So, the scheduler checks if all required resources can be
made available under the given spatial-temporal constraints
(this also includes physical movement). In case the sched-
uler successfully found a schedule, then the suite is called
schedulable. Otherwise the suite is not schedulable.

• Executability: Schedulability is a necessary condition for
executability. Executability is the state in which all nodes
(which are involved in the distributed execution of the
ActionSuite) jointly voted for commit and, thus, state that
they are able to execute their assigned actions.

The system has global knowledge about the local schedule
of each node. A local schedule consists of spatial-temporal
jobs, i.e., actions that shall be executed and spatial-temporal
trajectories that the node has to move along. If the system
schedules a new suite, it assigns the actions to available nodes
that are able to execute them and, if movement is necessary, it
also computes and assigns spatial-temporal trajectories. Since
we have a distributed system, the scheduled jobs have to be
sent to the respective nodes which is done via message passing.
Messages have to be sent over the network which requires time.
Real-time communication is desirable, but cannot be guaranteed
since we have wireless multihop communication. Therefore,
there is no upper limit for the message delay. Since actions
have timing constraints, the assignment of new jobs to a node
has to be done in time. Late arrival of a message would in the
worst-case result in not executing the actions.

A. Path Alternatives

We define an uncertainty period between the point in time
when the system computes a new schedule and the time the
new schedule is accepted or rejected by the involved nodes. In
order to cope with this uncertainty (and to avoid inconsistent

731
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 22,2024 at 13:55:07 UTC from IEEE Xplore.  Restrictions apply. 



Alternative

d

b

r1

r2

c
a

(a) Path Alternative

LOCKED

d

b

r1

r2

c
a

(b) Lock Segment

d

b

r1

r2

c
a

(c) Partial Commit

Fig. 2. The Problem of Time causes Path Alternatives

knowledge between the system and the node), the computation
of the new schedule is considered as an alternative to the
current schedule. Figure 2(a) shows the following situation:
There are three jobs in the system (a, b, c). Robot r1’s schedule
contains a and b. The arrows indicate the movement direction.
A new job d is scheduled by the system and assigned to r1.
The system assures schedulability, but not executability. Since
this information has to be sent and acknowledged by r1, the
system is not able to drop the old schedule and, thus, creates
an alternative route: a → d → b. Since the system performs a
static collision avoidance and also a collision avoidance with
mobile obstacles (other robots), the alternative has to be active
as long as no decision is known. The alternative is then sent
to r1. If the message containing the alternative arrives too late,
i.e., after the fork point at a, then r1 continues moving on the
old trajectory towards b. In this case, the new job d is implicitly
rejected by the robot. If the message arrives before the robot
reaches the fork point, the robot accepts the new trajectory. If,
during the alternative path is valid, a new job e is requested
for scheduling and r1 is chosen again, then the path alternative
has to be computed for every existing alternative.

Let us assume that e can only be scheduled before b, but
after a and, if d is committed, then e has to be scheduled after
d. Since d is neither committed nor rejected yet, the system
has to compute the following path combinations: a → b, a →
e → b, a → d → b and a → d → e → b. The complexity
of computing new path alternatives is exponential (2x) in the
number (x) of new jobs arriving in the system. In order to avoid
this, the respective trajectory segment in which the alternative
is computed is locked during the uncertainty period as depicted
in Figure 2(b). The lock is kept until the respective node has
decided to accept or reject the scheduled job d. Figure 2(c)
shows the situation in which r1 has decided to accept d and,
thus, the old trajectory and the lock are removed. In case of a
reject, the alternative is removed.

B. Time-Based Two-Phase Commit Protocol

After the system has successfully checked schedulability,
all nodes that are involved in the same transaction have to
decide about executability. This is realized by a voting protocol
which is based on the two-phase commit protocol (2PC). In
the original 2PC, the period between issuing a local commit
vote and waiting for the coordinator to either commit or abort
is called uncertainty period. If the final message from the
coordinator got lost, the node cannot unilateral commit the
transaction because it does not know the global decision and
it can also not unilateral abort because the coordinator may

SwarmCtrl Space-Time
Scheduler

Voting
Request

NodeMgr NodeMgr NodeMgr
voting voting

Runtime
System

scheduleApp

(a) Voting Phase

SwarmCtrl Space-Time
Scheduler

NodeMgr NodeMgr NodeMgr

Runtime
System

commit commit abort

abortApp

(b) Commit Phase

Fig. 3. Time-Based Two-Phase Commit Protocol

already have sent a global commit which got lost. In this case
(considering a database system) the node keeps the respective
tuple locked. If this is a permanent error then user interaction
is required.

However, by only implementing the 2PC the mentioned
case would be a severe problem. Assume a node moves to
a fork point. Since the node is still uncertain it cannot go in
the direction towards the new (not yet committed) job and it
also cannot go in the other direction (which would indicate
an abort) due to the same reason: it still does not know the
global decision. Waiting at the fork point is also not an option
since this would possibly violate all further (committed) jobs.
Thus, the node is forced to move. Hence, we modify the
original 2PC as depicted in Figure 3(a): After the system has
computed a new schedule, the coordinator (SwarmCtrl) sends a
voting request to all nodes participating in the transaction. Each
node performs a local vote and sticks to its vote, i.e., locally
commits/ aborts the schedule. Finally, it sends the result back
to SwarmCtrl which leads to a partial commit/ abort to the
schedule (Figure 3(b)). This results in immediately removing
one of the path alternatives and releasing the lock. If at least one
abort is received by the SwarmCtrl the transaction is globally
aborted. If, however, partial commits are already executed, then
SwarmCtrl triggers an unschedule() operation and tries to
remove scheduled actions and reestablishes the old trajectory.
We guarantee that if the application is notified of a global
commit, then all nodes have commonly voted for commit and
the actions in the transaction are committed for execution, i.e.,
resources are successfully reserved and, thus, executability is
guaranteed.

IV. PROOF-OF-CONCEPT

For performing experiments and showing a proof-of-concept,
we have set up a testbed consisting of 40 mobile robots (400
MHz ARM9 CPU) and 24 stationary boards (180 MHz ARM9
CPU). Both devices are equipped with 64 MB SDRAM. The
robots have two separately controllable electric engines. We use
an external locating system for indoor tracking of the robots
based on a Microsoft Kinect.

In order to show a proof-of-concept, we implemented two
applications: a stationary distributed computation of the Man-
delbrot set and a monitoring application along a trajectory
that requires movement. The distributed computation of the
Mandelbrot set is a suitable application since the resulting
computational problem can be sub-partitioned into several
chunks, each of which can be assigned to different nodes for
execution. Each sub-partitioned problem was implemented as

732
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 22,2024 at 13:55:07 UTC from IEEE Xplore.  Restrictions apply. 



2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

#Nodes

T
im

e 
in

 s

(a) Mandelbrot Set (b) Observation

Fig. 4. Evaluation of Swarm Applications

an individual action. The execution policy here was to maximize
the speed-up. We measured the total execution time of this
application by creating up to 24 actions where each action was
assigned to a separate robot. Figure 4(a) shows the degrading
execution time of the distributed Mandelbrot set computation.
The execution time with only two robots took 39 seconds while
the execution time with 24 robots was around 3.5 seconds.
Thus, this application scales well with the number of nodes.

The second application was a monitoring application along
a programmer-defined trajectory of points. The application
consists of 100 actions realized by iterating ten times over
an ActionSuite of ten actions with spatial-temporal constraints.
The timing constraints for each action were in ascending order
such that a topological sorting on the actions is applicable.
Considering the first suite with the first ten actions, the first
action has a spatial constraint of (200, 200) and the tenth action
has a spatial constraint of (2000, 1400). The eight remaining
actions in-between those two actions are sorted in ascending
order (concerning the spatial constraints). After we scheduled
the first suite, we created a second suite with another 10 actions
that have the same spatial constraints and increasing timing
constraints. Figure 4(b) shows the traces of one robot that
moved in total ten times along the trajectory. The visualized
traces show the accuracy of the robot of keeping on an ideal
trajectory.

V. RELATED WORK

In [5], SwarmOS is presented as a mediation layer between
applications and distributed resources. It has to cope with
distribution, heterogeneous and shared resources as well as
dynamic situations. In contrast to our approach, SwarmOS does
not feature autonomous resource movement. The same holds
for MagnetOS [1], which provides to split an application into
components each of which will be dynamically assigned to
several executing nodes (targeting ad-hoc and sensor networks).
In [6], an approach for dynamic task assignment in robot
swarms based on swarm algorithms with stochastic elements is
presented. It supports groups of nodes that collectively execute
applications without the need to program the nodes separately,
i.e., it provides location transparency within the group.

The Symbrion and Replicator projects [3] consist of super-
large-scale swarms of robots that are based on bio-inspired
approaches featuring self-X properties. The systems are highly
dynamic and so, if advantageous, the robots can aggregate into a
symbiotic organism that is, in this form, better suited to solve a

task while sharing resources such as energy. There are different
kinds of programming abstractions for distributed, concurrent
and parallel systems as well as for sensor networks. Detailed
surveys are provided in [9], [7]. Following a holistic approach,
nesC [2], which is an extension to C, is a programming
language for deeply networked systems which was created
for TinyOS. Programs are built from components that have
internal concurrency. While nesC is a node-level language (code
is written for an individual node), Pleiades [4] provides an
abstraction to implement a central program that has access to
the entire network (also known as macroprogramming [10]).
SpatialViews [8] is an extension to Java which allows to define
virtual networks that are mapped to physical nodes according to
their physical location and the services they provide. Execution
is distributed among the nodes in the virtual network performed
by code migration.

VI. CONCLUSION

In this paper, we presented an approach to support
transaction-based spatial-temporal programming of mobile
robot swarms on a systemic level. The main reason for the
modification of the 2PC protocol remains in the fact that at each
time no inconsistencies between the global system knowledge
and the local node knowledge may occur. In the worst-case
an inconsistency could result in a robot crash since this could
result in corrupted computation of spatial-temporal trajectories.
According to our approach, we guarantee that this will not
happen.

REFERENCES

[1] R. Barr, J. C. Bicket, D. S. Dantas et al., “On the Need for System-Level
Support for Ad hoc and Sensor Networks,” Operating System Review,
vol. 36, pp. 1–5, 2002.

[2] D. Gay, P. Levis, R. von Behren et al., “The nesC language: A holistic
approach to networked embedded systems,” SIGPLAN Not., vol. 38, no. 5,
pp. 1–11, May 2003.

[3] S. Kernbach, E. Meister, F. Schlachter et al., “Symbiotic robot organisms:
REPLICATOR and SYMBRION projects,” in Proceedings of the 8th
Workshop on Performance Metrics for Intelligent Systems, ser. PerMIS
’08. New York, NY, USA: ACM, 2008, pp. 62–69.

[4] N. Kothari, R. Gummadi, T. Millstein et al., “Reliable and efficient
programming abstractions for wireless sensor networks,” SIGPLAN Not.,
vol. 42, no. 6, pp. 200–210, Jun. 2007.

[5] E. A. Lee, J. D. Kubiatowicz, J. M. Rabaey et al., “The TerraSwarm
Research Center (TSRC) (A White Paper),” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2012-207, Nov 2012.

[6] J. McLurkin and D. Yamins, “Dynamic task assignment in robot swarms,”
in Robotics: Science and Systems Conference, Cambridge, MA, USA,
2005.

[7] L. Mottola and G. P. Picco, “Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art,” ACM Comput. Surv.,
vol. 43, no. 3, pp. 19:1–19:51, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1922649.1922656

[8] Y. Ni, U. Kremer, A. Stere et al., “Programming ad-hoc networks of
mobile and resource-constrained devices,” SIGPLAN Not., vol. 40, no. 6,
pp. 249–260, Jun. 2005.

[9] R. Sugihara and R. K. Gupta, “Programming Models for
Sensor Networks: A Survey,” ACM Trans. Sen. Netw.,
vol. 4, no. 2, pp. 8:1–8:29, Apr. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1340771.1340774

[10] M. Welsh and G. Mainland, “Programming sensor networks using ab-
stract regions,” in Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation - Volume 1, ser. NSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 3–3.

733
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 22,2024 at 13:55:07 UTC from IEEE Xplore.  Restrictions apply. 


