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Arrival History
Jian-Bo Wang, Student Member, IEEE, Lin Wang, Member, IEEE, and Xiang Li, Senior Member, IEEE

Abstract—Spatial spread of infectious diseases among
populations via the mobility of humans is highly stochastic and
heterogeneous. Accurate forecast/mining of the spread process
is often hard to be achieved by using statistical or mechanical
models. Here we propose a new reverse problem, which aims
to identify the stochastically spatial spread process itself from
observable information regarding the arrival history of infectious
cases in each subpopulation. We solved the problem by devel-
oping an efficient optimization algorithm based on dynamical
programming, which comprises three procedures: 1) anatomiz-
ing the whole spread process among all subpopulations into
disjoint componential patches; 2) inferring the most probable
invasion pathways underlying each patch via maximum likelihood
estimation; and 3) recovering the whole process by assembling
the invasion pathways in each patch iteratively, without bur-
dens in parameter calibrations and computer simulations. Based
on the entropy theory, we introduced an identifiability measure
to assess the difficulty level that an invasion pathway can be
identified. Results on both artificial and empirical metapopula-
tion networks show the robust performance in identifying actual
invasion pathways driving pandemic spread.

Index Terms—Identifiability, infectious diseases, metapopula-
tion, networks, process identification, spatial spread.

I. INTRODUCTION

THE FREQUENT outbreaks of emerging infectious dis-
eases in recent decades lead to great social, eco-

nomic, and public health burdens [1]–[3]. This trend is
partially due to the urbanization process and, in particular,
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the establishment of long-distance traffic networks, which
facilitate the dissemination of pathogens accompanied
with passengers [4], [5]. Real-world examples include
the transnational spread of severe acute respiratory syn-
drome (SARS)-coronavirus in 2003 [6], the global outbreak
of A (H1N1) pandemic flu in 2009 [7], [8], avian influenza
in Southeast Asia [9], [10], the spark of Ebola infections in
western countries in 2014 [11], and recent potential outbreak
of middle east respiratory syndrome [12].

During almost the same epoch, the theory of complex net-
works has been developed as a valuable tool for modeling
the structure and dynamics of/on complex systems [13]–[16].
In the study of network epidemiology, networks are often used
to describe the epidemic spreading from human to human via
contacts, where nodes represent persons and edges represent
interpersonal contacts [17]–[22]. To characterize the spatial
spread between different geo-locations, simple network mod-
els are generalized with metapopulation framework, in which
each node represents a population of individuals that reside
at the same geo-region (e.g., a city), and the edge describes
the traffic route that drives the individual mobility between
populations [18], [19]. The networked metapopulation mod-
els have been applied to study the real-world cases such as
SARS [6], A (H1N1) pandemic flu [23], and Ebola [11], which
can capture some key dynamic features including peak times,
basic epidemic curves, and epidemic sizes. Quantitative model
results can be used to evaluate the effectiveness of control
strategies [24]–[28], such as optimizing the vaccine allocation.

The numerical computing of large-scale metapopulation
models is time-consuming, because of the requirement of
high-level computer power. The model calibrations need
high-resolution data for incidence cases, which may not
be available or accurate during the early weeks of ini-
tial outbreaks [4]. Hence, continuous model training with
data collected in real-time is essential in achieving a reli-
able model prediction [29]. Generally, model results are
the ensemble average over numerous simulation realizations,
which aims to predict the mean and variance of epidemic
curves, while in reality there is no such thing described
by the average over different realizations [30]. To extract
more meaningful information from epidemic data generated by
surveillance systems, recent studies (particularly in engineer-
ing fields) start paying attention to reverse problems, such as
source detection and network reconstruction, which are briefly
summarized here.
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A. Related Works

The theory of system identification has been established
in engineering fields, usually used to infer system parame-
ters. The use of system identification in epidemiology mainly
focuses on inferring epidemic parameters, such as the trans-
mission rate and generation time [31], which relies on con-
structing dynamical systems of ordinary differential equations.
The methodology of system identification is not helpful in
solving high-dimensional stochastic many-body systems, such
as metapopulation models.

Source detection for rumor spreading on complex networks
is becoming a popular topic, attracting extensive discussions
in recent years. The target is to figure out the causality that
can trigger the explosive dissemination across social networks,
such as Facebook, Twitter, and Weibo. For example, using
maximum likelihood (ML) estimators, Shah and Zaman [32]
proposed the concept of rumor centrality that quantifies the
role of nodes in network spreading. Luo et al. [33] designed
new estimators to infer infection sources and regions in
large networks. Wang et al. [34], [36] and Dong et al. [35]
extended the scope by using multiple observations, which
largely improves the detection accuracy. Another interesting
topic is the network inference, which engages in revealing
the topology structure of a network from the hint underly-
ing the dynamics on a network [37]. Some useful algorithms
(e.g., NetInf) have been proposed in [38]–[42]. Note that
the algorithms for source detection and network inference
are not feasible in identifying the spreading processes on
metapopulation networks.

Using metapopulation networks models, some heuristic
measures have been proposed to understand the spatial spread
of infectious diseases, which are most related to this paper.
Gautreau et al. [30] developed an approximation for the
mean first arrival time between populations that have direct
connection, which can be used to construct the shortest
path tree (SPT) that characterizes the average transmission
pathways among populations. Brockmann and Helbing [4]
proposed a measure called “effective distance,” which can also
be used to build the SPT. Using a different method based on
the ML, Balcan et al. [43] generated the transmission path-
ways by extracting the minimum spanning tree from extensive
Monte Carlo simulation results. Details about these measures
will be given in Section IV, which compares the algorithmic
performance.

B. Motivation

Current algorithms to inferring pandemic spatial spread gen-
erally make use of the topology features of metapopulation
networks or extensive epidemic simulations. The resulting out-
come is an ensemble average over all possible transmission
pathways, which may fail in capturing those indeed transmit-
ting the disease between populations, because of the high-level
stochasticity and heterogeneity in the spreading process.

Good news comes from the development of modern sen-
tinel and Internet-based surveillance systems, which becomes
increasingly popular in guiding public health control strate-
gies. Such systems can or will provide high-resolution,

location-specific data on human and poultry cases [44]. Human
mobility data are also available from mass transportation sys-
tems or GPS-based mobile Apps [3]. Integrating these data
often used in different fields, a natural reverse problem poses
itself, which is the central interest of this paper: is it probable
to design an efficient algorithm to identify or retrospect the
stochastic pandemic spatial spread process among populations
by linking epidemic data and models.

C. Our Contributions

Main contributions of this paper are as follows.
1) A novel reverse problem of identifying the stochastic

pandemic spatial spread process on metapopulation net-
works is proposed, which cannot be solved by existing
techniques.

2) An efficient algorithm based on dynamical programming
is proposed to solve the problem, which comprises three
procedures. First, the whole spread process among all
populations will be decomposed into disjoint componen-
tial patches, which can be categorized into four types of
invasion cases (INCs). Then, since two types of INCs
contain hidden pathways, an optimization approach
based on the ML estimation is developed to infer the
most probable invasion pathways underlying each path.
Finally, the whole spread process will be recovered by
assembling the invasion pathways of each patch chrono-
logically, without burdens in parameter calibrations and
computer simulations.

3) An entropy-based measure called identifiability is intro-
duced to depict the difficulty level an INC can be
identified. Comparisons on both artificial and empiri-
cal networks show that our algorithm outperforms the
existing methods in accuracy and robustness.

The remaining sections are organized as follows. Section II
provides the preliminary definitions and problem formulation.
Section III describes the procedures of our identification algo-
rithm, and introduces the identifiability measure. Section IV
performs computer experiments to compare the performance
of algorithms. Section V gives the conclusion.

II. PRELIMINARY AND PROBLEM FORMULATION

This section first elucidates the structure of networked
metapopulation model, and then provides the preliminary
definitions and problem formulation.

A. Networked Metapopulation Model

In the networked metapopulation model, individuals are
organized into social units such as counties and cities, defined
as subpopulations, which are interconnected by traffic net-
works of transportation routes. The disease prevails in each
subpopulation due to interpersonal contacts, and spreads
between subpopulations via the mobility of infected persons.
Fig. 1 illustrates the model structure.

Within each subpopulation, individuals mix homo-
geneously. This assumption is partially supported by
recent empirical findings on intraurban human mobility
patterns [19], [45]–[48]. The intrapopulation epidemic
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(a) (b)

Fig. 1. Illustration of a networked metapopulation model, which comprises
six subpopulations/patches that are coupled by the mobility of individuals.
In each subpopulation, each individual can be in one of two disease statuses
(i.e., susceptible and infectious), shown in different colors. Each individual
can travel between connected subpopulation. (a) Networked metapopulation.
(b) Two subpopulations.

dynamics are characterized by compartment models.
Considering the wide applications in describing the spread
of pathogens, species, rumors, emotion, behavior, crisis,
etc. [32], [33], [35], [49], we used the susceptible-infected (SI)
model in this paper. Define Ni as the population size of
each subpopulation i, Ii(t) the number of infected cases in
subpopulation i at time t, β the transmission rate that an
infected host infects a susceptible individual shared the same
location in unit time. As such, the risk of infection within
subpopulation i at time t is characterized by λi(t) = βIi(t)/Ni.
Per unit time, the number of individuals newly infected in
subpopulation i can be calculated from a binomial distribution
with probability λi(t) and trails equalling the number of
susceptible persons Si(t).

The mobility of individuals among subpopulations is
conceptually described by diffusion dynamics, ∂tXi =∑

j∈ν(i) pjiXj(t) − pijXi(t), where Xi(t) is a placeholder for
Si(t) or Ii(t), ν(i) is the set of subpopulations directly con-
nected with subpopulation i, and pij is the per capita mobility
rate from subpopulation i to j, which equals the ratio between
the daily flux of passengers from subpopulation i to j and
the population size of departure subpopulation i. The ensem-
ble of mobility rates 0 ≤ pij < 1 defines a transition
matrix P , determined by the topology structure and traffic
fluxes of the mobility network. The interpopulation mobility
of individuals is simulated with binomial or multinomial pro-
cess (Appendix A). For more details in modeling rules, refer
to [19].

B. Basic Definitions

The epidemic arrival time (EAT) is the first arrival time of
infectious hosts traveling to a susceptible subpopulation. At a
given EAT, at least an unaffected (susceptible) subpopulation
will be contaminated, characterizing the occurrence of inva-
sion events. Herein, S (I) denotes a (an) susceptible (infected)
subpopulation.

For an invasion event, organizing newly contaminated sub-
populations (remaining unaffected prior to that invasion event)

Algorithm 1 INP
1: for an invasion event, collect all newly infected S as
initially S and their previously infected neighbors as I;
2: start with an arbitrary element Si in set S;
3: find all neighbors I

∗ of Si in set I;
4: find the new neighbors S

∗ in the S if have;
5: find the new neighbors in the I if have;
6: repeat the above two steps until cannot find any new
neighbors in S and I, we get an INC consisting of I

∗ and S
∗,

then update the S and I;
7: repeat the 2-6 steps to get new INCs until there are no
elements in S.

into set S, and infected subpopulations into set I, we define
the four types of INC as follows.

1) I �→ S: I and S both are composed of a single
subpopulation respectively, which represents that a pre-
viously unaffected subpopulation is infected by the new
arrival of infectious host(s) from its unique neighboring
infected subpopulation.

2) I �→ nS(n > 1): In this case, I only consists of
a single subpopulation, while S contains n(n > 1)

subpopulations. This represents that n previously unaf-
fected subpopulations are contaminated due to the new
arrival of infectious hosts from their common infected
subpopulation in I.

3) mI �→ S(m > 1): S only consists of a single subpopu-
lation, and I contains m(m > 1) subpopulations. This
means that the newly infected subpopulation in S is
infected by the arrival of infected host(s) from m poten-
tial upstream subpopulations in I through the invasion
edges.

4) mI �→ nS(m, n > 1): In this case, S and I both are
composed of no less than two subpopulations, and they
constitute a connected subgraph. Each previously unaf-
fected subpopulation in S is contaminated due to the
simultaneous arrival of infected hosts from m poten-
tial source subpopulations in I. Each subpopulation in
I may lead to the contamination of at least one but no
more than n neighboring downstream subpopulations in
S through the invasion edges. Multiple edges between
any pair of subpopulations are forbidden.

Fig. 2(a) and (b) illustrates the two scenarios of mI �→
S(m > 1) and mI �→ nS(m, n > 1). A decomposition pro-
cedure of invasion partition (INP) is used to generate the
components of INCs in each invasion event. The heuristic
search algorithm to proceed the INP is given in Algorithm 1
if an invasion event occurs.

C. Problem Formulation

Suppose that the spread starts at an infected subpopula-
tion. It forms the invasion pathways when this source invades
many susceptible subpopulations and the cascading invasion
goes on. We record the infected individuals of each subpopu-
lation per unit time. From the data, we should know when a
subpopulation is infected and how many infected individuals
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(a) (b)

Fig. 2. (a) Example of the mI �→ S INC, in which m infected subpopulations invade one susceptible subpopulation. The red patches denote the infected
subpopulations, while the plain patch is the subpopulation that remains susceptible before time t but will be contaminated during that time step due to the
arrival of infectious cases from upstream infected subpopulations. (b) Example of the mI �→ nS INC, in which m infected subpopulations invade n(n ≥ 2)

susceptible subpopulations.

in this subpopulation, but we may not know which infected
subpopulations invade this subpopulation if it has (m, m ≥ 2)
infected neighbor subpopulations through the corresponding
edge(s) [see Fig. 2(a)] at that time step. The question of
interest is how to identify the instantaneous spatial invasion
process just according to the surveillance data. Herein, we
know the network topology including subpopulation size and
travel flows, such as the city populations of airports and trav-
elers by an airline of the real network of American airports
network (ANN).

Define an invasion pathway which are the directed edges
that infected individuals invade to susceptible subpopulations
at EAT. To identify it, we proceed the following invasion
pathways identification (IPI) algorithm.

1) Decompose the whole pathways as four types of INCs
by the INP at each EAT; suppose the whole invasion
pathways T are anatomized into � of four INCs. Let
âi denote the identified invasion pathways based on the
surveillance data G of that INC i and the given graph G.
According to the (stochastic) dynamic programming,
we have the following equation to optimally solve this
problem:

Twhole invasion pathways = opt
�∑

i=1

âi. (1)

2) For each INC, we first judge whether it has a unique set
of invasion pathways or more than one potential inva-
sion pathways. When an INC has more than one possible
invasion pathway, each set of which is called poten-
tial invasion pathway. If it has more than one potential
invasion pathway, we estimate the true invasion path-
ways a∗

i , denoted by âi, based on the surveillance data
G of that INC and the given graph G. A potential path-
way belonged to that INC is denoted by ∀ai ∈ GINCi .
To make this estimation, we shall compute the likeli-
hood of a potential invasion pathway ai. With respect
to this setting, the ML estimator of a∗

i with respect
to the networked metapopulation model given by that
INC maximizes the correct identification probability.
Therefore, we define the ML estimator

âi = arg max
ai∈GINCi

P
(
ai|GINCi

)
(2)

where P(ai|GINCi) is the likelihood of observing the
potential pathway ai assuming it is the true pathway a∗

i .

Thus we would like to evaluate P(ai|GINCi) for all
ai ∈ GINCi and then choose the maximal one.

III. IDENTIFICATION ALGORITHM TO INVASION PATHWAY

According to our above INP decompose algorithm, it is
easy to identify the invasion pathways for the INC scenario
I �→ nS(n ≥ 1) (they have the only invasion pathway
from their neighbor infected subpopulation). Thus our inva-
sion pathways’ identification algorithm mainly deals with the
other two kinds of INCs mI �→ S(m > 1) and mI �→
nS(m, n > 1). To make the description clear, we restate
the term Ii denotes subpopulation i which is infected, and
its number of infected individuals of Ii at time t is denoted
by Ii(t).

As time evolves, infected hosts travel among subpopula-
tions, inducing the spatial pandemic dispersal. For each INC,
by analyzing the variance of infected hosts in each subpop-
ulation i, we define three levels of extent of subpopulations
observability to reflect the information held for the inference
of relevant invasion pathway.

1) Observable Subpopulation: Subpopulation i is observ-
able during an INC, given the occurrence of the three
most evident (subpopulation’s) status transitions. The
first refers to the transition Si → Ii, accounting that
the previously unaffected subpopulation i is contami-
nated during that INC due to the arrival of infected
hosts. The second concerns the transition Ii → Si, in
which the previously infected subpopulation i becomes
susceptible again during that INC, since the infected
hosts do not trigger a local outbreak and leave i. In
the third transition Si → Si, despite of having infected
subpopulations in the neighborhood, subpopulation i
remains unaffected during that INC due to no arrival
of infected hosts. Fig. 3(a) illustrates such observable
transitions.

2) Partially Observable Subpopulation: Subpopulation i
is partially observable during an INC occurring at
time t, if its number of infected hosts is decreased,
i.e., Ii(t) < Ii(t − 1) and Ii(t) > 0, which implies
that at least �Ii(t) = |Ii(t) − Ii(t − 1)| infected hosts
leave i during that INC. It is impossible to distin-
guish their mobility destinations unless the INC I �→ S
or I �→ nS occurs. Fig. 3(b) illustrates the partially
observable subpopulation.
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(a) (c)

(b)

Fig. 3. Illustration of neighbors classification in terms of status transitions:
(a) Observable i. (b) Partially observable i. (c) Unobservable i.

3) Unobservable Subpopulation: Subpopulation i is unob-
servable during an INC occurring at time t, if its number
of infected hosts has not been decreased, i.e., Ii(t) ≥
Ii(t − 1), considering the difficulty in judging whether
there present infected hosts leaving subpopulation i
during that INC [see Fig. 3(c) for an illustration].

We further categorize the edges emanated from each
infected subpopulation in set I into four types, i.e., inva-
sion edges, observable edges, partially observable edges, and
unobservable edges.

1) Invasion Edges: In an INC, invasion edges represent
each route emanated from subpopulation i in I to sub-
population j in S. They are considered as a unique
category, because invasion edges contain all invasion
pathway (an invasion pathway must be an invasion edge,
but an invasion edge may not an invasion pathway).
In Fig. 2(a) and (b), the invasion edges are illustrated.
The following three types of edges are not belong
to the routes between sets I and S, but they are the
edges emanated from i to subpopulation j that is not
belong to S.

2) Observable Edges: For infected subpopulation i in I,
any edge emanated from i is observable, if it connects i
with observable subpopulation j that only experiences
the transition Sj → Sj or Ij → Sj from tEAT−1 to tEAT.
Here, it is intuitive that in subpopulation j there is no
arrival of infected hosts from subpopulation i.

3) Partially Observable Edges: For infected subpopula-
tion i in I, any edge is partially observable, if it
connects i with a partially observable subpopulation.

4) Unobservable Edges: For infected subpopulation i in I,
any edge is unobservable, if it connects i with an
unobservable subpopulation.

The classification of subpopulations and edges are used to
compute the corresponding subpopulation’s transferring esti-
mator in Section III of both INCs of mI �→ S(m > 1) and
mI �→ nS(m, n > 1).

A. Case of mI �→ S(m > 1)

As shown in Fig. 2(a), a typical INC mI �→ S(m > 1) is
composed of two sets of subpopulations, i.e., the previously

infected subpopulations I = {I1, I2, . . . , Im} and the previously
unaffected subpopulation S = {S1}. Suppose that subpopula-
tion S1 is contaminated at time t due to the appearance of
H infected hosts (H is a positive integer number) that come
from the potential sources in I. If the actual number of infected
hosts from subpopulation Ii is Hi1, i ∈ I, we have

m∑

i=1

Hi1 = H (3)

with the conditions 0 ≤ Hi1 ≤ H and Hi1 ≤ Ii(t − 1).
1) Accurate Identification of Invasion Pathway: Given a

few satisfied prerequisites, (3) can has a unique solution,
which implies that the invasion pathways of that INC can be
identified accurately. Theorem 1 elucidates this scenario.

Theorem 1 (Accurate Identification of Invasion Pathway):
With the following conditions: 1) among m possible sources
illustrated in set I, there are only m′(m′ ≤ m) partially
observable subpopulations I

′, whose neighboring subpopu-
lations (excluding the invasion destination S1) only expe-
rience the transition S to S or I to S at that EAT and
2)
∑

i∈I′
[
Ii(t − 1) − Ii(t)

] = H, the invasion pathway of an
INC mI �→ S(m > 1) can be identified accurately.

Proof: According to the definition of observability, in an
INC, the number of local infected hosts in an involved partially
observable source i will be decreased by

[
Ii(t−1)−Ii(t)

]
due to

their departure. If the subpopulations in the neighborhood of i
only experience the transition of Si to Si or Ii to Si from tEAT−1
to tEAT, they are impossible to receive the infected hosts from
subpopulation i. Therefore, the newly contaminated subpop-
ulation S1 is the only destination for those infected travelers
departing from the partially observable sources. Since m′ ≤ m,
the second condition guarantees that (3) only has a unique
solution, which corresponds to the accurate identification of
invasion pathways of this INC.

2) Potential Invasion Pathway: If the conditions of
Theorem 1 are unsatisfied, (3) has multiple solutions, each
solution corresponds to a set of potential invasion pathways
that can result in the related INC. Due to the heterogeneity
in the traffic flow on each edge and the number of infected
hosts within each contaminated source, each set of potential
pathways is associated with a unique likelihood, which also
identifies the occurrence probability of the corresponding solu-
tion of (3). Therefore, the identification of invasion pathway
that induce an INC can be transformed to searching the most
probable solution of (3).

We define the solution space � of (3) of the INC mI �→
S(m > 1), which subjects to two conditions: 1)

∑m
i=1 Hi1 = H

and 2) ∀Hi1, Hi1 ≤ Ii(t−1). The second condition is obvious,
since the number of infected travelers departing from the
source Ii cannot exceed Ii(t − 1). Let us assume that �

contains M solutions, and a typical solution is formulated
as σj = {H(j)

i1 , i = [1, . . . , m]}. Obviously, each solution σj

corresponds to a potential invasion pathway aj.
Through the INC mI �→ S(m > 1), the observed

event E shows that the destination S1 is contaminated due
to the arrival of totally H infected hosts from the potential
sources Ii, i = [1, . . . , m]. With this posterior information,
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we first measure the likelihood of each possible solution σj,
which corresponds to the reasoning event that for each
source Ii, i ∈ [1, m], Hi1 infected hosts are transferred to S1.
It is evident that ∀j, P(EmIS|σj) = 1, since σj will lead to the
occurrence of event EmIS, which corresponds to GmIS.

According to Bayes’ theorem, the likelihood of the solution
σj is characterized by

P(σj|EmIS) = P
(
EmIS|σj

)
P
(
σj
)/

P(EmIS)

= P
(
EmIS|σj

)
P
(
σj
)
/ M∑

j=1

[
P
(
EmIS|σj

)
P
(
σj
)]

= P
(
σj
)
/ M∑

j=1

[
P
(
σj
)]

=
m∏

k=1



(
H(j)

k1

)/ M∑

i=1

m∏

k=1



(
H(i)

k1

)
(4)

where M represents the number of potential solution σj,
and the last item 
(H(i)

k1) represents the mobility likelihood
transferring estimator of infected subpopulation Ik in I.

One linchpin of our algorithm in handling the scenario
mI �→ S(m > 1) is to estimate the probability of trans-
ferring Hi1 infected hosts from each infected subpopulation
Ii, i ∈ I, to the destination subpopulation S1. Based on
the independence between the intrasubpopulation epidemic
reactions and the intersubpopulation personal diffusion, we
introduce a transferring estimator to analyze the individual
mobility of each source Ii, which is in particular useful if there
are partially observable and unobservable edges emanated
from the focal infected subpopulation.

The specific formalisms of the transferring estimator are
defined according to the three types of infected subpopulation
Ii consisted of set I which are unobservable subpopulation, par-
tially observable subpopulation, and observable subpopulation
with transition of I to S.

a) Unobservable subpopulation Ii: Due to the occurrence
of mI �→ S, among all ki edges emanated from subpopula-
tion Ii, there is only one invasion edge in that INC, labeled
as ki, along which the traveling rate is pki and Hi1 infected
hosts are transferred to the destination S1. Assume that there
are �i (1 ≤ �i < ki) unobservable and partially observable
edges, labeled as 1, 2, . . . , �i, respectively. Along each unob-
servable or partially observable edge, the traveling rate is p�,
� ∈ [1, �i], and x� infected hosts leave Ii. Accordingly,
in total ηi = ∑

� x� infected hosts leave Ii through the
unobservable and partially observable edges. There remain
ki − �i − 1 observable edges, labeled as �i + 1, . . . , ki − 1,
respectively. Along each observable edge, the traveling rate is
pℵ, ℵ ∈ [�i + 1, ki − 1], and xℵ infected hosts leave Ii. With
probability pi = 1 − pki − ∑

� p� − ∑
ℵ pℵ, an infected host

keeps staying at source Ii.
Since the infected hosts transferred by unobservable and

partially observable edges are untraceable, it is unable to
reveal the actual invasion pathways resulting in that INC accu-
rately. Fortunately, the message of traveling rates on each edge
is available by collecting and analyzing the human mobility
transportation networks. Therefore, the mobility multinomial

distribution [(31) in Appendix A] can be used to obtain the
conditional probability that Hi1 infected hosts are transferred
from infected source Ii to destination S1, which is measured
by the following transferring estimator:


u(Hi1) = P
(
Hi1, pki; Ii(t − 1); x�, p�, � = [1, . . . , �i];

xℵ, pℵ,ℵ = [�i + 1, . . . , ki − 1]; xi, pi
)

(5)

where xi accounts for the number of infected hosts that do
not leave source Ii after the INC. Here, the observed number
of infected persons in source Ii before the INC, i.e., Ii(t − 1),
is used for the estimation, since the probability that a newly
infected host also experiencing the mobility process is very
low. Considering the conservation of infected hosts, and the
implication of observable edges (i.e., xℵ = 0,∀ℵ), we have
Ii(t − 1) = Hi1 + ∑

� x� + xi = Hi1 + ηi + xi. Taking into
account all scenarios that fulfill the condition η′

i = ηi + xi =
Ii(t − 1) − Hi1, the transferring estimator is simplified by the
marginal distribution of (4), that is

∑

η′
i=Ii(t−1)−Hi1

P(xi, x�, � = [1, . . . , �i])

=
∑

η′
i=Ii(t−1)−Hi1

Ii(t − 1)!

Hi1!
∏

� x�!xi!
pHi1

ki

∏

�

px�

� pi
xi . (6)

With independence, the transferring estimator becomes


u = Ii(t − 1)!

Hi1!η′
i!

pHi1
ki

[
∑

�

p� + pi

]η′
i

. (7)

b) Observable subpopulation Ii (Ii to Si): If the
infected hosts of source Ii all leave to travel from tEAT−1
to tEAT, the subpopulation Ii is observable at that INC.
In this case, we have additional posterior messages, i.e.,
I(t) = 0 and �Ii(t) = I(t − 1). Here, the number of infected
hosts transferred to S1 cannot exceed the total number of
infected travelers departing from source Ii, i.e., Hi1 ≤ �Ii(t).
In this regard, the probability that Hi1 infected hosts arrive
in destination S1 is measured by the following transferring
estimator:
(

�Ii(t)

Hi1

)[
pki∑

� p� + pki

]Hi1
[

1 − pki∑
� p� + pki

][�Ii(t)−Hi1]
.

(8)

c) Partially observable subpopulation Ii: If source Ii is
partially observable, we can develop the inference algorithm
with an additional posterior message, which reveals that at
least �Ii(t) = Ii(t) − Ii(t − 1) ≥ 1 infected hosts leave the
focal source Ii after the occurrence of that INC. In order to
measure the conditional probability that Hi1 infected hosts
are transferred from source Ii to destination S1, we inspect all
possible scenarios in detail, as follows.

Type 1: �Ii(t) ≤ Hi1, i.e., the observed reduction in the
number of infected hosts �Ii(t) is less than those transferred
from Ii to S1. Here, we consider all cases that are in accordance
with this condition.

If all �Ii(t) confirmed infected travelers are transferred from
Ii to S1, the transferring estimator can be used to quantify the
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conditional probability that the remaining Hi1−�Ii(t) infected
hosts concerned also visit S1, that is


p(Hi1 − �Ii(t)|Ii(t − 1) − �Ii(t))

= [Ii(t − 1) − �Ii(t)]!

[Hi1 − �Ii(t)]!η′
i!

p[Hi1−�Ii(t)]
ki

[
∑

�

p� + pi

]η′
i

×
[

pki∑
� p� + pki

]�Ii(t)

(9)

where pki/[
∑

� p� + pki] represents the relative traveling rate
that any person from source Ii is transferred to S1, thus the last
item on the right-hand side (RHS) accounts for the probability
that �Ii(t) confirmed infected travelers all visit S1.

If only a fraction of �Ii(t) confirmed infected travelers are
transferred from Ii to S1, the situation is more complicated.
Assume that �Ii(t) − φ (1 ≤ φ < �Ii(t)) confirmed trav-
elers successfully come to S1, the corresponding transferring
estimator becomes


p(Hi1 − �Ii(t) + φ|Ii(t − 1) − �Ii(t))

=
(

�Ii(t)

φ

)[
pki∑

� p� + pki

][�Ii(t)−φ][

1 − pki∑
� p� + pki

]φ

[Ii(t − 1) − �Ii(t)]!

[Hi1 − �Ii(t) + φ]!η′
i!

p[Hi1−�Ii(t)+φ]
ki

[
∑

�

p� + pi

]η′
i

(10)

where the first item on the RHS accounts for the probability
that �Ii(t) − φ confirmed visitors visit S1.

If all �Ii(t) confirmed infected travelers from Ii are not
transferred to S1, the conditional probability that among the
remaining Ii(t−1)−�Ii(t) infected hosts, Hi1 infected travel-
ers are transferred to S1, which is measured by the following
transferring estimator:


p(Hi1|Ii(t − 1) − �Ii(t))

= [Ii(t − 1) − �Ii(t)]!

Hi1!η′
i!

× pHi1
ki

[
∑

�

p� + pi

]η′
i[

1 − pki∑
� p� + pki

]�Ii(t)

(11)

where the last item on the RHS accounts for the probability
that �Ii(t) confirmed infected travelers all do not visit S1.

Taking into account all the above cases, the probability that
Hi1 infected hosts arrive at destination S1 is measured by the
following transferring estimator:


p(Hi1) =
�Ii(t)∑

φ=0

(
�Ii(t)

φ

)[
pki∑

� p� + pki

][�Ii(t)−φ]

×
[

1 − pki∑
� p� + pki

]φ [Ii(t − 1) − �Ii(t)]!

[Hi1 − �Ii(t) + φ]!η′
i!

× p[Hi1−�Ii(t)+φ]
ki

[
∑

�

p� + pi

]η′
i

. (12)

Type 2: �Ii(t) > Hi1, i.e., the observed reduction in the
number of infected hosts �Ii(t) exceeds the number of infected

hosts transferred to S1. Similar to the above analysis, we
develop the transferring estimator by considering all possible
cases that are in accordance with this condition.

If Hi1 infected hosts transferred to S1 are all from the
observable travelers �Ii(t), the transferring estimator becomes
(

�Ii(t)

Hi1

)[
pki∑

� p� + pki

]Hi1
[

1 − pki∑
� p� + pki

][�Ii(t)−Hi1]

×
[
∑

�

p� + pi

][Ii(t)−�Ii(t)]

(13)

where the last item accounts for the constraint that the
remaining Ii(t) − �Ii(t) infected hosts will not be transferred
to S1.

Similar to type 1, the other two cases are: only a fraction
of Hi1 infected hosts transferred to S1 are from the observable
travelers �Ii(t), and Hi1 infected hosts transferred to S1 are
all not from the observable travelers �Ii(t), we can also derive
the transferring estimators.

Taking into account all these cases, the probability that Hi1
infected hosts move to the destination subpopulation S1 is
measured by the following transferring estimator:

Hi1∑

�Hi1=0

(
�Ii(t)

�Hi1

)[
pki∑

� p� + pki

]�Hi1

×
[

1 − pki∑
� p� + pki

][�Ii(t)−�Hi1]

× [Ii(t − 1) − �Ii(t)]!

(Hi1 − �Hi1)!η′!
pHi1−�Hi1

ki

[
∑

�

p� + pi

]η′

. (14)

Generally, set I consists of the three classes of subpop-
ulations Ii(1 ≤ i ≤ m) discussed above: unobservable
subpopulation, partially observable subpopulation, and observ-
able subpopulation of I → S. According to (4), generally
each potential pathway ai corresponds to a potential solution
σi, the most-likely invasion pathway for a mI �→ S can be
identified as

âmIS = arg max
σi

P(σi|EmIS)

= arg max
ai

P(ai|GmIS). (15)

B. Case of mI �→ nS(m > 1, n > 1)

Finally, we consider the case of mI �→ nS(m > 1, n > 1),
which is more complicated than mI �→ S, because some
infectious populations in set I may have more than one inva-
sion edge to the corresponding susceptible subpopulations in
set S, and the number of elements in set S are more than
one, which obey a joint probability distribution of transferring
likelihood. As shown in Fig. 2, an INC mI �→ nS includes
set I = {Ii|i = 1, 2, . . . , m} and S = {Si|i = 1, 2, . . . , n}.
The first arrival infected individuals invaded each susceptible
subpopulation in set S are {Hi|i = 1, 2, . . . , n}, respectively.
Here, denote Ui(i = 1, 2, . . . , m) the subset of susceptible
neighbor subpopulations in set S of infected subpopulation Ii,
and Yj(j = 1, 2, . . . , n) the subset of infected neighbor
subpopulations in set I of susceptible subpopulation Sj.
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We define σ = {{Hi1|i ∈ Y1}, . . . , {Hin|i ∈ Yn}} a potential
solution for the mI �→ nS, if subject to two conditions:

1)
∑

i∈Yk

Hik = Hk (16)

Hik ≥ 0;
2) for any Hik which denotes the number of infected hosts

travel to subpopulation Sk from Ii at tEAT, we have∑
k∈Ui

Hik ≤ Ii(t − 1), where 1 ≤ i ≤ m, 1 ≤ k ≤ n.
If a mI �→ nS has M potential solutions, let

σj = {{H(j)
i1 |i ∈ Y1}, . . . , {H(j)

in |i ∈ Yn}}, 1 ≤ j ≤ M.
Similarly, we first discuss the accurately identifiable path-

way for a given mI �→ nS, then estimate the most-likely
numbers of each Hik as accurate as possible by designing our
identification algorithm, since one solution of (16) corresponds
to one invasion pathway of an INC mI �→ nS.

1) Accurate Identification of Invasion Pathway: Given a
few satisfied prerequisites, for all k ∈ Ui, i ∈ Yk of the equa-
tions constituted by (16) can has a unique solution, which
implies that the invasion pathway of that INC can be identified
accurately. Theorem 2 elucidates this scenario.

Theorem 2 (Accurate Identification of Invasion Pathway):
With the following conditions: 1) the number of invasion edges
Ein ≤ n + m; 2) the neighbor subpopulations of each subpop-
ulation in set I are with the transition S to S or I to S except
their neighbor subpopulations in set S during tEAT−1 to tEAT;
and 3)

∑m
i=1 �Ii(t) = ∑n

k=1 Hk, the invasion pathway of an
INC mI �→ nS(m, n > 1) can be identified accurately.

Proof: Since the number of infected individuals in the
partially observable subpopulation i reduces at time t,
i.e., Ii(t) < Ii(t − 1) and Ii(t) > 0, it is inevitable that a few
infected carries diffuse away from subpopulation i. Occurring
the state transitions of S → I, I → S at time t, subpopula-
tions in the neighborhood of i (excluding the new contaminated
subpopulation j) cannot receive infected travelers. Therefore,
the only possible destination for those infected travelers is
subpopulation Sj.

The conditions Ein ≤ n + m and
∑m

i=1 �Ii(t) = ∑n
k=1 Hk

make the equations
∑

i∈Yk
Hik = Hk and

∑
k∈Ui

Hik = �Ii(t)
only has the unique solution σ = {{Hi1|i ∈ Y1}, . . . ,
{Hin|i ∈ Yn}}. The reason is that rank(Acoef) = Ein, where
Acoef is the coefficient matrix of equations

∑
i∈Yk

Hik = Hk

and
∑

k∈Ui
Hik = �Ii(t). Thus the invasion pathway of this

mI �→ nS(m, n > 1) can be identified accurately.
2) Potential Invasion Pathway: If the conditions of

Theorem 2 are unsatisfied, the equations constituted by (16)
has multiple solutions, each solution corresponds to a set
of potential invasion pathways that can result in the related
mI �→ nS(m, n > 1). We derive the transferring likelihood of
each potential solution similar to case of mI �→ S. Therefore,
the likelihood of solution σj is characterized by

P
(
σj|EmInS

) =
m∏

k=1



(
H(j)

kk�

)/ M∑

i=1

m∏

k=1



(
H(i)

kk�

)
(17)

where M represents the number of solution σj, and the last
item 
(H(i)

kk�
) represents the transferring estimator of infected

subpopulation Ik in I, k� ∈ Yk. Note that σj and EmInS cor-
respond to a potential invasion pathway aj of mI �→ nS and
GmInS, respectively.

Now we discuss the transferring estimator of sub-
population Ii according to its extent of subpopulation
observability.

1) Subpopulation Ii has only one neighbor (invasion edge)
in set S. In this case, the transferring estimator is the
same as the depicted one in mI �→ S.

2) Subpopulation Ii has ρ (ρ ≥ 2) neighbors (invasion
edges) in set S.

Suppose there are totally ki edges emanate from Ii which
consist of the following three kinds.

1) There are ρi invasion edges (2 ≤ ρi ≤ n), labeled
1, 2, . . . , ρi, along which the traveling rates are p�,

� ∈ [1, ρi], and Hii� invade the subpopulations in the
subset {Yi = i�}, respectively.

2) There are �i unobservable and partially observable
edges, labeled 1 + ρi, . . . , �i + ρi, respectively. Along
each unobservable or partially observable edge, the trav-
eling rate is p�, � ∈ [1, �i], and x� infected hosts leave Ii.
Accordingly, in total ηi = ∑

� x� infected hosts leave Ii

through the unobservable and partially observable edges.
3) There remain ki − �i − ρi observable edges, labeled as

�i + ρi + 1, . . . , ki, respectively. Along each observ-
able edge, the traveling rate is pℵ, ℵ ∈ [�i + ρi + 1, ki],
and xℵ infected hosts leave Ii. With probability pi =
1 − ∑

�
p� − ∑

� p� − ∑
ℵ pℵ, an infected host keeps

staying at the source Ii. There are xi infected hosts
staying in subpopulation Ii with the probability pi.
Because Ii connects the unobservable and partially
observable infected subpopulations, we only know the
sum

∑
� x� + xi = η′.

Now, we employ the following estimators to evaluate the
transferring likelihood of the three categories of Ii.

a) Unobservable subpopulation Ii: Because �Ii(t) =
Ii(t − 1) − Ii(t) ≤ 0, we do not know whether and how many
infected individuals travel to which destinations. Similar to the
INC mI �→ S, the transferring likelihood estimator of Ii is


u
(
Hii�

) = P
(
Hii�, p�, � = [1, . . . , ρ]; x�, p�

� = [1 + ρ, . . . , l + ρ]; xℵ, pℵ
ℵ = [l + ρ + 1, . . . , k]; xi, pi

)
. (18)

By means of the observable edges, the transferring estimator
can be simplified as

∑

η′
i=Ii(t−1)−∑Hii�

P
(
Hii�, p�, � = [1, . . . , ρ]; x�, p�

� = [1 + ρ, . . . , l + ρ]; xi, pi
)

=
∑

η′
i=Ii(t−1)−∑Hii�

Ii(t − 1)!
∏

�
Hii�!η!

∏
� x�!xi!

∏

�

p
Hiij

�

(
∑

�

p�

)η

pi
xi . (19)
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Then the transferring estimator becomes by the marginal
distribution as


u = Ii(t − 1)!
∏

�
Hii�!η′

i!

∏

�

p
Hii�
�

[
∑

�

p� + pi

]η′
i

. (20)

b) Observable subpopulation Ii (Ii to Si): For this sit-
uation, Hi = {Hii� |� = 1, . . . , ρ} all come from �Ii(t).
The transferring likelihood estimator of a I → S observable
subpopulation Ii is


ob = �Ii(t)!
∏

�
Hii�!

(
�Ii(t) −∑

�
Hii�

)
!

∏

�

(
p�

∑l+ρ
k=1 pk

)H′′
ii�

×
⎛

⎝

∑
� p�

∑l+ρ
j=1 pj

⎞

⎠

�Ii(t)−∑�
Hii�

(21)

where �Ii(t) = Ii(t − 1) − Ii(t) = Ii(t − 1).
c) Partially observable subpopulation Ii: Due to

�Ii(t) = Ii(t − 1) − Ii(t) > 0, at least �Ii(t) infected hosts
leave source Ii from tEAT−1 to tEAT.

We first decompose Hi = {Hii� |� = 1, . . . , ρ} as two
subsets: H′

i = {H′
ii�

|� = 1, . . . , ρ} and H′′
i = {H′′

ii�
|� =

1, . . . , ρ}, H′
ii�

+ H′′
ii�

= Hii� , where H′
ii�

≥ 0,H′′
ii�

≥ 0.
Denote H′

i = {H′
ii�

|� = 1, . . . , ρ} the infected hosts com-
ing from Ii(t − 1) − �Ii(t), and H′′

i = {H′′
ii�

|� = 1, . . . , ρ}
the infected hosts coming from �Ii(t). Then we analyze the
transferring estimator on the following two types.

Type 1 (
∑

�
Hii� ≥ �Ii(t)): Suppose φ = ∑

�
H′′

ii�(0 ≤
φ ≤ �Ii(t)), which represents the number of infected hosts
coming from �Ii(t). Given a fixed φ, there may be more
than one permutation H′′

i = {H′′
iij

|j = 1, . . . , ρ} for H′′
i . The

transferring likelihood estimator is


pu =
�Ii(t)∑

φ=0

∑

∑H′′
ii�

=φ

P1P2 (22)

where

P1 = �Ii(t)!
∏

�
H′′

ii�
!(�Ii(t) − φ)!

×
∏

�

(
p�

∑l+ρ
k=1 pk

)H′′
ii�

⎛

⎝

∑
� p�

∑l+ρ
j=1 pj

⎞

⎠

�Ii(t)−φ

P2 = (Ii(t − 1) − �Ii(t))!
∏

�
H′

ii�
!
(
Ii(t − 1) − �Ii(t) −∑

�
Hii� + φ

)
!

∏

�

p
H′

ii�
�

×
(
∑

�

p� + pi

)Ii(t−1)−�Ii(t)−∑�
Hii�+φ

.

Type 2 (
∑

�
Hii� < �Ii(t)): Suppose φ = ∑

�
H′′

ii�(0 ≤
φ ≤ ∑

�
Hii�), which represents the number of infectious

hosts coming from �Ii(t). Given a fixed φ, there may be
more than one solution for H′′

i . The transferring likelihood
estimator is


pu =
∑

�
Hii�∑

φ=0

∑

∑H′′
ii�

=φ

P1P2 (23)

where P1 and P2 are the same as those in (22).

Fig. 4. Example of 2I �→ S INC. Suppose that three infected cases reach
subpopulation S1 simultaneously, which means H = 3. The three possible per-
mutations are: 1 H = 3,H11 = 1,H21 = 2; 2 H = 3,H11 = 2, H21 = 1;
and 3 H = 3,H11 = 3,H21 = 0. The permutations 1 and 2 indicate the
same pathways, but 3 is different.

Algorithm 2 IPI
1: Inputs: the time series of infection data Fi(t) and topology
of network G(V, E) (including diffusion rates p)
2: Find all invasion events via EAT data
3: for each invasion event
4: Invasion partition to find out the I �→ S , I �→ nS,
mI �→ S and mI �→ nS.
5: for each mI �→ S or mI �→ nS
6: if it satisfy conditions of Th 1 or Th 2
7: compute the unique invasion pathway
8: end if
9: if don’t satisfy conditions of Th 1 or Th 2
compute the all M potential solutions σi

10: compute the P(σi|EmIS) or P(σi|EmInS)

11: merge the P(σi|EmIS) or P(σi|EmInS) of
potential solution σi if they belong to same pathway
12: end if
13: end for
14: find the maximal amIS

j and amInS
j invasion pathway

15: end for
16: reconstruct the whole invasion pathways (T) by assem-
bling each invasion cases chronologically

According to (17), the most-likely invasion pathways for an
INC mI �→ nS can be identified as

âmInS = arg max
σi

P(σi|EmInS)

= arg max
ai

P(ai|GmInS). (24)

Note that if the first arrival infectious individuals H ≥ 3,
there may be multiple potential solutions corresponding to one
potential pathway. For example, a mI �→ S is illustrated in
Fig. 4. In this situation, we merge the transferring likelihood
of potential solutions of mI �→ S or mI �→ nS if they belong
to the same invasion pathways, then find out the most-likely
invasion pathways, which are corresponding to the maximum
transferring likelihood.

According to (1) and (2), the whole invasion pathway T
can be reconstructed chronologically by assembling all identi-
fied invasion pathway of each INC after identification of four
classes of INCs. To depict the IPI algorithm explicitly, the
pseudocode for our algorithm is given in Algorithm 2.
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C. Analysis of IPI Algorithm

Science IPI algorithm is based on hierarchical-iteration-like
decomposition technique, which reduce the temporal-spatial
complexity of spreading, it can handle large-scale spatial pan-
demic. Note that the invasion infected hosts Hi at EAT always
are very small (generally ≤ 3). Therefore, the computation cost
of our IPI algorithm is small, and we employ the enumeration
algorithm to compute each of M potential permutations. In this
section, we only discuss the simplest situation that one path-
way only corresponds to one permitted solution in an INC. The
situation of one pathway corresponds to multiplex potential
solutions can be extended.

Denote π the probability corresponding to the most likely
pathways for a given INC. Thus we have

π(σ) = sup
σi

{P(σi|E)}. (25)

Property 1: Given an INC “mI �→ S” or “mI �→ nS,”
P(σj|E) = (

∏m
k=1 
/

∑M
i=1

∏m
k=1 
), there must exist Pmin and

Pmax satisfying

Pmin ≤ π(σ) ≤ Pmax. (26)

Proof: Suppose that P(σ1|E) ≤ . . . ≤ P(σM|E), where
M is the number of potential solutions. Thus Pmax =
P(σM|E)/(P(σ2|E)+. . .+P(σM|E)); Because π(σ) ≥ 1/M, let
Pmin = max{1/M, P(σM|E)/(P(σ1|E) + ∑M

j=1 P(σj|E))}. We
have Pmin ≤ π(σ) ≤ Pmax.

D. Identifiability of Invasion Pathway

Accordingly, our IPI algorithm first decomposes the whole
invasion pathways into four classes of INCs. Some INCs
are easy to identify, but some are difficult. Therefore, it is
important to describe how possible an INC can be wrongly
identified. The identification extent of an INC relates with the
absolute value of π(σ) and information given by the probabil-
ity vector of all potential invasion pathways. We employ the
entropy to describe the information of likelihood vector, which
contains the all likelihood of M potential solutions/pathways
of an INC.

Definition 1 (Entropy of Transferring Likelihoods of M
Potential Solutions): According to Shannon entropy, we
define the normalized entropy of transferring likelihood
P(σ1|E), . . . , P(σM|E) as

S = − 1

log M

M∑

i=1

P(σi|E) log P(σi|E). (27)

This likelihood entropy S tells the information embedded in
the likelihood vector of the potential solutions of a given INC.

The bigger of π(σ) and the smaller of entropy S, the easier
to identify the epidemic pathways for an INC. Define identifi-
ability of invasion pathways to characterize the feasibility an
INC can be identified

� = π(σ)(1 − S). (28)

Although the likelihood entropies of some INCs are small (less
than 0.5), they are still difficult to identify, because their π(σ)

are much less than 0.5. Therefore, identifiability � describes

the practicability of a given mI �→ S or mI �→ nS better than
only using π(σ) or likelihoods entropy S. The identifiabil-
ity statistically tells us why some INCs are easy to identify,
whose � are more than 0.5, and why some INCs are difficult
to identify, whose � are much less than 0.5.

Next we show that there exist the upper and lower bound-
aries of identifiability � for a given INC.

Theorem 3: Given an INC “mI �→ S” or “mI �→ nS,”
� = π(σ)(1 − S) is the identifiability computed by the IPI
algorithm. There exist a lower boundary �min = 1/M(1 −S ′)
and an upper boundary �max = π − S(π(σ )) that

�min ≤ � ≤ �max (29)

where S′ = −(1/log M)(π log(π) + ∑
((1 − π)/(M − 1))

log((1 − π)/(M − 1))).
Proof: � = π(1 − S) ≥ (1/M)(1 − S) ≥

(1/M)(1 − S ′), where S′ = −(1/log M)(π log(π) +∑
((1 − π)/(M − 1)) log((1 − π)/(M − 1))) = −(1/log M)

(π log(π) + (1 − π) log((1 − π)/(M − 1))) = −(1/log M)

(π log(π)+(1−π) log(1−π)−(1−π) log(M−1)). According
to Fano’s inequality, the entropy S ≤ S ′.

On the other hand, we note that function
f (y) = y log(y) is strictly convex. According to
Jensen’s inequality, πS(σ ) = π × (−π(σ) log(π(σ )) −∑M−1

i=1 P(σi|E) log P(σi|E)) ≥ −(π(σ ))2 log((π(σ ))2) −
∑M−1

i=1 π(σ)P(σi|E) log π(σ)P(σi|E). � = π(1 − S) =
π − πS ≤ π − S(πσ). Therefore, �min ≤ � ≤ �max, where
�min = (1/M)(1 − S ′) and �max = π − S(π(σ )). That
completes the proof of Theorem 3.

IV. COMPUTATIONAL EXPERIMENTS

To verify the performance of our algorithm, we proceed net-
worked metapopulation-based Monte Carlo simulation method
to simulate stochastic epidemic process on the AAN and the
Barabasi–Albert (BA) networked metapopulation.

The AAN is a highly heterogeneous network. Each node of
the AAN represents an airport, the population size of which is
the serving area’s population of this airport. The directed traffic
flow is the number of passengers through this edge/airline. The
data of the AAN we are used to simulate is based on the true
demography and traffic statistics [50]. We take the maximal
component consisted of 404 nodes (airports/subpopulations)
of all American airports as the network size of the ANN. The
average degree of the AAN is nearly 〈k〉 = 16. The total
population of the AAN is the Ntotal ≈ 0.243 × 109, which
covers most of the population of the USA.

The BA network obeys heterogeneous degree distribu-
tion [51], which holds two properties of growth and preference
attachment. For a BA networked metapopulation, each node
is a subpopulation containing many individuals. The details
of how to generate a BA networked metapopulation including
travel rates setting is presented in Appendix B. To test the
performance of our algorithm to handle large-scale network,
the subpopulations number of the BA networked metapopu-
lation is fixed as 3000. This is nearly equal to the number
of the world airports network [52]. We fix 〈k〉 = 16 as
the average degree of the BA networked metapopulation.
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The initial population size of each subpopulation is N1 =
N2 = · · · = NN = 6 × 105, and the total population is
Ntotal = 6 × 105 × 3000 = 1.8 × 109, which covers most
of the active travelers of the world.

A. Networked Metapopulation-Based Monte Carlo
Simulation Method to Simulate Stochastic Epidemic Process

At the beginning, we assume only one subpopulation is
seeded as infected and others are susceptible. Thus I1(0) = 5,
Ii(0) = 0(i = 2, . . . , N). We record and update each individ-
ual’s state (i.e., susceptible or infected) at each time step. At
each �t (�t is defined as the unit time from t − 1 to t), the
transmission rate β and diffusion rate pij are converted into
probabilities. The rules of individuals reaction and diffusion
process in �t are as follows.

1) Reaction Process: Individuals which are in the same
subpopulation are homogeneously mixing. Each susceptible
individual (in subpopulation i) becomes infected with probabil-
ity β(Ii(t)/Ni). Therefore, the average number of newly added
infected individuals is β(((Ni(t) − Ii(t))Ii)/(Ni)), but the sim-
ulation results fluctuate from one realization to another. The
reaction process is simulated by binomial distribution.

2) Diffusion Process: After reaction, the diffusion process
of individuals between different subpopulation posterior to the
reaction process is taken into account. Each individual from
subpopulation i migrates to the neighboring subpopulation j
with probability pij. The average number of new infectious
travelers from subpopulation i to j is pijIi(t). The diffusion
process is simulated by binomial distribution or multinomial
distribution.

B. Numerical Results

We compared our IPI algorithm with three heuristic algo-
rithms that generate the SPT or minimum spanning tree of the
metapopulation networks.

1) Average-Arrival-Time (ARR)-Based SPT [30]: The min-
imum distance path from subpopulation i to subpopu-
lation j over all possible paths is generated in terms of
mean first arrival time. Thus the average-arrival-time-
based SPT is constructed by assembling all shortest
paths from the seed subpopulation to other subpopula-
tions of the whole network.

2) Effective (EFF)-Distance-Based Most Probable Paths
Tree [4] Methods: From subpopulation i to subpop-
ulation j, the effective distance Dij is defined as the
minimum of the sum of effective lengths along the arbi-
trary legs of the path. The set of shortest paths to all
subpopulations from seed subpopulation i constitutes
an SPT.

3) Monte Carlo-Maximum-Likelihood (MCML)-Based
Most Likely Epidemic Invasion Tree [43]: To produce
a most likely infection tree, they constructed the
minimum spanning tree from the seed subpopulation
to minimize the distance. Some recent works [53]–[55]
uses machine learning or genetic algorithms to infer
transmission networks from surveillance data. Because
of the distinction in model assumptions and conditions,
we do not perform comparison with them.

Fig. 5. Top and middle: identified accuracy for the whole and early stage
(before appearance of the first 50 infected subpopulations) invasion pathways
for 20 independent spreading realizations on the AAN. Bottom: accumulative
identified accuracy of INCs (mI �→ S and mI �→ nS) for the early stage and
the whole invasion pathways on the AAN.

We consider to access the identification accuracy for the
inferred invasion pathways. This accuracy is defined by the
ratio between the number of corrected identified invasion
pathways by each method and the number of true invasion
pathways, respectively. We also compute the accuracy of accu-
mulative INCs of mI �→ S and mI �→ nS. This accuracy is
defined by the ratio between the number of corrected identi-
fied invasion pathways by each method in this class of INC
and the number of true invasion pathways in this classes of
INC. Additionally, we investigate the identification accuracy of
early stage of a global pandemic spreading, which is important
to help understand how to predict and control the prevalence
of epidemics.

In Fig. 5 (top and middle), we observe the whole identi-
fication accuracy and the early-stage identification accuracy.
Fig. 5 (bottom) shows the early and whole accumulative
identification accuracy of mI �→ S and mI �→ nS through
20 independent realizations on the AAN for each algorithm,
respectively. The simulation results show our algorithm is out-
performance, which indicates heterogeneity of structure of the
AAN plays an important role.

Fig. 6 shows the results of the BA networked metapop-
ulation with 3000 subpopulations, the top of which presents
the identification accuracy of whole invasion pathway for each
realization of the four algorithms, while Fig. 6 (middle) shows
the identification accuracy of early stage invasion pathway for
each realization. Fig. 6 (bottom) shows accumulative identified
accuracy of mI �→ S and mI �→ nS of 20 realizations for four
algorithms respectively. The simulation results indicate that
our algorithm can handle a large scale networked metapopu-
lation with robust performance. Note that the performance of
the ARR for the BA networked metapopulation is the same
as that of the EFF, because our parameter C is a constant in
the diffusion model (see Appendix B). Fig. 7 shows the com-
parison of the actual invasion pathways and the most likely
identified invasion pathways for a given realization, during
the early stage on the AAN.
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Fig. 6. Top and middle: identified accuracy for the whole and early stage
invasion pathways for 20 independent spreading realizations on 3000 subpop-
ulations of the BA networked metapopulation. Bottom: accumulative identified
accuracy of mI �→ S and mI �→ nS for the early stage (the first 300 infected
subpopulations) and the whole invasion pathways on 3000 subpopulations of
the BA networked metapopulation.

Fig. 7. Illustration of the actual invasion pathways and the most likely iden-
tified invasion pathways, in a given realization, during the early stage (before
the appearance of 50 infected subpopulations) on the AAN. Subpopulation 1
is the seed.

The numerical results suggest that networks with different
topologies yield different identification performances, which
indicate an identification algorithm should embed in both
effects of spreading and topology. Our algorithm takes into
account both heterogeneity of epidemics (the number of
infected individuals) and network topology (diffusion flows).

We finally test the identifiability of an INC. Fig. 8 shows
the entropy and identifiability of wrongly identified mI �→ S
of 20 realizations on the AAN. The smaller the identifiability
of an INC is, the easier it is prone to be wrongly identified.

Fig. 8. Statistics analysis of the likelihoods entropy and identifiability of
wrongly identified mI �→ S of 20 realizations of epidemic spreading on
the AAN.

The identifiability depicts the wrongly identified mI �→ S more
reasonable than the likelihoods entropy. It indicates that iden-
tifiability � has a better performance to distinguish whether
an INC is difficult to identify or not than using the likelihoods
entropy.

V. CONCLUSION

To conclude, we have proposed an identification frame-
work as the so called IPI algorithm to explore the problem
of inferring invasion pathway for a pandemic outbreak. We
first anatomize the whole invasion pathway into four classes of
INCs at each EAT. Then we identify four classes of INCs, and
reconstruct the whole invasion pathway from the source sub-
population of a spreading process. We introduce the concept of
identifiability to quantitatively analyze the difficulty level that
an INC can be identified. The simulation results on the AAN
and large-scale BA networked metapopulation have demon-
strated our algorithm held a robust performance to identify
the spatial invasion pathway, especially for the early stage of
an epidemic. We conjecture the proposed IPI algorithm frame-
work can extend to the problems of virus diffusion in computer
network, human to human’s epidemic contact network, and
the reaction dynamics may extend to the susceptible-infected-
removed or susceptible-infected-susceptible dynamics.

APPENDIX A
MOBILITY OPERATOR

We discuss the individual mobility operator. Due to the pres-
ence of stochasticity and independence of individual mobility,
the number of successful transform of individuals between or
among adjacent subpopulations is quantified by a binomial or
a multinomial process, respectively. If the focal subpopula-
tion i only has one neighboring subpopulation j, the number
of individuals in a given compartment X (X ∈ {S, I} and∑

X Xi = Ni) transferred from i to j per unit time, Tij(Ui),
is generated from a binomial distribution with probability p
representing the diffusion rate and the number of trials Ui,
that is

Binomial
(
Tij,Ui, p

) = Ui!

Tij!
(
Ui − Tij

)
!
pTij(1 − p)(Ui−Tij).

(30)
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If the focal subpopulation i has multiple neighboring subpop-
ulations j1, j2, . . . , jk, with k representing i’s degree, the num-
bers of individuals in a given compartment U transferred from
i to j1, j2, . . . , jk are generated from a multinomial distribution
with probabilities pij1 , pij2 , . . . , pijk (pij1 +pij2 +· · ·+pijk = p)
representing the diffusion rates on the edges emanated from
subpopulation i and the number of trails Ui, that is

Multinominal
({
Tij�

}
,Ui,

{
pij�

})

= Ui!
∏

� Tij�!
(
Ui −∑

� Tij�

)
!

(
∏

�

p
Tij�
ij�

)

×
(

1 −
∑

�

pij�

)(Ui−∑� Tij�

)

(31)

where � ∈ [1, k].

APPENDIX B
GENERIC DIFFUSION MODEL TO GENERATE

BARABASI–ALBERT METAPOPULATION NETWORK

We develop a general diffusion model to generate a BA
metapopulation network in Section V, which characterizes the
human mobility pattern on the empirical statistical rules of air
transportation networks.

The diffusion rate from subpopulation i to j is pij = (wij/Ni),
where wij denotes the traffic flow from subpopulation i to j.
These empirical statistical rules are verified in the air trans-
portation network [52]: 〈pij〉 ∼ (kikj)

θ ′
, θ ′ = 0.5 ± 0.1;

T ∼ kβ ′
, β ′ � 1.5 ± 0.1; N ∼ Tλ′

(T = ∑
l wjl), λ

′ � 0.5.
All the above empirical formulas relate to node’s degree k.

To generate an artificial transportation network, we introduce
a generic diffusion model to determine the diffusion rate

pij = bijkθ
j

∑
l bilkθ

l

C (32)

where bij stands for the elements of the adjacency matrix
(bij = 1 if i connects to j, and bij = 0 otherwise), C is
a constant, and θ is a variable parameter. We assume that
parameter θ follows the Gaussian distribution θ ∼ N(θ̂ , δ2) =
(1/

√
2πδ)exp(−((θ̂ − θ)2/2δ2)). Based on the empirical rule

of T ∼ kβ ′
, β ′ � 1.5 ± 0.1, where β is approximately linear

with θ , the least squares estimation is employed to evalu-
ate parameters θ̂ and δ2 if we set the initial population of
each node and constant C. Then, for a given BA network,
we get a BA networked metapopulation in which real statistic
information is embedded by using the above method.
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