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Abstract 

Distributed in-memory key-value stores (KVSs), such as 

memcached, have become a critical data serving layer in 

modern Internet-oriented datacenter infrastructure. Their per­

formance and efficiency directly affect the QoS of web services 

and the efficiency of datacenters. Traditionally, these systems 

ha ve had significant overheads from inefficient network pro­

cessing, OS kernel involvement, and con currency control. Two 

recent research thrusts have focused upon improving key-value 

peiformance. Hardware-centric research has started to ex­

plore specialized platforms including FPGAs for KVSs; results 

demonstrated an order of magnitude increase in throughput 

and energy efficiency over stock memcached. Software-centric 

research revisited the KVS application to address fundamental 

software bottlenecks and to exploit the full potential of mod­

ern commodity hardware; these efforts too showed orders of 

magnitude improvement over stock memcached. 

We aim at architecting high performance and efficient KVS 

platforms, and start with a rigorous architectural characteri­

zation across system stacks over a collection of representative 

KVS implementations. Our detailed full-system characteriza­

tion not only identifies the critical hardware/software ingre­

dients for high-performance KVS systems, but also leads to 

guided optimizations atop a recent design to achieve a record­

setting throughput of 120 million requests per second (MRPS) 

on a single commodity server. Our implementation delivers 

9.2X the performance (RPS) and 2.8X the system energy effi­

ciency (RPS/watt) of the best-published FPGA-based claims. 

We craft a set of design principles for future platform architec­

tu res, and via detailed simulations demonstrate the capability 

of achieving a billion RPS with a single server constructed 

following our principles. 
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1. Introduction 

Distributed in-memory key-value stores such as mem­

cached [7] have become part of the critical infrastructure for 

large scale Internet-oriented datacenters . They are deployed 

at scale across server farms inside companies such as Face­

book [36], Twitter [8], Amazon [1], and LinkedIn [4,7]. Unfor­

tunately, traditional KVS implementations such as the widely 

used memcached do not achieve the performance that mod­

ern hardware is capable of: They use the operating system's 

network stack, heavyweight locks for concurrency control, 

inefficient data structures, and expensive memory manage­

ment . These impose high overheads for network processing, 

concurrency control, and key-value processing . As a result, 

memcached shows poor performance and energy efficiency 

when running on commodity servers [32]. 

As a critical layer in the datacenter infrastructure, the perfor­

mance of key-value stores affects the QoS of web services [36], 

whose efficiency in turn affects datacenter cost . As a result, 

architects and system designers have spent significant effort 

improving the performance and efficiency of KVSs. This has 

led to two different research efforts, one hardware-focused and 

one software-focused . The hardware-based efforts, especially 

FPGA-based designs [14,15,32], improve energy efficiency by 

more than lOX compared to legacy code on commodity servers . 

The software-based research [18, 19, 26, 31, 34, 35, 38] instead 

revisits the key-value store application to address fundamental 

bottlenecks and to leverage new features on commodity CPU 

and network interface cards (NICs), which have the potential 

to make KVSs more friendly to commodity hardware . The cur­

rent best performer in this area is MICA [31], which achieves 

77 million requests per second (MRPS) on recent commodity 

server platforms . 

While it is intriguing to see that software optirnizations can 

bring KVS performance to a new level, it is still unclear: 1) 

whether the software optimizations can exploit the true poten­

tial of modern platforms ; 2) what the essential optimization in­

gredients are and how these ingredients improve performance 

in isolation and in collaboration ; 3) what the implications are 

for future platform architectures . We believe the answers to 

these questions will help architects design the next generation 

of high performance and energy efficient KVS platforms. 
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We begin with a rigorous and detailed characterization 

across system stacks, from application to OS and to bare­

metal hardware. We evaluate four KVS systems, ranging from 

the most recent (MICA) to the most widely used (memcached). 

Our holistic system characterization provides importantjitll­

stack insights on how these KVSs use modem platforms, from 

compute to memory and to network subsystems. This paper 

is the first to reveal the important (yet hidden) synergistic 

implications of modern platform features (e.g., direct cache ac­

cess [2,23], multi-queue NICs with flow-steering [3], prefetch, 

and beyond) to high performance KVS systems. Guided by 

these insights, we optimize MICA and achieve record-setting 

performance (120 Million RPS) and energy efficiency (302 

kilo RPS/watt) on our commodity system-over 9.2X the 

performance (RPS) and 2.8X the system energy efficiency 

(RPS/watt) of the best-published FPGA-based claims [14], 

respectively. Finally, based on these full-stack insights, we 

craft a set of design principles for a future manycore-based and 

throughput-optimized platform architecture, with right system 

balance among compute, memory, and network. We extend 

the McSimA+ simulator [11] to support the modern hardware 

features our proposal relies upon and demonstrate that the 

resulting design is capable of exceeding a billion requests per 

second on a quad-socket server platform. 

2. Background and Related Work 

In-memory KVSs comprise the critical low-latency data serv­

ing and caching infrastructure in large-scale Internet services. 

KVSs provide a fast, scalable storage service with a simple, 

generic, hash-tab le-like interface for various applications. Ap­

plications store a key-value pair using PUT (key, value) , and 

look up the value associated with a key using GET (key) . 
KVS nodes are often clustered for load balancing, fault tol­

erance, and replication [36]. Because each individual store in 

the cluster operates almost independently, a KVS cluster can 

offer high throughput and capacity as demonstrated by large­

scale deployments--e.g., Facebook operates a memcached 

KVS cluster serving over a billion requests/second for tril­

lions of items [36]. However, the original memcached, the 

most widely used KVS system, can achieve only sub-million 

to a few million requests per second (RPS) on a single lA 

server [31, 32] because of overheads from in-kernel network 

processing and locking [27,32]. Recent work to improve KVS 

performance has explored two different paths: hardware ac­

celeration for stock KVSs (mostly memcached) and software 

optimizations on conunodity systems. 

The hardware-based approach uses specialized platforms 

such as FPGAs. Research efforts [14, 15, 28, 32] in this di­

rection achieve up to 13.2MRPS [14] with a lOGbE link and 

more than lOX improvements on energy efficiency compared 

to commodity servers running stock memcached. There are 

also non-FPGA-based architecture proposals [20, 30, 33, 37] 

for accelerating memcached and/or improving performance 

and efficiency of various datacenter workloads. 
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On the software side, recent work [18, 19, 26, 31, 34, 35, 38] 

has optimized the major components of KVSs: network pro­

cessing, concurrency control, key-value processing, and mem­

ory management, either in isolation or combination for better 

performance. Reducing the overhead of these components can 

significantly improve performance on commodity CPU-based 

platforms. As of this writing, the fastest of the new KVS 

software designs is MICA [31], which achieves 77 MRPS on 
® ™ 1 a dual-socket server with Intel R Xeon E5-2680 processors. 

3. Modern Platforms and the KVS Design Space 

This section describes recent improvements in hardware and 

software, efficient KVS implementations, and the synergies 

between them. 

3.1. Modern Platforms 

The core count and last level cache (LLC) size of modern 

platforms continues to increase. For example, Intel Xeon 

processors today have as many as 18 powerful cores with 

45MBs of LLC. These multi-/manycore CPUs provide high 

aggregate processing power. 

Modern NICs, aside from rapid improvements in bandwidth 

and latency, offer several new features to better work with 

high-core-count systems: multiple queues, receiver-side scal­

ing (RSS), and flow-steering to reduce the CPU overhead of 

NIC access [17, 41]. Multiple queues allow different CPU 

cores to access the NIC without contending with each other, 

and RSS and flow-steering enable the NIC to distribute a sub­

set of incoming packets to different CPU cores. Processors 

supporting �rite-.!!llocate-write-!!pdate-capable Qirect �ache 

Access (wauDCA) [23],2 implemented as Intel Data Direct 

VO Technology (Intel DDIO) [2] in Intel processors, allow 

both traditional and RDMA-capable NICs to inject packets 

directly into processor LLC. The CPU can then access the 

packet data without going to main memory, with better control 

over cache contention should the I/O data and CPU working 

sets conflict. 

Figure 1 briefly illustrates how these new technologies 

work together to make modern platforms friendly to network­

intensive applications. Before network processing starts, a pro­

cessor creates descriptor queues inside its LLC and exchanges 

queue information (mostly the head and tail pointers) with 

the NIC. When transmitting data, the processor prepares data 

packets in packet buffers, updates some transmit descriptors 

in a queue, and notifies the NIC through memory-mapped 10 
(MMIO) writes. The NIC will fetch the descriptors from the 

descriptor queue and packets from the packet buffers directly 

from LLC via wauDCA (e.g., Intel DDIO), and start trans­

mission. While this process is the same as with single-queue 

lIntel and Xeon are trademarks of Intel Corporation in the U.S. and/or 
other countries. 

2This paper always refers to DCA as the wauDCA design [23] (e.g., Intel 
Data Direct VO Technology [2] )  instead of the simplified Prefetch Hint [23] 
based implementation [5] .  
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Figure 1 :  A modern system with �rite-!!.lIocate-write-l,!pdate-capable Qirect .Qache Access (wauDCA), e.g., Intel 0010 [2], and a multi­

queue NIC with flow-steering, e.g., Intel Ethernet Flow Director [3], to support high performance network intensive applications. 

Network stack Example systems 
Concurrency control I Example systems 

Kernel memcached [7] ,  MemC3 [ 19] 

Userspace Chronos [ 27] ,  MICA [3 1] 

Mutex memcached, MemC3 

Versioning Masstree [3 4] ,  MemC3, MICA 

Partitioning Chronos , MICA 

Indexing Replacement policy Example systems Memory management I Example systems 
==========�======�==�========== 

Chained hash table Strict LRU memcached SLAB memcached, MemC3 

Cuckoo hash table CLOCK MemC3 

Lossy hash index FIFO/LRUI Approx .LRU MICA 

Log structure 

Circular log 

RAMCloud [3 8] 

MICA 

Table 1 :  Taxonomy of design space of key-value store (KVS) systems. 

NICs, multi-queue NICs enable efficient parallel transmission 

from multiple cores by eliminating queue-contention, and par­

allel reception by providing flow-steering, implemented as 

Intel Ethernet Flow Director (lntel Ethernet FD) [3] in Intel 

NICs. With flow-steering enabled NICs, each core is assigned 

a specific receive queue (RX Q), and the OS or an application 

requests the NIC to configure its on-chip hash table for flow­

steering. When a packet arrives, the NIC first applies a hash 

function to a portion of the packet header, and uses the result 

to identify the associated RX Q (and thus the associated core) 

by looking up the on-chip hash table. After that, the NIC will 

inject the packet and then the corresponding RX Q descriptor 

directly into the processor LLC via wauDCA. The core can 

discover the new packets either by polling or by an interrupt 

from the NIC. The NIC continues processing new packets. 

Using wauDCA (e.g., Intel DDIO), network VO does not al­

ways lead to LLC misses: an appropriately structured network 

application thus has the possibility to be as cache-friendly as 

non-networked programs do. 

With fast network I/O (e.g., 100+ Gbps/node), the OS 

network stack becomes a major bottleneck, especially for 

small packets. Userspace network I/O, such as PacketShader 

110 [21] and Intel Data Plane Development Kit (DPDK) [24], 

can utilize the full capacity of high speed networks. By elim­

inating the overheads of heavy-weight OS network stacks, 

these packet I/O engines can provide line-rate network VO 

for very high speed links (up to a few hundred Gbps), even 

for minimum-sized packets [21, 43]. Furthermore, userspace 

networking can also be kernel-managed [13, 42] to maximize 

its benefits. 

Although modern platforms provide features to enable fast 

in-memory KVSs, using them effectively is nontrivial. Un­

fortunately, most stock KVSs still use older, unoptimized 
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software techniques. For example, memcached still uses the 

traditional POSIX interface, reading one packet per system 

call. This renders it incapable of saturating multi-gigabit links. 

Thus, we navigate through the KVS design space to shed light 

on how KVSs should exploit modern platforms. 

3.2. Design Space of KVSs 

Despite their simple semantics and interface, KVSs have a 

huge design and implementation space. While the original 

memcached uses a conservative design that sacrifices perfor­

mance and efficiency, newer memcached-like KVSs, such as 

MemC3 [19], Pilaf [35], MICA [31], FaRM-KV [1 8], and 

HERD [26], optimize different parts of the KVS system to 

improve performance. As a complex system demanding hard­

ware and software co-design, it is hard to find a "silver bullet" 

for KVSs, as the best design always depends on several factors 

including the underlying hardware. For example, a datacenter 

with flow-steering-capable networking (e.g., Intel Ethernet 

FD) has a different subset of essential ingredients of an appro­

priate KVS design from a datacenter without it. Table 1 shows 

a taxonomy of the KVS design space in four dimensions: 1) 

the networking stack ; 2) concurrency control ; 3) key-value 

processing ; and 4) memory management. 

The networking stack refers to the software framework 

and protocol used to transmit key-value requests and responses 

between servers and clients over the network. memcached uses 

OS-provided POSIX socket VO, while newer systems with 

higher throughput often use a userspace network stack to avoid 

kernel overheads and to access advanced NIC features. For 

example, DPDK and RDMA drivers [10, 24] expose network 

devices and features to user applications, bypassing the kernel. 

Concurrency control is how the KVS exploits parallel data 

access while maintaining data consistency. memcached relies 

on a set of mutexes (fine-grained locking) for concurrency 
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control, while many newer systems use optimistic locking 

mechanisms including versioned data structures. Versioning­

based optimistic locking reduces lock contention by optimiz­

ing the common case of reads that incur no memory writes. 

It keeps metadata to indicate the consistency of the stored 

key-value data (and associated index information) ; this meta­

data is updated only for write operations, and read operations 

simply retry the read if the metadata and read data versions 

differ. Some designs partition the data for each server core, 

eliminating the need for consistency control. 

Key-value processing comprises key-value request pro­

cessing and housekeeping in the local system. Hash tables are 

commonly used to index key-value items in memcached-like 

KVSs. memcached uses a chained hash table, with linked lists 

of key-value items to handle collisions. This design is less 

common in newer KVSs because simple chaining is inefficient 

in both speed and space due to the pointer chasing involved. 

Recent systems use more space- and memory access-friendly 

schemes such as lossy indexes (similar to a CPU cache's as­

sociative table) or recursive eviction schemes such as cuckoo 

hashing [39] and hopscotch hashing [22]. Replacement poli­

cies specify how to manage the limited memory in the server. 

memcached maintains a full LRU list for each class of similar­

sized items, which causes contention under concurrent ac­

cess [19] ;  it is often replaced by CLOCK or other LRU-like 

policies for high performance. 

Memory management refers to how the system allocates 

and deallocates memory for key-value items. Most systems 

use a custom memory management for various reasons: to 

reduce the overhead of malloc ( )  [7], to allow using huge 

pages to reduce TLB misses [7, 19], to facilitate enforcing the 

replacement policy [7,31], etc. One common scheme is SLAB 

that defines a set of size classes and maintains a memory pool 

for each size class to reduce the memory fragmentation. There 

are also log structure [38]-like schemes including a circular log 

that optimizes memory access for KV insertions and simplifies 

garbage collection and item eviction [31]. 

It is noteworthy that new KVSs benefit from recent hard­

ware trends described in Section 3.1, especially in their net­

work stack and concurrency control schemes. For example, 

MICA and HERD actively exploit multiple queues in the NIC 

by steering remote requests to a specific server core to imple­

ment data partitioning, rather than passively accepting packets 

distributed by RSS. While these systems always involve the 

server CPU to process key-value requests, they alleviate the 

burden by directly using the large CPU cache that reduces the 

memory access cost of DMA significantly. 

4. Experimental Methods 

Our ultimate goal is to achieve a billion RPS on a single 

KVS server platform. However, software and hardware co­

design/optimization for KVS is challenging. Not only does a 

KVS exercises all main system components (compute, mem­

ory, and network), the design space of both the system ar-
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chitecture and KVS algorithms and implementation are huge, 

as described in Section 3. We therefore use a multi-stage 

approach. We first optimize the software to exploit the full 

potential of modern architecture with efficient KVS designs. 

Second, we undertake rigorous and cross-layer architectural 

characterization to gain full-stack insights on essential ingredi­

ents for both hardware and software for KVS designs, where 

we also extend our analysis to a collection of KVS designs to 

reveal system implications of KVS software design choices. 

Finally, we use these full-stack insights to architect future 

platforms that can deliver over a billion RPS per KVS server. 

4.1. KVS Implementations 

To pick the best KVS software design to start with, we have 

to navigate through the large design space of KVS and ide­

ally try all the combinations of the design taxonomy as in 

Table 1, which is a nearly impossible task. Fortunately, Lim 

et al. [31] have explored the design space to some extent and 

demonstrated that their MICA design achieves 77 MRPS on 

a single KVS server ; orders of magnitude faster than other 

KVSs. Thus, we take MICA as the starting point for optimiza­

tion (leaving RDMA-based KVS designs for future work) to 

fully exploit the potential of modern platforms and include 

popular memcached [7] and MemC3 [19] (a major yet non­

disruptive improvement over memcached) to study the system 

implications of KVS design choices. Table 2 gives an overview 

of the KVS implementations used in this work. 

Mcd-S is the original memcached. This implementation is 

commonly used in numerous studies. Mcd-S uses socket I/O 

provided by the OS and stores key-value items in SLAB. It 

uses multiple threads to access its key-value data structures 

concurrently, which are protected by fine-grained mutex locks. 

It uses a chained hash table to locate items and maintains an 

LRU list to find items to evict. 

Mcd-D is a DPDK-version of Mcd-S. It replaces the net­

work stack of Mcd-S with a userspace networking stack en­

abled by DPDK and advanced NICs to perform efficient net­

work 110. It reuses other parts of Mcd-S, i.e., concurrency 

control and key-value data structures. 

MC3-D is a DPDK-version of MemC3. MemC3 replaces 

the hashing scheme of memcached with the more memory­

efficient concurrent cuckoo hashing, while still using fine­

grained mutex for inter-thread concurrency control. It also 

substitutes the strict LRU of memcached with CLOCK, which 

eliminates the high cost of LRU updates. While these changes 

triple its throughput [19], MC3-D still suffers from overhead 

caused by the code base of the original memcached. 

MICA is a KVS that uses a partitioned/sharded design and 

high-speed key-value structures. It partitions the key-value 

data and allocates a single core to each partition, which is ac­

cessed by cores depending on the data access mode as shown 

in Figure 2. In exclusive read exclusive write (EREW) mode, 

MICA allows only the "owner core" of a partition to read and 

write the key-value data in the partition, eliminating the need 
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Name I 
KV S 

I 
Network 

I 
Concurrency I Key-value processing J Memory 

codebase stack control Indexing Replacement policy management 

Mcd-S memcached Kernel (Iibevent) Mutex Chained hash table Strict LRU SLAB 

Mcd-D memcached Userspace (DPDK) Mutex Chained hash table Strict LRU SLAB 

MC3-D MemC3 Userspace (DPDK) Mutex+versioning Cuckoo hash table CLOCK SLAB 

MICA MICA-cache Userspace (DPDK) None/versioning Lossy hash index FIFO/LRUI Approx .LRU Circular log 

Table 2: Implementations of the KVS systems used in our experiments. Mcd-D and MC3-D are modified from their original code to 

use DPDK for network 1/0. MICA is optimized for higher throughput and operates in its cache mode. 

Main memory Processor Main memory Processor 
I 
I 

Partition t ... ... .. r.l Core I I Partition ti �f!l Core I 
Partition �. -r:1 Core I I Partition I: r---11 Core I 

MICA EREW MICA CREW 
- GET data path ............. PUT data path 

Figure 2: Partitioning/sharding in MICA. 

for any concurrency control. In concurrent read exclusive 

write (CREW) mode, MICA relaxes this access constraint 

by allowing cores to access any partition for GET requests 

(whereas keeping the same constraint for PUT requests), which 

requires MICA to use a versioning-based optimistic locking 

scheme. We use MICA's cache mode, which is optimized for 

memcached-like workloads ; MICA maintains a lossy index 

that resembles the set-associative cache of CPUs for locating 

key-value items, and a circular log that stores variable-length 

items with FIFO eviction. In this design, remote key-value 

requests for a key must arrive at an appropriate core that is 

permitted to access the key's partition. This request direction 

is achieved by using flow-steering as described in Section 3.1 

and making clients to specify the partition of the key explicitly 

in the packet header. MICA supports FIFO, LRU, and ap­

proximate LRU by selectively reinserting recently used items 

and removing most inactive items in the circular log. MICA 

performs intensive software memory prefetching for the index 

and circular log to reduce stall cycles. 

While MICA is for co-optimizing hardware and software to 

reap the full potential of modern platforms, other KVS designs 

are important to understand system implications of key design 

choices. For example, from Mcd-S to Mcd-D we can see the 

implications on moving from OS to user-space network stack. 

And from Mcd-D to MC3-D, we can find the implications 

for using more efficient key-value processing schemes over 

traditional chaining with LRU policy. 

4.2. Experimental Workloads 

We use YCSB for generating key-value items for our work­

load [16]. While YCSB is originally implemented in Java, we 

use MICA's high-speed C implementation that can generate up 

to 140 MRPS using a single machine. The workload has three 

relevant properties: average item size, skewness, and read­

intensiveness. Table 3 summarizes four different item counts 

and sizes used in our experiment. The packet size refers to the 

largest packet size including the overhead of protocol headers 

(excluding the 24-byte Ethernet PHY overhead) ; it is typically 

480 

Dataset Count Key size Value size Max pkt size 

Tiny 192Mi 8B 8B 88 B 
Small 128Mi 16 B 64B 152 B 
Large 8Mi 128 B 1, 024 B 1, 224 B 

X-large 8Mi 250B 1, 152 B 1, 480 B 

Table 3: Workloads used for experiments. 

the PUT request's size because it carries both the key and value, 

while other packets often omit one or the other (e.g., no value 

in GET request packets). To demonstrate realistic KVS perfor­

mance for large datasets, we ensure that the item count in each 

dataset is sufficiently high so that the overall memory require­

ment is at least 10GB including per-object space overhead. 

The different datasets also reveal implications of item size in 

a well controlled environment for accurate analysis. We use 

relatively small items because they are more challenging to 

handle than large items that rapidly become bottlenecked by 

network bandwidth [32]. They are also an important workload 

in datacenter services (e.g., Facebook reports that in one mem­

cached cluster [12], "requests with 2-, 3-, or l l-byte values 

add up to 40% of the total requests"). 

We use two distributions for key popularity: Uniform and 

Skewed. In Uniform, every key has equal probability of being 

used in a request. In Skewed, the popularity of keys follows 

a Zipf distribution with skewness 0.99, the default Zipf skew­

ness for YCSB. The Zipf distribution captures the key request 

patterns of realistic workloads [12,32] and traces [32]. Skewed 

workloads often hit system bottlenecks earlier than uniform 

workloads because they lead to load imbalance, which makes 

them useful for identifying bottlenecks. 

Read-intensiveness indicates the fraction of GET requests 

in the workload. We use workloads with 95% and 50% GET 

to highlight how KVSs operate for read-intensive and write­

intensive applications, respectively. 

We define the STANDARD workload as a unifonn workload 

with tiny items and a 95% GET ratio. This workload is used 

in several of our experiments later. 

4.3. Experiment Platform 

Our experiment system contains two dual-socket systems with 
® TM 

Intel R Xeon E5-2697 v2 processors (12 core, 30MB LLC, 

2.7GHz ). These processors are equipped with Intel DDIO 

(an implementation of wauDCA on Intel processors) and thus 

enable NICs to inject network VO data directly into LLC. Each 

system is equipped with 128GB of DDR3-1600 memory and 
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Figure 3: MICA's number-of-cores scalability with 1 10GbE port 

and one socket. We use STANDARD workload and EREW mode. 

RX batch size is the average number of packets MICA fetches 

per 1/0 operation from the NIC via DPDK. All numbers are nor­

malized to their values at one core, where the actual RPS, RX 

batch size, and IPC are 11.55 MRPS, 32 packets per 1/0 opera­

tion, and 1.91 (IPC per core), respectively. 

four Intel®X520-QDA l NICs, with four lOGbps Ethernet 

( lOGbE) ports on each NIC. The NICs support flow-steering 

via the built-in Intel Ethernet Flow Director. The two systems 

are directly connected via their NICs for simplicity, with one 

system acting as a client and the other acting as a server. 

CentOS 7.0 is installed with kernel 3.10.0-123.8.1. All 

code is compiled with gcc 4.8.2. For application-, system-, 

and OS- level analysis, we use Systemtap 2.4. For hardware 

level performance analysis, we use Intel® VTune
™ 

to collect 

statistics from hardware performance counters. We measure 

the total power supplied to the server from a wall socket using 

Watts-Up-Pro. Inside the server, we use a National Instruments 

DAQ-9174 to measure the power of the two processors (via 

the 12V rail of the voltage regulator) and one of the PCIe NICs 

(via the 3.3V and 12V rails on the PCIe slot). 

5. The Road to 120 Million RPS per KVS Server 

We first describe our optimizations guided by detailed full­

system characterization, achieving 120 MRPS on our experi­

ment platform. Then, we present in sights gained from cross­

layer performance analysis on system implications of KVS 

software design choices, as well as the essential ingredients 

for high performance KVS systems. 

5.1. Architecture Balancing and System Optimization 

Because KVSs exercise the entire software stack and all major 

hardware components, a balance between compute, memory, 

and network resources is critical. An unbalanced system will 

either limit the software performance or waste expensive hard­

ware resources. An important optimization step is to find the 

compute resources required to saturate a given network band­

width, for example, a lOGbE link. Figure 3 shows MICA's 

throughput when using one lOGbE link with an increasing 

number of CPU cores. While one core of the Intel Xeon pro­

cessor is not enough to keep up with a 10GbE link, two cores 

provide close to optimal compute resources, serving 9.76 Gbps 

out of the 10 Gbps link. Using more cores can squeeze out the 
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remaining 2.4% of the link bandwidth, at the expense of spend­

ing more time on network VO compared to actual key-value 

(KV) processing. For example, using three cores instead of 

two reduces the average RX batch size by a factor of 6 (from 

32 to 5.29), meaning that cores do less KV processing per VO 

operation. Although the IPC does not drop significantly with 

adding more cores, the newly added cores simply busy-wait 

on network VO without doing useful KV processing. 

Holding the core to network port ratio as 2: 1, we increase 

the cores and lOGbE ports in lockstep to test the full-system 

scalability. The maximum throughput achieved in this way is 

80 MRPS with 16 cores and 8 10GbE ports. Going beyond 

these values leads to a performance drop because of certain 

inefficiencies that we identified in the original MICA system. 

First, originally, each server core performed network VO on all 

NIC ports in its NUMA domain. Thus, the total number of NIC 

queues in the system is NumCores x NumPorts, leading to a 

rapid increase in the total network queues the processor must 

maintain. More total queues also requires the NICs to inject 

more data into the LLC via Intel DDIO that, however, can only 

use up to 10% of the LLC capacity [2]. In addition, with more 

cores and higher throughput, the cores must fetch more data 

into the LLC for key-value processing. The combination of 

these two effects causes LLC thrashing and increases the L3 

miss rate from less than 1 % to more than 28%. 

To reduce the number of queues in the system, we changed 

the core to port mapping so that each core talks to only one 

port. With this new mapping, the performance reached 100 

MRPS with 20 cores and 10 lOGbE ports, but dropped off 

slightly with more cores/ports. We analyzed this problem 

in detail by using Systemtap to track the complete behavior 

(on-/off-CPU time, call graph, execution cycle breakdown, 

among others) of all procedure calls and threads in the en­

tire software stack (MICA, DPDK, and OS). We found that 

several housekeeping functions consumed more than 20% of 

the execution time when there are more than 20 cores. Ex­

amples include statistics collection from NICs (used for flow 

control, and expensive because of MMIO) and statistics col­

lection from local processors (for performance statistics). We 

reduced the frequency of these housekeeping tasks to alleviate 

the overhead without affecting the main functionality. With 

this optimization, MICA scaled linearly with number-of-cores 

and number-of-ports. 

Figure 4 shows MICA's throughput with our optimizations. 

MICA achieves 120 MRPS when all 24 cores in both sockets 

are used. With increasing numbers of cores and ports, L ID 

and L2 cache misses remain stable, at cv 1.5% and cv 32%, re­

spectively. The L lD miss rate stays low because of 1) MICA's 

intensive software prefetching, which ensures that data is ready 

when needed ; and 2) MICA's careful buffer reuse such as zero­

copy RX-TX packet processing. The high L2 cache miss rate 

is due to packet buffers that do not fit in L lD. The LLC cache 

miss rate is also low because network packets are placed in 

LLC directly by the NICs via Intel DDIO and because MICA 
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Ports Cores Network BW (Gb/s) TX/RX Mem BW (GB/s) RD/WR Tput (MRPS) 

210GbE 
1210GbE 

4 
24 

19.3 1 I 19.51 
99.66 I 105.45 

6.21 10.23 
3 4.97 12.89 

23 .33 
120.5 

Table 4: MICA's resource utilization. Cores and ports are evenly distributed across the two sockets. We use STANDARD workload 

with EREW mode. 
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Figure 4: Throughput scalability and cache3 miss rates of 

MICA with our optimizations. The port count used is half the 

core count. We use STANDARD workload and EREW mode. 

uses intensive software prefetching. While the performance in­

creases linearly, the LLC cache miss rate increases when there 

are more than 16 active cores (8 per socket). The increased 

LLC miss rate happens for the same reason that prevents us 

from increasing beyond 80 MRPS before applying the core­

to-port mapping optimization, which indicates the importance 

of sufficient LLC capacity for future manycore processors for 

high KVS performance even with the mapping optimization. 

Hereafter, we refer to MICA with our optimizations as 

MICA for simplicity. Table 4 shows the utilization of hard­

ware components on the dual-socket system with two configu­

rations: 2 ports with 4 cores, and 12 ports with 24 cores. The 

cores and ports are evenly distributed across two NUMA do­

mains. The resource utilization scales almost linearly as more 

cores and ports are used with the fixed 2-to-1 core-to-port 

ratio. For example, the memory bandwidth increases from 

6.21 GB/s with 2 ports to 34.97 GB/s with 12 ports. 

We also performed an architectural characterization of 

the system implications of simultaneous multithreading 

(SMT) [44] on our KVS performance, using Intel Hyper­

threading Technology, an implementation of 2-way SMT on 

Intel processors. Our characterization shows that 2-way SMT 

causes a 24% throughput degradation with the full system 

setup (24 cores and 12 lOG bE ports). This is because the two 

hardware threads on the same physical core compete on cache 

hierarchy from L l  to LLC and cause cache thrashing, resulting 

in a 14%, 27%, and 3.6X increase on L l, L2, and LLC MPKI, 

respectively. While SMT can improve resource utilization for 

a wide variety of applications, MICA's relatively simple con­

trol structure means that it can incorporate application-specific 

prefetching and pipelining to achieve the same goal, making 

single-threaded cores sufficient. 

5.2. System Implications of KVS SW Design Choices 

Figure 5 shows the measured full-system performance of the 

four KVS systems (Table 2) with tiny and small datasets (Ta-

3 Unlike memcached with 20+% LlI$ miss rate due to the complex code 
path in the Linux kernel and networking stack [32] ,  MICA's LlI$ miss rate is 
below 0.02% due to the use of userspace networking and kernel bypass. 
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Figure 5: Throughput of the 4 KVS systems with differ­

ent datasets. For all systems, key-value hit rate is within 

98%�99.6%, and the 951h percentile of latency is less than 

100J.ts. MICA runs EREW mode. 

I 
# NUMA 

I 
# Cores/domain 

I 
# lOGbE P601 rts/domain 

McdlMC3-D 2 4 
MICA 2 1 2  

Table 5:  KVS configurations to achieve best performance. Mcd­

S, Mcd-D, and MC3-0 have the same optimal configuration. 

ble 3) and different GETIPUT ratios. MICA performs best 

regardless of datasets, skew, and GET ratios. For tiny key­

value pairs, MICA's throughput reaches 120.5,,-, 116.3 MRPS 

with the uniform workload and 84.6,,-,82.5 MRPS for the 

skewed workload. MICA uses 110,,-,118 Gbps of network 

bandwidth under the uniform workload, almost saturating 

the network stack's sustainable 118 Gbps bandwidth on the 

server (when processing packet VO only). Other KVSs achieve 

0.3,,-,9 MRPS for the tiny data set. Because the system remains 

the same (e.g., 120GbE network) for all datasets, using larger 

item sizes shifts MICA's bottleneck to network bandwidth, 

while other KVSs never saturate network bandwidth for these 

datasets. Since larger items rapidly become bottlenecked by 

network bandwidth and thus are much easier to handle even for 

inefficient KVSs [32], large and x-large data sets have similar 

results, with shrinking gaps between MICA and other KVSs 

as the item size increases. 

Because of the inherent characteristics of their different de­

sign choices, the KVS systems achieve their best performance 

with different system balances. We sweep the system-resource 

space for all four KVSs to find their balanced configuration, 

shown in Table 5. While MICA can leverage all the 24 cores 

with 12 lOG bE ports in the tested server, Mcd-S, Mcd-D, 

and MC3-D can only use four cores and one lOGbE port 

per domain due to their inherent scalability limitations (Sec­

tion 5.2.1). Because MICA uses NUMA-aware memory al­

location for partitions [31], we run other systems with two 

processes, one on each NUMA domain (with different lOGbE 

ports) to compare the aggregate performance more fairly. 

5.2.1. Inside KVS Software Stack and OS Kernels Despite 

MICA's high throughput, it is critical to understand its perfor-
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Figure 6: Execution cycle breakdown of different KVS servers. 

BT (BesT) refers to the configuration that achieves best perfor­

mance (Table 5) and FS (full system) refers to the configura­

tion with 24 cores and 12 10 GbE ports. Experiment settings: 

STANDARD workload is used; MICA is in EREW mode. 

mance deeply via holistic cross-layer analysis. Figure 6 shows 

execution time breakdown between the four major components 

of KVS software (Section 3.2), obtained by Systemtap. With 

the best configuration (BT), Mcd-S spends more than 60% 

of its execution time on network processing because of the 

high overhead of the kernel's network stack. This is in line 

with observations from previous studies on memcached [27]. 

The pthread mutex-based concurrency control in Mcd-S con­

sumes about 11 % of execution time and memory management 

consumes 13%. As a result, key-value processing work only 

gets about 10% share of the execution time, leading to the low 

performance of Mcd-S (0.3 MRPS, Figure 5) . 

Replacing the kernel's network stack by a more efficient, 

user-level network stack improves performance, but it is not 

enough to achieve the platform's peak performance. For ex­

ample, Mcd-D replaces memcached's network stack by In­

tel DPDK. This increases throughput dramatically from 0.3 

MRPS to 3.1 MRPS, but still less than 3% of MICA's peak 

throughput. This is because, with the user-level network stack, 

memcached's bottleneck shifts from network 110 to the heavy­

weight mutex-based concurrency control. As a result, the 

actual KV processing still consumes only 26% of the total 

execution time. 

MC3-D attempts to modify memcached's data structures 

for better concurrent access, leading to a tripled throughput 

(up to 9 MRPS). However, it still performs costly concurrency 

control, which consumes rv 30% of its execution time. While 

MC3-D seems to achieve a relatively balanced execution-time 

breakdown with its best configuration (BT in Figure 6) that 

uses 8 cores and 2 ports as in Table 5, there is significant 

imbalance with the full system configuration (FS). In the FS 

mode, Mcd-S, Mcd-D, and MC3-D spend a much smaller 

share of execution time in key-value processing than in the 

BT mode, and actually get 2rv3x less performance than the 

BT mode. MICA shows the most balanced execution time 

break down, with both network and KV processing taking 

rv45% of execution time respectively. This analysis reveals 

the underlying reason why replacing one component in the 
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Figure 7: Implications of prefetch on MPKls of L 1/L2/L3 caches, 

memory bandwidth (MemBW), time spent on each RX batch 

(time/RX), and throughput (RPS). All numbers are normalized to 

that without prefetch. 

complex KVS software is not enough and a holistic re-design 

of KVSs is the right approach to achieve high performance. 

5.3. Key Implications on Modern Platforms Running Op-

timized MICA 

Trade memory bandwidth for latency via prefetching: 

MICA is very sensitive to memory latency because it must 

finish the KV processing before the next batch of incoming 

packets is injected to LLC by the NICs. If it fails to do so, the 

packet FIFO in the NIC will overflow. The overflow informa­

tion is collected by the MICA server that subsequently notifies 

its clients to slow down, which in turn degrades the system 

performance. MICA relies on multi-staged software (SW) 

prefetch on both packets and KV data structures to reduce 

latency and keep up with high speed network. 

Figure 7 shows the system implications of the multi-staged 

SW prefetch.4 With SW prefetch, MPKI of L lD decrease 

by more than 50%. Because prefetching bypasses L2, the 

elimination of interferences from both the packet data accesses 

and the random key-value accesses reduces L2 misses, leading 

to a 75% reduction in L2 MPKI. Most LLC misses come from 

the KV data structures, because NICs inject the RX network 

packets directly into the LLC with sufficient LLC capacity for 

Intel DDIO (thus accesses usually do not cause any misses). 

Because of the randomness in requested keys, LLC has a high 

cache miss rate without SW prefetch (57%), similar to that 

observed in other KVSs [32]. SW prefetch reduces the LLC 

miss rate dramatically to 8.04% and thus frees may LLC-miss­

induced stall cycles to do KV processing, which improves 

performance (RPS) by 71 % and reduces LLC MPKI by 96%, 

as shown in Figure 7. 

At the system level, the NICs and CPUs form a high-speed 

hardware producer-consumer pipeline via Intel DDIO. The re­

duction of cache misses significantly improves latency for con­

suming requests/packets, eliminating 54% of the time needed 

to process an RX packet batch, leading to a 71 % performance 

gain. These improvements come at the expense of increasing 

memory bandwidth use to 34.97GB/s. While the increased 

memory bandwidth use is mostly due to the performance gain, 

SW prefetch generates extra memory traffic due to potential 

4MICA uses non-temporal software prefetch, prefetchnta, to bypass L2 
because the large and random dataset does not benefit from a small sized L2. 
L3 is inclusive of Ll and thus not bypassed. Because of lntel DOlO, packets 
are injected to L3 directly, thus not bypassing L3 is naturally better. 
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Figure 8: Behavior of skewed workloads. All results are for a 

single core. Optimized MICA runs in EREW and CREW modes. 

-U, oS, mean uniform and skewed workloads, respectively. Hot/­

cold refer to hot/cold cores based on their load. For Rx Batch 

and Tput, higher is better. For IPO and MpOp, lower is better. 

cache pollution . For each key-value request, MICA needs 1 rv2 

random DRAM accesses, for a total of 3rv4 cache lines (some 

cache lines are adjacent and do not cause DRAM row-buffer 

conflicts) . The network packet that contains the request has 

high access locality since it is placed in a contiguous segment 

inside LLC directly by the NICs . Thus, the 120MRPS perfor­

mance requires rv30 GB/s memory bandwidth,S which means 

SW prefetch adds rv 17% overhead to memory bandwidth . 

However, trading memory bandwidth for latency is favorable, 

because memory latency lags bandwidth significantly [40] .  

Section 6 .1 demonstrates how trading memory bandwidth for 

latency simplifies the memory subsystem design for future 

KVS platform architecture . 

System implications of skewed workloads: Unlike uni­

formly distributed (or simply uniform) workloads that evenly 

spread requests to all partitions, skewed workloads cause un­

even load on cores/partitions and create hot and cold cores 

with different throughput . A cold core spends more time spin 

waiting for jobs from external sources, which results in dif­

ferent instruction mixes than on hot cores . Therefore, using 

traditional metrics such as IPC and cache miss rate for skewed 

workloads could be misleading . Instead, Figure 8 uses instruc­

tions per KV (key-value) operation (IPO) and cache misses 

per KV operation (MpOp), together with overall performance 

for skewed workloads . We focus on per-core behavior because 

it differentiates hot and cold cores, which affects overall per­

formance . We normalize to EREW with a uniform workload 

as the baseline ; its whole-system throughput is 120 MRPS. 

With skewed workloads, the EREW throughput is rv84 

MRPS. The per-core throughput of cold cores decreases by 

28% to 3 .58 MRPS on average . The hot cores' throughput, 

however, increases by 43% to 7 .1 MRPS, which mitigates 

the system impact of the skew. The increased locality of the 

requests in the skewed workload reduces L3 MpOp of the hot 

cores by over 80%, compared to the cold cores, as shown in 

Figure 8 . Moreover, the hot cores' packets per I/O almost 

triples from 12.5 packets per I/O with uniform workload to 

32 packets per I/O, which reduces the per-packet 110 cost and 

results in the 14% improvement on IPO on hot cores. 

5 Although MICA cannot achieve 1 20MRPS without SW prefetch, we 
verified the relationship between throughput and memory bandwidth demand 
at lower achievable throughput levels with SW prefetch turned off. 
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Throughput (MRPS) 
Figure 9: Round trip latency (RTT) (including mean, 50th , 95th , 
99th ,  and 99 . 9th percentile) for different throughputs. STANDARD 
workload and MICA's EREW mode are used. Mean is always 

larger than median, because of the tailing effect. Experiments 

repeat multiple times to eliminate run-to-run variations. 

484 

While EREW tolerates skewed workloads well, CREW in 

MICA further bridges the gap. In CREW, all cores receive 

and process GET requests regardless of their partition affinity. 

The bottleneck due to the hot cores for GET heavy workloads 

nearly disappears, and the different load on the hot and cold 

cores is due to PUTs and associated synchronization between 

GETs and PUTs. CREW generates 86% (4 .3 MRPS) and 

129% (6 .5 MRPS) throughput/core for cold and hot cores re­

spectively, compared to the uniform EREW mode . This brings 

the overall system performance back to 108 MRPS, a 10% per­

formance drop from the uniform workload . CREW shows the 

same trend as EREW, benefiting from the increased locality 

(MpOp reduction) and reduced I/O overhead (increased RX 

batch size and reduced IPO) on hot cores . 

5.4. Round Trip Latency (RTT) vs. Throughput 

High throughput is only beneficial if latency SLAs (service 

level agreement) are satisfied . All the results shown so far 

are guaranteed with the 95th 
percentile of latency being less 

than 100 �s . Figure 9 reveals more latency-vs-throughput de­

tails. As throughput changes from lOMrv 120M RPS, latency 

changes gracefully (e .g., mean: 19rv81 �s ; 95th: 22rv96 �s) . 

Our optimized MICA achieves high throughput with ro­

bust SLA guarantees . Figure 5 shows that with the same 

95th 
percentile latency (less than 100 �s), MICA (120MRPS) 

achieves over two orders of magnitude higher performance 

than stock memcached (0 .3MRPS) . Moreover, even at the 

highest throughput ( l20MRPS), the 95th 
percentile latency 

of MICA is only 96 �s, rv l lX better than the 95th 
percentile 

latency of 1135�s reported by Facebook [36] .  

The high system utilization at  120MRPS throughput takes a 

toll on tail latencies, with 99th and 99 .9th percentile latencies 

at 276 �s and 952 �s, respectively. However, these latencies 

are better than widely-accepted SLAs . For example, MICA's 

99th percentile latency is rv72X better than the 99th percentile 

latency of 20ms reported by Netflix [9] .  Moreover, a small 

sacrifice of throughput (8 .3%, for 120MRPS to 11OMRPS) 

improves 991h and 99.91h percentile tail-end latencies to 45 �s 

and 120 �s, respectively. 
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Figure 1 0: Proposed platform architecture for high perfor­

mance KVS systems. 

5.5. Energy Efficiency 

With the energy characterization setup, we measure the power 

consumption of our KVS platform as 399.2W, with power 

distribution to the two CPUs and four NICs being 255W and 

62W, respectively. The remaining 82W is consumed by the 

remaining system components, mostly the 128GB memory 

and motherboard . At 120.5MRPS, our KVS platform achieves 

302 kilo RPS/watt (KRPSIW ; higher is better) energy effi­

ciency. The best published FPGA-based memcached system 

so far is from Xilinx [14], with performance of 13.02 MRPS 

and energy efficiency of 106.7 KRPS/watt (254 .8 KRPS/watt 

when the FPGA host's power is excluded) for minimum-sized 

packets . Our CPU-based optimized MICA server achieves 

not only 9 .2X the performance (RPS) but also 2 .8X (1 . l8X 

even when the FPGA host's power is excluded) the system 

energy efficiency (RPS/watt) of the best-published results for 

FPGA-based memcached implementations . 

This shows that, when fully exposing the system capability, 

high-performance processors can provide higher performance 

as well as higher energy efficiency. The OS network stack 

and concurrency control overheads limit the performance and 

scalability of memcached . When memcached is executed on a 

high-end server, the compute, memory, and network resources 

are severely underutilized, but continue to consume power. 

Software optimizations can help reap the full potential of the 

system and ensure that each system resource is well utilized, 

making our commodity system not only a high performance 

platform but also an energy efficient one for KVSs. 

6. Achieving a Billion RPS per KVS Server 

Our optimized MICA design achieves record-setting perfor­

mance and energy efficiency, offering valuable insights about 

how to design KVS software and its main architectural impli­

cations (Section 5) .  This section focuses on our final grand 

challenge: designing future KVS platforms to deliver a billion 

RPS (BRPS) throughput using a single multi-socket server. 

6.1. Architecting a Balanced Platform Holistically 

As shown in Figure 10 and Table 6, the proposed platform 

consists of multiple manycore processors . Each processor 
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CPU (w/ wauDCA similar to Intel DOlO [ 2]) 
Technology (nm) 14 
Core Single-thread, 3-issue, 000, 64 ROB 
Clock rate (GHz) 2.5(N, 0.7v)/ l .5(LP, 0.6v)/ 

Ll Cache 
L 2  (LLC) Cache / tile 
# Cores(Tiles)/socket 
Integrated 10 agent 

Memory Subsystem 
Memory Controllers 
Memory type 

3.0(TB , 0.S 5v) 
3 2  KB , S-way, 64 B 
l .5 MB ( 76SKB/core) , 16-way, 64 B 
60 ( 3 0) ,  w/ 2 cores per tile 

PCle 4.0 (tot . 3 2  lanes) ; 

6, single-channel 
DDR 4- 2400 

Network (w/ flow-steering similar to Intel Ethernet FD [3 ]) 
Multi-queue NICs Three 100GbE, PCle 4.0 xS per NIC 

Table 6: Parameters of the target platform. All numbers are 

for one socket, the target platform has two or four sockets. The 

different frequency-voltage pairs (obtained from McPAT [29]) are 

for normal (N), low power (LP), and turbo boost (TB). wauDCA 

can use up to 10% of LLC [2]. 

is organized as multiple clusters of cores connected by an 

on-chip 2D mesh network . Each cluster has two out-of-order 

(000) cores, connected to a distributed shared LLC (L2 cache 

in our case) via a crossbar. A two-level hierarchical directory­

based MOESI protocol is used for cache coherence for L1 

and L2 as well as for wauDCA for the NICs . Multiple mem­

ory controllers provide sufficient memory bandwidth . The 

target processor was estimated to have a 440mm2 die size and 

125W TDP by using McPAT [29] .  Each processor is paired 

with three multi-queue 100GbE NICs with flow-steering . The 

NICs communicate with the processor through PCIe 4 .0 and 

inject packets directly to the LLC via wauDCA . The target 

server contains two or four such manycore processors, and we 

evaluate both dual- and quad-socket servers . 

We now explain the reasons behind our main design choices, 

based on the insights gained from the full-stack system anal­

ysis and our simulations . Designing a BRPS-level (billion 

requests per second) KVS platform requires the right system 

balance among compute, memory, and network . 

Compute: Figure 3 shows that MICA's IPC is up to l .9 on 

the CPU, which indicates that 4-issue 000 cores could be 

an overkill . Thus, we perform a sensitivity study for core 

weight through simulations (see Section 6 .2 for simulation 

infrastructure details) . Figure 11 shows the platform's perfor­

mance in normalized RPS as the reorder buffer (ROB) size 

(number of entries) and issue width are varied for datasets 

with different key and value sizes. Supporting multiple issues 

and out-of-order execution with a reasonably sized instruction 

window substantially improves the performance, but further 

increasing issue width or ROB size brings diminishing returns . 

In particular, as shown in Figure 11, increasing the ROB size 

from 1 (in-order issue) to 64 in the single-issue core doubles 

performance, but increasing it further to 256 only provides an 

additional 1 % boost . With a ROB size of 64 entries, increasing 

issue width from 1 to 3 almost doubles system performance. 

Further increasing the issue width to 4, however, improves per-
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Figure 1 1 :  Relative performance for different item size when 

varying the ROB size and issue width of cores. 

formance by only 5%. Considering the super-linear increase 

in complexity with larger window sizes and issue width, using 

a core more powerful than 3-issue with 64 ROB entries is not 

cost effective . Thus, we choose 3-issue 000 cores with 64 

ROB entries in the target system. 

Network and I/O subsystem: MICA (or any KVS) is a 

network application . Because our optimized MICA achieves 

near-perfect scaling (Section 5 .1), we expect that the number 

of cores required per lOGbps network capacity will remain 

unchanged, with appropriately sized (issue width, ROB size) 

cores and other balanced components . Thus, each 60 core 

processor can provide enough processing power for 300Gbps 

bandwidth . We assume that our platform will use emerging 

100Gbps Ethernet NICs (similar to [6]) . Each 100GbE NIC 

requires at least 100Gbps of 110 bandwidth-an 8 lane (upcom­

ing) PCIe 4 .0 slot will be enough with its 128Gbps bandwidth. 

On-chip integrated NICs [30, 37] will be an interesting design 

choice for improving system total cost of ownership (TCO) 

and energy efficiency, but we leave it for future exploration . 

Memory subsystem and cache hierarchy: Like all KVS 

systems, MICA is memory intensive and sensitive to mem­

ory latency. Fortunately, its intensive SW prefetch mecha­

nism is effective in trading memory bandwidth for latency 

(Section 5 .3), which is favored by modern memory systems 

whose latency lags bandwidth significantly [40] .  Thus, when 

designing the main memory subsystem, we provision suffi­

cient memory bandwidth without over-architecting it for low 

memory latency. Using the same analysis as in Section 5 .3, 

should our optimized MICA reach 1 BRPS on the target 4-

sockets platform, each socket will generate at least * · 4  billion 

cache line requests per second from DRAM, for 64GB/s of 

DRAM bandwidth . We deploy six memory controllers with 

single-channel DDR4-2400 for a total of 118 GB/s aggregated 

memory bandwidth to ensure enough headroom for the band­

width overhead because of MICA's software prefetching and 

the random traffic in key-value processing . 

Our cache hierarchy contains two levels, because our per­

formance analysis (Section 5 .1) and simulations reveal that a 

small private L2 cache in the presence of large L3 does not 

provide noticeable benefits due to high L2 miss rate . An LLC6 

6 0ur performance analysis (Section 5.1 ) and simulations confirm that a 
32KB LID cache is sufficient. We focus on detailed analysis of LLC in the 
paper because of its high importance and the limited paper space. 
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is critical not only to high performance KV processing on 

CPUs but also to high speed communication between CPUs 

and NICs. If the LLC cannot hold all RXlTX queues and 

associated packet buffers, LLC misses generated by NICs dur­

ing directly injecting packets to the LLC via wauDCA will 

cause undesired main memory traffic leading to slow network 

and performance degradation . Moreover, contention between 

CPUs and NICs can cause LLC thrashing . For example, NICs 

can evict previously injected packets and even KV processing 

data structures (prefetched by CPUs) out of the LLC before 

they are consumed by CPUs. And even more cache conflicts 

will be generated when CPUs fetchlprefetch those data back 

from main memory for processing . 

Figure 12 shows the platform performance and LLC misses 

with different LLC capacity, with wauDCA consuming up to 

10% [2] of LLC capacity. While the 256KB (per-core) LLC 

cannot hold all queues and packet buffers from the network, in­

creasing LLC capacity to 512KB accommodates most of them 

without thrashing against KV processing on CPU, leading to 

a major performance gain (97%) and cache miss reduction 

(98%) . Increasing LLC capacity further to 768KB fully ac­

commodates network 110 injected directly into the LLC by 

the NICs and eliminates the interference among the two cores 

in the same tile, leading to extra performance gain (20%) and 

LLC miss reduction (82%) . Further increasing LLC capacity 

to 2MB brings diminishing returns with only 4 .6% additional 

gain . Therefore, we adopt the LLC design with 768KB per 

core (45MB per processor) in our manycore architecture . 

Large items demonstrate similar trends, with smaller per­

formance gain and LLC miss reduction when increasing LLC 

capacity. The reason is that large items rapidly become bot­

t1enecked by network bandwidth . Thus, the faster degraded 

network 110 provides more time slack than what is needed by 

CPUs to fetch extra cache lines because of increased item size 

for KV processing . 

Discussions: Despite a carefully crafted system architecture, 

our platform remains general purpose in terms of its core ar­

chitecture (3-issue with 64-entry ROB is midway in the design 

spectrum of modern 000 cores), its processor architecture 

(many cores with high speed 110), and its system architecture 

(upcoming cOlmnodity memory and network subsystem) . This 

generality should allow our proposed platform to perform well 

for general workloads . With proper support, the proposed 

platform should be able to run standard OSes (e .g ., Linux) . 

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 02,2024 at 16:15:58 UTC from IEEE Xplore.  Restrictions apply. 



o Uniform 50% GET o Uniform 95% GET O Skewed 50% GET . Skewed 95% GET 
� 1 .2 
� 1 .0 
Cl: S O.S 
&. 0.6  
.g, 0.4 
:::l E 0.2 

� 
I- 0.0 

E REW·T CREW·T E R E W  C R E W  E REW·T CREW·T 

Two Sockets Four Sockets 

Figure 1 3: End-to-end performance of dual- and quad-socket 

servers. CREW and Turbo Boost (EREW-/CREW-T) are only ap­

plicable to, and thus are only shown for, skewed workloads. All 

951h percentile latencies are less than 100J.!s. 

1 00% 

Jr.:,. 
x - M 

80% 
60% 
40% x 4 Socket 
20% 

0% 
o 0 .2  0.4 0.6 0 .8 

Load p e r  core, normalized t o  t h e  hottest core 

Figure 1 4: CDF of the partition load on different cores. 

6.2. Performance Evaluation 

Our simulation infrastructure is based on McSimA + [11], a 

manycore simulator that models multi threaded in-order and 

out-of-order cores, caches, directories, on-chip networks, and 

memory controllers and channels in detail . We augmented 

McSimA + with a multi-queue NIC model and MOESI cache 

coherence protocol to model wauDCA . We also extended 

the interconnect model of McSimA + to simulate inter-socket 

communication . Because the kernel bypassing and memory 

pinning used in MICA render OS features less important, our 

simulation results are accurate regardless of the OS used (and 

thus regardless of McSimA+'s inability to model detailed OS­

level activities) . To reduce simulation complexity, McSimA + 

uses a ghost client to send and receive key-value requests 

without modeling the execution of the client . However, it 

is the same from the simulated server's perspective, and the 

server can apply the same flow control mechanism as if it was 

talking to a real client . 

Figure 13 shows the performance of the target dual- and 

quad-socket servers. Running on our proposed platform in 

simulation, our optimized MICA achieves linear scaling on 

both dual- and quad-socket servers for uniform workloads, re­

gardless of the GET ratio. As a result, the performance on the 

quad-socket platform successfully reaches cv 1.2 billion RPS 

(BRPS) in EREW mode with uniform workloads . Skewed 

workloads pose a harder problem on the target platform be­

cause of its large number of cores-increasing the number 

of cores leads to more partitions, which causes a larger load 

imbalance . In a Zipf-distributed population of size 192 x 220 

(192 million) with skewness 0 .99 (as used by YCSB [16]), the 

most popular key is 9.3 x 106 times more frequently accessed 

than the average . For a small number of cores (thus partitions), 

the key-partitioning does not lead to a significant load imbal-
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ance [31] . For example, for 24 cores (and partitions), as in our 

experimental platform (Section 5), the most popular partition 

is only 97% more frequently requested than the average . 

However, in our proposed architecture, the load on hottest 

partition is 1O .6X (on the 240-core quad-socket server) and 

5 .8X (on the l20-core dual-socket server) of the average load 

per core, respectively. Although the increased data locality 

and decreased 110 processing overhead improves the perfor­

mance of the hottest cores by cv 50% based on our simulations, 

it is not enough to bridge the gap between hot and cold parti­

tions/cores . Thus, the hot cores become a serious bottleneck 

and cause a drastic performance degradation for skewed work­

loads: The performance on dual- and quad-socket machines is 

0 .13 BRPS (21 % of the system peak performance) and 0 .14 

BRPS (11 % of peak), respectively. Using the CREW mode 

can help GET-intensive skewed workloads, since in CREW 

mode all GET requests are sent to all cores to share the load 

(writes are still sent to only one core) . However, for PUT­

intensive skewed workloads (Skewed, 50% GET), there is still 

a large gap between the achieved performance and the peak 

performance (Figure 13) .  

Using workload analysis, we found that the load on the 

partitions (cores) is very skewed. On both systems, there are 

only two very hot cores (Figure 14) .  More than 90% of the 

cores are lightly loaded-less than 20% of the hottest core . 

This observation leads to an architectural optimization using 

dynamic frequency/voltage scaling (DVFS) and turbo boost 

(TB) technologies . We assume that our manycore processor 

is equipped with recent high efficiency per-domain/core on­

chip voltage regulators [25] .  Based on the supply voltage and 

frequency pairs shown in Table 6, we reduce the frequency 

(and voltage) on the 20 most lightly loaded cores (their load 

is less than 12% of the load on the hottest core) from 2.5GHz 

to 1 .5GHz and increase the frequency of the 6 most loaded 

cores to 3 .5GHz. Results obtained from DVFS modeling in 

McPAT [29] show that this configuration actually reduces 

total processor power by 16%, which ensures enough thermal 

headroom for turbo boost of the 6 hot cores . Our results 

in Figure 13 show that with CREW-T, the combination of 

fine-grained DVFSITB and MICA's CREW mode, the system 

throughput for the write-intensive skewed workload (Skewed, 

50% GET) improves by 32% to 0 .42 BRPS and by 27% to 

0 .28 BRPS on the quad- and dual-socket servers, respectively. 

Although datacenter KVS workloads are read-heavy with GET 

ratio higher than 95% on average [12], this architecture design 

is especially useful for keys that are both hot and write-heavy 

(e .g., a counter that is written on every page read or click) . 

Although distributing jobs across more nodes/servers (with 

fewer cores/sockets per server) works well under uniform 

workloads, as skew increases, shared-read (CREW, especially 

our newly proposed CREW-T ) access becomes more important . 

Thus, a system built with individually faster partitions is more 

robust to workload patterns, and imposes less communication 

fan-out for clients to contact all of the KVS server nodes. 
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7. Conclusions 

As an important building block for large-scale Internet ser­

vices, key-value stores affect both the service quality and 

energy efficiency of datacenter-based services . Through a 

cross-stack whole system characterization, this paper evalu­

ates (and improves) the scaling and efficiency of both legacy 

and cutting-edge key-value implementations on commodity 

x86 servers . Our cross-layer system characterization provides 

important Jull-stack insights (software through hardware) for 

KVS systems. For example, the evaluation sheds new light on 

how both software features such as prefetching, and modern 

hardware features such as wauDCA and multi-queue NICs 

with flow-steering, can work synergistically to serve high per­

formance KVS systems. 

Beyond optimizing to achieve the record-setting 120 MRPS 

performance and 302 KRPS/watt energy efficiency on our 

commodity dual-socket KVS system, this paper sets forth prin­

ciples for future throughput-intensive architectural support for 

high performance KVS platforms. Through detailed simu­

lations, we show that these design principles could enable a 

billion RPS performance on a single four-socket key-value 

store server platform. These results highlight the impressive 

possibilities available through careful full-stack hardware/soft­

ware co-design for increasingly demanding network-intensive 

and data-centric applications . 
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