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Abstract—We critically survey game-based security definitions
for the privacy of voting schemes. In addition to known lim-
itations, we unveil several previously unnoticed shortcomings.
Surprisingly, the conclusion of our study is that none of the
existing definitions is satisfactory: they either provide only weak
guarantees, or can be applied only to a limited class of schemes,
or both.

Based on our findings, we propose a new game-based definition
of privacy which we call BPRIV. We also identify a new property
which we call strong consistency, needed to express that tallying
does not leak sensitive information. We validate our security
notions by showing that BPRIV, strong consistency (and an
additional simple property called strong correctness) for a voting
scheme imply its security in a simulation-based sense. This result
also yields a proof technique for proving entropy-based notions
of privacy which offer the strongest security guarantees but are
hard to prove directly: first prove your scheme BPRIV, strongly
consistent (and correct), then study the entropy-based privacy of
the result function of the election, which is a much easier task.

I. INTRODUCTION

Privacy of votes was the subject of major debates during

the 19th century, at the time of the progressive introduction

of universal suffrage. Since then, it has become a standard in

all major democracies.

The introduction of electronic technologies as part of the

voting process however raises new challenges and privacy

concerns. Cryptographic voting protocols aim to guarantee

ballot privacy in e-voting by defining security models and

then constructing schemes1to meet these models. Generally,

cryptographic voting schemes may be categorised into the

purely electronic where voters may vote from the privacy

of their own computers (e.g., Helios [1], [2] or Civitas [3])

and hybrid systems which use paper ballots and computers to

facilitate the tally (e.g., ThreeBallot [4], Prêt-à-Voter [5] and

Scantegrity [6]).

Modelling privacy: The development of security models for

ballot privacy started with the work of Benaloh [7], [8] and

has recently started to receive more attention with new models

being developed in both symbolic models [9] and compu-

tational ones [10], [11], [12]. Unlike related privacy notions

such as confidential message transmission, ballot privacy is

1The terms “scheme” and “protocol” can be read interchangeably without
much loss of precision. We use the former to refer to a collection of algorithms
and the latter to include the specification of who should execute these
algorithms and when.

not absolute but relative to specific election bylaws and voter

choices. Consider a voting system that discloses the number

of votes received by each candidate: such a system essentially

reveals how each voter voted in the case where all voters vote

for the same candidate. Classifying such a system as insecure

is clearly undesirable; ballot privacy notions require a more

nuanced classification.

One generic approach is to define vote privacy through

the design of an ideal functionality [13], [14], [15]: a voting

scheme is declared to satisfy privacy if it securely realizes (in

some formal sense) the ideal functionality. While being very

powerful, these definitions are also quite difficult to prove on

real cryptographic voting protocols. For example, Helios is a

purely cryptographic voting protocol (that does not rely on

paper ballots) which has been used for real elections, and we

are not aware of any security proofs for Helios in a simulation-

based model2.

Another, more general, approach to ballot privacy defini-

tions focuses on entropy [16], [17], used as a measure of

the amount of information that a voting system leaks about

votes. Early works were based on Shannon entropy, but other

entropy notions, based on min-entropy and Hartley entropy

showed to be particularly informative in natural contexts.

The interest of these entropy-based definitions is that they

capture many possible sources of privacy leakage: the privacy

leakage can be caused by the choice of the cryptographic

primitives but it may also be due to the election result itself

(which is out of the scope of simulation-based models) or

from the distribution of the votes. A voting scheme should

be considered as private under such a notion, if its privacy

leakage is (computationally) close to the privacy leakage of

an associated “ideal protocol” where voters send their vote on

a secure channel to a trusted party that simply computes and

announces the result. Furthermore, the amount of information

that is leaked by this result is precisely measured, making it

possible to compare different election tallying rules in various

contexts.

A third approach, initiated in the early works of Benaloh [8],

considers game-based definitions of vote privacy. This ap-

2Groth [13] proved a class of protocols to be UC-secure that at a first glance
might seem to include Helios. However, Groth requires that the protocols use
voter’s identifiers as part of the correctness proofs in ballots — Helios does
not do this.
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proach has been used in the literature to model e.g. Helios.

The literature is actually quite abundant in terms of game-

based definitions of vote privacy, the differences between them

are poorly understood, and there is little guidance on how

to select one to analyze protocols. This work started as an

attempt to understand the strength and weaknesses of the many

game-based notions (as well as those of several non game-

based ones). In these game-based notions, privacy is described

as the negligible probability of an adversary to distinguish

between two situations, precisely described as games in the

definition. By only focusing on the information leakage due to

the cryptography, leaving the measurement of the leakages due

the tally to be measured with information theoretic techniques,

this approach typically leads to simpler, more generic and

more modular security proofs.
The boundaries between these three definition approaches

can of course sometimes become fuzzy, with some works

mixing them into a single definition. For instance, Küsters,

Truderung, and Vogt [11] provide a privacy metric that focuses

on the probability that an attacker notices when an (honest)

voter changes her vote, while all of the other (honest) votes

follow a given distribution. These authors show how to analyze

the privacy offered by several paper-based voting protocols

such as ThreeBallot and VAV.
Comparing existing notions of privacy: Our first contribu-

tion is to systematically review, compare, and discuss existing

game-based computational notions for vote privacy. In partic-

ular, we present them in a unified framework which facilitates

their comparison. Our review of the literature shows that none

of the existing definitions is satisfactory. Some limitations

were already known but we discovered further unnoticed

shortcomings in several of them. In short, based on our

findings, we classify existing definitions in three categories:

• too weak [18], [19], [20], [21]: these declare protocols to

be secure which intuitively do not preserve vote privacy.

We give examples which we think should be considered

privacy breaches, despite the examples meeting the given

privacy definitions.

• too strong [22]: by contrast, this definition is so strong

that no verifiable protocol can meet the privacy constraint.

More precisely, we show that any protocol meeting this

definition must allow the authorities to announce any

result that is consistent with the number of votes on the

board. Therefore this definition cannot be used for any

protocol that aims at some verifiability, which is the case

of most protocols of the literature.

• too limited [23], [24], [25], [12], [11], [17], [26]: while

we did not identify any flaw in these definitions, they

restrict the class of protocols or privacy breaches that

can be considered.

For example, they may lead to inconsistent results when

applied to protocols that use some natural result functions

(e.g., the majority function) or may not be applicable to

protocols that output not only a result but also a proof

of correct tallying (such as most cryptographic protocols

do), or they may only detect specific privacy breaches

(e.g. the case whether two voters vote the same is not

covered).

We summarise the limitations of each definition in Table I

later in the paper. For our classification, we designed several

test-case (dummy) protocols that may be used to evaluate a

privacy definition; these are available in Appendix VIII.

A new notion for privacy: Our second contribution is to

propose a new game-based definition of privacy, called BPRIV,

that incorporates the lessons learned from our study. Our new

definition accounts for auxiliary data in the tally (such as

proofs of correct decryption), is compatible with verifiability,

and does not suffer from any of the flaws we uncovered. As a

test of our new definition, we prove the Helios voting protocol

to be BPRIV secure. Specifically, we analyze what could be

considered the standard version of Helios nowadays (at least,

academically speaking), that uses strong Fiat-Shamir proofs

[19], implements duplicate weeding [27] and homomorphic

tallying. With respect to the threat model, we consider an

honest single trustee, an honest ballot box, and an adversary

that can adaptively corrupt a subset of voters. Apart from the

single trustee (that can be dealt of by adapting BPRIV to a

multi-authority setting), the other adversarial assumptions are

similar to those used in previous ballot privacy analyses of

Helios.

The first of two novelties of our definition is that it accounts

for tallying operations that possibly include revote policies (for

example, only your last vote counts). Understanding tallying

is crucial for the privacy of ballots: not only does the tallying

operation usually disclose auxiliary data in addition to the

result (such as proofs of correct tallying) but it also performs

some cleaning operations such as removing invalid or dupli-

cate ballots or ballots that should be erased due to re-voting,

etc. For example, in Civitas [3], coercion-resistance crucially

relies on the fact that ballots submitted under coercion can be

(anonymously) identified and removed, without endangering

the voter’s identity. In Helios 2.0, removing duplicates is

necessary for privacy, otherwise the protocol is subject to

replay attack [28]. These operations are often considered

harmless but, perhaps surprisingly, they may be crucial for the

security of a voting system. Since these cleaning operations

may be used to guarantee privacy, they may also damage it

if performed incorrectly. Therefore, a good privacy definition

should account for these operations too. In this direction,

we identify a second security property, which we call strong
consistency, that ensures that the tally phase counts the votes

properly, even in the presence of an adversary. While this

property is clearly desirable for verifiability, it is also crucial

for privacy: otherwise the tally phase could leak information

on honest votes in the result itself or, more subtly, in the choice

of ballots that are removed during the cleaning operations.

A simulation-based notion of security: A natural question

is how to convince ourselves that the new definition BPRIV is

not flawed as well. The second novelty of our definition is that

we establish a tight relation between BPRIV and security in a
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simulation-based3 model. Specifically, any voting scheme that

is BPRIV, strongly consistent (and strongly correct) securely

implements an ideal functionality. The privacy guarantees of

this ideal functionality are simpler to understand compared to

game-based definitions, but simulation-based security proofs

are harder to carry out. We view the relation with the

simulation-based notion as a validation of our new BPRIV

notion. In addition, we obtain the first security proof for Helios

in a simulation-based model.

A potential advantage of simulation-based models is that

their security guarantees are easier to understand intuitively

than game-based ones. Our ideal functionality can be described

in one sentence: it simply collects all votes from the voters,

then computes and announces the result. Any scheme that

securely implements this functionality cannot leak any more

information (in particular about people’s votes) than this

functionality. This result gives us a way to explain the privacy

guarantees of Helios even to non-cryptographers. In addition,

the result provides a bridge towards entropy-based security

notions (similar to [17]), which incorporates, simultaneously,

privacy loss due to cryptography in use and to leaking result

functions.

A potential disadvantage however is that direct simulation-

based proofs are harder to get right; an incorrect proof does not

prove anything, however intuitive the functionality involved

might be. Furthermore, simulation based-definitions are quite

constraining, as far as security against adaptive corruption is

concerned.

Summary: We review existing game-based privacy notions

and find them insufficient. We develop a new privacy notion

BPRIV based on our insights from the reviewed notions and

subject it to three tests to assure its validity: (1) we prove that

Helios meets the new BPRIV notion (2) we check that the new

notion does not fail under any of the counter-examples that we

identified for existing notions and (3) we prove that BPRIV

(together with strong consistency) implies a simulation-based

notion of security. To our knowledge, BPRIV is the first game-

based notion that comes with a justification in a simulation-

based model too. As a corollary we obtain the first simulation-

based security proof for Helios. In addition, BPRIV is the first

notion to capture security requirements for two features found

in real voting systems: (1) revote policies and (2) auxiliary

data output by the tallying algorithm.

II. TERMINOLOGY AND BASIC PROPERTIES

We first introduce some terminology. In particular, we

consider here single-pass voting systems where voters only

have to post a single message to the ballot box to cast their

vote.

3For readers familiar with the Universal Composability (UC) notion of
security: our simulation-based model can be used to show UC security for a
particular functionality. We sketch this in our paper but we do not formally
introduce the UC framework and do not rely on any result holding in this
framework (e.g., composition.)

A. Single-Pass Voting

A voting scheme is relative to a result function ρ : (I ×
V)∗ → R where I is the set of voters identifiers, V is the

set of possible votes, and R is the result space. Depending on

the voting scheme, voters identifiers range from voters public

identity (appended to ballots in Helios [29] for example) to

pseudonyms as well as sets of private credentials. For example

in Civitas [30], voters are supposed to use invalid credentials

when under coercion and valid ones when they wish to cast

their true vote.

The result function explains how the election system should

behave. When voters cast their votes, possibly several times,

ρ is in charge of specifying which votes shall be counted and

how. This involves typically two main tasks. First, usually

a revote policy specifies which votes shall be retained. A

typical revote policy consists in keeping the last cast vote

from each voter. However, more complex revote policies can

be considered such as computing the average of the votes

or counting a vote at a polling station in preference to all

online votes4 (for the same voter). Then, once the revote policy

has been applied, votes are counted with some appropriate

counting function. Typical counting functions are:

• the multiset function multiset that discloses the sequence

of all the casted votes, in a random order;

• the counting function counting that tells how many

votes each candidate received;

• the majority function majority that only discloses the

winner.

We consider a set I of voters, a subset H ⊆ I of honest

voters, a ballot box BB and a public bulletin board PBB. A

single-pass protocol πρ executes in three phases.

1) In the setup phase, the ballot box expects one message

from an administrator after which it may either transition

to the voting phase or abort.

2) In the voting phase, all parties may post messages to

the ballot box at any time; the ballot box decides to

accept or reject a message based on its current state and

a public algorithm. The ballot box stores all accepted

messages. Any party may ask to read the bulletin board

at any time; the ballot box replies by running a public

filtering5algorithm (that we will call Publish) on its

current state and returns the result. Once the voting phase

is closed, the ballot box transitions to the result phase.

3) In the result phase, the ballot box is closed: it accepts no

more messages but can still be read. The administrator

computes the final outcome r and a proof of valid

tabulation Π via a tallying procedure that may operate

on the ballot box.

4This is the policy in Estonian elections, for example.
5Filtering serves several purposes. In an election where only the last vote

from each voter counts, the filter may return only last ballot from each voter.
In Helios, there is a “short” board consisting only of hashes of the ballots;
this is sufficient to check whether one’s ballot has been included and could
again be modelled as a filter. Such a filter could even be used as a defense
against ballot-copying, by not revealing the full ballots until the voting phase
is closed.
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Formally, a voting scheme V = (Setup,Vote,Publish,
Valid,Tally,Verify), for a list of voters I and a result function

ρ, consists of six algorithms with the syntax given below.

The new features of our formalisation are (1) the Publish
algorithm, which allows ballot boxes to store more information

than they display to the public (i.e. they may keep invalid

ballots internally but not display them) and (2) we let each

ballot have an explicit identity, which seems to be required

to model revoting policies (i.e. “the last ballot from each

voter counts”). Our model matches how e.g. Helios handles

identities in practice.

• Setup(λ) on input a security parameter λ outputs an

election public key pk and a secret tallying key sk.

We assume pk to be an implicit input of the remaining

algorithms.

• Vote(id, v) is used by voter id to cast his vote v ∈ V for

the election, as a ballot b← Vote(id, v)6.

• Valid(BB, b) takes as input the ballot box BB and a ballot

b and checks it validity. It returns � for valid ballots

and ⊥ for invalid ones (ill-formed, contains duplicated

ciphertext from the ballot box, etc.).

• Publish(BB) takes as input the ballot box BB and outputs

the public view PBB of BB, called public bulletin board.

• Tally(BB, sk) takes as input the ballot box BB and the

secret key sk. It outputs the tally r, together with a proof

of correct tabulation Π. Possibly, r = ⊥. This algorithm

might be (partially) in charge of implementing the revote

policy.

• Verify(PBB, r,Π) takes as input a public bulletin board

PBB, and a result/proof pair (r,Π) and checks whether

Π is a valid proof of correct tallying for r, it returns �
if so, otherwise it returns ⊥.

Any voting protocol should ensure that if everyone acts cor-

rectly, the protocol indeed computes ρ on the votes submitted.

Formally, a voting scheme is correct if the following properties

hold with overwhelming probability. Let v1, . . . , vn ∈ V be

valid votes and id1, . . . , idn ∈ I be voter identities. We

consider an honest execution. Let (pk, sk) ← Setup(λ). Let

bi ← Vote(idi, vi) and BBi := [b1, . . . , bi] for all i. Then

honest ballots are valid, that is, Valid(BBi−1, bi) = � for all i;
and the protocol computes the correct election result, that is, let

(r,Π) ← Tally(BBn, sk) then r = ρ((id1, v1), . . . , (idn, vn))
and Verify(Publish(BBn), r,Π) = �.

An important contribution of our work is an explicit for-

malisation of revote policies. Intuitively, there are two main

and distinct reasons for removing a ballot:

• Cryptographic cleaning: This deletion might be due to

the cryptographic implementation. In Helios for exam-

ple, a ballot may be removed because it is ill-formed

(e.g. invalid zero-knowledge proofs) or because it con-

tains a duplicated ciphertext, which may yield a privacy

6We do not include in our syntax, as most of the related work in the area,
the necessary algorithms that allow an election administrator to distribute
credentials among users, that will be in turn used to authenticate the voter to
the ballot box and cast a ballot.

breach [27]. In our formalism, this cleaning operation can

be taken care of either by the Valid predicate or by the

Tally function itself.

• Mandatory revote policy: This deletion might correspond

to the implementation of the “ideal” revote policy spec-

ified by the result function ρ. A typical revote policy is

that, for each voter, only the last ballot shall be retained.

B. Tally uniqueness

We define tally uniqueness, a “minimal” property that any

verifiable system should satisfy. This property is of course not

mandatory for ballot privacy but we will use it in the next

sections to illustrate that some ballot privacy definitions are

incompatible with any verifiable system.

Intuitively, tally uniqueness of a voting scheme ensures

that two different tallies r �= r′ for the same board cannot

be accepted by the verification algorithm, even if all the

players in the system are malicious. The goal of the adversary

against tally uniqueness is to output a public key pk, a list of

legitimate public identities, a ballot box BB, and two tallies

r �= r′, and corresponding proofs of valid tabulation Π and

Π′, such that both pass verification.

Experiment ExpuniqA (λ)

(1) (pk,BB, r,Π, r′,Π′)← A(1λ)
(2) PBB← Publish(BB)

(3) if r′ �= r and

(4) Verify(PBB, r,Π) = Verify(PBB, r′,Π′) = �
return 1 else return 0

Fig. 1. Tally Uniqueness

We define tally uniqueness by the experiment ExpuniqA in Fig-

ure 1. A voting scheme V has tally uniqueness if Succuniq(A)
is a negligible function for any PPT adversary A, where

Succuniq(A) = Pr
[
ExpuniqA (λ) = 1

]

Tally uniqueness is often considered as a requirement for

election verifiability [31], [32].

III. SURVEY AND ANALYSIS OF PREVIOUS GAME-BASED

COMPUTATIONAL VOTE PRIVACY DEFINITIONS

Game-based privacy [23], [24], [25], [12], [18], [19], [26],

[22], [20], [21] (our terminology) definitions require that it

should be hard for an adversary to win a game with a

challenger behaving in a fully specified manner, in the spirit

of traditional indistinguishability definitions for encryption. In

this section we review the most relevant ballot privacy defini-

tions in the literature. We unveil that some previous definitions

present shortcomings that have gone unnoticed: either ballot

secrecy and election verifiability are incompatible [22], or

ballot secrecy does not guarantee that the choices of the voters

remain private once the election result is published [19], [21].

We also discuss known limitations of the approaches in [23],

[25], [24], [31], [33]. A summary of our findings is shown in

Table I, at the end of this section.
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Most existing definitions do not distinguish between the

ballot box and what is actually published, i.e. the bul-

letin board. Therefore, in this section, we implicitly assume

Publish(BB) = BB. Moreover, some definitions do not model

voters identifiers. By a slight abuse of notation, we may write

Vote(v) instead of Vote(id, v) when id is ignored.

We formalize ballot privacy definitions by using two ballot

boxes BB0 and BB1, from which only one box will be visible

to the adversary. Of course, the adversary’s goal is to learn

which one of them is visible. For the uniformity of the

presentation, we write explicitly both ballot boxes in each of

the definitions that follow, even if some of them can be defined

using only one ballot box (such as Definitions III-A and III-B).

We use the notation and some terminology that we fix above

to discuss the existing game-based definitions. We proceed

following, roughly, the chronological order.

A. Ballot privacy for permutations of honest votes - PODC
1986 [23], STOC 1994 [25]

One first definition of ballot privacy follows a simple idea:

an attacker should not notice if the votes of two voters

are swapped. More precisely, a coalition of voters should

not be able to distinguish when two honest voters id0, id1
vote respectively v0 and v1, from the case where they vote

respectively v1 and v0.

Definition 1 (IND-BB): I is a list of voters. BB0,BB1 are

lists initialized at empty. The challenger starts by picking a

random bit β, and the adversary B = (B1,B2) is given access

to lists I and BBβ . The challenger runs the setup algorithm and

the keys (pk, sk) are created. The adversary B1 can repeatedly

query the oracle Ocast as follows:

• Ocast(id, b): runs bb 	→ bb‖b on ballot boxes BB0 and

BB1. (The expression bb‖b appends b to bb.)

The adversary can also query once an oracle OVoteIND(·, ·)
as follows:

• OVoteIND(id0, id1, v0, v1) : if vδ /∈ V for δ = 0, 1, halt.

Else, runs BB0 ← BB0‖{Vote(id0, v0),Vote(id1, v1)} as

well as BB1 ← BB1‖{Vote(id0, v1),Vote(id1, v0)}.
At some point, the adversary B1 asks to see the result.

The challenger computes (r,Π) ← Tally(BBβ , sk). Finally

the IND-BB adversary B2 outputs β′ as the guess for β.

Formally, we say that a voting scheme V is IND-BB secure

if no PPT algorithm B can distinguish between the outputs in

the experiment just described for β = 0 and β = 1, i.e. for

any PPT adversary B,

∣∣∣ Pr
[
Expindbb,0B (λ) = 1

]
− Pr

[
Expindbb,1B (λ) = 1

] ∣∣∣
is negligible, where Expindbb,βB is the experiment defined above.

The definition IND-BB can be seen as a generalization of

the private elections definition by Benaloh and Yung [23],

which was defined only with respect to referendum elections,

so that only v0 = 0 and v1 = 1 were considered, and by

Benaloh and Tuinstra [25]. It also resembles the symbolic

vote privacy definition by Delaune, Kremer and Ryan [31],

which states that “no party receives information which would

allow them to distinguish one situation from another one

in which two voters swap their votes”. Dreier, Lafoucarde

and Laknech have generalised the swap-equivalent symbolic

privacy definition to weighted votes [33].
However IND-BB privacy does not guarantee indistin-

guishability between different assignments that lead to the

same result but which are not equivalent permutation-wise.

For instance, consider the case where voters can give a

score of 0, 1, or 2 to a (single) candidate. It may be the

case that an attacker cannot distinguish the sequences of

votes [(ida, 0); (idb, 2)] from [(ida, 2); (idb, 0)] but could well

distinguish [(ida, 0); (idb, 2)] from [(ida, 1); (idb, 1)]. In fact,

this example serves as a simplified abstraction of actual voting

rules, such as those in the European Parliament elections in

Luxembourg [34] or the Swiss Government Federal Elections.

Definitions [23], [25], [31] do not capture these real cases.

B. Benaloh’s ballot privacy [24]
To cope with the aforementioned limitation, [24] has gener-

alized the previous definition to an arbitrary set of voters that

may vote arbitrarily provided that the tally corresponding to

honest voters remains unchanged.
The following definition is a restatement, using contem-

porary notation, of Benaloh’s privacy definition for voting

schemes [24].
Definition 2 (PRIV): BB0,BB1, V0, V1 are lists initialized

at empty. The challenger starts by picking a random bit β,

and adversary B = (B1,B2) is given access to list BBβ . The

challenger runs the setup algorithm and the keys (pk, sk)
are created. B1 on input pk is given access to oracles

Ovote(·),Oballot(·) as follows:

• Ovote(id, v0, v1) : runs BBδ ← BBδ‖Vote(id, vδ)),
Vδ ← Vδ‖(id, vδ)) for δ = 0, 1.

• Oballot(b): runs bb 	→ bb‖b on ballot boxes BB0,BB1

(that is, appends b to both boards).

At some point, B2 asks to see the tallying output. The chal-

lenger proceeds as follows: if ρ(V0) �= ρ(V1), halts. Otherwise,

the challenger outputs (rβ ,Πβ)← Tally(BBβ , sk). Finally, B2
outputs β′ a the guess for β. Formally, we declare a voting

scheme V Benaloh’s private if for any PRIV adversary B,

∣∣∣ Pr
[
Exppriv,0B (λ) = 1

]
− Pr

[
Exppriv,1B (λ) = 1

] ∣∣∣
is negligible, where Exppriv,βB is the experiment defined above.

The main drawback of Benaloh’s definition is that it restricts

the set of functions for which eventually a scheme could

be declared ballot private. To see this, let us assume that

the possible votes are {a, b} and consider the result function

majority. We assume that a wins in case of a tie. Let B
be an adversary that chooses to play the game such that

V0 = [(id1, a); (id2, a)] and V1 = [(id1, a); (id2, b)]. Clearly

majority(V0) = majority(V1) = a (V1 is a tie) so a wins).

Let now B cast a ballot query for vote b. Then r0 = a and

r1 = b and thus Succpriv(B) = 1, independently of the scheme

V .
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C. Ballot privacy ESORICS 2011 - CCS 2012 [12], [18], [17]

More recently, a definition has been proposed, that aims

to deal with arbitrary result functions. It is inspired by cryp-

tographic security for encryption and roughly says that an

attacker should not be able to tell whether he is seeing the

real board or a fake board where all (honest) voters vote for

the same arbitrary dummy vote. Of course, the tally itself is

always performed on the real ballot box.

Definition 3 (BPRIV1): BB0,BB1,BB
′ are lists initialized

at empty. A distinguished vote value ε ∈ V is chosen by

the challenger. The challenger starts by picking a random bit

β, and the adversary B = (B1,B2) is given access to list

BBβ . The challenger runs the setup algorithm to create keys

(pk, sk). Next, the adversary B1 can query oracles Ovote(·)
and Oballot(·) as follows:

• Ovote(v) : computes b0 := Vote(v) and b1 := Vote(ε);
next runs BBβ ← BBβ‖bβ and BB′ ← BB′‖b0.

• Oballot(b): runs bb← bb‖b on inputs BBβ ,BB
′.

At some point, the adversary B2 asks to see the tallying output.

The challenger obtains (r,Π)← Tally(BB′, sk) and returns r
to the adversary. Finally the BPRIV1 adversary B2 outputs β′

as its guess for β.

Formally, we say that a voting scheme V is BPRIV1 secure
if no PPT algorithm B can distinguish between the outputs in

the previous experiment for β = 0 and β = 1, i.e. for any

PPT adversary B,

∣∣∣ Pr
[
Expbpriv1,0B (λ) = 1

]
− Pr

[
Expbpriv1,1B (λ) = 1

] ∣∣∣
is negligible, where Expbpriv1,βB is the experiment defined

above.

In the BPRIV1 definition, tally is executed either over the

faithful ballot box (namely, BB), or a fake box (namely, BB′),
containing fake votes ε for honest voters. A limitation of

this definition is that the adversary is not allowed to see the

auxiliary data Π. Indeed in most cases, if the adversary can

see Π (e.g. a proof of correct tally of the ballot box), he would

be immediately able to tell whether he has seen the real or the

fake board. Therefore BPRIV1 does not fully model verifiable

voting protocols such as Helios or Civitas.

Recently, Cuvelier, Pereira and Peters [26] proposed a

variant of the BPRIV1 setting/definition to capture ballot

privacy even in the presence of computationally unbounded

adversaries, and which is named perfectly private audit trail
(PPAT). Similarly to BPRIV1, the definition PPAT is limited in

the sense that an adversary is not allowed to see the auxiliary

data Π.

D. Ballot privacy - ASIACRYPT 2012 [19], [20]

A variation of the BPRIV1 definition has been proposed,

that we name as BPRIV2 privacy. Its goal is to be able to

fully model verifiable voting protocols where the tally does not

produce just a result but also proofs of correct tally. Intuitively,

to avoid that the adversary immediately wins the game because

of the auxiliary data, this data needs to be simulated on the

fake board. This definition makes therefore use of a simulator

SimProof that simulates the auxiliary data of the tally when

the adversary is not given the real board.

Definition 4 (BPRIV2): BB0,BB1, L are lists initialized

at empty. The challenger starts by picking a random bit

β, and the adversary B = (B1,B2) is given access to list

BBβ . The challenger runs the setup algorithm to create keys

(pk, sk). B1 is given access to oracles Ocorrupt,OvoteLR
and Oballot(·) as follows:

• OvoteLR(id, v0, v1) : if vγ /∈ V for γ = 0, 1, halts. Else,

runs BBγ ← BBγ‖Vote(id, vγ)) for γ = 0, 1 and sets

L← L ∪ {id}, meaning that id has already voted.

• Ocast(id, b): if id ∈ L (a honest user already cast a

ballot), halts. Else runs BBβ ← BBβ‖b.
At some point, B2 asks to see the tallying output. The

challenger proceeds as follows: if β = 0, the challenger

outputs (r,Π)← Tally(BB0, sk). But if β = 1, the challenger

sets (r,Π†)← Tally(BB0, sk) and Π← SimProof(BB0,BB1,
pk, info), where info contains any information known to the

challenger. The challenger outputs (r,Π).

Finally the BPRIV2 adversary B2 outputs β′ a the guess for

β.

We say that a voting scheme V is BPRIV2 secure if no

PPT algorithm B can distinguish between the outputs in the

experiment just described for β = 0 and β = 1, i.e. for any

PPT adversary B, there exists a simulator SimProof such that

∣∣∣ Pr
[
Expbpriv2,0B (λ) = 1

]
− Pr

[
Expbpriv2,1B (λ) = 1

] ∣∣∣
is negligible, where Expbpriv2,βB is the experiment defined

above.

Unfortunately, allowing the auxiliary data to be simulated

actually weakens too much the definition of ballot privacy. We

show next that BPRIV2 privacy declares as private, protocols

that reveal exactly how voters voted in the tabulation proof Π.

Such protocols should clearly not be declared private.

BPRIV2 fails to ensure ballot privacy: Let V ′ be any

BPRIV2 secure scheme. We assume that ballots of V ′ can

be extracted, that is, we assume a function Extract(sk, b) that

returns the vote v corresponding to ballot b. For example, if

b contains the encryption of v then Extract is simply the

decryption function. Let Leak(V ′) be the scheme obtained

from V ′ such that the tally now outputs the correspondence

between ballots and votes. Formally, Leak(V ′) is obtained

from V ′ by changing Tally′,Verify′ to Tally,Verify as follows:

• (r,Π)← Tally(sk,BB), where (r,Π′)← Tally′(sk,BB)
and Π ← Π′ || {( b, vb )}b∈BB, where vb ←
Extract(sk, b);

• Verify(PBB, r,Π) parses Π as Π′ || {( b, vb )}b∈BB and

outputs Verify′(PBB, r,Π′).
We write V := Leak(V ′). Intuitively, it is easy to see that

V satisfies BPRIV2 although it is not private. Indeed, the

simulator SimProof knows all the OvoteLR(id, v0, v1) queries
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made by the adversary. It may therefore pretend that any ballot

b corresponding to a query OvoteLR(id, v0, v1) corresponds

to v0 even when it corresponds to v1 (when β = 1). This

argument is worked out in detail in Appendix IX.

E. Ballot secrecy - ESORICS 2013 [22]

Another definition, called IND-SEC, has been recently been

proposed [22] to fix the privacy breach of the definition

BPRIV2. This definition can be seen as a combination of

the BPRIV2 [19], [20] and the Benaloh’s [24] definitions.

Indeed, the IND-SEC game is intuitively defined as follows.

The honest voters vote for an arbitrary sequence of votes V0

in the first board and an other arbitrary sequence of votes

V1 in the second board. If the two sequences coincide when

viewed as multisets, then the real tally is disclosed (as in

Benaloh’s [24] definition). If the two multisets differ, the tally

is always performed on the first ballot box (even when the

adversary has seen the second ballot box).

Definition 5 (IND-SEC): BB0,BB1, V0, V1 are lists initial-

ized at empty. The challenger starts by picking a random bit

β, and the adversary B = (B1,B2) is given access to list BBβ .

The challenger runs the setup algorithm and the keys (pk, sk)
are created. On input pk the adversary B1 can query oracles

OvoteLR(·, ·) and Oballot(·) as follows:

• Ovote(v0, v1) : runs BBγ ← BBγ‖{Vote(vγ)}, and

updates Vγ ← Vγ ∪ {vγ} for γ = 0, 1.

• Oballot(b): runs bb 	→ bb‖b on ballot boxes BB0,BB1.

At some point, B2 asks to see the tallying output. The

challenger proceeds as follows:

• If V0 = V1 (as multisets) the output is set to be that of

(r,Π)← Tally(BBβ , sk).
• If V0 �= V1 the challenger outputs (r,Π) ←
Tally(BB0, sk).

Finally the IND-SEC adversary B2 outputs β′ a the guess

for β.

Formally, we say that a voting scheme V has IND-SEC
secrecy if no PPT algorithm B can distinguish between the

outputs in the experiment just described for β = 0 and β = 1,

i.e. for any PPT adversary B,

∣∣∣ Pr
[
Expindsec,0B (λ) = 1

]
− Pr

[
Expindsec,1B (λ) = 1

] ∣∣∣
is negligible, where Expindsec,βB is the experiment defined

above.

IND-SEC and Tally Uniqueness are Incompatible.: While

IND-SEC declares the Leak(V) voting scheme insecure, it

turns out that IND-SEC secrecy and verifiability are incom-

patible properties. In other words, any verifiable protocol will

be declared not private by IND-SEC.

Let V be a (correct) voting scheme with tally uniqueness

for a non-trivial result function ρ. We describe next a IND-

SEC adversary B that has advantage negligibly close to 1/2

against V in the IND-SEC game. More precisely, for any IND-

SEC adversary B there exists a tally uniqueness adversary B′
such that Succbpriv1(B) ≥ 1 − Succuniq(B′). Therefore both

advantages can not be negligible at the same time, and thus

IND-SECl and tally uniqueness are incompatible properties.

The adversary B proceeds as follows. It chooses votes v, ε
such that ρ(v) �= ρ(ε) and it makes a single query Ovote(v, ε),
which causes b0 := Vote(v) and b1 := Vote(ε) to be created.

Then B sets its guess β′ := 0 if Verify(BBβ , ρ(v),Π) = �,

where Π is computed by the IND-SEC challenger as (r,Π)←
Tally({b0}, sk); otherwise sets β′ := 1. The claim follows

from the following facts:

• Verify({b0}, ρ(v),Π) = �, since V is correct;

• Verify({b1}, ρ(ε),Π1) = �, where Π1 is not explicitly

known but it is defined by (r1,Π1) ← Tally({b1}, sk).
This holds since V is correct;

• Verify({b1}, ρ(v),Π) = ⊥ with overwhelming proba-

bility. Indeed, since V has tally uniqueness, and given

that Verify(Publish({b1}), ρ(ε),Π1) = �, the equation

Verify(Publish({b1}), ρ(v),Π) = � for ρ(v) �= ρ(ε) is

satisfied only with negligible probability.

The latter implies in particular that Helios, in any of

its known flavours, cannot be both IND-SEC private and

verifiable.

F. Ballot privacy for restricted adversaries - PKC 2013 [21]

Another definition has been recently proposed by Chase et
al. [21]. As for the previous IND-SEC definition, the adversary

triggers honest voters, providing a left and right votes for each

voter. The tally is performed on the visible ballot box, that is,

the one the adversary sees (no simulation). However, if the

result announced differs depending on whether β = 0 and

β = 1, then the adversary loses the game.

Definition 6 (RPRIV): BB0,BB1, V0, V1 are lists initialized

at empty. The challenger starts by picking a random bit

β, and the adversary B = (B1,B2) is given access to list

BBβ . The challenger runs the setup algorithm and the keys

(pk, sk) are created. B1 on input pk is given access to oracles

Ovote(·),Oballot(·) as follows:

• Ovote(id, v0, v1) : runs BBδ ← BBδ‖Vote(id, vδ)),
Vδ ← Vδ ∪ {vδ} for δ = 0, 1.

• Oballot(id, b): runs bb 	→ bb‖b on ballot boxes BB0,BB1.

At some point, B2 asks to see the tallying output. The chal-

lenger computes (r0,Π0) ← Tally(BB0, sk) and (r1,Π1) ←
Tally(BB1, sk). If r0 �= r1, the adversary loses. Otherwise, the

challenger replies (rβ ,Πβ) to B2. Finally, B2 outputs β′ a the

guess for β. Formally, we declare a voting scheme V RPRIV
private if for any adversary B the advantage∣∣∣ Pr

[
Exprpriv,0B (λ) = 1

]
− Pr

[
Exprpriv,1B (λ) = 1

] ∣∣∣ is neg-

ligible, where Exprpriv,βB is the experiment above.

This definition fails to capture replay attacks, whereby a

malicious voter replays a previously ballot cast by a honest

voter. It is known that replay attacks violate ballot secrecy.

Indeed, consider a referendum election with three voters,

namely, Alice, Bob, and Mallory: if Mallory replays Alice’s

ballot without being detected or rejected, then Mallory can

reveal Alice’s vote by observing the election outcome and
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checking which candidate obtained at least two votes. This

attack was successfully implemented against Helios 2.0 by

Cortier and Smyth [27], [28], who also showed this constitutes

a privacy threat in real scenarios by studying the potential

impact on French legislative elections.

Let us argue that RPRIV does not capture replay attacks.

Consider a protocol where voters submit their encrypted votes

on a secure channel, to an election server that publishes

the encrypted votes on the board (thus allowing ciphertext

copying). Assume moreover that only the result of the election

is published, once the voting phase is closed. Clearly, this

protocol is subject to replay attacks and therefore does not

ensure privacy. However, it is declared private by RPRIV.

Indeed, the only information that the adversary obtains is

the encrypted ballots and the result of the election. Since the

encryption scheme is IND-CPA, the adversary does not get any

information from the encrypted votes, so it must use the result

itself to try to win the RPRIV distinguishing game. Moreover,

by definition of this game, the adversary can see the result

only in cases where both ballots boxes yield identical results.

Therefore the adversary cannot win the game, since encrypted

votes without the result give no information, and the result

does not help distinguishing the boxes, since it is identical in

both boxes. For similar reasons, RPRIV would declare Helios

2.0 private.

IV. BALLOT PRIVACY: A COMPREHENSIVE

CRYPTOGRAPHIC GAME-BASED DEFINITION FOR VOTE

PRIVACY

Based on our findings on existing definitions of privacy, we

propose a new definition that avoids the aforementioned issues.

As in [12], [18], [19], [17], [22], we define ballot secrecy for

a voting scheme V in terms of a game between a challenger

and an adversary.

We give our new security notion in two steps. We start with

a vanilla variant that reflects the core definitional ideas behind

our notion and allows a focused discussion on its features.

Then, we explain how to incorporate in the definition the

existence of global setup assumption (e.g. random oracles or

common reference strings) as used by many existing voting

protocols.

Recall that ballot privacy attempts to capture the idea

that during its execution a secure protocol does not reveal

information about the votes cast, beyond what is unavoidably

leaked (e.g. what the result of the election leaks). As in

previous definitions, we formalize this idea via an adversary

that attempts to distinguish between two worlds. In the first

world the adversary has (indirect) access to a ballot box that

contains ballots created by honest users as well as adversarial

ballots and gets to see the result corresponding to the ballot

box. In the second world the adversary sees a fake board

instead of the real one, yet gets to see the result of the election

as tallied on the real ballot box. Since we model explicitly

the additional information that the tally may include besides

the result (e.g. a proof of correct tally), we require that this

information does not reveal any information either: we require

the existence of a simulator that can “fake” the additional

information corresponding to the real result, but with respect

to the fake ballot box.

We formalize this discussion via the experiments

Expbpriv,βA,V (λ) defined in Figure 2. In these games BB0,BB1

are ballot boxes that start out empty. Ballot box BB0

corresponds to the real election (that will be tallied). The

adversary gets access to BB0 in the first game and access to

BB1 (a fake ballot box) in the second game. The experiment

starts with generating long term keys sk and pk; the

adversary A is given the public key and access to the oracles

that we describe below and formalize in Figure 2.

Oboard: This models the ability of the adversary to see the

publishable part of the ballot box, i.e. the bulletin board.

The oracle returns Publish(BBβ).
OvoteLR: The left-right oracle OvoteLR takes two potential

votes (v0, v1) for user id, produces ballots b0 and b1 for

these votes and places them on the ballot box (one on

BB0 and one one on BB1), provided that bβ is valid with

respect to BBβ .

Ocast: This oracle allows the adversary to cast a ballot b on

behalf on any party. If the ballot is valid with respect to

BBβ , it is placed on both ballot boxes.

Otally: This oracle allows the adversary to see the result of the

election. In both worlds the result is obtained by tallying

BB0. In the first experiment the additional information

calculated by the tally is given to the adversary, whereas

in the second experiment the additional information is

simulated.

The adversary can call oracles OvoteLR,Ocast,Oboard in

any order, and any number of times. Finally, A can call Otally
once; after it receives the answer to his query A returns a

guess bit on the value of β. This bit is the result returned by

the game.

Definition 7 (BPRIV): Consider a voting scheme V =
(Setup,Vote,Valid,Publish,Tally,Verify) for a set I of voter

identities and a result function ρ. We say the scheme has

ballot privacy if there exists an algorithm SimProof such

that no efficient adversary can distinguish between games

Expbpriv,0B,V (λ) and Expbpriv,1B,V (λ) defined by the oracles in Figure

2, that is for any efficient algorithm A
∣∣∣ Pr

[
Expbpriv,0A,V (λ) = 1

]
− Pr

[
Expbpriv,1A,V (λ) = 1

] ∣∣∣
is negligible in λ.

A. Extension of the definition to setup assumptions

Most voting protocols rely on non-interactive zero knowl-

edge (NIZK) proofs to enforce honest behaviors for the parties

involved, yet such proofs require some setup assumptions (like

the CRS or the RO model). To be able to analyze these

protocols we need to extend our definition to account for such

setups. While it would be simple enough to provide a definition

of ROM-BPRIV or CRS-BPRIV, we would like our definition

to abstract away details of any particular model of zero-

knowledge as far as possible. Finding a truly model-agnostic
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ESOR.11 ESOR.09 PODC86 Benaloh ESOR.13 ASIA. 12 PKC13 S&P 10 CCS12 ACNS04 Ours
[12] [31], [33] [23] [24] [22] [19] [21] [10] [17] [13] Sec. IV

STOC94
[25]

game-based
notion

� � � � � � � � � � �

detects leaky
revote policies

� � � � � � � � ? ? �

Helios 2.0 is
not private

� � � � � � � � � � �

protects ag. vote
comparisons

� � � � � � � � � � �

compatible with
tally uniqueness

? � � � � � � � � � �

admits duplicate
weed before tally

� � � � � � � � � ? �

admits duplicate
weed inside tally

� � � � � � � � � ? �

detects leaky
tally proofs

? � � � � � � � � � �

revoting allowed � � � � � � � � ? � �

models partially
hidden board

� � � � �/� � � � � � �

admits result
functions w/o
partial tallying

� � � � � � ? � � � �

TABLE I
SUMMARY OF OUR SURVEY. �= DEFINITION SATISFIES A DESIRABLE PROPERTY (THE MORE �S A DEFINITION HAS, THE BETTER); �= DEFINITION DOES

NOT SATISFY THE PROPERTY; ? = RESULT IS NOT ADDRESSED IN THE DEFINITION OR WE COULD NOT ESTABLISH IT FROM THE REFERENCE.

notion of zero-knowledge is an open research problem so we

choose to sketch an extension of ballot privacy that keeps the

setup assumption abstract thus sacrificing some precision for

greater generality.

We also note that this extension is needed, not only to allow

for the analysis of more schemes, but also because in its vanilla

format BPRIV security would be too strong: the existence of

a simulator that can fake the proof without using a global

setup, would mean that secure schemes would not satisfy tally

uniqueness.

A global setup consists of a set public parameters and

algorithms that can be accessed by all parties, and in particular

by the adversary. These parameters are initialized at the

beginning of the execution. We write GlobalSetup.init for

the algorithm that initializes the parameters of the global setup,

and write AGlobalSetup to indicate that algorithm A can access

GlobalSetup. For example, in the CRS case GlobalSetup.init
would select a random string (of some fixed length) and

GlobalSetup simply makes this string available to all parties.

In the random oracle model GlobalSetup consist of a truly

random function to which parties only have oracle access.

The power of setup assumptions comes from the ability to

generate simulated setups, indistinguishable to an adversary

from a normal one. The simulated setup however, grant to

a simulator additional powers that are useful in crafting

reduction proofs. For example in the CRS model the fake

setup would consist of a CRS indistinguishable from an

honestly generated one, but which comes with a trapdoor that

allows, for example, to produce valid looking proofs for false

statements. In the random oracle model the oracle is under the

control of a simulator who can “program” (i.e. fix) its output

on some values of interest. Naturally, this programming should

be such that the adversary cannot distinguish the simulated or-

acle from a truly random one. We write SimGlobalSetup for a

simulated setup and SimGlobalSetup.init for its initialization

algorithm. When SimGlobalSetup is used, some of the parties

in the system may have access to its associated trapdoor (like

in the CRS setting), or control it in some other way (like in

the RO model).

The extension of BPRIV to global setups is as follows. In

both of the games we initialize a real and a fake setup via

GlobalSetup.init and SimGlobalSetup.init. When β = 0,

that is in the game that corresponds to the real execution

the adversary has access to GlobalSetup; in this experiment

SimGlobalSetup does not play any role – we simply initialize

it for simplicity and for ease of comparing with the other

experiment. When β = 1, the adversary has access to

SimGlobalSetup. However, the fake global setup is under the

control of SimProof: all calls to SimGlobalSetup are sent to

SimProof which is in charge of answering them. Importantly,

in this experiment the result is produced by tallying the “real”

ballot box (BB0) and using the real GlobalSetup.

We provide a fully worked out instantiation of our definition

in the ROM in the full version of this paper [35], since this is
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Expbpriv,βA,V (λ)

(pk, sk)← Setup(1k)
d← AO(pk)
Output d

OvoteLR(id, v0, v1)
Let b0 = Vote(id, v0) and b1 = Vote(id, v1).
If Valid(BBβ , bβ) = ⊥ return ⊥.

Else BB0 ← BB0‖b0 and BB1 ← BB1‖b1
Ocast(b)

If Valid(BBβ , b) = ⊥ return ⊥.

Else BB0 ← BB0‖b and BB1 ← BB1‖b.
Oboard()

return Publish(BBβ)

Otally() for β = 0

(r,Π)← Tally(BB0, sk)

return (r,Π)

Otally() for β = 1

(r,Π)← Tally(BB0, sk)
Π′ ← SimProof(BB1, r)
return (r,Π′)

Fig. 2. In the experiments Expbpriv,βA,V (λ) defined above for β = 0, 1 adversary

A has access to the set of oracles O = {Ocast,Oboard,OvoteLR,Otally}.
The adversary is allowed to querry Otally only once. For β = 1 the
experiment also depends on SimProof – we do not show the dependence
explicitly to simplify notation.

the model used for Helios.

B. Strong Consistency

The ballot privacy definition BPRIV strongly relies on

a split between the result r and the auxiliary data Π re-

turned by the tally. This split should be meaningful, that is

r should correspond to the expected result and should not

contain hidden auxiliary data. To enforce this, we introduce

a companion definition of BPRIV, called strong consistency,

that has two main goals. Firstly, it ensures that the result

always corresponds to the result function applied to the votes,

and nothing more. Secondly, it controls the damages that an

intentionally leaky revote policy could implicitly cause while

tallying. In fact, since tallying takes as inputs the ballot box

and the secret key, this allows a malicious designer/election

administrator to implement a leaky revote policy. We limit the

damages of such a behaviour by asking the voting scheme to

satisfy a stronger correctness property, that we name strong
consistency.

Intuitively, strong consistency guarantees that the Tally
algorithm behaves like ρ except possibly on invalid ballots.

(Note that BPRIV is independent of ρ.) We formalize the

requirement by requiring the existence of an “extraction”

algorithm which, with the help of the secret key, can determine

for each ballot the underlying vote and the identity/identifier

with which it was created or ⊥ if the ballot is somehow invalid.

We require that from an honestly created ballot the extraction

algorithm works as desired. Using the extraction algorithm

we can capture the intuition that the Tally algorithm works as

expected: we demand that the result reported for some valid

ballot box BB by Tally is the same as the result function

applied to the votes that underlie the ballots on BB, as defined

using the extraction algorithm.

Definition 8 (Strong consistency): A scheme V =
(Setup,Vote,Valid,Publish,Tally,Verify) relative to a result

function ρ : (I × V)∗ → R has strong consistency if there

exist

• an extraction algorithm Extract that takes as input a secret

key sk and a ballot b and outputs (id, v) ∈ I × V or ⊥;

• a ballot validation algorithm ValidInd that takes as input

the public key of the election pk and a ballot b and outputs

� or ⊥;

which satisfy the following conditions:

1) For any (pk, sk) that are in the image of Setup and

for any (id, v) ∈ I × V if b ← Vote(pk, id, v) then

Extract(sk, b) = (id, v) with overwhelming probability.

2) For any (BB, b) ← A, Valid(BB, b) = � implies

ValidInd(b) = �.

3) Consider an adversary A which is given pk and consider

the experiment:

Exps-consA,V (λ)
(pk, sk)← Setup(λ);
BB← A
(r,Π)← Tally(sk,BB)
If r �= ρ(Extract(sk, b1), . . . ,Extract(sk, bn))
Then return 1 Else return 0

Above we consider only adversaries A that return BB of the

form [b1, . . . , bn] such that ValidInd(bi) = � for i = 1..n. We

require that the probability Pr[Exps-consA,V (λ) = 1] is negligible

in the security parameter.

In case the result function ρ does not use voter identifiers,

that is

ρ((id1, v1), . . . , (idn, vn)) = ρ((id′1, v1), . . . , (id
′
n, vn))

for any vj , idj , id
′
j , then the function Extract is not required

to output the voter identifier.

Informally, strong consistency prevents an adversary from

encoding instructions in her own ballots, causing the tallying to

leak information on the honest votes or prevent the validation

of honestly generated ballot boxes. Indeed, the extraction

algorithm works “locally” on each ballot so it cannot respond

to instructions encoded in one ballot on how to treat another

ballot or to return no result. This is not to say that the

tallying algorithm cannot be aware of adversarial instructions

— indeed, it is free to write what it likes to the auxiliary data.

It is only the result that is protected by strong consistency.

The rest is handled by the BPRIV definition.

Just like in the case of the ballot privacy definition, we

started with a vanilla variant of strong consistency that does

not account for global setups. The definition above can be

extended to this more realistic setup by providing to adversary
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A and to the Tally algorithm access to GlobalSetup initialized,

as usual, via GlobalSetup← GlobalSetup.init.

C. Strong Correctness

This notion requires a strong independence relation between

honestly created ballots and the ballot box (and the global

setup) in the voting scheme, which we capture by requiring

that an honestly created ballot is valid, even with respect to

an adversarially created ballot box.

Definition 9 (Strong correctness): Consider an adversary A
against π that takes as input pk and has access to a global

setup GlobalSetup generated as expected. Then,

Pr[(id, v,BB)← A(pk); b← Vote(id, v) : Valid(b,BB) �= �]
is negligible. The probability is over the coins used by the

adversary and Vote, but also over the coins used in the

generation of pk.

D. Necessity of Strong Consistency and Strong Correctness

Let us see an example of a voting scheme that satisfies

BPRIV but that implements a leaky revote policy while

tallying. Let V be a BPRIV voting scheme for the multiset

result function (i.e. ρ(v1, . . . , vn) outputs {v1, . . . , vn} viewed

as a multiset), such that Publish(BB) = BB, Π = ∅ (i.e.

there are no proofs of correct tallying), Verify(PBB, r, ∅) = �
(i.e. since there are no tallying proofs, we accept any result

published by the election administrator) and V = {0, 1}. To

simplify further, let us assume that V only allows single voting

(i.e. voters cannot revote).

We build a voting scheme V ′ that inherits BPRIV privacy

from V , but which possibly reveals how the first voter voted,

and thus it is, intuitively, not ballot private. V ′ is obtained by

replacing algorithm Tally by Tally′ as follows: Tally′(BB, sk)
first checks whether the first ballot in BB contains a 1-vote. If

so, removes this ballot from BB, and let BB′ be the resulting

ballot box. Finally, outputs Tally(BB′, sk). Let us sketch a

proof that V ′ is BPRIV.

In the first place, let BB0 contain in its first entry a 1-vote,

while BB1 contains in its first entry a 0-vote. If β = 0, the

adversary sees ballot box BB0. The output of tallying in this

case is Tally′(BB0, sk) = Tally(BB0 \{b1}, sk). If β = 1, the

adversary sees ballot box BB1, but still sees the same tallying

output Tally′(BB0, sk).
In the second place, let us consider the complementary

case where BB0 contain in its first entry a 0-vote, while

BB1 contains in its first entry a 1-vote. If β = 0, the

adversary sees board BB0. The output of tallying in this

case is Tally′(BB0, sk) = Tally(BB0, sk). If β = 1, the

adversary sees board BB1, but still sees the same tallying

output Tally′(BB0, sk).
Finally, if BB0 and BB1 both contain ballots at their first

entry for the same vote v ∈ {0, 1}, then Tally′ does not

help distinguishing when compared to the original Tally.

Thus, for every adversary A′ against BPRIV of V ′ there

exists an adversary A against BPRIV of V with roughly

the same distinguishing advantage. If V is BPRIV, so is V ′.

Unfortunately, V ′ reveals how a honest voter voted, since the

output of Tally tells whether the first ballot on BB contains

the vote 1.

Our solution to defeat these leaky revote policies embedded

in Tally is to ask for strong consistency. Indeed, it is easy to see

that V ′ does not satisfy strong consistency. Note that whenever

the first ballot of BB is a 1-vote, then running Tally and

running the alternative tally procedure using Extract results

in different outputs.

Regarding the need for strong correctness, let us assume a

BPRIV voting scheme V ′. We build a new voting scheme V
such that ballots b in V are obtained by appending a t-bit to

ballots b′ in V ′ (say at the beginning of b′). The vote algorithm

in V just appends a 0-bit to the result of the vote algorithm in

V ′. Tally in V just drops the appended bit from any ballot b
and next applies the tally from V ′. Valid(BB, b) is defined as

follows:

• if there is any ballot in BB starting with 1-bit, rejects b
• otherwise, drops the the appended bit from any ballot

in BB and from b, let BB′ and b′ be the corresponding

outputs, and computes Valid′(BB′, b′)
V is BPRIV but not strongly correct. In particular, a

malicious voter can cause votes from honest voters to be

rejected. Actually, this remark also applies to other privacy

definitions, such as IND-BB.

E. Revote policies

Formalizing revote policies has been rarely done in the

literature on foundations of electronic voting. Previously,

revote policies were considered as an external component of

the voting scheme. Roughly speaking, one used to proceed

as follows. Firstly the cryptographic workflow of the voting

protocol is described, next its ballot privacy is proven, and then

the revote policy is decided at the implementation level by

the election administrator. The bottom line is that reasonable

revote policies will not impact the ballot privacy of the

underlying voting scheme, so they can chosen independently

of the scheme (we just need to make sure that the protocol

implements the given revote policy).

One of our findings is that a good ballot privacy definition

must restrict the class of revote policies allowed. This is

because the algorithms implementing a revote policy might

need the secret key as an input — some voting schemes,

such as JCJ/Civitas, need the election secret key to implement

revote. This opens the door to intentionally leaky revote

policies, which could use this secret key to gain information

on voters’ votes.

In Civitas [30], ballots with invalid credentials are removed

based on a plaintext-equivalence test that uses some trapdoor

unavailable to the ballot privacy attacker. This can be captured

in a strongly consistent way by including this operation in

ρ. Given a ballot b that contains a vote v and a credential

cred , the Extract function should return both cred and v.

Then ρ should remove any vote that corresponds to an invalid

credential.
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Other schemes also require the election secret key to be

able to clean the ballots. Sometimes, (part of) the private key

is needed to determine the validity of ciphertexts, e.g., when

Cramer-Shoup encryption is used [36]. This can be captured by

having Extract performing the appropriate tests. In some other

cases, e.g., in mixnet-based schemes, the validity of ballots

can only be determined even later, after full decryption. We

also include this cleaning operation in ρ: whenever ρ sees an

invalid vote v, then this vote shall be removed. In this way,

Tally remains strongly consistent.

V. A SIMULATION-BASED MODEL OF BALLOT PRIVACY

In this section we define an ideal functionality for voting

protocols, in the spirit of Groth [13] and de Marneffe et

al. [14], but handling voters that submit multiple votes. The

inspection of this functionality should make it obvious to the

reader that, if a trusted party were available to provide its

service, then we would have a voting system offering all

expected privacy guarantees and that all adversaries against

that functionality are harmless.

We show that any voting scheme satisfying BPRIV and

strong consistency offers at least as much7 privacy guarantees

as this ideal functionality. This will be demonstrated using

the traditional real-world/ideal world paradigm: we show that

anything that can be done by an adversary against the voting

protocol can also be done by an adversary interacting with the

ideal functionality. Since we know that any adversary against

the ideal functionality is harmless, this shows that the real

protocol adversary must be harmless too. Our treatment leaves

out many technical details of the execution model and focuses

on the crucial part. We expect that it could be cast formally in

traditional security frameworks in which universal composition

theorems hold, even though we are not concerned with any

such composition result here.

We start by describing our ideal world setting, then the real

world one, and eventually show the implications of our game-

based security definitions.

A. An ideal functionality for voting

We describe an ideal voting functionality for a set of

identities I and a result function ρ : (I × V)∗ → R. This

functionality has a simple behavior:

1) It first expects to receive one or more votes, both from

honest and from corrupted voters. Every time a vote is

received, the identity of the voter and the vote content

are stored, and the functionality lets the adversary know

who submitted a vote (but not the content of the vote,

of course). This captures the idea that submitting a vote

is a public action but could be relaxed in settings where

voting would be private (though this usually has a cost

in terms of eligibility verifiability.)

7Actually, BPRIV, strong correctness, and strong consistency are a strictly
stronger condition than securely realising our ideal functionality. Essentially,
these conditions define one particular simulator that work for the simulation-
based definition. The converse implication is not necessarily true.

2) When it receives the order to tally, the functionality

evaluates the ρ function on the sequence of pairs of

identities and votes that it has received, and sends the

result to the adversary.

Following the traditional ideal world/real world terminol-

ogy, we give the control of the honest voters to an entity called

the environment, which submits honest votes of its choice

directly to the functionality. This single entity coordinating the

honest voters ensures that security will be satisfied whoever

the honest votes are and whatever distribution they follow.

The ideal-world adversary, which we also call the simulator
(following the tradition), can also submit arbitrary votes to

the functionality, on behalf of (maybe temporarily) corrupted

voters. Furthermore, this simulator can receive arbitrary infor-

mation from the environment. This captures information that

the adversary could obtain about the honest votes externally

from the voting protocol (e.g., through polls, . . . ). It also

interacts with the environment as part of its adversarial be-

havior, reporting its achievements. Eventually, the environment

outputs a single bit that expresses whether or not it feels that

it is interacting in the ideal-wold we just described. If the

environment can notice that it is not running in this ideal world

when it is actually running with a real protocol, then the real

world protocol will be claimed to be insecure.

Definition 10: The functionality Fvoting(ρ), interacting with

an environment E and an adversary S, proceeds as follows:

1) On input vote(id, v) from E or S, store (id, v) and send

ack(id) to S.

2) On input tally from S, return to both E and S the result

of the function ρ applied on the sequence of (id, v) pairs

received, then halt.

This functionality has clear privacy properties: it reveals

who votes, and the result of the election, but nothing more.

Furthermore, the votes from the simulator are sent to the

functionality in complete independence of the honest votes

from the environment unless the environment itself tipped the

simulator in the first place (which cannot be prevented by

any voting system): the functionality does not give S any

information related to the honest votes before it provides the

election result. This seems to be the best we can hope for in

terms of privacy of votes.

The full process in which an environment E, an adversary

S and an ideal functionality Fvoting(ρ) interact, returning the

single output bit β produced by the environment, is written

β ← idealexec(E‖S‖Fvoting(ρ)).

B. The real protocol execution

In the real world, we have a voting scheme

V = (GlobalSetup, Setup,Vote,Valid,Publish,Tally,Verify)
played by a set of honest voters, an adversary A who can

take control of voters, a honest administrator, and an honest

ballot box. A global setup might be available to all these

parties, e.g., under the form of a random oracle or a common

random string, as provided by GlobalSetup. These three
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honest elements, i.e. the administrator, the ballot box and the

global setup, can be seen as incorruptible ideal functionalities,

and we say that a protocol running in the presence of these

three functionalities runs in the ABG-hybrid model. If they

are not readily available, these functionalities can be securely

implemented using lower-level protocols, which are kept out

of our model here. For instance, one would typically have

multiple administrators running a threshold scheme in a real

election.

As in the ideal world, there is an environment E who

commands the election: it asks the administrator to setup the

election, provides voting instructions to the honest voters, asks

to read the ballot box, and can also have arbitrary interactions

with A.

An execution of the scheme V in interaction with environ-

ment E and adversary A works as follows.

1) At first, and if there is a global setup, E sends a

globalsetup.init command in order to initialize the

setup that is available to everyone.

2) E sends a setup command to the administrator, who

sends the election public key pk to everyone.

3) The ballot box creates an empty BB and can have two

types of interaction:

a) It can receive a ballot(b) command. In this case, it

runs Valid(BB, b) and, if successful, appends b to BB.

b) It can receive a publish command, on which returns

Publish(BB) to the party that issued that command.

4) The following commands can be issued in arbitrary

sequence.

a) E can send vote instructions vote(id, v) to honest

voters, who compute a ballot b = Vote(id, v) and send

ballot(b) to the ballot box.

b) Possibly in coordination with E, the adversary A can

submit arbitrary ballot(b) commands to the ballot

box on behalf of dishonest voters.

c) Anyone can send publish queries to BB.

5) At some point, the adversary sends tally to the ballot

box. The content of BB is then sent to the administrator

who, using the secret key sk, runs Tally on the ballots

and sends the result r and proof Π to the adversary.

The scheduling mechanism we use can be seen as token

passing with the environment as master scheduler: E is active

first and, every time a command is issued to a party, this party

gets the token. When a party halts, E gets the token back, until

it sends its output bit which halts the entire system.

The full process in which an environment E and an adver-

sary A run in an execution of a voting scheme V as described

above, returning the single output bit β produced by E, is

written β ← realexec(E‖A‖V).

C. Secure implementation

The following definition captures the idea that a secure

protocol should not leak more information than whatever is

leaked in the ideal world.

Definition 11: We say that scheme V securely implements

functionality Fvoting(ρ) in the ABG-hybrid model if for any

real adversary A there exists an ideal adversary S such that for

any environment E the distribution idealexec(E||S||Fvoting(ρ))
is computationally indistinguishable from realexec(E||A||V).

The following theorem establishes that correctness, ballot

privacy, and strong consistency for the voting scheme are suf-

ficient conditions to ensure that its associated voting protocol

is secure in the sense defined above.

Theorem 12: If a voting scheme V for result function ρ is

strongly correct, strongly consistent, and ballot private, then

the protocol for V securely implements Fvoting(ρ) in the ABG-

hybrid model.

Proof: We prove the stronger statement that there is a

simulator, with black-box access to the adversary, which works

for any (adversary, environment) pair. We proceed by “game

hopping”.

1) Game 0: is described by realexec(E||A||V).
2) Game 1: is a modified version of Game 0:

• The board that the adversary sees contains ballots to some

fixed vote v∗ ∈ V instead of the honest voters’ votes.

• The election result is obtained from the tally of a ballot

box containing ballots for the real votes (which is hidden

from the adversary).

• The auxiliary data are faked, using SimProof as defined

from the BPRIV property.

The reader can immediately observe the close correspon-

dence between the changes made to Game 0 and the guarantees

offered by the BPRIV definition. Indeed, we show that Game

0 and Game 1 cannot be distinguished, unless the underlying

voting scheme is not BPRIV secure.

We now give a more detailed description of Game 1 and

sketch the proof for the above statement. The initialization step

in Game 1 includes, besides the steps in the intialization of

Game 0, the initialization of the fake board BB1. In the case

of a global setup, a simulated global setup SimGlobalSetup is

produced and add added on BB1: we formally add:

BB1 ← []; SimGlobalSetup← SimGlobalSetup.init

to the initialization step in Game 0, and the adversary gets

access to SimGlobalSetup.

Next, a setup command is issued to the administrator, and

the adversary gets access to pk.

The adversary and the environment E are allowed the same

queries as in Game 0. These are answered as follows:

• on vote(id, v) ∈ (I × V) from E:

b0 ← Vote(id, v); b1 ← Vote(id, v∗); if Valid(BB1, b1)
then BB0 ← BB0‖b0, BB1 ← BB1‖b1.

• on ballot(b) ∈ ({0, 1}∗) from A:

if Valid(BB1, b) then BB0 ← BB0‖b and BB1 ← BB1‖b.
• on read from A:

return Publish(BB1) to the adversary.

• on tally from A:

run (r,Π) ← Tally(sk,BB0), Π1 ← SimProof(r,BB1);
return (r,Π1) to the adversary and halt.
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We write realexec′(E||A||V) for the output of A in the above

execution (which is also the output of Game 1).
We claim that for any adversary A and environment E,

the distance between the outputs of the games Game 0 and

Game 1, is at most the advantage of some adversary B against

BPRIV security of V .
Let D be a distinguisher (for the outputs of realexec and

realexec′). Adversary B against BPRIV uses D and operates as

follows. B runs E and A internally and answers their queries

as follows.

• on vote(id, v) ∈ I×V from E: adversary B sets v0 ← v
and v1 ← v∗ and submits (id, v0, v1) to its own OvoteLR
oracle.

• on ballot(b) from A: adversary B issues b to its own

Ocast oracle.

• on read from A: adversary B queries Oboard and

forwards the result to A.

• on tally from A: adversary B queries Otally and

forwards the result to A.

• queries issued by A to his global setup are forwarded by

B to his own global setup; the answers are sent to A.

When E stops, B runs D on the local output of E and

outputs whatever D outputs. When B is in the BPRIV game

with β = 0 the view that B provides to A and the E is as in

realexec(E||A||V). At the same time, if β = 1, then the view

of A and E is the one they have in realexec′(E||A||V). It fol-

lows that whenever D successfully distinguishes between the

outputs of these two games, then B successfully distinguishes

the corresponding experiments Expbpriv,0A,V and Expbpriv,1A,V .
3) Game 2: We introduce the next game in order to

establish a set of invariants that hold for the execution above;

these will serve as stepping stone to identify and argue about

the properties of the simulator S.
Recall that, in Game 1, ballot box BB0 contains the real

ballots submitted (by the adversary and the honest parties)

and ballot box BB1 contains only fake ballots. In this game

we introduce a third box BB2 which contains a list (id, v) of

the actual votes cast by the users. The ballot box is initially

empty and is updated when ballots are submitted. Specifically,

we modify the way queries vote(id, v) and ballot(b) are

processed in Game 1, as follows (to ease readability we

underline the parts added in Game 2):

• on vote(id, v) ∈ (I × V) from E:

b0 ← Vote(id, v); b1 ← Vote(id, v∗);
if Valid(BB1, b1) then BB0 ← BB0‖b0, BB1 ← BB1‖b1,

BB2 ← BB2‖(id, v) and return (id, ack) to the simulator.

• on ballot(b) ∈ (I × {0, 1}∗):
if Valid(BB1, b) then BB0 ← BB0‖b,BB1 ← BB1‖b;
(id, v)← Extract(sk, b);BB2 ← BB2‖(id, v).

As a result from these changes, every time a ballot is added

to BB0 and BB1, a corresponding vote is added on BB2: this

is just the vote submitted in clear in the case of a vote query,

or the extracted vote in the case of a ballot query, using

the Extract algorithm resulting from the strong consistency

guarantee. The view of the adversary is not modified in any

way for the moment.

When A issues tally, Game 2 checks that the content of

BB2 coincides with the votes extracted from BB0.8 If this

is not the case the game aborts the execution, otherwise the

result provided to the adversary is computed as in Game 1.

Formally, the tally step in Game 2 is as follows:

• on tally from A:

if BB2 �= Extract(sk,BB0) output ⊥ and halt;

run (r,Π)← TallyGlobalSetup(sk,BB0);
run Π1 ← SimProof(r,BB1); return (r,Π1) to the

adversary.

Here, the view of the adversary can differ from Game 1

only if the test BB2 �= Extract(sk,BB0) succeeds. We claim

that this can only happen with negligible probability, thanks

to the properties of Extract guaranteed by strong consistency

(Item 1. of Def. 8).

Indeed, we show how to build an adversary B that breaks

strong consistency with a probability identical to the proba-

bility that BB2 �= Extract(sk,BB0) in Game 2.

B starts by emulating Game 2 internally, running by itself

the roles of the administrator, adversary, environment, . . . and

inspects whether, in the end, BB2 �= Extract(sk,BB0). If it is

the case, B extracts the query that makes those boards differ.

This query can certainly not be a setup, read or tally

query, since these queries do not modify any board. It can also

not be a ballot query, since the vote that is added on BB2

in that case is, by definition, the extraction of the ballot added

on BB0. Eventually, if it is a vote(id, v) query, then B found

a situation where the extraction of Vote(id, v) (which appears

on BB0) differs from (id, v) (which appears on BB2). But,

from the first item of the definition of strong consistency, this

can only happen with negligible probability, and so does the

BB2 �= Extract(sk,BB0) property.

4) Game 3: This game is identical to the one above, with

the difference that, during vote queries, we check whether

the b0 ballot is valid with respect to BB0 and trigger an

error othewise. Formally, we make the following changes

(underlining the changes compared to Game 2, as before).

• on vote(id, v) ∈ (I × V) from E:

b0 ← Vote(id, v); b1 ← Vote(id, v∗);
if not Valid(BB0, b0) then output ⊥ and halt.

if Valid(BB1, b1) then BB0 ← BB0‖b0, BB1 ← BB1‖b1,

BB2 ← BB2‖(id, v) and return (id, ack) to the simulator.

A difference between Game 2 and Game 3 only appears

when Valid(BB0, b0) is false. However, this would immedi-

ately violate the strong correctness property (Def. 9.)

Indeed, an adversary against strong correctness can start

emulating Game 3 internally, using a honestly generated public

key provided as in the strong correctness experiment, up to a

guess on which vote(id, v) query would result in falsifying

Valid(BB0, b0). Then, it can submit (id, v,BB0) as output to

the strong correctness experiment and, if the guess is correct

(which happens with non negligible probability since there

are at most a polynomial number of vote queries), it wins the

8Applying Extract to a list of ballots means apply it component-wise.
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experiment. But, since our voting scheme is strongly correct,

this can only happen with negligible probability.

5) Game 4: This game is identical to the one above, with

the difference that, during vote and ballot queries, we check

whether ballots satisfy the ValidInd predicate (defined as part

of strong consistency) after having tested ballots with Valid.

Formally, we make the following changes to these queries:

• on vote(id, v) ∈ (I × V) from E:

b0 ← Vote(id, v); b1 ← Vote(id, v∗);
if not Valid(BB0, b0) then output ⊥ and halt.

if not ValidInd(b0) then output ⊥ and halt.

if Valid(BB1, b1) then BB0 ← BB0‖b0, BB1 ← BB1‖b1,

BB2 ← BB2‖(id, v) and return (id, ack) to the simulator.

• on ballot(b) ∈ (I × {0, 1}∗): if Valid(BB1, b) then

if not ValidInd(b) then output ⊥ and halt, else

BB0 ← BB0‖b,BB1 ← BB1‖b; (id, v) ←
Extract(sk, b);BB2 ← BB2‖(id, v).

A difference between Game 3 and Game 4 can only appear

if one of the ValidInd tests fails while the Valid test on the

same ballot succeeds. However, such an event would lead to a

contradiction of the second requirement of strong consistency,

which requires that a ballot that is Valid for any board should

also be ValidInd. An adversary could indeed emulate Game 4

internally and, as soon as a ValidInd test fails while the Valid
test on the same ballot succeeds for a specific board, it would

output that board and ballot, which would be in contradiction

with Item 2. of the definition of strong consistency.

6) Game 5: This game is identical to the one above with

the difference that, instead of running Tally on BB0 in order

to obtain the result r, the ρ function is evaluated on BB2.

Formally, we modify the tally query as follows:

• on tally from A:

if BB2 �= Extract(sk,BB0) output ⊥ and halt;

run (r,Π)← TallyGlobalSetup(sk,BB0);
r = ρ(BB2).
run Π1 ← SimProof(r,BB1); return (r,Π1) to the

adversary.

We claim that if V is strongly consistent (Definition 8) then

the outputs of Game 4 and Game 5 are indistinguishable.

Consider a reduction B against Property 3. of strong con-

sistency. Reduction B obtains pk, then simulates the execution

in Game 5 up to the point where A issues tally. At this point

B outputs BB0 and halts. Since BB2 = Extract(sk,BB0),
the output distributions of Games 4 and 5 only differ if

R(Tally(sk,BB0)) �= ρ(Extract(sk,BB0)), where R(r,Π) :=
r extracts the result from a tally. Furthermore, the tests added

in Game 4 guarantee that BB0 only contains ballots that satisfy

ValidInd. So, if a difference happens, the reduction B wins

against the strong consistency property of V .

7) Game 6: This game is identical to the one above with

the difference that we remove:

• The test on BB2 added in Game 2;

• The Valid test added in Game 3;

• The ValidInd tests added in Game 4.

We proved in those games that these tests only make a

difference with negligible probability, and we can use those

same arguments to justify that a difference between Game 5

and Game 6 will only appear with negligible probability.

To sum up, the queries in Game 6 are treated as follows:

• on vote(id, v) ∈ (I × V) from E:

b0 ← Vote(id, v); b1 ← Vote(id, v∗)
if Valid(BB1, b1) then BB0 ← BB0‖b0, BB1 ← BB1‖b1,

BB2 ← BB2‖(id, v) and return (id, ack) to the simulator.

• on ballot(b) ∈ ({0, 1}∗) from A:

if Valid(BB1, b) then BB0 ← BB0‖b; BB1 ← BB1‖b;
(id, v)← Extract(sk, b) and BB2 ← BB2‖(id, v).

• on read from A:

return Publish(BB1) to the adversary.

• on tally from A:

run r ← ρ(BB2); run Π1 ← SimProof(r,BB1); return

(r,Π1) to the adversary and halt.

8) Ideal adversary: Finally, we construct a simulator S for

which the output in idealexec(E||S||Fvoting(ρ)) is distributed

identically to the output of Game 6, thus completing the proof.

The simulator runs SimGlobalSetup.init to obtain an en-

vironment SimGlobalSetup (if needed), runs Setup to obtain

(pk, sk) and initializes a board BB1. It then starts running A
internally and answers queries as follows:

• When S receives (id, ack) from Fvoting(ρ), it produces

b ← Vote(id, v∗). If Valid(BB1, b) returns true, then S
executes BB1 ← BB1‖b.

• When A issues ballot(b), S runs Valid(BB1, b). If this

returns false, then S does nothing. Otherwise, S runs

BB1 ← BB1‖b and (id, v) ← Extract(sk, b) and sends

(id, v) to Fvoting.

• When A issues query read, S returns Publish(BB1).
• When A issues query tally, S issues tally to Fvoting

and obtains r, calculates Π1 ← SimProof(r,BB1) and

returns (r,Π1) to the adversary.

The claim is that the view of A and E in the above game

is identical to their view in Game 6. Indeed:

• The read queries from the adversary are answered from

the board BB1 in both cases;

• The tally query applies ρ to the sequence of votes

received by the functionality, votes that precisely match

those posted on BB2 in Game 6.

�

VI. APPLICATION TO HELIOS

Helios [37] is a remote voting protocol aimed at providing

both privacy and verifiability. Helios builds on Cramer et
al [38] and Benaloh [29]. The attractiveness of Helios resides

on its open-source nature, simplicity and that it consists of

well-known cryptographic building blocks. Furthermore, it has

been used several times to run binding elections, including

the election of the president of the University of Louvain-

La-Neuve and the election of the board directors of the

International Association for Cryptographic Research (on a

regular basis since 2010) [39] and of the ACM. As such, Helios
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is the ideal candidate to test any new cryptographic model

for electronic voting. It is not surprising then that Helios has

been shown to ensure ballot privacy in the past [13], [27],

[12], [19]. However, as we have seen in the previous sections,

those analysis use unsatisfactory vote privacy definitions or do

not apply directly to Helios.

We show that our BPRIV and strong consistency defi-

nitions can be realized by Helios, which implies the first

simulation-based vote privacy proof for Helios. Specifically,

we analyze what could be considered the standard version

of Helios nowadays, that uses strong Fiat-Shamir proofs [19],

implements duplicate weeding [27] and homomorphic tallying.

With respect to the threat model, we consider an honest single

trustee and an honest bulletin board. Except for the single

trustee, the other adversarial assumptions are similar to those

used in previous ballot privacy analyses of Helios. Adapting

our proof to a multi-authority scenario is expected to carry

over in a similar manner as in [20], by extending BPRIV to a

multi-trustee scenario.

More explicitly, the Helios version that we analyze

uses the ElGamal [40] IND-CPA cryptosystem D =
(KeyGen,Enc,Dec) in a given group G where the Decisional

Diffie-Hellman assumption holds; the NIZK proof system [41],

[42] DisjProofH(g, pk, R, S) to prove in zero-knowledge that

(R,S) encrypts g0 or g1 (with proof builder DisjProve and

proof verifier DisjVerify); and the NIZK proof system [41]

EqDlG(g,R, vk, c) to prove in zero-knowledge that logg vk =
logR c for g,R, vk, c ∈ G (with proof builder ProveEq and

proof verifier VerifyEq). H and G are hash functions mapping

to Zq .

Helios allows both “referendum” style votes (a single yes/no

question) and more complex ballots; in addition it allows for

several revote policies. The result function in Helios is fixed to

return the number of votes that each option received (since it

tallies homomorphically). We formalise Helios for referendum

style votes and the “only your last vote counts” revote policy.

Theorem 13: Helios is BPRIV, strongly consistent, and

strongly correct under the DDH assumption in the Random

Oracle Model.

Our BPRIV proof is largely inspired by [19]: we make use

of the fact that Vote(id, v) produces non-malleable ciphertexts

(when interpreted as a public key encryption algorithm) and

that tallying proofs are in fact zero-knowledge proofs of

decryption correctness. Details can be found in the full version

of this paper [35].

VII. CONCLUSION

We have reviewed the literature in order to find a game-

based cryptographic definition of vote privacy suitable for

remote voting protocols, in particular compatible with verifi-

ability. We have identified shortcomings in several previous

such definitions, and concluded that none of the existing

definitions was satisfactory. Based on our findings, we have

proposed a new definition, BPRIV, that avoids the existing

limitations. In particular, BPRIV provides a more precise

model of the tally function, with a revote policy and explicit

auxiliary data.

We have additionally introduced the notions of strong

consistency and strong correctness, and we have been able to

show that together with BPRIV, they imply simulation-based

privacy. More precisely, we showed that a single-pass protocol

for computing some result function ρ, that is secure in the

BPRIV game-based sense and strongly correct and consistent,

achieves at least the same level of privacy as the ideal protocol

for ρ. One immediate interpretation of this result is that from

a scheme secure in the BPRIV sense the adversary can extract

as much information as it can extract from only seeing the

result and nothing more. This is a very desirable and intuitively

appealing property as it reduces understanding the level of

privacy of a protocol to that of understanding the level of

privacy of a corresponding ideal protocol. Furthermore proofs

using game-based definitions are more standard and easier

to construct than those using the simulation-based notions.

Whenever possible, proving game-based privacy is desirable.

We have shown that BPRIV can indeed be realized by a

real-scale protocol, namely Helios [2]. Since Helios satisfies

BPRIV and is strongly consistent, it immediately follows that

Helios is secure for a simulation-based notion of privacy.

We can see several directions for future work. Like previous

papers in the same area we model a single, trusted talling

functionality (and assume that this could be implemented via a

threshold scheme). It would be useful to spell out the required

arguments and verify this assumption. A detailed treatment of

mixnets (with more than one mixer) would also be interesting.

Another extension could be to consider dishonest ballot boxes

where, among other things, honest ballots could get “lost”.

On a similar note, the use of voter credentials to prevent

ballot stuffing by the ballot box has gained some interest

recently (there is also a Helios variant called Belenios that

implements this [43]) and we think it would be interesting to

model credentials in a privacy notion too.
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APPENDIX

VIII. TEST CASES FOR BPRIV DEFINITIONS

During our work on this paper, we listed some insecure

variations on voting protocols. Future designers of ballot

privacy-related notions can use these as “safety checks”: if

any of these schemes is not insecure under some notion of

privacy then the notion may be too weak. We argue that none

of these insecure schemes can satisfy BPRIV.

A. Helios v3 — Replay attacks

Any voting scheme in which an adversary can read a honest

voter’s ballot from the ballot box and resubmit a ballot for the
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If β = 0
B sees
=⇒ {b0}, {bc}, {( b0, vb0 )} , {vb1} , {( bc, vbc )} ,Π′

If β = 1
B sees
=⇒ {b1}, {bc}, {( b1, vb0 )} , {vb1} , {( bc, vbc )} ,Π†

If β = 0
B′ sees
=⇒ {b0}, {bc}, {vb0} , {vb1} , {vbc} ,Π′

If β = 0
B′ sees
=⇒ {b1}, {bc}, {vb0} , {vb1} , {vbc} ,Π†

Fig. 3. Comparison between BPRIV adversaries.

same vote as her own fails to ensure vote privacy, as argued

in Section III-F and illustrated on Helios (version 3) [28].

More precisely, consider an adversary who, for any two

distinct honest votes v0 and v1, can perform the following

sequence of queries:

start-voting(); vote(v0, v1); vote(v1, v0);
bb←board(); b← first(bb); ballot(b);
(r, a)← tally()

Here first returns the first ballot of bb. We may also imagine

more sophisticated attacks where the adversary has to change

e.g. identifying information on the ballot. We deliberately

choose two vote queries that would produce the same “left”

and “right” tallies, if b was independent of the honest ballots,

In the BPRIV game, if the ballot b is not rejected (by

Publish) then the tally for β = 0 is ρ(v0, v1, v0) and for

β = 1 it is ρ(v1, v0, v1). If these are not the same value,

which happens for example if ρ counts the number of v0 and

v1 votes submitted, then our adversary can win the BPRIV

game (with probability 1), hence the broken scheme is not
BPRIV secure.

B. Leaky auxiliary data

Consider any voting scheme where the result function ρ is

supposed to output how many times each choice was voted

for, i.e. one could write ρ(v0, v1, v0, v0) = {(v0, 3), (v1, 1)}.
Imagine that, unfortunately, a scheme’s tally also contains

all votes in clear, in the order that they were cast. This is

clearly not desirable. Intuitively, there are two distinct ways of

discarding such a scheme. Either the (leaky) output of the tally

is classified as being the result itself. Then the scheme does

not implement the desired functionality and this is captured

with our “strong consistency” notion. Or this leaky output is

contained in the auxiliary data. In that case, we can construct

a BPRIV adversary against such a scheme:

start-voting(); vote(v0, v1); vote(v1, v0);
(r, a)← tally()

To show that this adversary can win, we recall that the

output of tally is split into a result r and auxiliary data Π in

such a way that r is guaranteed not to leak any information.

In other words, r is the correct/intended result so the list of

all votes must be part of Π. In the case β = 0, the adversary

sees auxiliary data that reveals all the votes on BB0, i.e. the

sequence (v0, v1). In contrast, if β = 1 then Π is computed as

a (probabilistic) function of BB1 and r, neither of which can

contain any information about the order of the votes in BB0.

So the probability of Π′ containing the list (v0, v1) is at most

the probability of guessing the adversary’s “left” votes without

access to any ballots. Therefore, the adversary can distinguish

β = 0 from β = 1 with high probability.

IX. BPRIV2 DOES NOT GUARANTEE BALLOT PRIVACY

Let us prove formally that V defined in Section III-D is

BPRIV2 secure, while it should intuitively not be declared

private.

SimProof(BB0,BB1,pk, info) := Π† ||
{( b, vb )}b∈BB0∩BB1

|| {( b1, vb0 )}b1∈BB1,b0∈BB0

where BBγ := BBγ \ (BB0 ∩ BB1), vb := Extract(sk, b) and

Π† := SimProof ′(BB0,BB1,pk, info). Intuitively, SimProof
decrypts correctly the adversarial ballots but mimics the case

β = 0 for all honest ballots. Then it turns out that if

V ′ is BPRIV2 private then so is V . Indeed, let us write

BBβ = Hβ ∪ C, where Hβ is the sublist of honest ballots

output by the OvoteLR oracle for β = 0, 1, and C :=
BBβ \ Hβ . By construction C ⊆ BB0 ∩ BB1. We want

to see that for every BPRIV2 adversary B against V there

exists a BPRIV2 adversary B′ against scheme V ′ such that

Succbpriv2(B) ≈negl Succ
bpriv2(B′), their advantages only differ

in a negligible quantity. We compare the data seen by BPRIV2

adversaries B against scheme V and adversaries B′ against

scheme V ′ in Figure 3, wherein b0 ∈ H0, b1 ∈ H1, bc ∈ C.

We observe that the only extra information that adversary

B against V sees compared to adversary B′ against V ′, are

the relations {( b0, vb0 )} and {( bc, vbc )} when β = 0,

and the relations {( b1, vb0 )} and {( bc, vbc )} when β = 1.

However this does not allow B to have a greater distinguishing

advantage than B′. Indeed, since the new matching between

ballots and votes is not verifiable (the original tallying proofs

Π′,Π† did not change and V ′ is BPRIV2 private), adversary

B′ can simulate B’s view using its own view. It suffices for

B′ to tell apart the multisets of votes V0 and VC (this can

be done easily, since V0 are the left vote queries of B and

VC := r \ V0), and later link H0 or H1 to V0 at its liking.

Finally, Succbpriv2(B) ≈negl Succ
bpriv2(B′).
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