
Riposte: An Anonymous Messaging System
Handling Millions of Users

Henry Corrigan-Gibbs, Dan Boneh, and David Mazières

Stanford University

Abstract—This paper presents Riposte, a new system for
anonymous broadcast messaging. Riposte is the first such system,
to our knowledge, that simultaneously protects against traffic-
analysis attacks, prevents anonymous denial-of-service by mali-
cious clients, and scales to million-user anonymity sets. To achieve
these properties, Riposte makes novel use of techniques used in
systems for private information retrieval and secure multi-party
computation. For latency-tolerant workloads with many more
readers than writers (e.g. Twitter, Wikileaks), we demonstrate
that a three-server Riposte cluster can build an anonymity set of
2,895,216 users in 32 hours.

Index Terms—anonymity; messaging; privacy; private infor-
mation retrieval;

I. INTRODUCTION

In a world of ubiquitous network surveillance [6], [34], [35],

[39], [62], prospective whistleblowers face a daunting task.

Consider, for example, a government employee who wants to

anonymously leak evidence of waste, fraud, or incompetence

to the public. The whistleblower could email an investigative

reporter directly, but post hoc analysis of email server logs

could easily reveal the tipster’s identity. The whistleblower

could contact a reporter via Tor [27] or another low-latency

anonymizing proxy [31], [53], [59], [71], but this would leave

the leaker vulnerable to traffic-analysis attacks [4], [60], [61].

The whistleblower could instead use an anonymous messaging

system that protects against traffic analysis attacks [14], [38],

[77], but these systems typically only support relatively small

anonymity sets (tens of thousands of users, at most). Protecting

whistleblowers in the digital age requires anonymous messag-

ing systems that provide strong security guarantees, but that

also scale to very large network sizes.

In this paper, we present a new system that attempts to

make traffic-analysis-resistant anonymous broadcast messag-

ing practical at Internet scale. Our system, called Riposte,

allows a large number of clients to anonymously post messages

to a shared “bulletin board,” maintained by a small set of

minimally trusted servers. (As few as three non-colluding

servers are sufficient). Whistleblowers could use Riposte as a

platform for anonymously publishing Tweet- or email-length

messages and could combine it with standard public-key

encryption to build point-to-point private messaging channels.

While there is an extensive literature on anonymity sys-

tems [22], [28], Riposte offers a combination of security and

scalability properties unachievable with current designs. To

the best of our knowledge, Riposte is the only anonymous

messaging system that simultaneously:

1) protects against traffic analysis attacks,

2) prevents malicious clients from anonymously executing

denial-of-service attacks, and

3) scales to anonymity set sizes of millions of users, for

certain latency-tolerant applications.

We achieve these three properties in Riposte by adapting three

different techniques from the cryptography and privacy litera-

ture. First, we defeat traffic-analysis attacks and protect against

malicious servers by using a protocol, inspired by client/server

DC-nets [14], [77], in which every participating client sends

a fixed-length secret-shared message to the system’s servers

in every time epoch. Second, we achieve efficient disruption

resistance by using a secure multi-party protocol to quickly

detect and exclude malformed client requests [29], [41], [78].

Third, we achieve scalability by leveraging a specific technique

developed in the context of private information retrieval (PIR)

to minimize the number of bits each client must upload to

each server in every time epoch. The tool we use is called a

distributed point function [16], [37]. The novel synthesis of

these techniques leads to a system that is efficient (in terms

of bandwidth and computation) and practical, even for large

anonymity sets.

Our particular use of private information retrieval (PIR)

protocols is unusual: PIR systems [17] allow a client to

efficiently read a row from a database, maintained collectively

at a set of servers, without revealing to the servers which row

it is reading. Riposte achieves scalable anonymous messaging

by running a private information retrieval protocol in reverse:

with reverse PIR, a Riposte client can efficiently write into a

database maintained at the set of servers without revealing to

the servers which row it has written [67].

As we discuss later on, a large Riposte deployment could

form the basis for an anonymous Twitter service. Users would

“tweet” by using Riposte to anonymously write into a database

containing all clients’ tweets for a particular time period. In

addition, by having read-only users submit “empty” writes to

the system, the effective anonymity set can be much larger

than the number of writers, with little impact on system

performance.

Messaging in Riposte proceeds in regular time epochs (e.g.,

each time epoch could be one hour long). To post a message,

the client generates a write request, cryptographically splits it

into many shares, and sends one share to each of the Riposte

servers. A coalition of servers smaller than a certain threshold

cannot learn anything about the client’s message or write

location given its subset of the shares.

2015 IEEE Symposium on Security and Privacy

© 2015, Henry Corrigan-Gibbs. Under license to IEEE.

DOI 10.1109/SP.2015.27

321

2015 IEEE Symposium on Security and Privacy

© 2015, Henry Corrigan-Gibbs. Under license to IEEE.

DOI 10.1109/SP.2015.27

321

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

The Riposte servers collect write requests until the end of

the time epoch, at which time they publish the aggregation

of the write requests they received during the epoch. From

this information, anyone can recover the set of posts uploaded

during the epoch, but the system reveals no information about

who posted which message. The identity of the entire set of

clients who posted during the interval is known, but no one

can link a client to a post. (Thus, each time epoch must be

long enough to ensure that a large number of honest clients

are able to participate in each epoch.)

In this paper, we describe two Riposte variants, which

offer slightly different security properties. The first variant

scales to very large network sizes (millions of clients) but

requires three servers such that no two of these servers collude.

The second variant is more computationally expensive, but

provides security even when all but one of the s > 1 servers

are malicious. Both variants maintain their security properties

when network links are actively adversarial, when all but two

of the clients are actively malicious, and when the servers are

actively malicious (subject to the non-collusion requirement

above).

The three-server variant uses a computationally inexpensive

multi-party protocol to detect and exclude malformed client

requests. (Figure 1 depicts this protocol at a high-level.) The

s-server variant uses client-produced zero-knowledge proofs

to guarantee the well-formedness of client requests.

Unlike Tor [27] and other low-latency anonymity sys-

tems [38], [48], [53], [71], Riposte protects against active

traffic analysis attacks by a global network adversary. Prior

systems have offered traffic-analysis-resistance only at the cost

of scalability:

• Mix-net-based systems [15] require large zero-knowledge

proofs of correctness to provide privacy in the face of

active attacks by malicious servers [2], [5], [32], [45],

[65].

• DC-nets-based systems require clients to transfer data

linear in the size of the anonymity set [14], [77] and rely

on expensive zero-knowledge proofs to protect against

malicious clients [20], [44].

We discuss these systems and other prior work in Section VII.

Experiments. To demonstrate the practicality of Riposte for

anonymous broadcast messaging (i.e., anonymous whistle-

blowing or microblogging), we implemented and evaluated the

complete three-server variant of the system. When the servers

maintain a database table large enough to fit 65,536 160-byte

Tweets, the system can process 32.8 client write requests per

second. In Section VI-C, we discuss how to use a table of this

size as the basis for very large anonymity sets in read-heavy

applications. When using a larger 377 MB database table (over

2.3 million 160-byte Tweets), a Riposte cluster can process 1.4

client write requests per second.

Writing into a 377 MB table requires each client to upload

less than 1 MB of data to the servers. In contrast, a two-server

DC-net-based system would require each client to upload more

than 750 MB of data. More generally, to process a Riposte

client request for a table of size L, clients and servers perform

only O(
√
L) bytes of data transfer.

The servers’ AES-NI encryption throughput limits the rate

at which Riposte can process client requests at large table

sizes. Thus, the system’s capacity to handle client write request

scales with the number of available CPU cores. A large

Riposte deployment could shard the database table across k
machines to achieve a near-k-fold speedup.

We tested the system with anonymity set sizes of up

to 2,895,216 clients, with a read-heavy latency-tolerant mi-

croblogging workload. To our knowledge, this is the largest

anonymity set ever constructed in a system defending against

traffic analysis attacks. Prior DC-net-based systems scaled to

5,120 clients [77] and prior verifiable-shuffle-based systems

scaled to 100,000 clients [5]. In contrast, Riposte scales to

millions of clients for certain applications.

Contributions. This paper contributes:

• two new bandwidth-efficient and traffic-analysis-resistant

anonymous messaging protocols, obtained by running

private information retrieval protocols “in reverse” (Sec-

tions III and IV),

• a fast method for excluding malformed client requests

(Section V),

• a method to recover from transmission collisions in DC-

net-style anonymity systems,

• experimental evaluation of these protocols with

anonymity set sizes of up to 2,895,216 users (Section VI).

In Section II, we introduce our goals, threat model, and

security definitions. Section III presents the high-level system

architecture. Section IV and Section V detail our techniques

for achieving bandwidth efficiency and disruption resistance

in Riposte. We evaluate the performance of the system in

Section VI, survey related work in Section VII, and conclude

in Section VIII.

II. GOALS AND PROBLEM STATEMENT

In this section, we summarize the high-level goals of the

Riposte system and present our threat model and security

definitions.

A. System Goals

Riposte implements an anonymous bulletin board using a

primitive we call a write-private database scheme. Riposte

enables clients to write into a shared database, collectively

maintained at a small set of servers, without revealing to the

servers the location or contents of the write. Conceptually, the

database table is just a long fixed-length bitstring divided into

fixed-length rows.

To write into the database, a client generates a write request.
The write request encodes the message to be written and the

row index at which the client wants to write. (A single client

write request modifies a single database row at a time.) Using

cryptographic techniques, the client splits its write request into

a number of shares and the client sends one share to each of the

servers. By construction of the shares, no coalition of servers

322322

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

(a) A client submits one share of
its write request to each of the
two database servers. If the database
has length L, each share has length
O(

√
L).

(b) The database servers gener-
ate blinded “audit request” mes-
sages derived from their shares
of the write request.

(c) The audit server uses the
audit request messages to
validate the client’s request
and returns an “OK” or “In-
valid” bit to the database
servers.

(d) The servers apply the write
request to their local database
state. The XOR of the servers’
states contains the clients mes-
sage at the given row.

Fig. 1: The process of handling a single client write request. The servers run this process once per client in each time epoch.

smaller than a particular pre-specified threshold can learn the

contents of a single client’s write request. While the cluster of

servers must remain online for the duration of a protocol run,

a client need only stay online for long enough to upload its

write request to the servers. As soon as the servers receive a

write request, they can apply it to to their local state.

The Riposte cluster divides time into a series of epochs.

During each time epoch, servers collect many write requests

from clients. When the servers agree that the epoch has ended,

they combine their shares of the database to reveal the clients’

plaintext messages. A particular client’s anonymity set consists

of all of the honest clients who submitted write requests to the

servers during the time epoch. Thus, if 50,000 distinct honest

clients submitted write requests during a particular time epoch,

each honest client is perfectly anonymous amongst this set of

50,000 clients.

The epoch could be measured in time (e.g., 4 hours), in

a number of write requests (e.g., accumulate 10,000 write

requests before ending the epoch), or by some more com-

plicated condition (e.g., wait for a write request signed from

each of these 150 users identified by a pre-defined list of public

keys). The definition of what constitutes an epoch is crucial

for security, since a client’s anonymity set is only as large as

the number of honest clients who submit write requests in the

same epoch [73].

When using Riposte as a platform for anonymous mi-

croblogging, the rows would be long enough to fit a Tweet

(140 bytes) and the number of rows would be some multiple

of the number of anticipated users. To anonymously Tweet, a

client would use the write-private database scheme to write its

message into a random row of the database. After many clients

have written to the database, the servers can reveal the clients’

plaintext Tweets. The write-privacy of the database scheme

prevents eavesdroppers, malicious clients, and coalitions of

malicious servers (smaller than a particular threshold) from

learning which client posted which message.

B. Threat Model

Clients in our system are completely untrusted: they may

submit maliciously formed write requests to the system and

may collude with servers or with arbitrarily many other clients

to try to break the security properties of the system.

Servers in our system are trusted for availability. The

failure—whether malicious or benign—of any one server ren-

ders the database state unrecoverable but does not compromise

the anonymity of the clients. To protect against benign failures,

server maintainers could implement a single “logical” Riposte

server with a cluster of many physical servers running a

standard state-machine-replication protocol [54], [66].

For each of the cryptographic instantiations of Riposte,

there is a threshold parameter t that defines the number

of malicious servers that the system can tolerate while still

maintaining its security properties. We make no assumptions

about the behavior of malicious servers—they can misbehave

by publishing their secret keys, by colluding with coalitions

of up to t malicious servers and arbitrarily many clients, or

by mounting any other sort of attack against the system.

The threshold t depends on the particular cryptographic

primitives in use. For our most secure scheme, all but one of

the servers can collude without compromising client privacy

(t = |Servers| − 1). For our most efficient scheme, no two
servers can collude (t = 1).

C. Security Goals

The Riposte system implements a write-private and

disruption-resistant database scheme. We describe the correct-

ness and security properties for such a scheme here.

Definition 1 (Correctness). The scheme is correct if, when all
servers execute the protocol faithfully, the plaintext state of
the database revealed at the end of a protocol run is equal
to the result of applying each valid client write requests to an
empty database (i.e., a database of all zeros).

Since we rely on all servers for availability, correctness need

only hold when all servers run the protocol correctly.

To be useful as an anonymous bulletin board, the database

scheme must be write-private and disruption resistant. We

define these security properties here.

(s, t)-Write Privacy. Intuitively, the system provides (s, t)-
write-privacy if an adversary’s advantage at guessing which

honest client wrote into a particular row of the database

is negligibly better than random guessing, even when the

adversary controls all but two clients and up to t out of s

323323

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

servers (where t is a parameter of the scheme). We define

this property in terms of a privacy game, given in full in

Appendix A.

Definition 2 ((s, t)-Write Privacy). We say that the protocol
provides (s, t)-write privacy if the adversary’s advantage in
the security game of Appendix A is negligible in the (implicit)
security parameter.

Riposte provides a very robust sort of privacy: the adversary

can select the messages that the honest clients will send and

can send maliciously formed messages that depend on the

honest clients’ messages. Even then, the adversary still cannot

guess which client uploaded which message.

Disruption resistance. The system is disruption resistant if

an adversary who controls n clients can write into at most

n database rows during a single time epoch. A system that

lacks disruption resistance might be susceptible to denial-of-

service attacks: a malicious client could corrupt every row in

the database with a single write request. Even worse, the write

privacy of the system might prevent the servers from learning

which client was the disruptor. Preventing such attacks is a

major focus of prior anonymous messaging schemes [14], [38],

[44], [75], [77]. Under our threat model, we trust all servers

for availability of the system (though not for privacy). Thus,

our definition of disruption resistance concerns itself only with

clients attempting to disrupt the system—we do not try to

prevent servers from corrupting the database state.

We formally define disruption resistance using the following

game, played between a challenger and an adversary. In this

game, the challenger plays the role of all of the servers and

the adversary plays the role of all clients.

1) The adversary sends n write requests to the challenger

(where n is less than or equal to the number of rows in

the database).

2) The challenger runs the protocol for a single time epoch,

playing the role of the servers. The challenger then com-

bines the servers’ database shares to reveal the plaintext

output.

The adversary wins the game if the plaintext output contains

more than n non-zero rows.

Definition 3 (Disruption Resistance). We say that the protocol
is disruption resistant if the probability that the adversary
wins the game above is negligible in the (implicit) security
parameter.

D. Intersection Attacks

Riposte makes it infeasible for an adversary to determine

which client posted which message within a particular time

epoch. If an adversary can observe traffic patterns across many

epochs, as the set of online clients changes, the adversary can

make statistical inferences about which client is sending which

stream of messages [24], [51], [56]. These “intersection” or

“statistical disclosure” attacks affect many anonymity systems

and defending against them is an important, albeit orthogonal,

problem [56], [76]. Even so, intersection attacks typically

become more difficult to mount as the size of the anonymity

set increases, so Riposte’s support for very large anonymity

sets makes it less vulnerable to these attacks than are many

prior systems.

III. SYSTEM ARCHITECTURE

As described in the prior section, a Riposte deployment

consists of a small number of servers, who maintain the

database state, and a large number of clients. To write into the

database, a client splits its write request using secret sharing

techniques and sends a single share to each of the servers.

Each server updates its database state using the client’s share.

After collecting write requests from many clients, the servers

combine their shares to reveal the plaintexts represented by the

write requests. The security requirement is that no coalition

of t servers can learn which client wrote into which row of

the database.

A. A First-Attempt Construction: Toy Protocol

As a starting point, we sketch a simple “straw man” con-

struction that demonstrates the techniques behind our scheme.

This first-attempt protocol shares some design features with

anonymous communication schemes based on client/server

DC-nets [14], [77].

In the simple scheme, we have two servers, A and B, and

each server stores an L-bit bitstring, initialized to all zeros. We

assume for now that the servers do not collude—i.e., that one

of the two servers is honest. The bitstrings represent shares of

the database state and each “row” of the database is a single

bit.

Consider a client who wants to write a “1” into row � of

the database. To do so, the client generates a random L-bit

bitstring r. The client sends r to server A and r⊕ e� to server

B, where e� is an L-bit vector of zeros with a one at index �
and ⊕ denotes bitwise XOR. Upon receiving the write request

from the client, each server XORs the received string into its

share of the database.

After processing n write requests, the database state at

server A will be:

dA = r1 ⊕ · · · ⊕ rn

and the database at server B will be:

dB = (e�1 ⊕ · · · ⊕ e�n)⊕ (r1 ⊕ · · · ⊕ rn)

= (e�1 ⊕ · · · ⊕ e�n)⊕ dA

At the end of the time epoch, the servers can reveal the

plaintext database by combining their local states dA and dB .

The construction generalizes to fields larger than F2. For

example, each “row” of the database could be a k-bit bitstring

instead of a single bit. To prevent impersonation, network-

tampering, and replay attacks, we use authenticated and en-

crypted channels with per-message nonces bound to the time

epoch identifier.

This protocol satisfies the write-privacy property as long as

the two servers do not collude (assuming that the clients and

324324

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

servers deploy the replay attack defenses mentioned above).

Indeed, server A can information theoretically simulate its

view of a run of the protocol given only e�1 ⊕ · · · ⊕ e�n as

input. A similar argument shows that the protocol is write-

private with respect to server B as well.
This first-attempt protocol has two major limitations. The

first limitation is that it is not bandwidth-efficient. If millions

of clients want to use the system in each time epoch, then the

database must be at least millions of bits in length. To flip a

single bit in the database then, each client must send millions
of bits to each database, in the form of a write request.

The second limitation is that it is not disruption resistant:

a malicious client can corrupt the entire database with a

single malformed request. To do so, the malicious client picks

random L-bit bitstrings r and r′, sends r to server A, and sends

r′ (instead of r⊕e�) to server B. Thus, a single malicious client

can efficiently and anonymously deny service to all honest

clients.
Improving bandwidth efficiency and adding disruption re-

sistance are the two core contributions of this work, and we

return to them in Sections IV and V.

B. Collisions
Putting aside the issues of bandwidth efficiency and disrup-

tion resistance for the moment, we now discuss the issue of

colliding writes to the shared database. If clients write into

random locations in the database, there is some chance that

one client’s write request will overwrite a previous client’s

message. If client A writes message mA into location �, client

B might later write message mB into the same location �. In

this case, row � will contain mA ⊕mB , and the contents of

row � will be unrecoverable.
To address this issue, we set the size of the database table

to be large enough to accommodate the expected number

of write requests for a given “success rate.” For example,

the servers can choose a table size that is large enough

to accommodate 210 write requests such that 95% of write

requests will not be involved in a collision (in expectation).

Under these parameters, 5% of the write requests will fail and

those clients will have to resubmit their write requests in a

future time epoch.
We can determine the appropriate table size by solving

a simple “balls and bins” problem. If we throw m balls

independently and uniformly at random into n bins, how many

bins contain exactly one ball? Here, the m balls represent

the write requests and the n bins represent the rows of the

database.
Let Bij be the probability that ball i falls into bin j. For

all i and j, Pr[Bij] = 1/n. Let O
(1)
i be the event that exactly

one ball falls into bin i. Then

Pr
[
O

(1)
i

]
=

m

n

(
1− 1

n

)m−1

Expanding using the binomial theorem and ignoring low order

terms we obtain

Pr
[
O

(1)
i

]
≈ m

n
−

(m
n

)2

+
1

2

(m
n

)3

where the approximation ignores terms of order (m/n)4 and

o(1/n). Then n ·Pr[O(1)
i] is the expected number of bins with

exactly one ball which is the expected number of messages

successfully received. Dividing this quantity by m gives the

expected success rate so that:

E[SuccessRate] =
n

m
Pr[O

(1)
i] ≈ 1− m

n
+

1

2

(m
n

)2

So, if we want an expected success rate of 95% then we need

n ≈ 19.5m. For example, with m = 210 writers, we would

use a table of size n ≈ 20, 000.

Handling collisions. We can shrink the table size n by coding

the writes so that we can recover from collisions. We show

how to handle two-way collisions. That is, when at most two

clients write to the same location in the database. Let us

assume that the messages being written to the database are

elements in some field F of odd characteristic (say F = Fp

where p = 264 − 59). We replace the XOR operation used in

the basic scheme by addition in F.

To recover from a two-way collision we will need to double

the size of each cell in the database, but the overall number

of cells n will shrink by more than a factor of two.

When a client A wants to write the message mA ∈ F to

location � in the database the client will actually write the

pair (mA,m
2
A) ∈ F

2 into that location. Clearly if no collision

occurs at location � then recovering mA at the end of the epoch

is trivial: simply drop the second coordinate (it is easy to test

that no collision occurred because the second coordinate is a

square of the first). Now, suppose a collision occurs with some

client B who also added her own message (mB ,m
2
B) ∈ F

2

to the same location � (and no other client writes to location

�). Then at the end of the epoch the published values are

S1 = mA+mB (mod p) and S2 = m2
A+m2

B (mod p)

From these values it is quite easy to recover both mA and mB

by observing that

2S2 − S2
1 = (mA −mB)

2 (mod p)

from which we obtain mA − mB by taking a square root

modulo p (it does not matter which of the two square roots we

use—they both lead to the same result). Since S1 = mA+mB

is also given it is now easy to recover both mA and mB .

Now that we can recover from two-way collisions we can

shrink the number of cells n in the table. Let O
(2)
i be the

event that exactly two balls fell into bin i. Then the expected

number of received messages is

nPr[O
(1)
i] + 2nPr[O

(2)
i] (1)

where Pr[O
(2)
i] =

(
m
2

)
1
n2

(
1− 1

n

)m−2
. As before, dividing the

expected number of received messages (1) by m, expanding

using the binomial theorem, and ignoring low order terms

gives the expected success rate as:

E[SuccessRate] ≈ 1− 1

2

(m
n

)2

+
1

3

(m
n

)3

325325

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

So, if we want an expected success rate of 95% we need a table

with n ≈ 2.7m cells. This is a far smaller table than before,

when we could not handle collisions. In that case we needed

n ≈ 19.5m which results in much bigger tables, despite each

cell being half as big. Shrinking the table reduces the storage

and computational burden on the servers.

This two-way collision handling technique generalizes to

handle k-way collisions for k > 2. To handle k-way collisions,

we increase the size of each cell by a factor of k and have each

client i write (mi,m
2
i , . . . ,m

k
i) ∈ F

k to its chosen cell. A k-

collision gives k equations in k variables that can be efficiently

solved to recover all k messages, as long as the characteristic

of F is greater than k. Using k > 2 further reduces the table

size as the desired success rate approaches one.

The collision handling method described in this section

will also improve performance of our full system, which we

describe in the next section.

Adversarial collisions. The analysis above assumes that

clients behave honestly. Adversarial clients, however, need

not write into random rows of the database—i.e., all m balls

might not be thrown independently and uniformly at random.

A coalition of clients might, for example, try to increase the

probability of collisions by writing into the database using

some malicious strategy.

By symmetry of writes we can assume that all m̂ adversarial

clients write to the database before the honest clients do. Now

a message from an honest client is properly received at the end

of an epoch if it avoids all the cells filled by the malicious

clients. We can therefore carry out the honest client analysis

above assuming the database contain n − m̂ cells instead of

n cells. In other words, given a bound m̂ on the number of

malicious clients we can calculate the required table size n. In

practice, if too many collisions are detected at the end of an

epoch the servers can adaptively double the size of the table

so that the next epoch has fewer collisions.

C. Forward Security

Even the first-attempt scheme sketched in Section III-A

provides forward security in the event that all of the servers’

secret keys are compromised [13]. To be precise: an adversary

could compromise the state and secret keys of all servers
after the servers have processed n write requests from honest

clients, but before the time epoch has ended. Even in this

case, the adversary will be unable to determine which of the

n clients submitted which of the n plaintext messages with a

non-negligible advantage over random guessing. (We assume

here that clients and servers communicate using encrypted

channels which themselves have forward secrecy [50].)

This forward security property means that clients need not

trust that S − t servers stay honest forever—just that they

are honest at the moment when the client submits its upload

request. Being able to weaken the trust assumption about the

servers in this way might be valuable in hostile environments,

in which an adversary could compromise a server at any time

without warning.

Mix-nets do not have this property, since servers must

accumulate a set of onion-encrypted messages before shuffling

and decrypting them [15]. If an adversary always controls the

first mix server and if it can compromise the rest of the mix

servers after accumulating a set of ciphertexts, the adversary

can de-anonymize all of the system’s users. DC-net-based

systems that use “blame” protocols to retroactively discover

disruptors have a similar weakness [19], [77].

The full Riposte protocol maintains this forward security

property.

IV. IMPROVING BANDWIDTH EFFICIENCY WITH

DISTRIBUTED POINT FUNCTIONS

This section describes how application of private informa-

tion retrieval techniques can improve the bandwidth efficiency

of the first-attempt protocol.

Notation. The symbol F denotes an arbitrary finite field, ZL is

the ring of integers modulo L. We use e� ∈ F
L to represent a

vector that is zero everywhere except at index � ∈ ZL, where

it has value “1.” Thus, for m ∈ F, the vector m · e� ∈ F
L is

the vector whose value is zero everywhere except at index �,
where it has value m. For a finite set S, the notation x←R S
indicates that the value of x is sampled independently and

uniformly at random from S. The element v[i] is the value of

a vector v at index i. We index vectors starting at zero.

A. Definitions

The bandwidth inefficiency of the protocol sketched above

comes from the fact that the client must send an L-bit vector

to each server to flip a single bit in the logical database. To

reduce this O(L) bandwidth overhead, we apply techniques

inspired by private information retrieval protocols [16], [17],

[37].

The problem of private information retrieval (PIR) is es-

sentially the converse of the problem we are interested in

here. In PIR, the client must read a bit from a replicated

database without revealing to the servers the index being read.

In our setting, the client must write a bit into a replicated

database without revealing to the servers the index being

written. Ostrovsky and Shoup first made this connection in

the context of a “private information storage” protocol [67].

PIR schemes allow the client to split its query to the servers

into shares such that (1) a subset of the shares does not leak

information about the index of interest, and (2) the length of

the query shares is much less than the length of the database.

The core building block of many PIR schemes, which we adopt

for our purposes, is a distributed point function. Although

Gilboa and Ishai [37] defined distributed point functions as a

primitive only recently, many prior PIR schemes make implicit

use the primitive [16], [17]. Our definition of a distributed

point function follows that of Gilboa and Ishai, except that we

generalize the definition to allow for more than two servers.

First, we define a (non-distributed) point function.

Definition 4 (Point Function). Fix a positive integer L and a
finite field F. For all � ∈ ZL and m ∈ F, the point function

326326

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

P�,m : ZL → F is the function such that P�,m(�) = m and
P�,m(�′) = 0 for all � �= �′.

That is, the point function P�,m has the value 0 when

evaluated at any input not equal to � and it has the value

m when evaluated at �. For example, if L = 5 and F = F2,

the point function P3,1 takes on the values (0, 0, 0, 1, 0) when

evaluated on the values (0, 1, 2, 3, 4) (note that we index

vectors from zero).

An (s, t)-distributed point function provides a way to dis-

tribute a point function P�,m amongst s servers such that no

coalition of at most t servers learns anything about � or m
given their t shares of the function.

Definition 5 (Distributed Point Function (DPF)). Fix a positive
integer L and a finite field F. An (s, t)-distributed point

function consists of a pair of possibly randomized algorithms
that implement the following functionalities:
• Gen(�,m) → (k0, . . . , ks−1). Given an integer � ∈ ZL

and value m ∈ F, output a list of s keys.
• Eval(k, �′) → m′. Given a key k generated using Gen,

and an index �′ ∈ ZL, return a value m′ ∈ F.

We define correctness and privacy for a distributed point

function as follows:

• Correctness. For a collection of s keys generated using

Gen(�,m), the sum of the outputs of these keys (gen-

erated using Eval) must equal the point function P�,m.

More formally, for all �, �′ ∈ ZL and m ∈ F:

Pr[(k0, . . . , ks−1)← Gen(�,m) :

Σs−1
i=0Eval(ki, �

′) = P�,m(�′)] = 1

where the probability is taken over the randomness of the

Gen algorithm.

• Privacy. Let S be any subset of {0, . . . , s− 1} such that

|S| ≤ t. Then for any � ∈ ZL and m ∈ F, let DS,�,m

denote the distribution of keys {(ki) | i ∈ S} induced by

(k0, . . . , ks−1) ← Gen(�,m). We say that an (s, t)-DPF

maintains privacy if there exists a p.p.t. algorithm Sim
such that the following distributions are computationally

indistinguishable:

DS,�,m ≈c Sim(S)

That is, any subset of at most t keys leaks no information

about � or m. (We can also strengthen this definition to

require statistical or perfect indistinguishability.)

Toy Construction. To make this definition concrete, we first

construct a trivial information-theoretically secure (s, s− 1)-
distributed point function with length-L keys. As above, we

fix a length L and a finite field F.

• Gen(�,m) → (k0, . . . , ks−1). Generate random vectors

k0, . . . , ks−2 ∈ F
L. Set ks−1 = m · e� − Σs−2

i=0 ki.
• Eval(k, �′) → m′. Interpret k as a vector in F

L. Return

the value of the vector k at index �′.

The correctness property of this construction follows imme-

diately. Privacy is maintained because the distribution of any

collection of s− 1 keys is independent of � and m.

This toy construction uses length-L keys to distribute a point

function with domain ZL. Later in this section we describe

DPF constructions which use much shorter keys.

B. Applying Distributed Point Functions for Bandwidth Effi-
ciency

We can now use DPFs to improve the efficiency of the write-

private database scheme introduced in Section III-A. We show

that the existence of an (s, t)-DPF with keys of length |k|
(along with standard cryptographic assumptions) implies the

existence of write-private database scheme using s servers that

maintains anonymity in the presence of t malicious servers,

such that write requests have length s|k|. Any DPF construc-

tion with short keys thus immediately implies a bandwidth-

efficient write-private database scheme.

The construction is a generalization of the one presented in

Section III-A. We now assume that there are s servers such

that no more than t of them collude. Each of the s servers

maintains a vector in F
L as their database state, for some

fixed finite field F and integer L. Each “row” in the database

is now an element of F and the database has L rows.

When the client wants to write a message m ∈ F into

location � ∈ ZL in the database, the client uses an (s, t)-
distributed point function to generate a set of s DPF keys:

(k0, . . . , ks−1)← Gen(�,m)

The client then sends one of the keys to each of the servers.

Each server i can then expand the key into a vector v ∈ F
L

by computing v(�′) = Eval(ki, �
′) for �′ = 0, . . . , L − 1.

The server then adds this vector v into its database state,

using addition in F
L. At the end of the time epoch, all

servers combine their database states to reveal the set of client-

submitted messages.

Correctness. The correctness of this construction follows

directly from the correctness of the DPF. For each of the n
write requests submitted by the clients, denote the j-th key in

the i-th request as ki,j , denote the write location as �i, and

the message being written as mi. When the servers combine

their databases at the end of the epoch, the contents of the

final database at row � will be:

d� =
n−1∑
i=0

s−1∑
j=0

Eval(ki,j , �) =
n−1∑
i=0

P�i,mi
(�) ∈ F

In words: as desired, the combined database contains the sum

of n point functions—one for each of the write requests.

Anonymity. The anonymity of this construction follows di-

rectly from the privacy property of the DPF. Given the

plaintext database state d (as defined above), any coalition of t
servers can simulate its view of the protocol. By definition of

DPF privacy, there exists a simulator Sim, which simulates the

distribution of any subset of t DPF keys generated using Gen.

The coalition of servers can use this simulator to simulate each

327327

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

of the n write requests it sees during a run of the protocol.

Thus, the servers can simulate their view of a protocol run

and cannot win the anonymity game with non-negligible

advantage.

Efficiency. A client in this scheme sends |k| bits to each server

(where k is a DPF key), so the bandwidth efficiency of the

scheme depends on the efficiency of the DPF. As we will show

later in this section, |k| can be much smaller than the length

of the database.

C. A Two-Server Scheme Tolerating One Malicious Server

Having established that DPFs with short keys lead to

bandwidth-efficient write-private database schemes, we now

present one such DPF construction. This construction is a

simplification of computational PIR scheme of Chor and

Gilboa [16].

This is a (2, 1)-DPF with keys of length O(
√
L) operating

on a domain of size L. This DPF yields a two-server write-

private database scheme tolerating one malicious server such

that writing into a database of size L requires sending O(
√
L)

bits to each server. Gilboa and Ishai [37] construct a (2, 1)-
DPF with even shorter keys (|k| = polylog(L)), but the

construction presented here is efficient enough for the database

sizes we use in practice. Although the DPF construction

works over any field, we describe it here using the binary

field F = F2k (the field of k-bit bitstrings) to simplify the

exposition.

When Eval(k, �′) is run on every integer �′ ∈ {0, . . . , L −
1}, its output is a vector of L field elements. The DPF key

construction conceptually works by representing this a vector

of L field elements as an x × y matrix, such that xy ≥ L.

The trick that makes the construction work is that the size

of the keys needs only to grow with the size of the sides of

this matrix rather than its area. The DPF keys that Gen(�,m)
outputs give an efficient way to construct two matrices MA

and MB that differ only at one cell � = (�x, �y) ∈ Zx × Zy

(Figure 2).

Fix a binary finite field F = F2k , a DPF domain size L,

and integers x and y such that xy ≥ L. (Later in this section,

we describe how to choose x and y to minimize the key size.)

The construction requires a pseudo-random generator (PRG) G
that stretches seeds from some space S into length-y vectors of

elements of F [47]. So the signature of the PRG is G : S→ F
y .

In practice, an implementation might use AES-128 in counter

mode as the pseudo-random generator [64].

The algorithms comprising the DPF are:

• Gen(�,m) → (kA, kB). Compute integers �x ∈ Zx and

�y ∈ Zy such that � = �xy + �y . Sample a random bit-

vector bA ←R {0, 1}x, a random vector of PRG seeds

sA ←R S
x, and a single random PRG seed s∗�x ←R S.

Given bA and sA, we define bB and sB as:

bA = (b0, . . . , b�x , . . . , bx−1)

bB = (b0, . . . , b̄�x , . . . , bx−1)

sA = (s0, . . . , s�x , . . . , sx−1)

sB = (s0, . . . , s
∗
�x , . . . , sx−1)

That is, the vectors bA and bB (similarly sA and sB)

differ only at index �x.

Let m · e�y be the vector in F
y of all zeros except that it

has value m at index �y . Define v← m · e�y +G(s�x)+
G(s∗�x).
The output DPF keys are:

kA = (bA, sA,v) kB = (bB , sB ,v)

• Eval(k, �′) → m′. Interpret k as a tuple (b, s,v). To

evaluate the PRF at index �′, first write �′ as an (�′x, �
′
y)

tuple such that �′x ∈ Zx, �′y ∈ Zy , and �′ = �′xy+ �′y . Use

the PRG G to stretch the �′x-th seed of s into a length-y
vector: g← G(s[�′x]). Return m′ ← (g[�′y]+b[�′x]v[�

′
y]).

Figure 2 graphically depicts how Eval stretches the keys

into a table of x× y field elements.

Correctness. We prove correctness of the scheme in Ap-

pendix B.

Privacy. The privacy property requires that there exists an

efficient simulator that, on input “A” or “B,” outputs samples

from a distribution that is computationally indistinguishable

from the distribution of DPF keys kA or kB .
The simulator Sim simulates each component of the DPF

key as follows: It samples b ←R {0, 1}x, s ←R S
x, and

v←R F
y . The simulator returns (b, s,v).

We must now argue that the simulator’s output distribution

is computationally indistinguishable from that induced by

the distribution of a single output of Gen. Since the b and

s vectors outputted by Gen are random, the simulation is

perfect. The v vector outputted by Gen is computationally

indistinguishable from random, since it is padded with the

output of the PRG seeded with a seed unknown to the holder of

the key. An efficient algorithm to distinguish the simulated v
vector from random can then also distinguish the PRG output

from random.

Key Size. A key for this DPF scheme consists of: a vector

in {0, 1}x, a vector in S
x, and a vector in F

y . Let α be the

number of bits required to represent an element of S and let

β be the number of bits required to represent an element of

F. The total length of a key is then:

|k| = (1 + α)x+ βy

For fixed spaces S and F, we can find the optimal choices of

x and y to minimize the key length. To do so, we solve:

min
x,y

((1 + α)x+ βy) subject to xy ≥ L

and conclude that the optimal values of x and y are:

x = c
√
L and y =

1

c

√
L where c =

√
β

1 + α
.

328328

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Left: We represent the output of Eval as an x × y matrix of field elements. Left-center: Construction of the v vector

used in the DPF keys. Right: using the v, s, and b vectors, Eval expands each of the two keys into an x× y matrix of field

elements. These two matrices sum to zero everywhere except at (�x, �y) = (3, 4), where they sum to m.

The key size is then O(
√
L).

When using a database table of one million rows in length

(L = 220), a row length of 1 KB per row (F = F28192), and a

PRG seed size of 128 bits (using AES-128, for example) the

keys will be roughly 263 KB in length. For these parameters,

the keys for the naïve construction (Section III-A) would be

1 GB in length. Application of efficient DPFs thus yields a

4,000× bandwidth savings in this case.

Computational Efficiency. A second benefit of this scheme

is that both the Gen and Eval routines are computationally

efficient, since they just require performing finite field addi-

tions (i.e., XOR for binary fields) and PRG operations (i.e.,

computations of the AES function). The construction requires

no public-key primitives.

D. An s-Server Scheme Tolerating s− 1 Malicious Servers

The (2, 1)-DPF scheme described above achieved a key

size of O(
√
L) bits using only symmetric-key primitives. The

limitation of that construction is that it only maintains privacy

when a single key is compromised. In the context of a write-

private database scheme, this means that the construction can

only maintain anonymity in the presence of a single mali-

cious server. It would be much better to have a write-private

database scheme with s servers that maintains anonymity in

the presence of s−1 malicious servers. To achieve this stronger

security notion, we need a bandwidth-efficient (s, s − 1)-
distributed point function.

In this section, we construct an (s, s− 1)-DPF where each

key has size O(
√
L). We do so at the cost of requiring more

expensive public-key cryptographic operations, instead of the

symmetric-key operations used in the prior DPF. While the

(2, 1)-DPF construction above directly follows the work of

Chor and Gilboa [16], this (s, s−1)-DPF construction is novel,

as far as we know.

This construction uses a seed-homomorphic pseudorandom
generator [3], [10], [63], to split the key for the pseudo-

random generator G across a collection of s DPF keys.

Definition 6 (Seed-Homomorphic PRG). A seed-

homomorphic PRG is a pseudo-random generator G
mapping seeds in a group (S,⊕) to outputs in a group (G,⊗)

with the additional property that for any s0, s1 ∈ S:

G(s0 ⊕ s1) = G(s0)⊗G(s1)

It is possible to construct a simple seed-homomorphic PRG

from the decision Diffie-Hellman (DDH) assumption [10],

[63]. The public parameters for the scheme are list of y
generators chosen at random from an order-q group G, in

which the DDH problem is hard [9]. For example, if G is

an elliptic curve group [57], then the public parameters will

be y points (P0, . . . , Py−1) ∈ G
y . The seed space is Zq and

the generator outputs vectors in G
y . On input s ∈ Zq , the

generator outputs (sP0, . . . , sPy−1). The generator is seed-

homomorphic because, for any s0, s1 ∈ Zq , and for all

i ∈ {1, . . . , y}: s0Pi + s1Pi = (s0 + s1)Pi.

As in the prior DPF construction, we fix a DPF domain size

L, and integers x and y such that xy ≥ L. The construction

requires a seed-homomorphic PRG G : S �→ G
y , for some

group G of prime order q.

For consistency with the prior DPF construction, we will

write the group operation in G using additive notation. Thus,

the group operation applied component-wise to vectors u,v ∈
G

y results in the vector (u+ v) ∈ G
y . Since G has order q,

qA = 0 for all A ∈ G.

The algorithms comprising the (s, s− 1)-DPF are:

• Gen(�,m) → (k0, . . . , ks−1). Compute integers �x ∈ Zx

and �y ∈ Zy such that � = �xy + �y . Sample random

integer-valued vectors b0, . . . ,bs−2 ←R (Zq)
x, random

vectors of PRG seeds s0, . . . , ss−2 ←R S
x, and a single

random PRG seed s∗ ←R S.

Select bs−1 ∈ (Zq)
x such that Σs−1

k=0bk = e�x (mod q)
and select ss−1 ∈ S

x such that Σs−1
k=0sk = s∗ · e�x ∈ G

x.

Define v← m · e�y −G(s∗).
The DPF key for server i ∈ {0, . . . , s − 1} is ki =
(bi, si,v).

• Eval(k, �′) → m′. Interpret k as a tuple (b, s,v). To

evaluate the PRF at index �′, first write �′ as an (�′x, �
′
y)

tuple such that �′x ∈ Zx, �′y ∈ Zy , and �′ = �′xy+ �′y . Use

the PRG G to stretch the �′x-th seed of s into a length-y
vector: g← G(s[�′x]). Return m′ ← (g[�′y]+b[�′x]v[�

′
y]).

We omit correctness and privacy proofs, since they follow

exactly the same structure as those used to prove security of

329329

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

our prior DPF construction. The only difference is that correct-

ness here relies on the fact that G is a seed-homomorphic PRG,

rather than a conventional PRG. As in the DPF construction

of Section IV-C, the keys here are of length O(
√
L).

Computational Efficiency. The main computational cost of

this DPF construction comes from the use of the seed-

homomorphic PRG G. Unlike a conventional PRG, which

can be implemented using AES or another fast block cipher

in counter mode, known constructions of seed-homomorphic

PRGs require algebraic groups [63] or lattice-based cryptog-

raphy [3], [10].

When instantiating the (s, s− 1)-DPF with the DDH-based

PRG construction in elliptic curve groups, each call to the

DPF Eval routine requires an expensive elliptic curve scalar

multiplication. Since elliptic curve operations are, per byte,

orders of magnitude slower than AES operations, this (s, s−
1)-DPF will be orders of magnitude slower than the (2, 1)-
DPF. Security against an arbitrary number of malicious servers

comes at the cost of computational efficiency, at least for these

DPF constructions.

With DPFs, we can now construct a bandwidth-efficient

write-private database scheme that tolerates one malicious

server (first construction) or s− 1 out of s malicious servers

(second construction).

V. PREVENTING DISRUPTORS

The first-attempt construction of our write-private database

scheme (Section III-A) had two limitations: (1) client write

requests were very large and (2) malicious clients could cor-

rupt the database state by sending malformed write requests.

We addressed the first of these two challenges in Section IV.

In this section, we address the second challenge.

A client write request in our protocol just consists of a

collection of s DPF keys. The client sends one key to each of

the s servers. The servers must collectively decide whether the

collection of s keys is a valid output of the DPF Gen routine,

without revealing any information about the keys themselves.

One way to view the servers’ task here is as a secure multi-

party computation [41], [78]. Each server i’s private input is

its DPF key ki. The output of the protocol is a single bit,

which determines if the s keys (k0, . . . , ks−1) are a well-

formed collection of DPF keys.

Since we already rely on servers for availability (Sec-

tion II-B), we need not protect against servers maliciously

trying to manipulate the output of the multi-party protocol.

Such manipulation could only result in corrupting the database

(if a malicious server accepts a write request that it should have

rejected) or denying service to an honest client (if a malicious

server rejects a write request that it should have accepted).

Since both attacks are tantamount to denial of service, we

need not consider them.

We do care, in contrast, about protecting client privacy

against malicious servers. A malicious server participating in

the protocol should not gain any additional information about

the private inputs of other parties, no matter how it deviates

from the protocol specification.

We construct two protocols for checking the validity of

client write requests. The first protocol is computationally

inexpensive, but requires introducing a third non-colluding

party to the two-server scheme. The second protocol requires

relatively expensive zero-knowledge proofs [30], [42], [43],

[70], but it maintains security when all but one of s servers is

malicious. Both of these protocols must satisfy the standard

notions of soundness, completeness, and zero-knowledge [12].

A. Three-Party Protocol

Our first protocol for detecting malformed write requests

works with the (2, 1)-DPF scheme presented in Section IV-C.

The protocol uses only hashing and finite field additions,

so it is computationally inexpensive. The downside is that

it requires introducing a third audit server, which must not

collude with either of the other two servers.

We first develop a three-party protocol called AlmostEqual
that we use as a subroutine to implement the full write request

validation protocol. The AlmostEqual protocol takes place

between three parties: server A, server B, and an audit server.

Server A’s private input is a vector vA ∈ F
n and server B’s

private input is a vector vB ∈ F
n. The audit server has no

private input. The output of the AlmostEqual protocol is “1”

bit if vA and vB differ at exactly one index and is “0” bit

otherwise. As with classical secure multi-party computations,

the goal of the protocol is to accurately compute the output

without leaking any extraneous information about the players’

private inputs [29], [41], [78]. We use AlmostEqual in such

a way that, whenever the client’s write request is properly

formed and whenever no two servers collude, the output of the

protocol will be “1.” Thus, we need only prove the protocol

secure in the case when the output is “1.”

We denote an instance of the three-party protocol as

AlmostEqual(vA,vB), where the arguments denote the two

secret inputs of party A and party B. The protocol proceeds

as follows:

1) Servers A and B use a coin-flipping protocol [8] to

sample n hash functions h0, . . . , hn−1 from a family

of pairwise independent hash functions H [55] having

domain F. The servers also agree upon a random “shift”

value f ∈ Zn.

2) Server A computes the values mi ← hi(vA[i])
for every index i ∈ {0, . . . , n − 1} and sends

(mf ,mf+1, . . . ,mn−1,m0, . . . ,mf−1) to the auditor.

3) Server B repeats Step 2 with vB .

4) The audit server returns “1” to servers A and B if and

only if the vectors it receives from the two servers are

equal at every index except one. The auditor returns “0”

otherwise.

We include proofs of soundness, correctness, and zero-

knowledge for this construction in Appendix C.

The keys for the (2, 1)-DPF construction have the form

kA = (bA, sA,v) kB = (bB , sB ,v).

330330

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

In a correctly formed pair of keys, the b and s vectors differ

at a single index �x, and the v vector is equal to v = e�y,m+
G(sA[�x]) +G(sB [�x]).

To determine whether a pair of keys is correct, server A
constructs a test vector tA such that tA[i] = bA[i]‖sA[i]
for i ∈ {0, . . . , x − 1}. (where ‖ denotes concatenation).

Server B constructs a test vector tB in the same way and

the two servers, along with the auditor run the protocol

AlmostEqual(tA, tB). If the output of this protocol is “1,”

then the servers conclude that their b and s vectors differ

at a single index, though the protocol does not reveal to the

servers which index this is. Otherwise, the servers reject the

write request.
Next, the servers must verify that the v vector is well-

formed. To do so, the servers compute another pair of test

vectors:

uA =

x−1∑
i=0

G(sA[i]) uB = v +

x−1∑
i=0

G(sB [i]).

The servers run AlmostEqual(uA,uB) and accept the write

request as valid if it returns “1.”
We prove security of this construction in the full version of

this paper.
An important implementation note is that if m = 0—

that is, if the client writes the string of all zeros into the

database—then the u vectors will not differ at any index and

this information is leaked to the auditor. The protocol only

provides security if the vectors differ at exactly one index. To

avoid this information leakage, client requests must be defined

such that m �= 0 in every write request. To achieve this, clients

could define some special non-zero value to indicate “zero” or

could use a padding scheme to ensure that zero values occur

with negligible probability.
As a practical matter, the audit server needs to be able to

match up the portions of write requests coming from server

A with those coming from server B. Riposte achieves this as

follows: When the client sends its upload request to server

A, the client includes a cryptographic hash of the request it

sent to server B (and vice versa). Both servers can use these

hashes to derive a common nonce for the request. When the

servers send audit requests to the audit server, they include

the nonce for the write request in question. The audit server

can use the nonce to match every audit request from server A
with the corresponding request from server B.

This three-party protocol is very efficient—it only requires

O(
√
L) applications of a hash function and O(

√
L) commu-

nication from the servers to the auditor. The auditor only

performs a simple string comparison, so it needs minimal

computational and storage capabilities.

B. Zero Knowledge Techniques
Our second technique for detecting disruptors makes use of

non-interactive zero-knowledge proofs [11], [43], [70].
We apply zero-knowledge techniques to allow clients to

prove the well-formedness of their write requests. This tech-

nique works in combination with the (s, s−1)-DPF presented

in Section IV-D and maintains client write-privacy when all
but one of s servers is dishonest.

The keys for the (s, s−1)-DPF scheme are tuples (bi, si,v)
such that:

s−1∑
i=0

bi = e�x

s−1∑
i=0

si = s∗ · e�x v = m · e�y −G(s∗)

To prove that its write request was correctly formed, we

have the client perform zero-knowledge proofs over collections

of Pedersen commitments [68]. The public parameters for

the Pedersen commitment scheme consist of a group G of

prime order q and two generators P and Q of G such that

no one knows the discrete logarithm logQ P . A Pedersen

commitment to a message m ∈ Zq with randomness r ∈ Zq

is C(m, r) = (mP + rQ) ∈ G (writing the group operation

additively). Pedersen commitments are homomorphic, in that

given commitments to m0 and m1, it is possible to compute

a commitment to m0 +m1:

C(m0, r0) + C(m1, r1) = C(m0 +m1, r0 + r1)

Here, we assume that the (s, s−1)-DPF is instantiated with

the DDH-based PRG introduced in Section IV-D and that the

group G used for the Pedersen commitments is the same order-

q group used in the PRG construction.

To execute the proof, the client first generates Pedersen

commitments to elements of each of the s DPF keys. Then

each server i can verify that the client computed the com-

mitment to the i-th DPF key elements correctly. The servers

use the homomorphic property of Pedersen commitments to

generate commitments to the sum of the elements of the DPF

keys. Finally, the client proves in zero knowledge that these

sums have the correct values.

The protocols proceed as follows:

1) The client generates vectors of Pedersen commitments Bi

and Si committing to each element of bi and si. client

sends the B and S vectors to every server.
2) To server i, the client sends the opening of the commit-

ments Bi and Si. Each server i verifies that Bi and Si

are valid commitments to the bi and si vectors in the

DPF key. If this check fails at some server i, server i
notifies the other servers and all servers reject the write

request.

3) Using the homomorphic property of the commitments,

each server can compute vectors of commitments Bsum

and Ssum to the vectors Σs−1
i=0bi and Σs−1

i=0 si.
4) Using a non-interactive zero-knowledge proof, the client

proves to the servers that Bsum and Ssum are commitments

to zero everywhere except at a single (secret) index �x,

and that Bsum[�x] is a commitment to one.1 This proof

uses standard witness hiding techniques for discrete-

logarithm-based zero knowledge proofs [11], [21]. If the

proof is valid, the servers continue to check the v vector.

1 Technically, this is a zero-knowledge proof of knowledge which proves
that the client knows an opening of the commitments to the stated values.

331331

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

This first protocol convinces each server that the b and s
components of the DPF keys are well formed. Next, the servers

check the v component:

1) For each server i, the client sums up the seed values si it

sent to server i: σi = Σs−1
j=0si[j]. The client then generates

the output of G(σk) and blinds it:

Gi = (σiP1 + r1Q, σiP2 + r2Q, . . .).

2) The client sends the G values to all servers and the client

sends the opening of Gi to each server i.
3) Each server verifies that the openings are correct, and all

servers reject the write request if this check fails at any

server.

4) Using the homomorphic property of Pedersen commit-

ments, every server can compute a vector of commitments

Gsum = (Σs−1
i=0Gi)+v. If v is well formed, then the Gsum

vector contain commitments to zero at every index except

one (at which it will contain a commitment to the client’s

message m).

5) The client uses a non-interactive zero-knowledge proof

to convince the servers that the vector of commitments

Gsum contains commitments to zero at all indexes except

one. If the proof is valid, the servers accept the write

request.

We prove in the full version of this paper that this protocol

satisfies the standard notions of soundness, completeness, and

zero-knowledge [12].

VI. EXPERIMENTAL EVALUATION

To demonstrate that Riposte is a practical platform for

traffic-analysis-resistant anonymous messaging, we imple-

mented two variants of the system. The first variant uses the

two-server distributed point function (Section IV-C) and uses

the three-party protocol (Section V-A) to prevent malicious

clients from corrupting the database. This variant is relatively

fast, since it relies primarily on symmetric-key primitives, but

requires that no two of the three servers collude. Our results for

the first variant include the cost of identifying and excluding

malicious clients.

The second variant uses the s-server distributed point func-

tion (Section IV-D). This variant protects against s−1 collud-

ing servers, but relies on expensive public-key operations. We

have not implemented the zero-knowledge proofs necessary to

prevent disruptors for the s-server protocol (Section V-B), so

the performance numbers represent only an upper bound on

the system throughput.

We wrote the prototype in the Go programming language

and have published the source code online at https://bitbucket.

org/henrycg/riposte/. We used the DeterLab network testbed

for our experiments [58]. All of the experiments used com-

modity servers running Ubuntu 14.04 with four-core AES-NI-

enabled Intel E3-1260L CPUs and 16 GB of RAM.

Our experimental network topology used between two and

ten servers (depending on the protocol variant in use) and

eight client nodes. In each of these experiments, the eight

client machines used many threads of execution to submit

 1

 10

 100

 1000

10 100 1k 10k 100k 1M 10M

T
hr

ou
gh

pu
t

(c
lie

nt
 r

eq
ue

st
s/

se
c)

Database table size (# of 160-byte rows)

Actual throughput
Maximum TLS throughput
Maximum AES throughput

Fig. 3: As the database table size grows, the throughput of

our system approaches the maximum possible given the AES

throughput of our servers.

write requests to the servers as quickly as possible. In all

experiments, the server nodes connected to a common switch

via 100 Mbps links, the clients nodes connected to a common

switch via 1 Gbps links, and the client and server switches

connected via a 1 Gbps link. The round-trip network latency

between each pair of nodes was 20 ms. We chose this network

topology to limit the bandwidth between the servers to that of

a fast WAN, but to leave client bandwidth unlimited so that

the small number of client machines could saturate the servers

with write requests.

Error bars in the charts indicate the standard deviation of

the throughput measurements.

A. Three-Server Protocol

A three-server Riposte cluster consists of two database

servers and one audit server. The system maintains its security

properties as long as no two of these three servers collude. We

have fully implemented the three-server protocol, including the

audit protocol (Section V-A), so the throughput numbers listed

here include the cost of detecting and rejecting malicious write

requests.

The prototype used AES-128 in counter mode as the

pseudo-random generator, Poly1305 as the keyed hash func-

tion used in the audit protocol [7], and TLS for link encryption.

Figure 3 shows how many client write requests our Riposte

cluster can service per second as the number of 160-byte rows

in the database table grows. For a database table of 64 rows,

the system handles 751.5 write requests per second. At a table

size of 65,536 rows, the system handles 32.8 requests per

second. At a table size of 1,048,576 rows, the system handles

2.86 requests per second.

We chose the row length of 160 bytes because it was the

smallest multiple of 32 bytes large enough to to contain a

140-byte Tweet. Throughput of the system depends only the

total size of the table (number of rows × row length), so

larger row lengths might be preferable for other applications.

For example, an anonymous email system using Riposte with

4096-byte rows could handle 2.86 requests per second at a

table size of 40,960 rows.

An upper bound on the performance of the system is the

speed of the pseudo-random generator used to stretch out the

332332

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

 0

 10

 20

 30

 40

 50

 0.0001 0.01 1 100 10000

T
hr

ou
gh

pu
t

(c
lie

nt
 r

eq
ue

st
s/

se
c)

Database table width-height ratio

Fig. 4: Use of bandwidth-efficient DPFs gives a 32× speed-up

over the naïve constructions, in which a client’s request is as

large as the database.

100 B

1kB

10kB

100kB

1MB

10MB

100MB

1GB

10GB

10 100 1k 10k 100k 1M 10M 100M

D
at

a
tr

an
sf

er
 (

by
te

s)

Database table size (# of 160-byte rows)

No DPF
Server - Recv
Server - Send

Audit - Recv
Audit - Send

Fig. 5: The total client and server data transfer scales sub-

linearly with the size of the database.

DPF keys to the length of the database table. The dashed

line in Figure 3 indicates this upper bound (605 MB/s), as

determined using an AES benchmark written in Go. That line

indicates the maximum possible throughput we could hope to

achieve without aggressive optimization (e.g., writing portions

of the code in assembly) or more powerful machines. Migrat-

ing the performance-critical portions of our implementation

from Go to C (using OpenSSL) might increase the throughput

by a factor of as much as 6×, since openssl speed reports

AES throughput of 3.9 GB/s, compared with the 605 MB/s we

obtain with Go’s crypto library. At very small table sizes, the

speed at which the server can set up TLS connections with the

clients limits the overall throughput to roughly 900 requests

per second.

Figure 4 demonstrates how the request throughput varies as

the width of the table changes, while the number of bytes in

the table is held constant at 10 MB. This figure demonstrates

the performance advantage of using a bandwidth-efficient

O(
√
L) DPF (Section IV) over the naïve DPF (Section III-A).

Using a DPF with optimal table size yields a throughput of

38.4 requests per second. The extreme left and right ends

of the figure indicate the performance yielded by the naïve

construction, in which making a write request involves sending

a (1 × L)-dimension vector to each server. At the far right

extreme of the table, performance drops to 0.05 requests per

second, so DPFs yield a 768× speed-up.

Figure 5 indicates the total number of bytes transferred by

one of the database servers and by the audit server while

processing a single client write request. The dashed line at

the top of the chart indicates the number of bytes a client

would need to send for a single write request if we did not

use bandwidth-efficient DPFs (i.e., the dashed line indicates

the size of the database table). As the figure demonstrates,

the total data transfer in a Riposte cluster scales sub-linearly
with the database size. When the database table is 2.5 GB in

size, the database server transfers only a total of 1.23 MB to

process a write request.

B. s-Server Protocol

In some deployment scenarios, having strong protection

against server compromise may be more important than perfor-

mance or scalability. In these cases, the s-server Riposte pro-

tocol provides the same basic functionality as the three-server

protocol described above, except that it maintains privacy even

if s − 1 out of s servers collude or deviate arbitrarily from

the protocol specification. We implemented the basic s-server

protocol but have not yet implemented the zero-knowledge

proofs necessary to prevent malicious clients from corrupting

the database state (Section V-B). These performance figures

thus represent an upper bound on the s-server protocol’s

performance. Adding the zero-knowledge proofs would require

an additional Θ(
√
L) elliptic curve operations per server in

an L-row database. The computational cost of the proofs

would almost certainly be dwarfed by the Θ(L) elliptic curve

operations required to update the state of the database table.

The experiments use the DDH-based seed-homomorphic

pseudo-random generator described in Section IV-D and they

use the NIST P-256 elliptic curve as the underlying algebraic

group. The table row size is fixed at 160 bytes.

Figure 6 demonstrates the performance of an eight-server

Riposte cluster as the table size increases. At a table size of

1,024 rows, the cluster can process one request every 3.44

seconds. The limiting factor is the rate at which the servers

can evaluate the DDH-based pseudo-random generator (PRG),

since computing each 32-byte block of PRG output requires a

costly elliptic curve scalar multiplication. The dashed line in

the figure indicates the maximum throughput obtainable using

Go’s implementation of P-256 on our servers, which in turn

dictates the maximum cluster throughput. Processing a single

request with a table size of one million rows would take nearly

one hour with this construction, compared to 0.3 seconds in

the AES-based three-server protocol.

Figure 7 shows how the throughput of the Riposte cluster

changes as the number of servers varies. Since the workload

is heavily CPU-bound, the throughput only decreases slightly

as the number of servers increases from two to ten.

C. Discussion: Whistleblowing and Microblogging with
Million-User Anonymity Sets

Whistleblowers, political activists, or others discussing sen-

sitive or controversial issues might benefit from an anonymous

microblogging service. A whistleblower, for example, might

333333

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

 0.01

 0.1

 1

 10

 100

10 100 1k 10k

T
hr

ou
gh

pu
t

(c
lie

nt
 r

eq
ue

st
s/

se
c)

Database table size (# of 160-byte rows)

Actual throughput
Maximum EC throughput

Fig. 6: Throughput of an eight-server Riposte cluster using the

(8, 7)-distributed point function.

 1

 2

 3

 4

 5

 6

 7

 8

 9

2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t

(c
lie

nt
 r

eq
ue

st
s/

se
c)

Number of servers

16-row table
64-row table

Fig. 7: Throughput of Riposte clusters using two different

database table sizes as the number of servers varies.

want to anonymously blog about an instance of bureaucratic

corruption in her organization. The utility of such a system

depends on the size of the anonymity set it would provide:

if a whistleblower is only anonymous amongst a group of

ten people, it would be easy for the whistleblower’s employer

to retaliate against everyone in the anonymity set. Mounting

this “punish-them-all” attack does not require breaking the

anonymity system itself, since the anonymity set is public.

As the anonymity set size grows, however, the feasibility

of the “punish-them-all” attack quickly tends to zero. At an

anonymity set size of 1,000,000 clients, mounting an “punish-

them-all” attack would be prohibitively expensive in most

situations.

Riposte can handle such large anonymity sets as long as (1)

clients are willing to tolerate hours of messaging latency, and

(2) only a small fraction of clients writes into the database in

each time epoch. Both of these requirements are satisfied in the

whistleblowing scenario. First, whistleblowers might not care

if the system delays their posts by a few hours. Second, the

vast majority of users of a microblogging service (especially

in the whistleblowing context) are more likely to read posts

than write them. To get very large anonymity sets, maintainers

of an anonymous microblogging service could take advantage

of the large set of “read-only” users to provide anonymity for

the relatively small number of “read-write” users.

The client application for such a microblogging service

would enable read-write users to generate and submit Riposte

write requests to a Riposte cluster running the microblogging

service. However, the client application would also allow read-

only users to submit an “empty” write request to the Riposte

cluster that would always write a random message into the

first row of the Riposte database. From the perspective of the

servers, a read-only client would be indistinguishable from a

read-write client. By leveraging read-only users in this way,

we can increase the size of the anonymity set without needing

to increase the size of the database table.

To demonstrate that Riposte can support very large

anonymity set sizes—albeit with high latency—we configured

a cluster of Riposte servers with a 65,536-row database table

and left it running for 32 hours. In that period, the system

processed a total of 2,895,216 write requests at an average

rate of 25.19 requests per second. (To our knowledge, this is

the largest anonymity set ever constructed in a system that

offers protection against traffic analysis attacks.) Using the

techniques in Section III-B, a table of this size could handle

0.3% of users writing at a collision rate of under 5%. Thus, to

get an anonymity set of roughly 1,000,000 users with a three-

server Riposte cluster and a database table of size 65, 536, the

time epoch must be at least 11 hours long.

As of 2013, Twitter reported an average throughput of

5,700 140-byte Tweets per second [52]. That is equivalent

roughly 5,000 of our 160-byte messages per second. At a table

size of one million messages, our Riposte cluster’s end-to-

end throughput is 2.86 write requests per second (Figure 3).

To handle the same volume of Tweets as Twitter does with

anonymity set sizes on the order of hundreds of thousands

of clients, we would need to increase the computing power

of our cluster by “only” a factor of ≈1,750.2 Since we are

using only three servers now, we would need roughly 5,250

servers (split into three non-colluding data centers) to handle

the same volume of traffic as Twitter. Furthermore, since the

audit server is just doing string comparisons, the system would

likely need many fewer audit servers than database servers, so

the total number of servers required might be closer to 4, 000.

VII. RELATED WORK

Anonymity systems fall into one of two general categories:

systems that provide low-latency communication and those

that protect against traffic analysis attacks by a global network

adversary.

Aqua [53], Crowds [71], LAP [48], ShadowWalker [59],

Tarzan [31], and Tor [27] belong to the first category of

systems: they provide an anonymous proxy for real-time Web

browsing, but they do not protect against an adversary who

controls the network, many of the clients, and some of the

nodes on a victim’s path through the network. Even providing

a formal definition of anonymity for low-latency systems is

2 We assume here that scaling the number of machines by a factor of k
increases our throughput by a factor of k. This assumption is reasonable given
our workload, since the processing of write requests is an embarrassingly
parallel task.

334334

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

challenging [49] and such definitions typically do not capture

the need to protect against timing attacks.

Even so, it would be possible to combine Tor (or another

low-latency anonymizing proxy) and Riposte to build a “best

of both” anonymity system: clients would submit their write

requests to the Riposte servers via the Tor network. In this

configuration, even if all of the Riposte servers colluded, they

could not learn which user wrote which message without also

breaking the anonymity of the Tor network.

David Chaum’s “cascade” mix networks were one of the

first systems devised with the specific goal of defending

against traffic-analysis attacks [15]. Since then, there have

been a number of mix-net-style systems proposed, many of

which explicitly weaken their protections against a near omni-

present adversary [74] to improve prospects for practical

usability (i.e., for email traffic) [23]. In contrast, Riposte

attempts to provide very strong anonymity guarantees at the

price of usability for interactive applications.

E-voting systems (also called “verifiable shuffles”) achieve

the sort of privacy properties that Riposte offers, and some sys-

tems even provide stronger voting-specific guarantees (receipt-

freeness, proportionality, etc.), though most e-voting systems

cannot provide the forward security property that Riposte

offers (Section III-C) [1], [18], [32], [45], [46], [65], [69].

In a typical e-voting system, voters submit their encrypted

ballots to a few trustees, who collectively shuffle and decrypt

them. While it is possible to repurpose e-voting systems for

anonymous messaging, they typically require expensive zero-

knowledge proofs or are inefficient when message sizes are

large. Mix-nets that do not use zero-knowledge proofs of

correctness typically do not provide privacy in the face of

active attacks by a subset of the mix servers.

For example, the verifiable shuffle protocol of Bayer and

Groth [5] is one of the most efficient in the literature. Their

shuffle implementation, when used with an anonymity set

of size N , requires 16N group exponentiations per server

and data transfer O(N). In addition, messages must be small

enough to be encoded in single group elements (a few hundred

bytes at most). In contrast, our protocol requires O(L) AES

operations and data transfer O(
√
L), where L is the size of

the database table. When messages are short and when the

writer/reader ratio is high, the Bayer-Groth mix may be faster

than our system. In contrast, when messages are long and when

the writer/reader ratio is low (i.e., L� O(N)), our system is

faster.

Chaum’s Dining Cryptographers network (DC-net) is an

information-theoretically secure anonymous broadcast chan-

nel [14]. A DC-net provides the same strong anonymity

properties as Riposte does, but it requires every user of a DC-

net to participate in every run of the protocol. As the number

of users grows, this quickly becomes impractical.

The Dissent [77] system introduced the idea of using par-

tially trusted servers to make DC-nets practical in distributed

networks. Dissent requires weaker trust assumptions than our

three-server protocol does but it requires clients to send

O(L) bits to each server per time epoch (compared with

our O(
√
L)). Also, excluding a single disruptor in a 1,000-

client deployment takes over an hour. In contrast, Riposte

can excludes disruptors as fast as it processes write requests

(tens to hundreds per second, depending on the database size).

Recent work [20] uses zero-knowledge techniques to speed up

disruption resistance in Dissent (building on ideas of Golle and

Juels [44]). Unfortunately, these techniques limit the system’s

end to end-throughput end-to-end throughput to 30 KB/s,

compared with Riposte’s 450+ MB/s.

Herbivore scales DC-nets by dividing users into many small

anonymity sets [38]. Riposte creates a single large anonymity

set, and thus enables every client to be anonymous amongst

the entire set of honest clients.

Our DPF constructions make extensive use of prior work on

private information retrieval (PIR) [16], [17], [33], [37]. Re-

cent work demonstrates that it is possible to make theoretical

PIR fast enough for practical use [25], [26], [40].

Gertner et al. [36] consider symmetric PIR protocols, in

which the servers prevent dishonest clients from learning about

more than a single row of the database per query. The problem

that Gertner et al. consider is, in a way, the dual of the problem

we address in Section V, though their techniques do not appear

to apply directly in our setting.

Ostrovsky and Shoup first proposed using PIR protocol as

the basis for writing into a database shared across a set of

servers [67]. However, Ostrovsky and Shoup considered only

the case of a single honest client, who uses the untrusted

database servers for private storage. Since many mutually
distrustful clients use a single Riposte cluster, our protocol

must also handle malicious clients.

Pynchon Gate [72] builds a private point-to-point mes-

saging system from mix-nets and PIR. Clients anonymously

upload messages to email servers using a traditional mix-

net and download messages from the email servers using a

PIR protocol. Riposte could replace the mix-nets used in the

Pynchon Gate system: clients could anonymously write their

messages into the database using Riposte and could privately

read incoming messages using PIR.

VIII. CONCLUSION AND OPEN QUESTIONS

We have presented Riposte, a new system for anonymous

messaging. To the best of our knowledge, Riposte is the first

system that simultaneously (1) thwarts traffic analysis attacks,

(2) prevents malicious clients from anonymously disrupting

the system, and (3) enables million-client anonymity set sizes.

We achieve these goals through novel application of pri-

vate information retrieval and secure multiparty computation

techniques. We have demonstrated Riposte’s practicality by

implementing it and evaluating it with anonymity sets of

over two million nodes. This work leaves open a number of

questions for future work, including:

• Does there exist an (s, s−1)-DPF construction for s > 2
that uses only symmetric-key operations?

• Are there efficient techniques (i.e., using no public-key

primitives) for achieving disruption resistance without the

need for a non-colluding audit server?

335335

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

• Are there DPF constructions that enable processing write

requests in amortized time o(L), for a length-L database?

With the design and implementation of Riposte, we have

demonstrated that cryptographic techniques can make traffic-

analysis-resistant anonymous microblogging and whistleblow-

ing more practical at Internet scale.

Acknowledgements

We would like to thank Joe Zimmerman and David Wu

for helpful discussions about distributed point functions. We

would like to thank Stephen Schwab and the staff of DeterLab

for giving us access their excellent network testbed. This

work was supported by NSF, an IARPA project provided

via DoI/NBC, a grant from ONR, an NDSEG fellowship,

and by a Google faculty scholarship. Opinions, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of DARPA or IARPA.

REFERENCES

[1] B. Adida, “Helios: Web-based open-audit voting.” in USENIX Security
Symposium, vol. 17, 2008.

[2] B. Adida and D. Wikström, “How to shuffle in public,” in Theory of
Cryptography, 2007.

[3] A. Banerjee and C. Peikert, “New and improved key-homomorphic
pseudorandom functions,” in CRYPTO, 2014.

[4] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-
resource routing attacks against Tor,” in WPES. ACM, 2007.

[5] S. Bayer and J. Groth, “Efficient zero-knowledge argument for correct-
ness of a shuffle,” in EUROCRYPT, 2012.

[6] K. Bennhold, “In Britain, guidelines for spying on lawyers and clients,”
New York Times, p. A6, 7 Nov. 2014.

[7] D. J. Bernstein, “The Poly1305-AES message-authentication code,” in
Fast Software Encryption, 2005.

[8] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” ACM SIGACT News, vol. 15, no. 1, pp. 23–27, 1983.

[9] D. Boneh, “The decision Diffie-Hellman problem,” in Algorithmic
Number Theory, ser. Lecture Notes in Computer Science, J. P. Buhler,
Ed. Springer, 1998, vol. 1423, pp. 48–63.

[10] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan, “Key
homomorphic PRFs and their applications,” in CRYPTO, 2013.

[11] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Dept. of Computer Science, ETH Zurich,
Tech. Rep. 260, Mar. 1997.

[12] J. L. Camenisch, “Group signature schemes and payment systems based
on the discrete logarithm problem,” Ph.D. dissertation, Swiss Federal
Institute of Technology Zürich (ETH Zürich), 1998.

[13] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryp-
tion scheme,” in EUROCRYPT, 2003.

[14] D. Chaum, “The Dining Cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of Cryptology, pp. 65–75, Jan.
1988.

[15] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
1981.

[16] B. Chor and N. Gilboa, “Computationally private information retrieval,”
in STOC. ACM, 1997.

[17] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965–981, 1998.

[18] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: A secure voting
system,” Cornell University, Tech. Rep. TR 2007-2081, May 2007.

[19] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable anonymous
group messaging,” in CCS. ACM, October 2010.

[20] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford, “Proactively account-
able anonymous messaging in Verdict,” in USENIX Security Symposium,
2013.

[21] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in CRYPTO,
1994.

[22] G. Danezis and C. Diaz, “A survey of anonymous communication
channels,” Technical Report MSR-TR-2008-35, Microsoft Research,
Tech. Rep., 2008.

[23] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a
type III anonymous remailer protocol,” in Security and Privacy. IEEE,
2003.

[24] G. Danezis and A. Serjantov, “Statistical disclosure or intersection
attacks on anonymity systems,” in Information Hiding Workshop, May
2004.

[25] D. Demmler, A. Herzberg, and T. Schneider, “RAID-PIR: Practical
multi-server PIR,” in WPES, 2014.

[26] C. Devet and I. Goldberg, “The best of both worlds: Combining
information-theoretic and computational pir for communication effi-
ciency,” in PETS, July 2014.

[27] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in USENIX Security Symposium, Aug. 2004.

[28] M. Edman and B. Yener, “On anonymity in an electronic society:
A survey of anonymous communication systems,” ACM Computing
Surveys, vol. 42, no. 1, p. 5, 2009.

[29] R. Fagin, M. Naor, and P. Winkler, “Comparing information without
leaking it,” Communications of the ACM, vol. 39, no. 5, pp. 77–85,
1996.

[30] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
Journal of Cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[31] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing
network layer,” in CCS. ACM, 2002.

[32] J. Furukawa, “Efficient, verifiable shuffle decryption and its requirement
of unlinkability,” in PKC, 2004.

[33] W. Gasarch, “A survey on private information retrieval,” in Bulletin of
the EATCS, 2004.

[34] B. Gellman and A. Soltani, “NSA infiltrates links to Yahoo, Google data
centers worldwide, Snowden documents say,” Washington Post, Oct. 30
2013.

[35] B. Gellman, J. Tate, and A. Soltani, “In NSA-intercepted data, those not
targeted far outnumber the foreigners who are,” Washington Post, 5 Jul.
2014.

[36] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data
privacy in private information retrieval schemes,” in STOC, 1998.

[37] N. Gilboa and Y. Ishai, “Distributed point functions and their applica-
tions,” in EUROCRYPT, 2014.

[38] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and
efficient protocol for anonymous communication,” Cornell University,
Tech. Rep., 2003.

[39] V. Goel, “Government push for Yahoo’s user data set stage for broad
surveillance,” New York Times, p. B3, 7 Sept. 2014.

[40] I. Goldberg, “Improving the robustness of private information retrieval,”
in Security and Privacy. IEEE, 2007.

[41] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in STOC. ACM, 1987.

[42] ——, “Proofs that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems,” Journal of the ACM, vol. 38,
no. 3, pp. 690–728, 1991.

[43] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on computing, vol. 18, no. 1,
pp. 186–208, 1989.

[44] P. Golle and A. Juels, “Dining cryptographers revisited,” in EURO-
CRYPT, 2004.

[45] J. Groth, “A verifiable secret shuffle of homomorphic encryptions,”
Journal of Cryptology, vol. 23, no. 4, pp. 546–579, 2010.

[46] J. Groth and S. Lu, “Verifiable shuffle of large size ciphertexts,” in PKC,
2007.

[47] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom
generator from any one-way function,” SIAM Journal on Computing,
vol. 28, no. 4, pp. 1364–1396, 1999.

[48] H.-C. Hsiao, T.-J. Kim, A. Perrig, A. Yamada, S. C. Nelson, M. Gruteser,
and W. Meng, “LAP: Lightweight anonymity and privacy,” in Security
and Privacy. IEEE, May 2012.

[49] A. Johnson, “Design and analysis of efficient anonymous-
communication protocols,” Ph.D. dissertation, Yale University,
Dec. 2009.

336336

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

[50] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and K. T, “RFC7296:
Internet key exchange protocol version 2 (IKEv2),” Oct. 2014.

[51] D. Kedogan, D. Agrawal, and S. Penz, “Limits of anonymity in open
environments,” in Information Hiding, 2003.

[52] R. Krikorian, “New Tweets per second record, and how!” https://blog.
twitter.com/2013/new-tweets-per-second-record-and-how, Aug. 2013.

[53] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and P. Fran-
cis, “Towards efficient traffic-analysis resistant anonymity networks,” in
SIGCOMM. ACM, 2013.

[54] B. Liskov and J. Cowling, “Viewstamped replication revisited,” MIT
CSAIL, Tech. Rep. MIT-CSAIL-TR-2012-021, Jul. 2013.

[55] M. G. Luby, M. Luby, and A. Wigderson, Pairwise independence and
derandomization. Now Publishers Inc, 2006.

[56] N. Mathewson and R. Dingledine, “Practical traffic analysis: Extending
and resisting statistical disclosure,” in Privacy Enhancing Technologies,
2005.

[57] V. S. Miller, “Use of elliptic curves in cryptography,” in CRYPTO, 1986.
[58] J. Mirkovic and T. Benzel, “Teaching cybersecurity with DeterLab,”

Security & Privacy, vol. 10, no. 1, 2012.
[59] P. Mittal and N. Borisov, “ShadowWalker: Peer-to-peer anonymous

communication using redundant structured topologies,” in CCS. ACM,
November 2009.

[60] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Security and Privacy. IEEE, 2005.

[61] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by Internet-
exchange-level adversaries,” in PETS, June 2007.

[62] E. Nakashima and B. Gellman, “Court gave NSA broad leeway in
surveillance, documents show,” Washington Post, 30 Jun. 2014.

[63] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random
functions and KDCs,” in EUROCRYPT, 1999.

[64] National Institute of Standards and Technology, “Specification for the
advanced encryption standard (AES),” Federal Information Processing
Standards Publication 197, Nov. 2001.

[65] C. A. Neff, “A verifiable secret shuffle and its application to e-voting,”
in CCS. ACM, 2001.

[66] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in ATC. USENIX, Jun. 2014.

[67] R. Ostrovsky and V. Shoup, “Private information storage,” in STOC,
1997.

[68] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in CRYPTO, 1992.

[69] M. O. Rabin and R. L. Rivest, “Efficient end to end verifiable electronic
voting employing split value representations,” in EVOTE 2014, Aug.
2014.

[70] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack,” in CRYPTO, 1992.

[71] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for Web transac-
tions,” ACM Transactions on Information and System Security, vol. 1,
no. 1, pp. 66–92, 1998.

[72] L. Sassaman, B. Cohen, and N. Mathewson, “The Pynchon gate: A
secure method of pseudonymous mail retrieval,” in WPES, November
2005.

[73] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to a flood:
Active attacks on several mix types,” in Information Hiding, 2003.

[74] P. Syverson, “Why i’m not an entropist,” in Security Protocols XVII,
2013.

[75] M. Waidner and B. Pfitzmann, “The Dining Cryptographers in the disco:
Unconditional sender and recipient untraceability with computationally
secure serviceability,” in EUROCRYPT, Apr. 1989.

[76] D. Wolinsky, E. Syta, and B. Ford, “Hang with your buddies to resist
intersection attacks,” in CCS, November 2013.

[77] D. I. Wolinsky, H. Corrigan-Gibbs, A. Johnson, and B. Ford, “Dissent
in numbers: Making strong anonymity scale,” in 10th OSDI. USENIX,
Oct. 2012.

[78] A. C. Yao, “Protocols for secure computations,” in FOCS. IEEE, 1982.

APPENDIX

A. Definition of Write Privacy

An (s, t)-write-private database scheme consists of the

following three (possibly randomized) algorithms:

Write(�,m) → (w(0), . . . , w(s−1)). Clients use the Write
functionality to generate the write request queries sent to

the s servers. The Write function takes as input a message

m (from some finite message space) and an integer � and

produces a set of s write requests—one per server.

Update(σ,w) → σ′. Servers use the Update functionality to

process incoming write requests. The Update function

takes as input a server’s internal state σ, a write request

w, and outputs the updated state of the server σ′.
Reveal(σ0, . . . , σs−1) → D. At the end of the time epoch,

servers use the Reveal functionality to recover the contents

of the database. The Reveal function takes as input the

set of states from each of the s servers and produces the

plaintext database contents D.

We define the write-privacy property using the following

security game, played between the adversary (who statically

corrupts up to t servers and all but two clients) and a

challenger.

1) In the first step, the adversary performs the following

actions:

• The adversary selects a subset As ⊆ {0, . . . , s − 1}
of the servers, such that |As| ≤ t. The set As

represents the set of adversarial servers. Let the set

Hs = {0, . . . , s − 1} \ As represent the set of honest

servers.

• The adversary selects a set of clients Hc ⊆ {0, . . . , n−
1}, such that |Hc| ≥ 2, representing the set of honest

clients. The adversary selects one message-location

pair per honest client:

M = {(i,mi, �i) | i ∈ Hc}
The adversary sends As and M to the challenger.

2) In the second step, the challenger responds to the adver-

sary:

• For each (i,mi, �i) ∈ M, the challenger generates a

write request:

(w
(0)
i , . . . , w

(s−1)
i)←Write(�i,mi)

The set of shares of the ith write request revealed to

the malicious servers is Wi = {w(j)
i }j∈AS

.

In the next steps of the game, the challenger will

randomly reorder the honest clients’ write requests.

The challenger should learn nothing about which client

wrote what, despite all the information at its disposal.

• The challenger then samples a random permutation π
over {0, . . . , |Hc| − 1}. The challenger sends the fol-

lowing set of write requests to the adversary, permuted

according to π:

〈Wπ(0),Wπ(1), . . . ,Wπ(|Hc|−1)〉
3) For each client i in {0, . . . , n − 1} \ Hc, the adversary

computes a write request (w
(0)
i , . . . , w

(s−1)
i) (possibly

according to some malicious strategy) and sends the set

of these write requests to the challenger.

337337

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

4) • For each server j ∈ Hs, the challenger computes

the server’s final state σj by running the Update
functionality on each of the n client write requests in

order. Let S = {(j, σj) | j ∈ Hs} be the set of states

of the honest servers.

• The challenger samples a bit b ←R {0, 1}. If b = 0,

the challenger send (S, π) to the adversary. Otherwise,

the challenger samples a fresh permutation π∗ on Hc

and sets (S, π∗) to the adversary.

5) The adversary makes a guess b′ for the value of b.

The adversary wins the game if b = b′. We define the

adversary’s advantage as |Pr[b = b′] − 1/2|. The scheme

maintains (s, t)-write privacy if no efficient adversary wins the

game with non-negligible advantage (in the implicit security

parameter).

B. Correctness Proof for (2, 1)-DPF

This appendix proves correctness of the distributed point

construction of Section IV-C. For the scheme to be correct, it

must be that, for (kA, kB)← Gen(�,m), for all �′ ∈ ZL:

Eval(kA, �
′) + Eval(kB , �

′) = P�,m(�′).

Let (�x, �y) be the tuple in Zx × Zy representing location �
and let (�′x, �

′
y) be the tuple representing �′. Let:

m′A ← Eval(kA, �
′) m′B ← Eval(kB , �

′).

We use a case analysis to show that the left-hand side of the

equation above equals P�,m for all �′:
Case I: �x �= �′x. When �x �= �′x, the seeds sA[�

′
x] and sB [�

′
x]

are equal, so gA = gB . Similarly bA[�
′
x] = bB [�

′
x]. The

output m′A will be gA[�
′
y]+bA[�

′
x]v[�

′
y], The output m′B

will be identical to m′A. Since the field is a binary field,

adding a value to itself results in the zero element, so the

sum m′A +m′B will be zero as desired.

Case II: �x = �′x and �y �= �′y . When �x = �′x, the seeds

sA[�
′
x] and sB [�

′
x] are not equal, so gA �= gB . Similarly

bA[�
′
x] �= bB [�

′
x]. When �y �= �′y , v[�′y] = gA[�

′
y] +

gB [�
′
y]. Assume bA[�

′
x] = 0 (an analogous argument

applies when bA[�
′
x] = 1), then:

v[�′y] = (m · e�x)[�′y] + gA[�
′
y] + gB [�

′
y].

The sum m′A +m′B will then be:

m′A +m′B = gA[�
′
y] + gB [�

′
x] + v[�′y] = 0.

Case III: �x = �′x and �y = �′y . This is the same as Case II,

except that (m · e�y)[�′y] = m when �y = �′y , so the sum

m′A +m′B = m, as desired.

C. Proofs for the AlmostEqual Protocol

This appendix proves security of the AlmostEqual protocol

of Section V-A.

Soundness. We compute the probability that an honest audit

server will output “1” when the vectors are not equal at exactly

one index. First, consider the case when the v vectors are equal

everywhere. In this case, the test vectors that servers A and

B send to the audit server will be equal everywhere and the

audit server will always output “0.”

Next, consider the case when the v vectors differ at k + 1
positions, where k > 0. The soundness error εk is equal to

the probability that, for every index i′ where the vectors are

unequal (except one), there is a hash collision. Since the prob-

ability of many hash collisions is bounded by the probability

of a single hash collision, εk ≤ ε1. The probability, ε1, of a

single collision we know from the properties of a pairwise-

independent hash function family, where each member of the

family has range R:

ε1 = Pr[hi ←R H : hi(vA[i]) = hi(vB [i])] ≤ 1

|R|2

The overall soundness error is then at most ε ≤ 1/|R|. Since

|R| (the output space of the hash function) is exponentially

large in the security parameter, this probability is negligible.

Completeness. If the vectors vA and vB differ in exactly one

position, the audit server must output “1” with overwhelming

probability. Since the audit server only outputs “1” if exactly
one element of the test vectors is equal, whenever there is at

least one collision in the hash function, the protocol will return

an incorrect result. The probability of this event happening is

negligible, however, as long as the length of the vectors is

polynomial in the security parameter.

Zero Knowledge. The zero-knowledge property need only

hold when the vectors differ at exactly one index. In this case,

servers A and B receive a single bit from the audit server (a

“1”), so the simulation is trivial for the database servers. Thus,

we only need to prove that the zero-knowledge property holds

for the audit server.

Whenever the vectors differ at exactly one position the audit

server can also simulate its view of the protocol. The audit

server simulator runs by picking length-n vectors of random

elements elements in the range of the pairwise hash function

family H subject to the constraint that the vectors are equal

at a random index i′ ∈ Zn. The simulator outputs the two

vectors as the vectors received from servers A and B.

The simulation is valid because H is a pairwise-independent

hash function family. Let H be a family of hash function hi :
D → R Then for all x, y ∈ D, by definition of pairwise

independence:

Pr[h←R H : h(x) = h(y)] ≤ 1

R

This property implies that the two vectors sent to the audit

server leak no information about the v vectors, since an honest

client’s v vector will be independent of the choice of hash

function h, and so every every element of the vectors sent

to the audit servers takes on every value in R with equal

probability. As in the real protocol, the simulated vectors are

equal at one random index.

338338

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 10:03:55 UTC from IEEE Xplore. Restrictions apply.

