
Mignis: A semantic based tool for firewall configuration

P. Adão

SQIG, Instituto de Telecomunicações
Instituto Superior Técnico, Universidade de Lisboa

Email: pedro.adao@ist.utl.pt

C. Bozzato, G. Dei Rossi, R. Focardi and F.L. Luccio

DAIS, Università Ca’ Foscari Venezia, Italy
Email: {cbozzato,deirossi,focardi,luccio}@dsi.unive.it

Abstract—The management and specification of access control
rules that enforce a given policy is a non-trivial, complex, and
time consuming task. In this paper we aim at simplifying this
task both at specification and verification levels. For that, we
propose a formal model of Netfilter, a firewall system integrated
in the Linux kernel. We define an abstraction of the concepts
of chains, rules, and packets existent in Netfilter configurations,
and give a semantics that mimics packet filtering and address
translation. We then introduce a simple but powerful language
that permits to specify firewall configurations that are unaffected
by the relative ordering of rules, and that does not depend on the
underlying Netfilter chains. We give a semantics for this language
and show that it can be translated into our Netfilter abstraction.
We then present Mignis, a publicly available tool that translates
abstract firewall specifications into real Netfilter configurations.
Mignis is currently used to configure the whole firewall of the
DAIS Department of Ca’ Foscari University.

I. INTRODUCTION

Protecting networks from external and internal attacks is

a crucial task. System administrators rely on the usage of

firewalls that examine the network traffic and enforce poli-

cies based on specified rules. However, implementing correct

policies is a non-trivial task: if a policy is too weak the system

may be attacked by exploiting its weaknesses, while if it is too

restrictive legitimate traffic may be filtered out.

Manually proving that implementations comply with a fire-

wall policy is a too much time-consuming practice given that

firewall rules are usually written in low-level, platform-specific

languages, thus automatic tools for testing them have been

developed [1], [2]. These tools however do not prevent users

from introducing new flaws when modifying such policies.

Some flaws may derive from the wrong order of firewall

rules (consistency problems), and some others from the lack

of matching rules for every packet that crosses the firewall

(completeness problems). Another approach proposed by Liu

et al. [3], is based on a firewall design process that passes

through different verification stages, but this is also time and

resource consuming. Policy visualization tools have also been

developed [4], [5], [6], [7], but they are not sufficiently helpful

in dynamically changing networks where new services are

added over time, as these typically impose very articulated

firewalls composed of hundreds or even thousands of interact-

ing rules. It is in fact very difficult to keep the number of rules

small also because of redundancies (compactness problem).

In our opinion, there is an increasing need for formal and

general tools to reason about the security of firewalls. Existing

tools are however still far from the intended goal and we

propose in this paper one further step in that direction.

Our contribution: Netfilter is a firewall system integrated

in the Linux kernel [8]. A firewall in Netfilter is implemented

as a series of chains, tables and rules that are executed in

a precise given order. In this paper we propose a model of

Netfilter in which we abstract the concept of chains, rules

and packets, and introduce the notion of state that records the

information about exchanged packets. We give a semantics

for this abstraction, close to the real one, that specifies how

packets are dealt by the firewall in a specific state.

The novel features of our model allow us to introduce a new

simple declarative language that specifies firewall policies by

abstracting both the order in which rules are applied, and the

different chains that Netfilter provides. The main advantage

of this language is that transitions are defined in a single-step

fashion, contrary to the multi-step semantics associated with

the evaluation of the different tables of Netfilter.

We then show how this language can be translated into

our Netfilter abstraction, and we provide sufficient conditions

under which a specification given in this language and its

translation into Netfilter abstraction have the same effect

on packets, both in terms of filtering and network address

translation.

It is important to stress that, in our high level setting, any

order of rules is acceptable and irrelevant for the semantics,

whereas in Netfilter the order in which rules are written is

fundamental and in general not interchangeable. Indeed, a

well-known difficulty that reduces significantly the usability

of Netfilter is that adding/deleting/modifying rules is context-

dependent and might potentially break the whole firewall

policy. This makes it painful for system administrators to

modify complex Netfilter configurations. Our firewall lan-

guage, instead, makes it very easy to modify a configuration

as the relative order of rules never affects the behavior of

the generated Netfilter rules. This language, in spite of its

simplicity, is expressive and powerful enough to specify the

most commonly used network security policies.

In order to demonstrate the feasibility and illustrate the

simplicity and advantages of this approach we also present

MIGNIS, a novel publicly available tool that translates, ac-

cording to the aforementioned results, abstract firewall spec-

ifications into real Netfilter configurations. We then show an

example of how MIGNIS can be used in a realistic, large scale,

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, P. Adao. Under license to IEEE.

DOI 10.1109/CSF.2014.32

351

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

and non-trivial setting: MIGNIS is currently used to configure

the firewall of the DAIS Department of the Ca’ Foscari

University of Venice. Using the overlap-detecting capabilities

of MIGNIS and its simple syntax we were able to tackle the

compactness problem by capturing many redundancies in the

initial Netfilter configurations, and we could thus drastically

reduce the number of configuration lines. Moreover, we have

run some experiments by querying the MIGNIS specification

and we were able to extract information such as the rules that

affect packets from a certain host or whether a certain rule is

already included or not in the specification.

Related work: Formal approaches to firewall policy con-

figurations have been studied in the literature. Gouda et al.

propose in [9] a method, called Structured Firewall Design,

which allows the design of a firewall with non-conflicting

and compact rules. The technique is very interesting but it

limited to stateless firewalls in which a decision is taken only

depending on the received packet, while our solution instead

is more general given that it applies also to stateful firewalls,

in which the fate of some packet also depends on the history

of previously received packets.

In [10] Jeffrey et al. introduce a formal model of firewall

policy, based on Netfilter, and investigate two properties

of firewall policy configurations, namely reachability and

cyclicity. They also provide an NP-completeness proof of the

problem of analyzing a firewall configuration with respect to

those properties.

As we have previously pointed out, an accurate semantics

of a high level language allows the security administrator to

avoid firewall misconfigurations. The work that is closer to

our proposal is the one of Cuppens et al. [11], that provides

an access control language based on the XML syntax that

is supported by the access control model Or-BAC. It also

presents an example of the mapping of the abstract policy into

some Netfilter firewall rules. In spite of the proposed language

being more generic than ours, it lacks some important elements

of Netfilter configurations such as the specification of the

network address translation (NAT). Moreover, and contrary

to our solution, no formal proof of the correctness of the

translation process between the abstract language and the low

level Netfilter language is presented.

Recently, some network programming languages, that create

an abstraction of network programs over some hardware-

oriented APIs, have been proposed. An example is the lan-

guage proposed in the Frenetic project [12], which works at

two distinct levels and is able to capture dynamic policies. The

language has evolved during the years but still it is not clear

which primitives are essential, and how new added constructs

should interact with the existing ones. Moreover, it does not

address interesting questions such as network reachability or

cyclicity. These features and others, such as reachability, traffic

isolation, and compiler correctness, have been captured by

NetKAT a new network programming language equipped with

a sound and complete equational theory [13]. However, this

language is not specifically targeted at firewalls, and thus does

not consider some issues such as NAT, and does not provide

a translation mechanism to real-world packet filters.

For what concerns firewall configuration tools, there are

many, but, as far as we know, for none of them a semantics of

their specification language has been provided. Some of those

languages may be compiled to several low level languages, and

admit any order of rules, and thus are more general than the

specification language that we propose. However, due to their

generality, their complexity is close to the one of the low level

specification, thus making their adoption harder. Moreover,

they usually also have a lack of expressiveness in other fields:

Firmato [14] only permits the use of allow rules, FLIP [15]

does not support the overlap between rule selectors, and

NeTSPoC [16] does not allow to specify custom filters over the

generated rules. Other languages are simpler but not expressive

enough, e.g., HLFL [17] does not support port ranges in its

syntax. A widely adopted user-friendly tool is Uncomplicated

Firewall (UFW) [18], the default firewall tool for Ubuntu.

However, in this tool the order of the rules is relevant, in

contrast to our solution. Shorewall [19] is a quite mature and

flexible tool that similarly to MIGNIS tries to express firewall

policies at a higher level of abstraction avoiding complex

control-flow. The idea is that each zone has a policy and rules

are exceptions to these policies. However, Shorewall is not as

declarative as MIGNIS since rules are still evaluated one after

the other. Moreover, configurations are spread into different

files which makes it harder than in MIGNIS to have a general

view of what the policy is. Pyroman [20] is a tool developed

to configure the firewall of the Center for Digital Technology

and Management in Munich. However, given that its language

is very close to the Netfilter configuration language, it is not

easy to manage. Graphical tools, such as kmyfirewall [21],

firestarter [22] or the more complete Firewall builder [23],

suffer from the same shortcoming of language-based tools in

either not being expressive enough for the sake of simplicity

or exposing low-level characteristics of Netfilter, such as the

evaluation order of chains.

There are proposals for representing access control policies

as XML documents [24], [25]. These approaches are interest-

ing but too complex given that they are meant to be applicable

in more general security policies and applications.

Systems for the management of large scale infrastructures

such as Chef [26], LCFG [27] and Puppet [28], usually

offer facilities to automatically deploy host-based firewalls on

machines, providing configuration templates or allowing for

the specification of basic rules. In both cases, there is no formal

semantics for the specification nor any attempt to transform

or verify the provided rules.

Bottom-up approaches that extract the model of the access

control policy from the configuration files of the firewalls

and allow one to reason about their application have been

proposed [29], [30], [31], [32]. We instead take a top-down

approach that allows one to write simple, easy to modify

firewall rules that are translated into a concrete Netfilter

firewall configuration.

Finally, there are other interesting low level open-source

352

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

firewalls such as ipfilter [33], Packet Filter (PF) [34], and

pfSense [35]. They were developed for Unix like systems,

OpenBSD and FreeBSD operating system respectively, and

provide stateful firewalls and network address translation

(NAT). They have low-level iptables-like rules, thus are not

very easy to manage. In our opinion a mapping from the

MIGNIS to all these firewalls is possible given their stateful

nature and their handling of NATs. This translation is an on-

going work.

This paper is organized as follows: in Section II we provide

background on Netfilter, and in Section III we give a formal

model of Netfilter chains, rules and packets. In Section IV we

introduce a simple firewall language that abstracts Netfilter

chains and the order in which rules are applied, and in

Section V we provide a translation of this language into

Netfilter model. In Section VI we illustrate MIGNIS, a publicly

available tool that translates firewall specifications into real

Netfilter configurations, and we briefly illustrate and discuss

the DAIS Department firewall configuration. We conclude in

Section VII.

II. BACKGROUND ON NETFILTER

Netfilter is a standard framework for packet filtering in

Linux kernels [8]. It provides iptables, a tool that enables

configuring Netfilter for packet filtering, network address

translation (NAT) and packet mangling. The extreme flexibility

of iptables makes it very powerful but also non-trivial to

use. In fact, Netfilter configurations are inspected following a

flow that allows for jumping into subsets of rules, going back

to the ‘callee’, similarly to what happens in function calls,

exiting when a decision on the packet is taken, and applying a

default policy when no matching rule is found. In this section

we present the basic notions behind packet filtering and NAT

with iptables. Readers familiar with it can safely skip this

section.

Chains and tables: Netfilter is based on tables, each

containing lists of rules called chains. We focus on the three

most commonly used tables: mangle for packet alteration,

nat for NATs, and filter for packet filtering. There are

five predefined chains that are inspected in specific moments

of a packet life cycle:

(i) PreRouting, as soon as the packet reaches the host;

(ii) Forward, when the packet is routed through the host;

(iii) PostRouting, when the packet is about to leave the

host;

(iv) Input, when packets are routed to the host;

(v) Ouput, when packets are generated by the host.

We have four possible execution flows: (i) → (ii) → (iii),
for packets passing through the host; (i) −→ (iv), for packets

routed to the host; (v) −→ (iii) for packets generated by the

host and (v) −→ (iii) −→ (i) −→ (iv) for packets that are both

generated by the host and routed to the host.

Tables do not necessarily contain all of the above predefined

chains: table mangle contains all of them; nat contains only

PreRouting, Input (since kernel version 2.6.34), Ouput,

filter
OUTPUT

nat
OUTPUT

mangle
OUTPUT

filter
FORWARD

mangle
FORWARD

filter
INPUT

mangle
INPUT

nat
PREROUTING

mangle
PREROUTING

nat
POSTROUTING

mangle
POSTROUTING

Local process

Routing
decision

Network

Network

nat
INPUT

Fig. 1. Chain and table traversal.

and PostRouting, whereas filter contains only Input,

Forward and Ouput. Tables are inspected in the following

order: mangle, nat, filter. Figure 1 summarizes the

resulting execution flow. After mangle-PreRouting and

nat-PreRouting there is a branching and a packet is either

processed through the mangle-Input and filter-Input
chains if it is addressed to the local host, or through the

mangle-Forward and filter-Forward chains if it is

addressed to another host. Packets forwarded to other hosts

are then inspected by mangle-PostRouting and nat-

PostRouting. The same happens to packets originated by

the local host which are first processed through mangle-

Ouput, nat-Ouput and filter-Ouput.

Rules: Chains are lists of rules that are inspected one

after the other. Rules specify criteria to match a packet and a

target. If the packet does not match the criteria, the next rule

in the chain is examined; if it does match, then the packet is

processed as specified in the target. Here we only consider a

subset of targets: ACCEPT, for accepting the packet, DROP, for

dropping it, DNAT, for destination NAT, and SNAT for source

NAT. Chains may also have a default policy that is triggered

if none of the rules in the chain matches the packet.

Example 1 (Default drop policy). By default Netfilter does
not filter packets. We can list chains of a specific table using
options -t table and -L. Here we inspect table filter:

iptables -t filter -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

All chains are empty as rules would appear under the fields
target, prot, etc. Moreover, the default policy is ACCEPT.

353

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

To change the default policy we can use option -P as follows
(we omit option -t filter as filter is the default table):
iptables -P INPUT DROP
iptables -L
Chain INPUT (policy DROP)
...

The default policy for the Input chain in table filter has
been changed to DROP. When we ping localhost we find
that all packets are lost since the Input chain is inspected
when packets are routed to the local host:
ping -v localhost
PING localhost (127.0.0.1) 56(84) bytes of data.
ˆC
--- localhost ping statistics ---
31 packets transmitted,0 received,100% packet loss ...

Example 2 (Simple accept rule). By setting the default policy
for the Input chain in table filter to DROP we forbid any
external connection to the host. To enable ssh connections it
is enough to add (-A chain option) an ACCEPT rule in the
same chain and table specifying 22 as the destination port:
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -L
Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
...

We can see that we now have a rule that accepts any tcp
packet with destination port 22, i.e., ssh and in fact it is now
possible to connect to the host via ssh. It is worth mentioning
that adding now another similar rule but with target DROP to
the end of this chain would still allow the ssh connections as
rules are inspected in the order in which they appear in the
chain.

Example 3 (NATs). Address translation is useful in various
situations. For example, when accessing the Internet from an
internal LAN, the source private address is translated into a
public IP and all packets received back are translated and
forwarded to the originating address (source NAT). Another
example is a router that redirects external requests to a certain
port of a web server located in the internal LAN (destination
NAT). Destination NATs are defined in the nat table and in
the PreRouting chain as follows:
iptables -t nat -A PREROUTING -p tcp -i eth0 -d 192.168.0.1

--dport 80 -j DNAT --to-destination 192.168.0.100:80

In this example, all connections from interface eth0 directed
to 192.168.0.1 on port 80 are translated into 192.168.0.100
on the same port. So any web connection to the first host will
be redirected to the second. Interestingly, answers from host
100 will be translated as coming from host 1 so that they will
transparently reach the browser that initiated the connection.
In fact, NAT rules are inspected only when initiating new
connections. The translations are then stored and suitably
applied to all packets belonging to the same connection. We
illustrate this below.

Conntrack: Netfilter uses the conntrack module to

keep track of the established connections. The module stores

the source and destination address of the packet that initiated

the connection plus the source and destination address of the

expected answer. This allows for correctly dealing with NATs.

Example 4 (Tracking destination NATs). For the destination
NAT of Example 3, conntrack records the following infor-
mation:
conntrack -L
...
tcp 6 431994 ESTABLISHED
src= 10.0.0.1 dst=192.168.0.1 sport=49303 dport=80
src=192.168.0.100 dst=10.0.0.1 sport=80 dport=49303

We can see that the packet originated by 10.0.0.1 and ad-
dressed to 192.168.0.1 on port 80 expects an answer from
192.168.0.100 addressed to 10.0.0.1. This information is
enough to apply the suitable translation to all subsequent
packets of this connection: for packets originated by 10.0.0.1
Netfilter translates (again) the destination into 192.168.0.100;
for packets coming from 192.168.0.100 and addressed to
10.0.0.1 Netfilter translates the source address to 192.168.0.1,
behaving this time as a source NAT. This latter translation will
be done automatically in PostRouting as an effect of the
established destination NAT.

III. A FORMAL MODEL OF NETFILTER

We now give a formal model for a significant subset of

Netfilter covering all of the predefined chains: PreRouting,

Forward, PostRouting, Input and Ouput.

A. Modelling conntrack
As explained in Section II, the conntrack module keeps

track of the active connections relating the source/destination

IP of a packet with the source/destination of the expected

response. Our abstraction of a state s is very close to the

real implementation of conntrack. A state s is a set

of tuples (src, dst, id, src′, dst′, id′) where src, dst are the

source and destination addresses of the initial packet, src′, dst′

are the source and destination of the expected answer, and

id, id′ model protocol-specific information that is used to track

established connections (e.g., the unique identifier of ICMP

echo requests and replies). By recording this information in

the state, the conntrack module is able to perform all the

PreRouting and PostRouting translations. For example,

if host a starts a new tcp connection with host b through a

source NAT with address c, then the state is enriched with

the tuple (a, b, , b, c,) as the expected answer should be a

packet from b to c. When the answer arrives, we have enough

information to transparently forward it to a.

We do not abstract packets since, as we will see later,

our model allows for any constraint that is expressible in

iptables syntax. Given a concrete packet p, we write sa(p),
da(p), id(p) to denote respectively the source and destination

addresses and identifier (if applicable) of p. When receiving p
one may check whether or not it belongs to an already

established connection by searching for tuples with matching

src, dst, id or src′, dst′, id′. Moreover, if p belongs to an

established connection, one may also determine the source and

destination of its expected answer.

354

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (Established connections). A packet p belongs to
an established connection in s, denoted p �s src, dst, if one
of the following holds:

i) (sa(p), da(p), id(p), src, dst, id) ∈ s
ii) (src, dst, id, sa(p), da(p), id(p)) ∈ s

where src, dst are the source and destination addresses of the
expected answer to p.

In the following we will write p �s to denote p �s src, dst
for some src and dst, and we will write p �s to denote that

p �s does not hold.

B. Modelling chains, tables and rules

A firewall is implemented as a series of chains, tables and

rules that are executed in a given order. Let us first consider

rules that do not perform address translation. For the sake of

simplicity we only consider targets ACCEPT and DROP.

Rules are defined in terms of address ranges n. An address

range n is a pair consisting of a set of IP addresses and a set of

ports, denoted IP(n):port(n). Given an address addr we write

addr ∈ n to denote port(addr) ∈ port(n), if port(addr) is

defined, and IP(addr) ∈ IP(n). Notice that if addr does not

specify a port (for example in ICMP packets) we only check

if the IP address is in the range. We will use the wildcard ∗
to denote any possible address or port.

Definition 2 (Basic rule). A basic rule r is a tuple
(n1, n2, φ, t) where n1 and n2 are respectively the ranges of
source and destination addresses, φ is a formula over a packet
and a state, and t ∈ {ACCEPT,DROP} is the target of the rule.

More specifically, a formula φ is any option expressible in

iptables that is checkable over a packet and possibly a

state, excluding options that:

• alter the packets, except for address translation that we

support explicitly in special translation rules defined

below; other packet alterations are not supported at the

moment;

• alter the connection state which, to the best of our

knowledge, is not possible in core iptables modules;

• alter the chains, as we do not want chains to change

on-the-fly. For example option -F would flush a chain

removing all the existing rules and altering the semantics

of the firewall.

Example 5. The iptables rule of Example 2:
iptables -A INPUT -p tcp --dport 22 -j ACCEPT

is modelled as (∗:∗, ∗:22, -p tcp, ACCEPT). We notice that
--dport 22 is the only constraint on addresses and is
included in the second component ∗:22. In this case, formula
φ is -p tcp.

We extend this to consider rules that perform address

translation. We still formalize rules as quadruples but in this

case, instead of a target, we specify the address range on which

we perform the translation. This uniform notation for rules will

simplify our semantics.

Definition 3 (Translation rule). A translation rule r is a tuple
(n1, n2, φ, t) where n1 and n2 are respectively the ranges of
source and destination addresses, φ is a formula over a packet
and a state, and t is the range to which the addresses are
translated. We abusively call this range of addresses t the
target of the rule.

Example 6. The iptables rule of Example 3:
iptables -t nat -A PREROUTING -p tcp -i eth0 -d 192.168.0.1

--dport 80 -j DNAT --to-destination 192.168.0.100:80

is modelled as (∗:∗, 192.168.0.1:80, -p tcp, 192.168.0.100:80)
assuming that eth0 is connected to the Internet, i.e., all
source addresses are possible.

A packet p matches a rule r in a state s whenever its source

and destination addresses are in the specified ranges and φ
holds.

Definition 4 (Rule match). Given a rule ri = (n1, n2, φ, t) we
say that p matches ri in state s, denoted p, s|=r ri, if sa(p) ∈
n1, da(p) ∈ n2 and φ(p, s).

We can now define how a packet is processed given a list of

rules. Similarly to real implementations of Netfilter we inspect

rules one after the other until we find a matching one, which

establishes the destiny (target) of the packet.

Definition 5 (Rule list match). Given a rule list R =
[r1, . . . , rn], we say that p matches R in state s with target t,
denoted p, s|=R t, if

∃i ≤ n . ri = (n1, n2, φ, t) ∧ p, s|=r ri ∧ ∀j < i . p, s
|=rrj .

We also write p, s
|=R if p does not match any of the rules
in R, formally ∀ri ∈ R . p, s
|=rri.

We can now define a Netfilter firewall as a set of lists of

rules, each corresponding to a chain in a certain table. For the

nat table we have lists of translation rules that we denote

by T . Albeit standard descriptions of Netfilter do not include

Input chain in nat table this is part of Netfilter since kernel

version 2.6.34, and we have decided to include it in our model.

Definition 6 (Netfilter Firewall). A Netfilter firewall F is
composed of twelve lists of rules Lman

PRE
, T nat

PRE
, Lman

INP
, T nat

INP
,

Lfil
INP

, Lman
OUT

, T nat
OUT

, Lfil
OUT

, Lman
FOR

, Lfil
FOR

, Lman
POST

, T nat
POST

, where the
subscript represents the chain name and the superscript the
table name. L lists are composed of basic rules while T lists
are composed of translation rules.

C. Netfilter firewall semantics

We can now define how a packet p is dealt by a Netfilter

firewall F in a state s. The semantics is presented in Table I. To

distinguish this semantics from the abstract and intermediate

ones introduced in the following sections, we index rule names

and transitions with ll (meaning low-level). Semantics is given

in terms of three different transition relations.

The first relation is (s, p) �δll p̃, meaning that p is accepted as

p̃ by chain δ in state s. This is where destination NAT happens

and δ can be either PRE or OUT. Rule DEstll is applied to

355

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

p �s src, dst

(s, p) �δll p[da �→ src]
[DEstll]

p �s p, s �|=T nat
δ

(s, p) �δll p
[DNewll]

p �s p, s|=T nat
δ

t dst ∈ t

(s, p) �δll p[da �→ dst]
[DNATll]

p �s src, dst

(s, p, p̃) �σll p̃[sa �→ dst]
[SEstll]

p �s p̃, s �|=T nat
σ

(s, p, p̃) �σll p̃
[SNewll]

p �s p̃, s|=T nat
σ

t src ∈ t

(s, p, p̃) �σll p̃[sa �→ src]
[SNATll]

sa(p) �∈ L da(p̃) �∈ L p, s|=Lman
PRE

ACCEPT (s, p) �PRE

ll p̃

p̃, s|=Lman
FOR

ACCEPT p̃, s|=
L

fil
FOR

ACCEPT

p̃, s|=Lman
POST

ACCEPT (s, p, p̃) �POST

ll p′

s
p,p′−→ll s � (p, p′)

[Forwardll]

sa(p) �∈ L da(p̃) ∈ L p, s|=Lman
PRE

ACCEPT (s, p) �PRE

ll p̃

p̃, s|=Lman
INP

ACCEPT (s, p, p̃) �INP

ll p′ p′, s|=
L

fil
INP

ACCEPT

s
p,p′−→ll s � (p, p′)

[Inputll]

sa(p) ∈ L da(p̃) �∈ L p, s|=Lman
OUT

ACCEPT (s, p) �OUT

ll p̃

p̃, s|=
L

fil
OUT

ACCEPT p̃, s|=Lman
POST

ACCEPT (s, p, p̃) �POST

ll p′

s
p,p′−→ll s � (p, p′)

[Outputll]

sa(p) ∈ L da(p̃) ∈ L p, s|=Lman
OUT

ACCEPT (s, p) �OUT

ll p̃

p̃, s|=
L

fil
OUT

ACCEPT p̃, s|=Lman
POST

ACCEPT (s, p, p̃) �POST

ll p′

p′, s|=Lman
PRE

ACCEPT p′, s|=Lman
INP

ACCEPT p′, s|=
L

fil
INP

ACCEPT

s
p,p′−→ll s � (p, p′)

[Localll]

TABLE I
NETFILTER FIREWALL SEMANTICS.

packets that are already defined in the state. These do not go

through the T nat
δ table as their destination address is already

recorded in the state; we translate the destination address of

these packets into the source address of their expected answer,

since this is how they should be delivered. Rule DNewll

states that new packets for which there is no rule in T nat
δ

are not translated; rule DNATll on the contrary states that for

new packets for which there is a translation rule in T nat
δ , the

destination address is translated to some dst belonging to the

range of possible destinations t.
Relation (s, p, p̃) �σll p′, means that p, previously translated

into p̃ in chains PRE or OUT, is now accepted as p′ by chain σ
in state s. This models source NAT and in this case σ is either

POST or INP. This relation is defined by rules SEstll , SNewll

and SNATll that are dual of the previous ones.

Finally, relation s
p,p′
−→ll s′ represents the state transition

from s to s′ where packet p is accepted and translated into p′.
This relation is defined through four rules corresponding to

the four possible execution flows discussed in Section II:

Forwardll is for packets that pass through the host; Inputll is

for packets routed to the host; Outputll for packets generated

by the host; and Localll for the ones both generated by and

routed to the host.

We denote by L the set of addresses corresponding to

the host, typically 127.0.0.1 and all the IPs of the various

interfaces with no port restriction. Given a packet p and its

translation p̃ after destination NAT, we select one of the four

rules depending on whether or not p and p̃ belong to L. For

example, rule Forwardll is applied whenever sa(p)
∈ L and

da(p̃)
∈ L, while rule Outputll is applied whenever sa(p) ∈ L
and da(p̃)
∈ L.

Our semantics assumes a default DROP policy, i.e., a packet

is dropped if not explicitly accepted by some basic rule in each

of the traversed chains. Address translation is instead optional:

if there is no matching translation rule the packet is delivered

unchanged. Rule Forwardll states that a packet p is accepted

as p′ if it is:

(1) accepted by mangle-PreRouting list Lman
PRE

;

(2) possibly transformed into p̃ by nat-PreRouting
list T nat

PRE
, or by the fact that it belongs to an established

connection subject to NAT (relation (s, p) �PRE
ll p̃);

(3) accepted as p̃ by mangle-Forward, filter-

Forward and mangle-PostRouting lists Lman
FOR

,

Lfil
FOR

and Lman
POST

; and

(4) possibly translated from p̃ into p′ by list T nat
POST

, or when

on an established connection (relation (s, p, p̃) �POST
ll p′).

State update is achieved through the partial function s�(p, p′)
that yields:

• s if p �s
• s∪{(sa(p), da(p), id(p), sa(pans), da(pans), id(pans))} if

p �s and pans �s where pans is the expected answer to p,

i.e., pans = p′[sa → da(p′), da → sa(p′)]

Intuitively, when p belongs to an established connection the

state is not modified and s′ = s. When instead p does not

belong to any established connection we extend the state with

a new tuple in which the source and destination addresses of p′

are swapped, as we want to store the source and destination

addresses of the expected answer pans to p. The check pans �s

avoids that the new tuple overlaps with existing connections.

This models the fact that in real scenarios it is not possible

to connect from/to a busy port or to reuse an already taken

connection identifier.

The other three rules model the corresponding three exe-

cution paths similarly to Forwardll . Notice that local commu-

nication only performs address translation in chains Ouput
and PostRouting: when the packet comes in, the chains

PreRouting and Input of table nat are not inspected.

Rule Localll correctly mimics this behaviour.

To illustrate the application of rule Forwardll and state

update let us consider the following example.

Example 7. Consider the destination NAT rule from Exam-
ple 6 in chain PreRouting of table nat and let

T nat
PRE = [(∗:∗, 192.168.0.1:80, -p tcp, 192.168.0.100:80)]

We assume that all other translation lists T are empty, and that
all basic lists L are [(∗, ∗,�,ACCEPT)], that is, they accept

356

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

every packet. Moreover, let L = {127.0.0.1:∗, 192.168.0.1:∗}
be the set of addresses of our firewall.

Consider now an empty state s and a packet p coming
from sa(p) = 1.2.3.4:5678 on the Internet and addressed
to da(p) = 192.168.0.1:80. Let us for readability write such
packet as p = (1.2.3.4:5678�192.168.0.1:80).

Since sa(p)
∈ L we can only apply either Forwardll
or Inputll . Since state s is empty, thus p �s, and given
the rule above, we have p, s|=T nat

PRE
192.168.0.100:80 which by

application of DNATll , gives (s, p) �PRE
ll p̃ for p̃ = p[da →

192.168.0.100:80] = (1.2.3.4:5678�192.168.0.100:80). In-
tuitively, p̃ is packet p after destination NAT.

Since da(p̃)
∈ L we apply rule Forwardll and this packet
will be forwarded to the web server 192.168.0.100. Also, since
T nat

POST
is empty, rule SNewll gives (s, p, p̃)�POST

ll p′ with p′ = p̃.
Finally, Lman

PRE
, Lman

FOR
, Lman

POST
, Lfil

FOR
accept every packet and so

we have s
p,p′
−→ll s

′ with

s′ = { (1.2.3.4:5678, 192.168.0.1:80, ,
192.168.0.100:80, 1.2.3.4:5678,) }

Consider now reply pr = (192.168.0.100:80�1.2.3.4:5678)
from the web server. Notice that these addresses match the sec-
ond part of the tuple in s′ meaning that pr is in an established
connection and so pr �s′ 1.2.3.4:5678, 192.168.0.1:80. By
rules DEstll we obtain (s, pr) �PRE

ll pr[da → 1.2.3.4:5678] =
pr, and by rule SEstll (s, pr, pr) �POST

ll p′r with p′r = pr[sa →
192.168.0.1:80] = (192.168.0.1:80�1.2.3.4:5678) which

gives s′
pr,p

′
r−→ll s

′.
Intuitively, the established connection in s′ applies a source

NAT to the reply packets so that they go out with the
source address that was initially contacted by 1.2.3.4, i.e.,
192.168.0.1:80. The state s′ is unchanged because this answer
belongs to an established connection.

D. Maintaining Netfilter configurations

We have shown that the semantics of Netfilter is based on

inspecting rules of various chains and tables in the order they

appear. This makes understanding and modifying a configura-

tion a non-trivial task. For example, to discover what a certain

host h can do, one cannot inspect the rules involving h in

isolation as the order and the context in which they appear is

relevant. At the same time, if we need to modify the policy

for host h it is neither immediate to understand which rule to

add nor where to add it as, even in this case, the semantics

depends on the context. Adding a new rule has implications

on the subsequent ones and might change the existing policy

in a subtle way.

Example 8 (Understanding a configuration). Consider the
following Netfilter configuration where U1, U2 and U3 are
ranges of IP addresses. We let Lfil

FOR
be the following list of

rules:
1) (U1:∗, ∗:∗, -p tcp, ACCEPT)
2) (∗:∗, ∗:139, -p tcp, DROP)
3) (U2:∗, ∗:∗, -p tcp, ACCEPT)
4) (∗:∗, ∗:21, -p tcp, DROP)
5) (U3:∗, ∗:∗, -p tcp, ACCEPT)

Intuitively, tcp packets from IPs in U1 can go everywhere
(Rule 1); tcp packets directed to port 139 are dropped (Rule 2);
tcp packets from IPs in U2 are accepted (Rule 3); tcp packets
directed to port 21 are dropped (Rule 4); and tcp packets from
IPs in U3 are accepted (Rule 5).

One relevant question for system administrators is to know
which packets are allowed to pass through a firewall and which
ones are discarded. To obtain this information, and since the
order of the rules matters, if one wants to know, for example,
what happens to packets coming from U3 it would be necessary
to consider the context and analyze the previous (overlapping)
rules. In fact, tcp packets from IPs in U3 that are neither in
U1 nor U2 are accepted only if they are not directed to ports
21 and 139. Packets from IPs in U3 that are also in U2 but
not in U1 are accepted only if they are not directed to 139,
and so on. This complicates even further when rules belong
to different chains and tables as the entire flow and possible
translations have also to be considered.

Example 9 (Maintaining a configuration). Suppose now we
want to perform the following changes to the configuration
of Example 8: (a) allow all communications from IPs in U4,
(b) allow all communications from IPs in U5 except those
addressed to port 21.

Once we understand the configuration, (a) is relatively easy
to add since it is enough to place an ACCEPT rule before any
DROP rule, i.e., before Rule 2. As for (b), achieving it is not
as immediate since packets with destination 139 are dropped
before the ones with destination 21. So if we place a new
ACCEPT rule after Rule 4 we are also dropping packets with
destination 139. A solution for this is to add a specific DROP
rule for packets coming from U5 with destination 21, as follows
(new rules are 2, 3 and 4):

1) (U1:∗, ∗:∗, -p tcp, ACCEPT)
2) (U4:∗, ∗:∗, -p tcp, ACCEPT)
3) (U5:∗, ∗:21, -p tcp, DROP)
4) (U5:∗, ∗:∗, -p tcp, ACCEPT)
5) (∗:∗, ∗:139, -p tcp, DROP)
6) (U2:∗, ∗:∗, -p tcp, ACCEPT)
7) (∗:∗, ∗:21, -p tcp, DROP)
8) (U3:∗, ∗:∗, -p tcp, ACCEPT)

Notice that the insertion of rules 2, 3, and 4 affect the policy
for IPs in U2 and U3 if they also belong to U4 or U5. The above
configuration, even if extremely small, is far from being easy
to read and maintain.

The language proposed in the next section greatly simplifies

the understanding and maintenance of firewall policies. Due

to its declarative style, it makes configurations trivial to

understand and allows one to add new requisites and to enforce

them regardless of the place where the corresponding rules are

placed.

IV. FIREWALL SPECIFICATION LANGUAGE

In order to simplify the specification of firewall policies, we

propose a simple firewall specification language that abstracts

the many different chains existing in Netfilter and the order

in which rules are applied. We later provide a translation

357

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

of this simple language into a Netfilter firewall and show

that, under reasonable assumptions, this translation preserves

the semantics, that is, firewall configurations written in this

language can be translated into equivalent configurations for

(our model of) Netfilter.

We emphasize that the declarative nature of our firewall

specification language in which the order of rules does not

matter, makes the specification of a firewall very close to its

semantics: a packet goes through (possibly translated) only if

it matches a positive rule and is not explicitly denied. This

allows administrators to write and inspect rules independently

of the order in which they are specified. Moreover, the

declarative approach makes it easy to detect possible conflicts

and redundancies, as we will discuss in Section VI, and to

query for a subset of the specification involving specific hosts,

as we exemplify below.

A. Firewall language syntax

The firewall language has the following syntax:

r ::= n1 / n2 | φ (DROP)
| n1 > n2 | φ (ACCEPT)
| n1 > [n2] nt | φ (DNAT)
| n1 [nt] > n2 | φ (SNAT)

Intuitively, the DROP rule n1 / n2 | φ forbids packets p that

satisfy φ(p, s) to flow from n1 to n2, even through NATs,

and has priority over any other rule. It applies to any packet

p either in a new or in an established connection with n1
and n2 as communication endpoints, that is, after destination

NAT and before source NAT are applied; the ACCEPT rule

n1 > n2 | φ enables new connections from n1 to n2, as long

as φ holds. We write n1 > [n2] nt | φ to indicate that nt
is behind a destination NAT (DNAT) and n1 may start new

connections with it by sending a packet satisfying φ to an

address in n2; we use n1 [nt] > n2 | φ to indicate that n1 may

start new source NAT (SNAT) connections with n2 sending

packets satisfying φ and with source address nt. Established

connections are always allowed in both directions, unless they

are explicitly dropped by DROP. A set of these firewall rules

is called a configuration.

The firewall language allows administrators to specify fire-

walls in a purely declarative style. There is no control flow:

new packets that match at least one of ACCEPT, DNAT, SNAT

and established packets always go through unless they are

explicitly dropped by DROP. Notice that, in most of the cases,

DROP is not necessary since the same effect could be obtained

by restricting the scope of the other rules in order to accept less

packets. However, DROP is very useful in practice as it makes

it possible, for example, to forbid all packets from/to specific

hosts or ports independently of the many different ACCEPT,

DNAT or SNAT rules these hosts and ports might match. This

is the reason why we give higher priority to the DROP rule.

B. Firewall language semantics

We extend the notation of Section III to the firewall

specification language. Let C be a configuration. We write

p, s|=C DROP, ACCEPT, DNAT(nt), SNAT(nt) to respectively

p, s|=C ACCEPT p, s �|=CDROP

(s, p) ↓hl p
[ACCEPThl]

p, s|=C DNAT(nt) dst ∈ nt p[da �→ dst], s �|=C DROP, SNAT

(s, p) ↓hl p[da �→ dst]
[DNAThl]

p, s|=C SNAT(nt) src ∈ nt p, s �|=C DROP, DNAT

(s, p) ↓hl p[sa �→ src]
[SNAThl]

p, s|=C DNAT(nt) dst ∈ nt p̃ = p[da �→ dst]
p̃, s �|=CDROP p̃, s|=C SNAT(n′t) src ∈ n′t

(s, p) ↓hl p̃[sa �→ src]
[DSNAThl]

p �s (s, p) ↓hl p′

s
p,p′−→hl s � (p, p′)

[NEWhl]

p �s src, dst p[da �→ src], s �|=CDROP

p′ = p[da �→ src, sa �→ dst]

s
p,p′−→hl s

[ESThl]

TABLE II
FIREWALL LANGUAGE SEMANTICS.

denote that there exists in C rule n1 / n2 | φ or rule

n1 > n2 | φ or rule n1 > [n2] nt | φ or rule n1 [nt] >
n2 | φ, such that sa(p) ∈ n1, da(p) ∈ n2, and φ(p, s).
When no such matching rules exist we respectively write

p, s
|=C DROP, ACCEPT, DNAT, SNAT.

Firewall language semantics is presented in Table II. Seman-

tics is given in terms of two relations. Relation (s, p) ↓hl p′
states that p is accepted as p′ in state s by the firewall

configuration. Differently from the low-level semantics of

Section III, this relation is derived in one step from single

or pairs (in the case of DSNAT) of firewall language rules. In

particular, rule ACCEPThl applies when p matches an ACCEPT

firewall rule of the form n1 > n2 | φ and it is not dropped. The

packet is accepted with no translation. Rule DNAThl applies

to n1 > [n2] nt | φ and checks that the translated packet is

not dropped neither has an applicable SNAT rule (otherwise

rule DSNAThl should be used). In this case the packet is

accepted as p[da → dst] where dst ∈ nt. Rule SNAThl applies

to n1 [nt] > n2 | φ and it is the dual of DNAThl . Notice that in

this case we check that the original p (before source NAT) is

not dropped: as we explained before, DROP forbids packets

between the communication endpoints and so we check it

after destination NAT and before source NAT. Rule DSNAThl

simply combines the two rules above and is applied when there

are matching DNAT and SNAT rules. This is useful when we

want to have both source and destination NAT on the same

packet.

Relation s
p,p′
−→hl s′ denotes the state transition and is

given by two rules. Rule NEWhl applies to any packet p that

establishes a new connection and is accepted as p′ by one of

the previous rules. The state is updated so to include the new

connection, using the same � operator of Table I. Rule ESThl

simply inspects the state for established connections and

performs the corresponding translation as long as there is no

358

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

explicit rule dropping this packet (again, after destination NAT

is applied).

Example 10. Consider the destination NAT rule from Exam-
ples 6 and 7. In the firewall language this is specified as

C = {∗:∗ > [192.168.0.1:80] 192.168.0.100:80 | -p tcp}
Differently from Example 7, we do not have to specify any-
thing else: the firewall will only allow packets through this
destination NAT and all the established answers to them.

Consider again an empty state s and the same packet
p = (1.2.3.4:5678�192.168.0.1:80) as in Example 7.
We have p, s|=C DNAT(192.168.0.100:80) and clearly
p′, s
|=C DROP, SNAT for p′ = p[da → 192.168.0.100:80] =
(1.2.3.4:5678�192.168.0.100:80) since there are no DROP

nor SNAT rules in C. By DNAThl we obtain (s, p) ↓hl p′ and

thus s
p,p′
−→hl s

′ with s′ as in Example 7.
A possible reply pr = (192.168.0.100:80�1.2.3.4:5678)

from the web server is now in an established connec-
tion, i.e. formally, pr �s′ 1.2.3.4:5678, 192.168.0.1:80.

By rule ESThl we directly have s′
pr,p

′
r−→hl s′ with

p′r = pr[sa → 192.168.0.1:80, da →1.2.3.4:5678] =
(192.168.0.1:80�1.2.3.4:5678).

Notice that for this specific packets the configuration C
behaves like the one of Example 7. However these two firewalls
are not equivalent: here the destination NAT is the only way
to send a packet to the server and any other packet is rejected,
apart from established ones. In Example 7 we configured all
chains to accept any packet, making the firewall completely
open.

To implement a Netfilter configuration that behaves like this
single DNAT rule in the firewall language we would need to
add 3 more rules in the Netfilter chains as discussed in the
next section.

C. Maintaining firewall configurations

We can now discuss how Examples 8 and 9 can be addressed

in a simpler way in our new formalism. We use symbol \
to exclude addresses from a set. So, for example, we write

∗ : ∗\(p) to denote all addresses except the ones with port p.

Example 11. The Netfilter configuration of Example 8 can be
written in the firewall specification language as

U1:∗ > ∗:∗ | -p tcp
U2:∗ > ∗:∗\(139) | -p tcp
U3:∗ > ∗:∗\(139, 21) | -p tcp

This configuration has exactly the same semantics as the one
in Example 8. The alternation of DROP and ACCEPT rules
in Example 8, that avoids filtering the ports in Rules 3 and 5,
is in our case explicitly declared in the port restriction rules.
In this way, our rules exactly state what is allowed and if
one wants to know what happens to packets coming from
an IP in U3 that is not in U1 nor U2, one only needs to
extract from the configuration the rules in which such an
IP appears, i.e., U3:∗ > ∗:∗\(139, 21) | -p tcp. If instead
the IP is in U3 and in U2 but not in U1 we additionally get

U2:∗ > ∗:∗\(139) | -p tcp. Contrary to the Netfilter model,
we do not need to consider the context nor the complete flow
of the packet through the firewall as in this case we have a
single step semantics which is immediate to understand.

Example 12. As for maintenance, and since our language
is order-independent, adding the requisites (a) and (b) of
Example 9 results in adding those rules anywhere in the
configuration:

U1:∗ > ∗:∗ | -p tcp
U2:∗ > ∗:∗\(139) | -p tcp
U3:∗ > ∗:∗\(139, 21) | -p tcp
U4:∗ > ∗:∗ | -p tcp
U5:∗ > ∗:∗\(21) | -p tcp

which we can concisely write as:

(U1, U4):∗ > ∗:∗ | -p tcp
U2:∗ > ∗:∗\(139) | -p tcp
U3:∗ > ∗:∗\(139, 21) | -p tcp
U5:∗ > ∗:∗\(21) | -p tcp

V. FROM THE FIREWALL LANGUAGE TO NETFILTER

In this section we show that the firewall specification

language presented in Section IV can be translated into our

Netfilter model of Section III, and that under reasonable

conditions the accepted packets are the same. Since there

are significant differences between the two approaches, e.g.,

Netfilter assumes ordering among the rules while the firewall

language does not, we propose an intermediate step where

the language is close to the one presented in Section III

but where the ordering is still irrelevant. We then map the

firewall language to this intermediate language, and finally

this intermediate language to the Netfilter model.

All technical proofs can be found in [36].

Definition 7 (Intermediate Firewall). An intermediate firewall
FI is composed of five sets of rules SD1

, SDNAT, SD, SA, SSNAT
respectively to drop packets before destination NAT, to perform
destination NAT translations, to drop and accept connections,
and finally to perform source NAT translations. Rules in
SD1

, SD and SA are basic rules while rules in SDNAT and
SSNAT are translation rules (cf. Definitions 2 and 3). Moreover,
rules in SD1

and SD have target DROP while rules in SA have
target ACCEPT.

The following definition is similar to Definition 5 but works

on sets instead of lists.

Definition 8 (Rule set match). Given a set of rules S =
{s1, . . . , sn}, we say that p matches S in state s with target t,
denoted p, s|=il

St, if

∃si ∈ S . si = (n1, n2, φ, t) ∧ p, s|=r si.

We also write p, s
|=il
S if p does not match any of the rules in

S, formally ∀si ∈ S . p, s
|=rsi.

359

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

p �s src, dst

(s, p) �DNATil p[da �→ src]
[DEstil]

p �s p, s �|=il
SDNAT

(s, p) �DNATil p
[DNewil]

p �s p, s|=il
SDNAT

t dst ∈ t

(s, p) �DNATil p[da �→ dst]
[DNATil]

p �s src, dst

(s, p, p̃) �SNATil p̃[sa �→ dst]
[SEstil]

p �s p̃, s �|=il
SSNAT

(s, p, p̃) �SNATil p̃
[SNewil]

p �s p̃, s|=il
SSNAT

t src ∈ t

(s, p, p̃) �SNATil p̃[sa �→ src]
[SNATil]

sa(p) �∈ L ∨ da(p̃) �∈ L
p �s ∨ p, s �|=il

SD1
(s, p) �DNATil p̃

p̃, s �|=il
SD

p �s ∨ p̃, s|=il
SA

(s, p, p̃) �SNATil p′

s
p,p′−→il s � (p, p′)

[Extil]

sa(p) ∈ L ∧ da(p̃) ∈ L
p �s ∨ p, s �|=il

SD1
(s, p) �DNATil p̃

p̃, s �|=il
SD

p �s ∨ p̃, s|=il
SA

(s, p, p̃) �SNATil p′

p �s ∨ p′, s �|=il
SD1

p′, s �|=il
SD

p �s ∨ p′, s|=il
SA

s
p,p′−→il s � (p, p′)

[Localil]

TABLE III
SEMANTICS OF THE INTERMEDIATE LEVEL FIREWALL.

A. Intermediate firewall semantics

Intermediate level firewall semantics is presented in Ta-

ble III and similarly to the semantics presented in Table I

for Netfilter is also given in terms of three different transition

relations (indexed by il).

The first relation is (s, p) �DNATil p̃, meaning that p is accepted

in state s as p̃ after performing a destination NAT translation.

It is similar to relation (s, p) �δll p̃ of Table I using the set

of translation rules SDNAT instead of the list T nat
δ . The second

relation is (s, p, p̃) �SNATil p′ and it means that p, previously

translated into p̃ by some destination NAT, is now accepted

in state s as p′ after performing a source NAT translation.

It is similar to relation (s, p, p̃) �σll p′ of Table I using the

set of translation rules SSNAT instead of the list T nat
σ . Finally,

relation s
p,p′
−→il s′ represents the state transition from s to

s′ where packet p is accepted and translated into p′, and is

defined through rules Extil and Localil .

Rule Extil reflects the flow of non-local packets. Rules in

SD1 are all of type DROP and will be responsible for dropping

packets that try to circumvent destination NATs. A packet to

be accepted has then either to belong to an already established

connection or to match none of these rules; if p passes this test

it will be (possibly) translated into p̃ by some destination NAT.

The resulting packet p̃ should not match any DROP rule in SD,

and is required to either match an ACCEPT rule in SA, as the

default policy is DROP, or the original packet to be in an

established connection. If p̃ passes all these tests the source

NAT translation produces the final p′.
Rule Localil applies to local packets and is equal to rule

n1 > n2 | φ
(n1, n2, φ, ACCEPT) ∈ SA

n1 / n2 | φ
(n1, n2, φ, DROP) ∈ SD

n1 > [n2] nt | φ
(n1, nt, φ, DROP) ∈ SD1

(n1, n2, φ, nt) ∈ SDNAT

(n1, nt, φ
�, ACCEPT) ∈ SA

n1 [nt] > n2 | φ
(n1, n2, φ, ACCEPT) ∈ SA (n1, n2, φ, nt) ∈ SSNAT

TABLE IV
TRANSLATION FROM FIREWALL LANGUAGE TO INTERMEDIATE LEVEL

LANGUAGE.

Extil except that the packet p′ is then sent back to the local

machine and has to pass the initial verifications. Notice that in

this case we do not apply again destination nor source NATs

as this is the expected behavior in Netfilter.

We stress three ideas from this intermediate semantics. The

first is that packets belonging to established connections are

always accepted unless explicitly dropped by a rule in SD;

the second is that we have all DROP rules (SD1
, SD) checked

before the ACCEPT rules (SA) and so acceptance implies the

non-match of any of the DROP rules; and finally that we allow

ourselves to consult the state of the original packet p even after

performing a destination or a source NAT translation. This

might look counter-intuitive but it is in fact what happens in

real Netfilter semantics. This will become clearer once we de-

fine later in this Section the translation from this intermediate

level to the Netfilter model.

B. From the firewall language into the intermediate level

We will now show that our abstract firewall language can

be encoded into this intermediate level firewall. Translation

is given by the least sets SD1
, SD, SA, SDNAT and SSNAT

satisfying the rules of Table IV.

All translations in Table IV are intuitive except the DNAT

one, where the rules added to SA and SD1
might need some

explanation. For the first, one can easily see that if a packet p
matches a DNAT rule n1 > [n2] nt | φ, the formula φ that is

matched by p before the translation should not be the same as

the φ� that is matched by p̃ after the translation. As an example

consider φ = (da(p) = IP(n2)). This formula is true before

the translation, as p is addressed to n2, but is no longer true

after the translation, where p̃ is now addressed to nt. Since we

do not want to introduce any structure in φ, the most that we

can require for this to be well-defined is φ� to be such that for

any packet p, state s, n1 > [n2] nt | φ ∈ C and dst ∈ nt, we

have φ(p, s) iff φ�(p[da → dst], s). This way we ensure that

φ is somehow preserved by the destination NAT translation.

A trivial way to enforce this condition is to require that the φ
used in DNAT rules cannot refer da(p) and define φ� = φ.

For the rule in SD1 the rationale is that the ACCEPT
rule added to SA would make it possible to send packets

directly from n1 to nt, that is more than what we want when

defining the DNAT rule n1 > [n2] nt | φ. To prevent this, we

have to drop those packets before destination NAT is applied.

However, and as a side effect, these rules in SD1 will also

360

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

disable legitimate communications of rules n1 > nt | φ and

n1 > [nt] n
′
2 | φ and n1 [n′2] > nt | φ which poses a problem

when we think about completeness.

While the soundness of our translation is always guaranteed,

i.e., if s
p,p′
−→il s

′ then s
p,p′
−→hl s

′, its completeness needs some

extra conditions. In particular, one needs to exclude the same

behaviors that are excluded by SD1
.

We say that a configuration is NAT-safe if for every packet p,

state s, and n1 > [n2] nt | φ in C, if p, s|=C ACCEPT or

p, s|=C DNAT(n′t) or p, s|=C SNAT(n′t) then sa(p) /∈ n1 ∨
da(p) /∈ nt ∨ ¬φ(p, s). Intuitively we are saying that if there

is a DNAT with end-points n1 and nt, then there can be no

other (non-drop) rule that allows direct access from n1 to nt.

The above condition can be syntactically enforced (although

more restrictively) requiring n1 ∩ n′1 = ∅ or nt ∩ n′2 = ∅
for every rule ri ∈ C, where ri = n′1 > n′2 | φ′, or ri =
n′1 > [n′2] n

′
t | φ′, or ri = n′1 [n′t] > n′2 | φ′. Notice that in

the particular case that ri = n1 > [n2] nt | φ the definition

above enforces n2 and nt to be disjoint.

Lemma 1. Let C be an abstract firewall configuration and FI
the intermediate firewall obtained by the translation presented
in Table IV. Then for any state s and packet p we have that:

(i) p, s|=il
SDNAT

nt iff p, s|=C DNAT(nt)

(ii) p, s|=il
SSNAT

nt iff p, s|=C SNAT(nt)

(iii) p, s
|=il
SD

iff p, s
|=C DROP.

In order to achieve completeness, we need to require an

extra condition. We can see that if rules n1 > n2 | φ and

n1 [nt] > n2 | φ are both present in a configuration C,

then any packet from a source in n1 to a destination in n2,

satisfying φ, can follow directly to n2 or through the SNAT.

Similarly, if n1 > n2 | φ and n1 > [n2] nt | φ are both

present in configuration C, one cannot know if the packet

will be forwarded to n2, or to an address in nt. The first

case potentially allows one to expose private IPs to the

outside, whereas the second introduces non-determinism in

the specification. To disallow these we require that for every

packet p, and state s p, s|=C ACCEPT iff p, s
|=C SNAT and

p, s
|=C DNAT. We call such configurations NAT-consistent.
This condition enforces that an ACCEPT rule is matched

iff there is no matching NAT rule, and can be syntactically

enforced (although more restrictively) by checking that if r =
n1 > n2 | φ and r′ = n′1 [n

′
t] > n′2 | φ′ or r′ = n′1 > [n′2] n

′
t | φ′

are in C then n1 ∩ n′1 = ∅ or n2 ∩ n′2 = ∅.
Finally, we say that a SNAT rule r is local if r = n1 [nt] >

n2 | φ and n1 ∩ L
= ∅ and n2 ∩ L
= ∅.
Definition 9 (Well-formedness). Let C be an abstract firewall
configuration. If C is NAT-safe, NAT-consistent, and has no
local SNAT rules, we say that C is well-formed.

Theorem 2. Let C be an abstract firewall configuration
and FI the intermediate firewall obtained by the translation
presented in Table IV. Then for any states s, s′ and packets
p, p′ we have that:

(i) if s
p,p′
−→il s

′ then s
p,p′
−→hl s

′;

(ii) if C is well-formed and s
p,p′
−→hl s

′ then s
p,p′
−→il s

′.

C. Relating intermediate and Netfilter firewalls

We now relate intermediate firewalls FI introduced earlier

in this section with the Netfilter firewalls F of Section III.

Given a packet p′ we will denote by orig(p′) the packet p′

before performing any NAT translation, that is, (i) if (s, p) �δll
p′ then orig(p′) = p, (ii) if (s, p) �δll p̃ and (s, p, p̃) �σll p′ then

orig(p′) = p; and (iii) if no NAT translation is performed then

orig(p′) = p′.

Definition 10. Let FI = 〈SD1
, SDNAT, SD, SA, SSNAT〉 be an

intermediate firewall. The translation into a Netfilter firewall
F = 〈Lman

PRE
, T nat

PRE
, Lman

INP
, T nat

INP
, Lfil

INP
, Lman

OUT
, T nat

OUT
, Lfil

OUT
, Lman

FOR
,

Lfil
FOR

, Lman
POST

, T nat
POST

〉 is defined as follows:
(i) Let Sest

D1
= {(n1, n2, φ ∧ orig(p) �s, t) | (n1, n2, φ, t) ∈

SD1
}. Let list Lman

PRE
be any possible ordering of the set

Sest
D1

; add rule (∗, ∗,�,ACCEPT) to the end of this list;
(ii) Let list T nat

PRE
be any possible ordering of the set SDNAT;

(iii) Let list Lman
INP

be the concatenation of any possible or-
dering of the set SD with any possible ordering of
the set SA ∪ {(∗, ∗, orig(p) �s,ACCEPT)}; add rule
(∗, ∗,�,DROP) to the end of this list;

(iv) Let list T nat
INP

be any possible ordering of the set SSNAT;
(v) Let Lman

OUT
be defined as (i);

(vi) Let T nat
OUT

be defined as (ii);

(vii) Let Lfil
OUT

be defined as (iii);
(viii) Let Lfil

FOR
be defined as (iii);

(ix) Let T nat
POST

be defined as (iv);
(x) Let list Lfil

INP
= Lman

FOR
= Lman

POST
= {(∗, ∗,�,ACCEPT)}.

Several remarks should be made concerning the translation

above. First, notice that the formula orig(p) �s used in

the rules of Lman
PRE

, item (i), is not in iptables language.

However, this is only for convenience of the exposition as this

formula can be written as the option -m state --state
NEW. Moreover, the module state always inspects the state

of the packet before any address translation and so it will

always return the same result regardless of being applied

to the original p, to the p̃ obtained after destination NAT

translation, or to the p′ obtained after source NAT translation.

Similarly, the formula orig(p) �s used in Lman
INP

, item (iii),
is also not written in iptables language. This is again

for convenience of the exposition as, for the same reason as

above, this formula can be written as the option -m state
--state ESTABLISHED.

Notice also that since all rules in SD1
and SD have target

DROP the order in which they are implemented (among them)

in Lman
PRE

and Lman
INP

is irrelevant; similarly for SA (Lman
INP

) where

the target is always ACCEPT. For SDNAT and SSNAT it is

trickier as the firewall semantics presented in Table II is non-

deterministic in the presence of overlapping NATs. We will

address this problem later in this Section.

Finally, we would like to make a simple remark in terms

of efficiency of the generated rules. It is clear from the

361

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

translation that we are overpopulating the lists of F . As an

example, notice that we place all the rules of SA in Lman
INP

,

but only packets with destination dst ∈ L will ever flow

through the Input chain. So, one could effectively “restrict”

the rules in Lman
INP

to those which the destination has a non-

empty intersection with L and obtain the same behavior, as

the removed rules would never be triggered. Similarly for

the other lists. We adopted to overpopulate the lists and

do this “pruning” afterwards as it would simplify both the

translation and the proofs. We can however state the following

proposition.

Proposition 3. Let F be a Netfilter firewall and Ltab
ch and T tab

ch
respectively a basic rule list and a translation rule list of chain
ch and table tab. Define

(i) Ltab
INP

= {r | r = (n1, n2, φ, t) ∈ Ltab
INP
∧ n2 ∩ L
= ∅};

(ii) Ltab
OUT

= {r | r = (n1, n2, φ, t) ∈ Ltab
OUT

∧ n1 ∩ L
= ∅};
(iii) Ltab

FOR
= {r | r = (n1, n2, φ, t) ∈ Ltab

FOR
∧ (n1 ∪ n2) ∩ L =

∅}
(iv) Similarly for T nat

INP
and T nat

OUT
.

Then for ch = INP, OUT one has that p, s|=T tab
ch
t iff

p, s|=
T tab

ch
t. For ch = INP, OUT, FOR one has that p, s|=Ltab

ch
t

iff p, s|=
Ltab

ch
t.

The presence of two NATs with different targets, for exam-

ple, n1 [nt] > n2 | φ and n1 [n′t] > n2 | φ, or n1 > [n2] nt | φ
and n1 > [n2] n

′
t | φ, is a source of non-determinism as in

the first case we do not know which source address to exhibit,

and in the second we do not know which destination to send

the packet to.
Fortunately in real Netfilter policies the behavior is deter-

ministic, as the order in which the system administrator writes

the rules reflects the option he is willing to take. With this in

mind we can force our configurations also to be deterministic

(keeping the overlapping part only in the option that we want

to enforce). A configuration is said deterministic if for every

packet p, state s, if p, s|=C DNAT(nt) and p, s|=C DNAT(n′t)
then nt = n′t. Similarly for SNAT.

These conditions require that whenever there are two match-

ing NAT rules of the same type, they have the same target.

Similarly to enforcing NAT-safety, this can be syntactically

enforced (although more restrictively) by checking that either

n1 ∩ n′1 = ∅ or n2 ∩ n′2 = ∅ or nt = n′t, whenever rules

n1 > [n2] nt | φ and n′1 > [n′2] n
′
t | φ′ are in C (analogous

for rules n1 [nt] > n2 | φ and rn′1 [n′t] > n′2 | φ′).
This notion of deterministic configurations can be extended

to intermediate firewalls. We say that an intermediate firewall

FI is deterministic if for any packet p, state s, and rules r, r′ ∈
SDNAT with r = (n1, n2, φ, t), r

′ = (n′1, n
′
2, φ

′, t′), if p, s|=r
and p, s|=r′ then t = t′; analogous for r, r′ ∈ SSNAT.

Proposition 4. Let C be a configuration and FI the interme-
diate firewall obtained by the translation presented in Table IV.

Then C is deterministic iff FI is deterministic.

Lemma 5. Let FI be an intermediate firewall and F the
Netfilter firewall obtained by the translation presented in

Definition 10. Then for any state s and packets p, p̃, p′ we
have that:

(i) for δ = PRE, OUT, if (s, p) �δll p̃ then (s, p) �DNATil p̃;
(ii) for σ = POST, INP, if (s, p, p̃) �σll p′ then (s, p, p̃) �SNATil p′

Moreover, if FI is deterministic we also have that:
(iii) for δ = PRE, OUT, if (s, p) �DNATil p̃ then (s, p) �δll p̃;
(iv) for σ = POST, INP, if (s, p, p̃) �SNATil p′ then (s, p, p̃) �σll p′

We can now state our Theorem.

Theorem 6. Let FI be an intermediate firewall and F the
Netfilter firewall obtained by the translation presented in
Definition 10. Then for any states s, s′ and packets p, p′ we
have that:

(i) if s
p,p′
−→ll s

′ then s
p,p′
−→il s

′;

(ii) if FI is deterministic and s
p,p′
−→il s

′ then s
p,p′
−→ll s

′.

Notice that the translation given in Definition 10 is always

sound (ll ⇒ il) like the one presented in Table IV (il ⇒ hl).
This implies that all the real Netfilter behaviors are captured

by the semantics of Table II.

VI. THE MIGNIS TOOL

MIGNIS, “murus ignis” (“wall of fire” in latin) is a publicly

available Python program of about 1500 lines of code, under

active development.1 The aim of MIGNIS is to take a set

of rules written in the firewall specification language and to

translate them into real iptables rules.

A. Conflicts and redundancies

In Section V we have seen that the completeness of

the translation from the firewall language to the Netfilter

model requires a number of conditions. These conditions are

syntactically checked by MIGNIS, namely NAT-safety, NAT-
consistency, no local SNAT rules, and Determinism. If one

of these conditions does not hold, MIGNIS returns an error

pointing out the inconsistency or non-determinism in the

specification, ruling out very efficiently any ill-formed policy.

There are also cases of redundancies (when, for example,

two ACCEPT rules overlap) that are harmless and can be

correctly translated. In this case MIGNIS reports the redundant

fragment of the policy so to allow administrators to remove

these overlaps and simplify the specification.

B. Translation

In the previous sections we have shown how to translate

the firewall language into the Netfilter model in a way that

preserves the semantics. It is thus enough to map the rules in

the Netfilter model into the actual iptables syntax.

Recall that we have two kinds of rules that are translated

differently depending on the list of rules they belong to:

Basic rules

(IP1:p1, IP2:p2, φ, t) ∈ Ltab
chain is translated into

iptables -t tab -A chain -s IP1 --sport p1 -d IP2
--dport p2 φ -j t

1Available for download at the address https://github.com/secgroup/Mignis

362

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

Translation rules

(IP1:p1, IP2:p2, φ, nt) ∈ T nat
δ is translated into

iptables -t nat -A δ -s IP1 --sport p1 -d IP2 --dport p2
φ -j DNAT --to-destination nt

(IP1:p1, IP2:p2, φ, nt) ∈ T nat
σ is translated into

iptables -t nat -A σ -s IP1 --sport p1 -d IP2 --dport p2
φ -j SNAT --to-source nt

There are a few special cases that we discuss below:

(1) We allow to specify the protocol out of φ as this is

more readable and handy when specifying real policies.

For example lan [proxy] > ∗ : 443 tcp specifies that

lan can connect to any other host on https port 443 via

tcp protocol. This is also useful to more precisely detect

possible overlaps of rules as it allows MIGNIS to discrim-

inate on the filtered protocols. Protocol specifications are

translated as -p protocol and are placed before any

occurring filter on ports (--sport or --dport). This

is required in iptables syntax since filters on ports are

protocol-specific;

(2) iptables does not allow one to specify arbitrary sets

of addresses. In MIGNIS we have added the possiblity

of defining lists of addresses and protocols that are pre-

compiled into sets of MIGNIS rules which, in turn, are

translated into iptables, as specified above.

We have also developed a ‘smart’ translation of set

exclusion which is not treated in the formal model yet

but might be accounted for in future work. For example,

it is possible to specify lan \ h1 to match all hosts in

lan except h1. Intuitively, this case is translated as if

the address were just lan, and the obtained translation

is added into a user defined chain c. We then insert a

rule at the beginning of this chain c that simply exits the

chain whenever the packet comes from h1. This excludes

h1 from any subsequent rule match in the chain c. In

fact, what we do for packets coming from h1 is that

we jump into c and then exit immediately. This way the

translated rule will never hit packets from h1 but will

process packets from any other host in lan.

(3) the usage of orig(p) �s and orig(p) �s respec-

tively in Lman
PRE

and Lfil
FOR

was just for convenience

in the exposition as these could be written respec-

tively as -m state --state NEW and -m state
--state ESTABLISHED. If one of the address com-

ponents is a wildcard ∗ (e.g., no source port is specified)

the corresponding option is removed;

(4) In SNAT, when there is no translation address we use the

target MASQUERADE that dynamically picks the address

for the interface through which the packets are going out.

Rule (IP1:p1, IP2:p2, φ, ε) ∈ T nat
σ is translated into

iptables -t nat -A σ -s IP1 --sport p1 -d IP2 --dport p2
φ -j MASQUERADE

(5) MIGNIS additionally allows users to specify interfaces

instead of addresses. In this case the translation is done

INTERFACES
lan eth0 10.0.0.0/24
ext eth1 0.0.0.0/0

ALIASES
mypc 10.0.0.2
router_ext_ip 1.2.3.4
malicious_host 5.6.7.8

FIREWALL
lan [.] > ext
lan / malicious_host
ext > [router_ext_ip:8888] mypc:8888 tcp

* > local:22 tcp

TABLE V
EXAMPLE OF A FIREWALL CONFIGURATION.

using options -i (input interface) and -o (output inter-

face), as it is shown later on, rather than -s and -d.

C. Firewall configuration

In Table V we present a simple example of a configuration

file. It is composed of different sections. We describe the most

relevant ones:

INTERFACES: the list of the router interfaces and sub-

nets mapping. It has 3 columns: interface alias (used

in the rules), real interface name, and subnet in the

XXX.XXX.XXX.XXX/N form;

ALIASES: generic aliases used to avoid repeating IP ad-

dresses;

FIREWALL: rules written in the firewall language;

The configuration presented in Table V is common amongst

home users:

lan [.] > ext specifies that from the lan it is allowed

to access the Internet, using a SNAT with dynamic

address (masquerade);

lan / malicious_host forbids any pc in the lan to

communicate with the malicious host;

ext > [router_ext_ip:8888] mypc:8888 tcp
allows incoming tcp connections on port 8888 that are

forwarded to mypc, i.e., 10.0.0.2;

* > local:22 tcp allows for ssh connections to the

local host.

The execution of MIGNIS consists of several steps: (i) Netfilter

is reset; (ii) default policies and some default rules are applied:

these allow the router to initiate external connections, receive

pings, and broadcast traffic which is usually considered safe

(but can be switched-off if needed); (iii) firewall language

rules are translated into iptables rules; (iv) rules that

guarantee that each IP address will originate only from its

assigned interface are added. This makes equivalent, from

a security perspective, to specify interfaces or addresses as

sources and destinations; (v) log rules are added.

Applying MIGNIS to the configuration in Table V re-

ports that two overlapping rules have been defined: lan
/ malicious_host and lan [.] > ext. In fact the

former aims at blacklisting malicious_host which is part

of ext. Overlapping information is quite useful to point out

possible redundancies and mistakes in configurations. For lack

363

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

of space, the output of MIGNIS is reported in [36] together

with the technical proofs.

D. Real case-study

In this section we describe how our theory and tool have

been applied to a real system, the computer network of the de-

partment of Enviromental Sciences, Informatics and Statistics

of the Ca’ Foscari University, Venice. Sensitive informations

were abstracted out or otherwise anonymised. The network is

part of a larger university network and is, in turn, composed

of 3 subnetworks, each of them with different purposes and

configurations. We identify the following entities:

• The whole university network, denoted by U, which is

not under our direct control.

• The main departmental network, denoted by D.

• The laboratory network, denoted by L

• A recently-allocated network which will be used mostly

by personal clients, denoted by C.

• The firewall F, which acts as a router between D, L, C
and U, and is also connected to the Internet through other

routers.

The are about 350 active hosts on D, L and C, plus a varying

number of temporary or guest’s hosts.

As it is common for real systems, these networks are

not strictly compartmentalised according to the purpose and

to the security requirements of the hosts, due to historical,

economical and technical constraints. In particular, D is a

mixed network, in which servers and faculty members’ clients,

which are not yet moved to C, coexists. Network L is also

partially mixed, because it contains both lab clients and servers

which are used mainly by students. All the aforementioned

networks support multicast transmissions, and are integrated

in a broader multicast system, used mainly for audio and video

transmissions, which is managed by the university. This setting

leads to a quite complex firewall configuration, which is rich

of exceptions for single hosts or classes of those.

The original firewall configuration, as a sequence of hand-

crafted iptables commands, was 610 lines long (counting

only the commands themselves), with 5 custom chains. After

a careful translation, we produced a 210 lines long MIGNIS

configuration which was able to match the behaviour of the

previous firewall, and which was subsequently used as our

actual firewall configuration. In a second phase, using both

the overlap-detecting capabilities of MIGNIS, analysing the

more readable configuration, and using the information given

by the annotated logs, we were able to further reduce the

configuration to 141 MIGNIS lines, which were translated

into 472 iptables commands. Some overlapping warning

were ignored in order to increase the readability and the

maintainability of the configuration, thus the configurations

could be further reduced in size by approximately 30 lines,

without changing its semantics. To this day, the department

firewall runs on this latter configuration.

In Table VI we give some snippets of the actual configu-

ration, in which some non-trivial rules are shown. Notice the

Transparent proxy for lab hosts.
labs > [ext:80] proxy:8080 tcp
labs [F] > proxy tcp
https requests should appear from the same source
labs [proxy] > *:443 tcp

acting as a DHCP server
(D,L,C):68 <> local:67 udp

acting as a multicast router (using xorp)
(*,local) <> multicast all

* > local (igmp,pim,udp) | -d multicast
local > * (igmp,pim,udp) | -s multicast

as a policy, we want to notify rejection
for unallowed outgoing tcp connections
POLICIES
(D,L,C) // ext tcp

TABLE VI
SNIPPETS OF CONFIGURATION FROM THE CASE STUDY.

straightforward way of expressing transparent proxy and https-

passthrough rules, which translate in at least 7 iptables
rules. In fact, since labs is defined as an alias for a list

of aliases of 5 disjoint IP ranges, this would have required

35 lines. The rules for the DHCP server are bidirectional,

in order to allow for all the steps of protocol handshaking.

Another interesting example is given by the rules to allow

the firewall to act as a multicast router, in which packets

not going to nor coming from a local address are still seen

in the INPUT and OUTPUT chain, respectively. Notice that

this requires some extra options to be passed to iptables.

The last example shows the specification of a REJECT policy

for some network. The intended behaviour is to immediately

notify applications running in networks behind the firewall that

the desired connection is not allowed, thus sparing the need

to wait for a timeout.

VII. CONCLUSIONS

In this paper we addressed the problem of simplifying the

specification, management and analysis phases of a firewall

system. In order to do so, we first proposed an abstract

model for Netfilter, that is rich enough to capture the concepts

of chains, rules, and packets. We then provided a multi-

step semantics for this model that emulates real Netfilter

executions.

We introduced a simple, yet expressive, declarative language

to specify firewall configurations. Contrary to concrete imple-

mentations, where the order in which rules are written is cru-

cial to determine the behavior of the system, in our language

this is not relevant, which makes specifying and maintaining

a firewall much simpler. We gave a formal semantics for

this language, and showed that under reasonable conditions,

firewall policies expressed in our language can be translated

into the proposed Netfilter model in a way that preserves

packet filtering and address translation.

The theoretical results of this work were implemented in

MIGNIS a novel, publicly available tool which translates a

high-end firewall specification expressed in our declarative

language into real iptables rules. We also described some

real-world applications of this tool, including a case study

given by the actual firewall configuration of a University

364

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

department, and we showed how the static analysis capabilities

of the software can help to spot errors in firewall policies and

to reduce the complexity of their specifications, e.g., detecting

overlaps.
While we were not the first ones presenting a language that

simplifies firewall specification, to the best of our knowledge

our model is the first that provides correctness guarantees

about the generated configuration.
We believe this work may have impact in several com-

munities. From a practical perspective we allow practitioners

to specify firewall configurations in a simple understandable

language with single-step semantics, and to generate the list

of rules that implements that configuration in Netfilter. For

theoreticians we propose a formalization of the behavior of a

firewall that is amenable to verification of the intended security

properties.
Future work: We are considering further possible opti-

mizations of the specification language and of its translation.

Since in our specification language the rule order is not rel-

evant, it is possible to automatically rearrange the underlying

Netfilter rules according to the statistics on packet matching

provided by Netfilter itself. This could lead to performance

improvements for firewalls managing very intense traffic.

Experiments on this topic are ongoing, using the system

described in the case study.
Another future work regards the extension of MIGNIS

to allow for the translation into rules for firewall systems

different from Netfilter but that have a similar semantics,

exploiting an opportunely modified abstract model. Moreover,

we are investigating the extension to networks of firewalls

as addressed by Nelson et al. [37] and similarly to models

that are based on network programming languages such as

NetKAT [13].
Finally, it would be very interesting to extend the firewall

specification language to include security goals, in the form of

information-flow properties that the firewall rules are expected

to achieve, in line with the approach proposed in [38].
Acknowledgements: The authors would like to thank

David Aspinall and James Cheney for their valuable com-

ments on earlier versions of this work. This work was par-

tially supported by FCT projects ComFormCrypt PTDC/EIA-

CCO/113033/2009 and PEst-OE/EEI/LA0008/2013 and by

PRIN project “Security Horizons”.

REFERENCES

[1] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li,
“An automated framework for validating firewall policy enforcement,” in
Proc. of the 8th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY’07). IEEE, 2007, pp. 151–160.

[2] J. Walsh, “Icsa labs firewall testing: An in depth analysis,”
http://bandwidthco.com/whitepapers/netforensics/penetration/Firewall%
20Testing.pdf, 2004.

[3] A. Liu and M. Gouda, “Diverse Firewall Design,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 9, pp. 1237–1251, 2008.

[4] T. G. F. Mansmann and W. Cheswick, “Visual analysis of complex
firewall configurations,” in Proc. of the 9th International Symposium
on Visualization for Cyber Security (VizSec’12). ACM, 2012, pp. 1–8.

[5] S. Morrissey and G. Grinstein, “Visualizing firewall configurations using
created voids,” in Proc. of the Int. Workshop on Visualization for Cyber
Security. ACM, 2009.

[6] S. Morrissey, G. Grinstein, and B. Keyes, “Developing multidimensional
firewall configuration visualizations,” in Proc. of the 2010 International
Conference on Information Security and Privacy. ISRT, 2010.

[7] T. Tran, E. Al-Shaer, and R. Boutaba, “Policyvis: Firewall security policy
visualization and inspection,” in Proc. of the 21st Large Installation
System Administration Conference (LISA ’07). Usenix association,
2007, pp. 1–16.

[8] R. Russell, “Linux 2.4 packet filtering howto.” http://www.netfilter.org/
documentation/HOWTO/packet-filtering-HOWTO.html, 2002.

[9] M. Gouda and A. Liu, “Structured firewall design,” Computer Networks,
vol. 51, no. 4, pp. 1106–1120, Mar. 2007.

[10] A. Jeffrey and T. Samak, “Model checking firewall policy configura-
tions,” in Proc. of the IEEE Symposium on Policies for Distributed
Systems and Networks. IEEE Computer Society, 2009, pp. 60–67.

[11] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège, “A formal
approach to specify and deploy a network security policy,” in Formal
Aspects in Security and Trust (FAST’04), 2004, pp. 203–218.

[12] “Frenetic, a family of network programming languages.” http://www.
frenetic-lang.org/, 2013.

[13] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in Proc. of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2014). ACM, 2014.

[14] Y. Bartal, A. Mayer, Nissim, and A. W. Firmato, “A Novel Firewall
Management Toolkit,” ACM Transactions on Computer Systems, vol. 22,
no. 4, pp. 1237–1251, 2002.

[15] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Speci-
fications of a high-level conflict-free firewall policy language for multi-
domain networks,” in Proc. of ACM Symposium on Access Control
Models and Technologies (SACMAT 2007). ACM, 2007.

[16] “Netspoc: A network security policy compiler,” http://netspoc.berlios.de,
2011.

[17] “High level firewall language,” http://www.hlfl.org, 2003.
[18] “Uncomplicated firewall,” https://help.ubuntu.com/community/UFW.
[19] “Iptables made easy, shorewall.” http://www.shorewall.net/, 2014.
[20] “Pyroman,” http://pyroman.alioth.debian.org/, 2011.
[21] “Kmyfirewall,” http://www.kmyfirewall.org/, 2008.
[22] “Firestarter,” http://www.fs-security.com/, 2007.
[23] “Firewall builder,” http://www.fwbuilder.org/, 2012.
[24] “Rule markup language,” http://www.ruleml.org/, 2011.
[25] “Oasis extensible access control markup language,” http://xacmlinfo.org/

category/xacml-3-0/, 2013.
[26] “Chef,” http://www.getchef.com/chef/, 2014.
[27] “LCFG large scale unix configuration system,” http://www.lcfg.org/,

2014.
[28] “With puppet enterprise, you pull the strings,” http://puppetlabs.com/,

2014.
[29] F. Cuppens, N. Cuppens-Boulahia, J. Garca-Alfaro, T. Moataz, and

X. Rimasson, “Handling stateful firewall anomalies.” in SEC, ser. IFIP
Advances in Information and Communication Technology, vol. 376.
Springer, 2012, pp. 174–186.

[30] S. Martı́nez, J. Cabot, J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-
Boulahia, “A model-driven approach for the extraction of network
access-control policies,” in Proc. MDSec’12. ACM, 2012, pp. 5:1–
5:6.

[31] S. Pozo, R. Ceballos, and R. M. Gasca, “Afpl, an abstract language
model for firewall acls,” in Proc. of the international conference on
Computational Science and Its Applications, Part II, ser. ICCSA ’08.
Springer-Verlag, 2008, pp. 468–483.

[32] R. M. Marmorstein, “Formal analysis of firewall policies,” Ph.D. disser-
tation, College of William and Mary, Williamsburg, VA, May 2008.

[33] “Ipfilter,” http://coombs.anu.edu.au/∼avalon/, 2009.
[34] “Packet filtering,” http://www.openbsd.org/faq/pf/filter.html, 2013.
[35] “pfSense, a proven open source firewall,” http://www.pfsense.org/, 2014.
[36] P. Adão, C. Bozzato, G. D. Rossi, R. Focardi, and F. Luccio, “Mignis: A

semantic based tool for firewall configuration (extended version),” 2014.
[37] T. Nelson, C. Barratt, D. Dougherty, K. Fisler, and S. Krishnamurthi,

“The margrave tool for firewall analysis,” in Proceedings of the 24th
International Conference on Large Installation System Administration
(LISA’10). Berkeley, CA, USA: USENIX Association, 2010, pp. 1–8.

[38] J. Guttman and A. Herzog, “Rigorous automated network security
management,” International Journal of Information Security, vol. 4, no.
1-2, pp. 29–48, 2005.

365

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:34:14 UTC from IEEE Xplore. Restrictions apply.

