
On Dynamic Flow-sensitive Floating-Label Systems

Pablo Buiras

Chalmers

buiras@chalmers.se

Deian Stefan

Stanford

deian@cs.stanford.edu

Alejandro Russo

Chalmers

russo@chalmers.se

Abstract—Flow-sensitive analysis for information-flow con-
trol (IFC) allows data structures to have mutable security
labels, i.e., labels that can change over the course of the com-
putation. This feature is often used to boost the permissiveness
of the IFC monitor, by rejecting fewer programs, and to reduce
the burden of explicit label annotations. However, when added
naively, in a purely dynamic setting, mutable labels can expose
a high bandwidth covert channel. In this work, we present an
extension for LIO—a language-based floating-label system—
that safely handles flow-sensitive references. The key insight
to safely manipulating the label of a reference is to not only
consider the label on the data stored in the reference, i.e.,
the reference label, but also the label on the reference label
itself. Taking this into consideration, we provide an upgrade
primitive that can be used to change the label of a reference in
a safe manner. To eliminate the burden of determining when
a reference should be upgraded, we additionally provide a
mechanism for automatic upgrades. Our approach naturally
extends to a concurrent setting, not previously considered by
dynamic flow-sensitive systems. For both our sequential and
concurrent calculi, we prove non-interference by embedding
the flow-sensitive system into the flow-insensitive LIO calculus,
a surprising result on its own.

I. INTRODUCTION

Modern software systems are composed of many complex

components that handle sensitive data. In many cases (e.g.,

mobile and web—both client- and server-side—applications)

these disparate components are provided by different au-

thors, of varying trustworthiness. This combination of un-

trusted code and sensitive data increases the risk of data

theft or corruption.

Information-flow control (IFC) is a promising approach

to security that provides data confidentiality and integrity

in the presence of untrusted code. In its simplest form, IFC

tracks and controls the flow of information through a system

according to a security policy, usually non-interference [14].

Non-interference states that public events should not depend

on sensitive data and dually, trusted data should not be

affected by untrusted events. Hence, a program, which may

be composed of untrusted components, is guaranteed to

preserve data confidentiality and integrity if it satisfies non-

interference. Indeed, this appealing guarantee of IFC has

recently led to significant research and development efforts

to secure web applications (e.g., [8, 13, 17, 41]) and mobile

platforms (e.g., [10, 20]), where untrusted code is the norm.

In particular, language-based systems that employ dy-

namic execution monitors to enforce IFC have become

popular [15]. This is due, in part, to the permissive-

ness of dynamic techniques (when compared to static ap-

proaches [34]), and the ability to handle complex language

features like dynamic code evaluation—a feature common

to many scripting languages.

To ensure data confidentiality and integrity, these dynamic

IFC systems associate security labels with data (e.g., by

mapping variables to labels) and monitor where such data

can flow [25, 38]. In this paper, we use the labels H and L,

to respectively denote secret and public data, and ensure that

information cannot flow form a secret entity into a public

one, i.e., the labels are ordered such that L � H and

H �� L. in general, the partial order � (label check) is

used when governing the allowed flows. We remark that our

main results use a generalized lattice that may also express

integrity concerns [25, 38], we only use the two-point lattice

for simplicity of exposition.

One of the facets of IFC analysis lies in how such labels,

when associated with objects, are treated [19]. Specifically,

some IFC systems (e.g., [7, 9, 18, 21, 36, 37, 44]) treat

labels on objects as immutable and do not allow for changes

over the lifetime of the program, i.e., labels of objects are

flow-insensitive. In contrast, other systems (e.g., [2, 3, 43])

are flow-sensitive, i.e., they allow object labels to change,

in certain conditions, according to the sensitivity of the data

that is stored in the object. In general, these flow-sensitive

systems are more permissive, i.e., they allow programs that

flow-insensitive monitors would reject.

Consider, for instance, a web application that writes to

a labeled log while servicing user requests. If the label of

the log is L, a flow-insensitive IFC monitor would disallow

writing any sensitive data (e.g., error messages containing

user-supplied data) to the log, since this would constitute a

leak. However, in a flow-sensitive system, the label of the

log can change (to H), as to accommodate the kinds of data

being written to the log. For many applications, allowing

labels to change in such a way is very desirable—it alleviates

the burden of having to, a priori, determine the precise labels

of objects (e.g., the log).

Unfortunately, naively introducing flow-sensitive objects

to a purely dynamic IFC system can turn label changes into a

covert channel [31]. Consider the code fragment of Figure 1
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where references l and h are respectively labeled L and H.

l := True
tmp := False
if h then tmp := True
if ¬ tmp then l := False

Figure 1: Flow-sensitive attack

By naively allowing ar-

bitrary label changes—

even if the new label is

more sensitive—we can

leak the contents of h into

l . In particular, suppose

that the temporary vari-

able tmp is initially la-

beled L. If the value stored in h is True, then in the first

conditional we assign True into tmp and raise its label to

H, reflecting the fact that the branch condition depends on

sensitive data. Since the tmp is True, the branch condition

for the second conditional is False and thus the value and

label of l are left intact, i.e., True at L. However, if h is

False , then the value and label of tmp remains untouched—

the code does not perform the first assignment. Instead,

the second assignment, setting l to False , is performed;

importantly, however, the label of l remains L, since the

label of the branch condition is also L. Note that in both

cases the label of l stays L, but the value of l is the same as

the secret h. In systems such as LIO and Breeze, which allow

labels to be inspected, this attack can be further simplified by

simply checking the label of tmp after the first assignment—

if the secret is true then the label will be H, otherwise it will

be L (hence why the label change is considered a covert

channel).

This attack is not new, and, to ensure that the covert chan-

nel is not introduced when adding flow-sensitive references

in such a way, several solutions have already been proposed.

These solutions fall into roughly three categories. First, the

IFC monitor can incorporate static information to ensure that

such leaks are disallowed [31]. Second, the IFC monitor can

forbid certain label changes, depending on the context (e.g.,

the program counter (pc) label [33]). For instance, the no-

sensitive upgrades policy disallows raising the label of a

public reference in a sensitive context (e.g., when a branch

condition is H) [2, 43]. And, third, the monitor can disallow

branches that depend on certain variables, for which the label

was mutated, as done by the permissive upgrades policy [3].

In this paper, we take a fresh perspective on flow-

sensitivity in the context of coarse-grained floating-label

systems, in particular, the LIO IFC system [36, 37]. LIO

brings ideas from IFC Operating Systems—notably, HiS-

tar [44], Asbestos [9], and Flume [21]—into a language-

based setting. In particular, LIO takes an OS-like coarse-

grained approach by associating a single “current” floating-

label with a computation (and everything in scope), instead

of heterogeneously labeling every variable, as typically done

by language-based systems (e.g., [27, 35]). This floating-

label is raised (e.g., from L to H) to accommodate reading

sensitive data and thus serves as a form of “taint” reflecting

the sensitive of data in context, i.e., LIO is flow-sensitive

in the current label. (This can be seen as raising the pc in

more traditional language-based systems.) In turn, the LIO

monitor uses the “current” floating-label to restrict where

the computation can write (e.g., once the current label is

raised to H it can no longer write to references labeled L).

However, and like other similar IFC systems, LIO is flow-

insensitive in object labels.

This work extends the LIO IFC system, both the sequen-

tial and concurrent versions, to incorporate flow-sensitive

references. A key insight of this work is to consider labels of

references as being composed of two elements: the reference

label describing the confidentiality of the stored value, and

another label, called the label on the label, which describes

the confidentiality of the reference label itself. Our monitor,

then only forbids changing a label of a reference if the label

on the label is below the floating-label. Inspired by [17],

we add a primitive for upgrading labels, when permitted

by our monitor. This boosts the permissiveness of LIO,

and, for instance, allows programs, such at the logging

web application described above, which would otherwise be

rejected by the IFC monitor.

To reduce the programmer’s burden of introducing up-

grade annotations, our calculus provides a means for auto-

matically upgrading references for which the computation

is about to “lose” write access, i.e., before tainting the

computation by raising the current label, we first upgrade all

the references that are less sensitive than this label. While

secure, this feature facilitates a form of label creep, wherein

all flow-sensitive references might end up with labels that

are “too high.” To further address this, we propose a block-

structured primitive which only upgrades the labels of de-

clared flow-sensitive references, while disallowing access to

undeclared ones.

By taking a fresh perspective on flow-sensitivity, we also

show that the no-sensitive-upgrade policy and our upgrade

operation can be encoded using existing flow-insensitive

constructs—the key insight is to explicitly model labels on

labels with nested labeled references. In the context of LIO,

this encoding has the added benefit of allowing us to prove

non-interference by simply invoking previous results. More

interestingly, our sequential semantics for LIO with flow-

sensitive references directly extend to the concurrent setting.

The contributions of this paper are as follows:

• We extend LIO to incorporate flow-sensitive objects,

with a focus on references. This extension not only

increases LIO’s permissiveness, but also provides a

means for safely combining flow-insensitive and flow-

sensitive references.

• We present a uniform mechanism for treating flow-

insensitive and flow-sensitive references in both se-

quential and concurrent settings. To the best of our

knowledge, we are the first to analyze the challenges of

purely dynamic monitors with flow-sensitive references

in the presence of concurrency.

• A non-interference proof for the different calculi that
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leverages the encoding of flow-sensitive references us-

ing flow-insensitive constructs.

We remark that while our development focuses on LIO, we

believe that our results generalize to other sequential and

concurrent floating-label systems (e.g., [9, 18, 21, 44]).

The rest of the paper is organized as follows. Section II

provides an introduction to LIO and its formalization. Sec-

tion III presents our flow-sensitivity extensions and enforce-

ment mechanism. Section IV extends this approach to the

concurrent setting. Section V presents the embedding of our

enforcement using flow-insensitive constructs, from which

our formal security guarantees follow. We discuss related

work in Section VI and conclude in Section VII.

II. INTRODUCTION TO LIO

LIO is a language-level IFC system, implemented as a

library in Haskell. The library provides a new monad, LIO ,

atop which programmers implement computations, which

may, in turn, use the LIO API to perform side effects (e.g.,

mutate a reference or write to a file).

The LIO monad implements a purely dynamic execution

monitor. To this end, LIO encapsulates the state necessary

to enforce IFC for the computation under evaluation. Part

of this state is the current (floating) label. Intuitively, the

current label serves a role similar to the program counter

(pc) of more-traditional IFC systems (e.g., [35]). More

specifically, the current label is used to restrict the current

computation from performing side-effects that may com-

promise the confidentiality or integrity of data (e.g., by

restricting where the current computation may write).

To soundly reason about IFC, every piece of data must

be labeled, including literals, terms, and labels them-

selves. However and in contrast to language-based systems

(e.g., [18, 26, 35]) where every value is explicitly labeled,

LIO takes a coarse-grained approach and uses the current

label to protect all values in scope. As in IFC operating

systems [9, 44], in LIO, the current label lcur is the label

on all the non-explicitly labeled values in the context of a

computation.

Further borrowing from the OS community, LIO raises

the current label to protect newly read data. That is, the

current label is raised to “float” above the labels of all

the objects read by the current computation. Raising the

current label allows computations to flexibly read data, at the

cost of being more limited in where they can subsequently

write. Concretely, a computation with current label lcur

can read data labeled ld by raising its current label to

l′cur = lcur � ld , but can thereafter only write to entities

labeled le if l′cur � le . Hence, for example, a public LIO

computation can read secret data by first raising lcur from L

to H. Importantly, however, the new current label prevents

the computation from subsequently writing to public entities.

Values v ::= True | False | () | λx .t | � | LIOTCB t
Terms t ::= v | x | t t | fix t | if t then t else t

| t ⊗ t | return t | t >>= t | getLabel
Types τ ::= Bool | () | τ → τ | � | LIO τ
Ops� ⊗ ::= � | � |�

Figure 2: Syntactic categories for base λLIO

� .

A. λLIO

� : A coarse-grained IFC calculus

We give the precise semantics for LIO by extending the

simply-typed, call-by-name λ-calculus; we call this extended

IFC calculus λLIO

� . The formal syntax of the core λLIO

� cal-

culus, parametric in the label type �, is given in Fig. 2.

Syntactic categories v , t , and τ represent values, terms,

and types, respectively. Values include standard primitives

(Booleans, unit, and λ-abstractions) and terminals corre-

sponding to labels (�) and monadic values (LIOTCB t ).1 We

note that values of the form LIOTCB t denote computations

subject to security checks. (In fact, security checks are only

applied to such values.) Terms are composed of standard

constructs (values, variables x , function application, the fix

operator, and conditionals), terminals corresponding to label

operations (t ⊗ t , where � is the join, � is the meet, and

� is the partial-order on labels), standard monadic operators

(return t and t >>= t ), and getLabel, to be explained

below. Terms annotated with · TCB are not part of the surface

syntax, i.e., such syntax nodes are not made available to

programmers and are solely used internally in our semantic

description. Types consist of Booleans, unit, function types,

labels, and LIO computations; since the λLIO

� type system is

standard, we do not discuss it further.

We include monadic terms in our calculus since (in

Haskell) monads dictate the evaluation order of a pro-

gram and encapsulate all side-effects, including I/O [24,

40]; LIO leverages monads to precisely control what

(side-effecting) operations the programmer is allowed to

perform at any given time. In particular, an LIO pro-

gram is simply a computation in the LIO monad, com-

posed from simpler monadic terms using return and bind.

do x ← t

return (x + 1)

Figure 3: do-notation

Term return t produces a

computation which simply re-

turns the value denoted by t .

Term >>=, called bind, is used

to sequence LIO computations.

Specifically, term t >>= (λx .t ′) takes the result produced by

term t and applies function λx .t ′ to it. (This operator allows

computation t ′ to depend on the value produced by t .) We

sometimes use Haskell’s do-notation to write such monadic

computations. For example, the term t >>=λx .return (x +
1), which simply adds 1 to the value produced by the term

t , can be written using do-notation as shown in Figure 3.

1We restrict our formalization to computations implemented in the LIO
monad and only consider Haskell features relevant to IFC, similar to the
presentation of LIO in [36, 37].
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E ::= E t | fix E | if E then t else t | E ⊗ t | v ⊗ E
E ::= [ ] | E | E >>= t

GETLABEL

Σ = (lcur, ...)

〈Σ|E [getLabel ]〉 −→ 〈Σ|E [return lcur ]〉

Figure 4: Evaluation contexts and getLabel reduction rule.

A top-level λLIO

� computation is a configuration of the

form 〈Σ|t〉, where t is the monadic term and Σ is the

state associated with the term. As in [36, 37], we take an

imperative approach to modeling the LIO state as a separate

component of the configuration (as opposed to it being part

of the term). We partially specify the state of λLIO

� to at least

contain the current label lcur, i.e., Σ = (lcur, ...), where ...
denotes other parts of the state not relevant at this point.

Under this definition, a top-level well-typed λLIO

� term has

the form Δ,Γ 
 t :LIO τ , where Δ is the store typing, and

Γ is the usual type environment.

We use evaluation contexts in the style of Felleisen and

Hieb to specify the reduction rules for λLIO

� [11]. Figure 4 de-

fines the evaluation contexts for pure terms (E) and monadic

(E) terms for the base λLIO

� . The definitions are standard; we

solely highlight that monadic terms are evaluated only at

the outermost use of bind (E >>= t ), as in Haskell. For the

base λLIO

� , we also give the reduction rule for the monadic

term getLabel, which simply retrieves the current label. As

shown later, it is precisely this label that is used to restrict

the reads/writes performed by the current computation. The

rest of the reduction rules for the base calculus are straight

forward and given Appendix A.

B. Labeled values

Using lcur as the label on all terms in scope makes it

trivial to deal with implicit flows. Branch conditions, which

are simply values of type Bool , are already implicitly labeled

with lcur. Consequently, all the subsequent writes cannot

leak this bit—the current label restricts all the possible

writes (even those in a branch). However, this coarse-grained

labeling approach suffers from a severe restriction: a piece

of code cannot, for example, write the public constant 42 to

a public channel labeled L after observing secret data, even

if this constant is independent from the secret—once secret

data is read, the current label is raised to H thereby “over

tainting” the public data in scope.

To address this limitation, LIO provides Labeled values. A

Labeled value is a term that is explicitly protected by a label

other than the current label. Figure 5 shows the extension

of the base λLIO

� with Labeled values.

The label terminal (label l t ) is used to explicitly label

a term. As rule (LABEL) shows, the function associates the

supplied label l with term t by wrapping the term with the

LbTCB constructor. Importantly, it first asserts that the new

v ::= · · · | LbTCB l t
t ::= · · · | label t t | unlabel t | labelOf t | upgrade t t
τ ::= · · · | Labeled τ
E ::= · · · | label E t | unlabel E | labelOf E

| upgrade E t | upgrade v E

LABEL

Σ = (lcur, ...) lcur � l

〈Σ|E [label l t ]〉 −→ 〈Σ|E [return (LbTCB
l t)]〉

UNLABEL

Σ = (lcur, ...) l′cur = lcur � l Σ′ = (l′cur, ...)

〈Σ|E [unlabel (LbTCB
l t)]〉 −→ 〈Σ′|E [return t ]〉

LABELOF

E [labelOf (LbTCB
l t)] −→ E [l ]

UPGRADE

Σ = (lcur, ...) lu = lcur � l � l
′

〈Σ|E [upgrade (LbTCB
l t) l ′ ]〉 −→ 〈Σ|E [label lu t ]〉

Figure 5: Extending λLIO

� with labeled values.

label (l ), which will used to protect t , is at least as restricting

as the current label, i.e., lcur � l .

Dually, terminal unlabel unwraps explicitly labeled val-

ues. As defined in rule (UNLABEL), given a labeled value

LbTCB l t , the function returns the wrapped term t . Since

the returned term is no longer explicitly labeled by l , and

is instead protected by the current label, lcur must be at

least as restricting as l . To ensure this, the current label

is raised from lcur to lcur � l , capturing the fact that

the remaining computation might depend on t . Moreover,

the rule highlights the fact that the current label always

“floats” above the labels of the values observed by the

current computation.

The labelOf function provides a means for inspecting

the label of a labeled value. As detailed by reduction rule

(LABELOF), given a labeled value LbTCB l t , the function

returns the label l protecting term t . This allows code to

check the label of a labeled value before deciding to unlabel

it, and thereby raising the current label. It it worth noting

that regardless of the current label in the configuration, the

label of a labeled value can be inspected—hence labels are

effectively “public.”2

Finally, upgrade allows a piece of code to raise the label

of a labeled value. Since labeled values are immutable, this

function, in effect, produces another labeled value that is

protected by a label that is more restrictive than the current

one. Since LIO has the invariant that a computation can

only create or write to entities above the current label, we

2Since labeled values can be nested, this only applies to the labels of
top-level labeled values. Indeed, even these labels are not public—they are
protected by the current label. However, since code can always observe
objects labeled at the current label, this is akin to being public.
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use lcur in addition to the supplied label (l ′) when upgrading

a labeled value.

Intuitively, we can try to define upgrade in terms of

existing terminals by first unlabeling the labeled value and

then labeling the result with the join of the current label,

existing label and new label. Unfortunately, using unlabel

would cause the current label to be raised, since we now

have (potentially) sensitive data in scope, thus preventing the

computation from performing subsequent side effects on less

sensitive locations. The raising of the current label to a point

where the computation can no longer perform useful tasks

is known as label creep [33]. Despite not compromising

security, label creep can make LIO overly restricting when

building practical applications.

To avoid label creep, LIO provides the toLabeled function

which allows the current label to be temporarily raised

during the execution of a given computation. We extend

the terms and the pure evaluation context with t ::=
· · · | toLabeled t t and E ::= · · · | toLabeled E t ,

respectively, and give the precise semantics of toLabeled

as follows:

TOLABELED

Σ = (lcur, ...) lcur � l 〈Σ|t〉 −→∗ 〈Σ′|LIOTCB t ′〉
Σ′ = (l′cur, ...) l′cur � l Σ′′ = Σ � Σ′

〈Σ|E [toLabeled l t ]〉 −→ 〈Σ′′|E [ label l t ′ ]〉

If the current label at the point of executing toLabeled l t

is lcur, toLabeled evaluates t to completion (〈Σ|t〉 −→∗

〈Σ′|LIOTCB t ′〉) and restores the current label to lcur,

i.e., toLabeled provides a separate context in which t is

evaluated. (Here, the state merge function � is defined as:

Σ � Σ′ � Σ, in the next section we present an alternative

definition.) We note that returning the result of evaluating

t directly (e.g., as 〈Σ|E [toLabeled l t ]〉 −→ 〈Σ′′|E [t ′ ]〉)
would allow for trivial leaks; thus, toLabeled labels t ′ with

l (〈Σ′′|E [ label l t ′ ]〉). This effectively states that the result

of t is protected by label l , as opposed to the current label

(l′cur) at the point t completed. Importantly, this requires that

the result not be more sensitive than l , i.e., l′cur � l .

C. Labeled references

To complete the description of LIO, we extend our λLIO

�

calculus with mutable, flow-insensitive references. Con-

ceptually, flow-insensitive references are simply mutable

Labeled values. Like labeled values, the label of a reference

is immutable and serves to protect the underlying term.

(Recall that upgrade for labeled values create another

immutable value with the new label.) The immutable label

makes the semantics straightforward: writing a term to a

reference amounts to ensuring that the reference label is as

restrictive as the current label, i.e., the reference label must

be above the current label; reading from a reference taints

the current label with the reference label.

The syntactic extensions to our calculus are shown in Fig-

ure 6. We use meta-variable s to distinguish flow-insensitive

v ::= · · · | Ref TCB

FI l a
t ::= · · · | newRefs t t | writeRefs t t | readRefs t

| labelOfs t
τ ::= · · · | Refs τ
E ::= · · · | newRefs E t | writeRefs E t | readRefs E

| labelOfs E

NEWREF-FI

Σ = (lcur, μFI , ...) lcur � l

μ′FI = μFI [a 	→ LbTCB
l t ] Σ′ = (lcur, μ

′

FI, ...)

〈Σ|E [newRefFI l t ]〉 −→ 〈Σ′|E [return (Ref TCB

FI l a)]〉
fresh(a)

READREF-FI

Σ = (lcur, μFI, ...)

〈Σ|E [readRefFI (Ref TCB

FI l a)]〉 −→ 〈Σ|E [unlabel μFI (a)]〉

WRITEREF-FI

Σ = (lcur, μFI , ...) lcur � l

μ′FI = μFI [a 	→ LbTCB
l t ] Σ′ = (lcur, μ

′

FI , ...)

〈Σ|E [writeRefFI (Ref TCB

FI l a) t ]〉 −→ 〈Σ′|E [return ()]〉

LABELOF-FI

E [labelOfFI (Ref TCB

FI l a)]) −→ E [l ]

Figure 6: Extending λLIO

� with references.

(FI) and flow-sensitive (FS) productions (the latter are de-

scribed in Section III). We also extend configurations to

contain a reference (memory) store μFI: Σ = (lcur, μFI, ...);
μFI maps memory addresses—spanned over by metavariable

a—to Labeled values.

When creating a flow-insensitive reference, newRefFI l t

creates a labeled value that guards t with label l (LbTCB l t )

and stores it in the memory store at a fresh address a

(μFI [a �→ LbTCB l t ]). Subsequently, the function

returns a value of the form Ref TCB

FI l a which simply

encapsulates the reference label and address where the term

is stored. We remark that since any references created

within a toLabeled block may outlive the toLabeled block

computation, the merge function used in rule (TOLABELED)

must also account for this, i.e., (lcur, μFI, ...)� (l′cur, μ
′

FI, ...) =
(lcur, μ

′

FI, ...).
Rule (READREF-FI) gives the semantics for reading a

labeled reference; reading the term stored at address a

simply amounts to unlabeling the value μ (a) stored at the

underlying address (unlabel μFI (a)).
Terminal writeRefFI is used to update the memory store

with a new labeled term t for the reference at location

a. Note that writeRefFI leaves the label of the reference

intact, i.e., the label of a flow-insensitive reference is never

changed, but, in turn, requires the current label to be below

the reference label when performin the write (lcur � l ).

In addition to keeping the semantics simple, this has the

additional benefit of allowing code to always inspect the

label of a reference (with labelOfFI).
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leakRef :: Ref TCB Bool → LIO Bool
leakRef href = do

tmp ← newRef L ()
toLabeled H $ do h ← readRef href

when h $ writeRef tmp ()
return $ labelOf tmp ≡ H

Figure 7: Attack on LIO with naive flow-sensitive reference

extension. We omit subscripts for clarity.

III. FLOW-SENSITIVITY EXTENSIONS

Unfortunately, the flow-insensitive references described in

the previous section are somewhat inflexible. Consider, for

example, an application that uses a reference as a log. Since

the log may contain sensitive information, it is important that

the reference be labeled. Equally important is to be able to

read the log at any point in the program to, for instance,

save it to a file. Although labeling the reference with the

top element in the security lattice () would always allow

writes to the log, and toLabeled can be used to read the log

and then write it to a file, this is unsatisfactory: it assumes

the existence of a top element, which in some practical IFC

systems, including HiStar [44] and Hails [13], does not exist.

Moreover, it almost always over-approximates the sensitivity

of the log. Hence, for example, a computation that never

reads sensitive data, yet wishes to read the log content as

to send error message to a user over the network (e.g., as

done in a web application) cannot do so—LIO prevents the

computation from reading the log, thereby tainting itself ,

and subsequently writing to the network.3 It is clear that even

for such a simple use case, having references with labels

that vary according to the sensitivity of what is stored in the

reference is useful.

However, naively implementing flow-sensitive references

can effectively introduce label changes as a covert channel.

Suppose that we allow for the label of a reference to be

raised to the current label at the time of the writeRef. So,

for example, if the label of our log reference is L and the

computation has read sensitive data (such that the current

label is H), subsequently writing to the log will raise the

label of the reference to H. Unfortunately, while this may

appear safe, as previously shown in [2, 3, 31], the approach

is unsound.

The code fragment in Figure 7 defined a function,

leakRef , that can be used to leak the contents of a reference

by leveraging the newly introduced covert channel: the label

of references. (In this and future examples we use function

when to denote an if statement without the else branch and

($) as lightweight notation for function application, i.e., f $x
is the same as f (x ).) To illustrate an attack, suppose that the

current label is public (L) and leakRef is called with a secret

(H) reference (href ). leakRef first creates a public reference

3Here, as in most IFC systems, we assume the network is public.

tmp and, then, within the toLabeled block—which is used

to ensure that the current label remains L—the label of this

reference is changed to H if the secret stored in href is

True, and left intact (L) if the secret is False . Finally, by

simply inspecting the label of the reference the value stored

in href is revealed.4

Fundamentally, the label protecting the label of an object,

such as a reference or labeled value, is the current label lcur

at the time of creation. Hence, to modify the label of the

object within some context (e.g., toLabeled block) wherein

the current label is l′cur, it must be the case that l′cur � lcur,

i.e., we must be able to write data at sensitivity level l′cur

into an entity—the label of the object—labeled lcur. This

restriction is especially important if lcur � l′cur and we

can restore the current label from l′cur to lcur, since a leak

would then be observable within the program itself. In the

case where the label of the object is immutable, as is the

case for flow-insensitive references (and labeled values), this

is not a concern: even if the current label is raised to l′cur

and then restored to lcur, we do not learn any information

more sensitive than lcur—the label of the label at the time of

creation—by inspecting the label of the reference (or value):

the label has not changed!

Thus, to extend LIO with flow-sensitive references, we

must account for the label on the label of the reference at

the time of creation, lcur. (This label is, however, immutable.)

In turn, when changing the label of the reference, we must

ensure that no data from the context at the time of the

change, whose label is l′cur, is leaked into the label of the

reference by ensuring that l′cur � lcur, i.e., we can write

data labeled l′cur into the label that is labeled lcur.

Formally, we extend the λLIO

� syntax and reduction rules

as shown in Figure 8; we call this calculus λLIO

�,FS
. When

creating a flow-sensitive reference, newRefFS l t creates

a labeled value that guards t with label l (LbTCB l t ).

However, since we wish to allow programmers to modify

the label l of the reference, we additionally store the label

on l , i.e., lcur, by simply labeling the already-guarded term

(μ′FS = μFS [a �→ LbTCB lcur (Lb
TCB l t)]), as shown in

rule (NEWREF-FS) . Primitive newRefFS returns a Ref TCB

FS a

which simply encapsulates the fresh reference address where

the doubly-labeled term is stored. Different from the con-

structor Ref TCB

FI , the constructor Ref TCB

FS does not encapsulate

the label of the reference. This is precisely because the label

of a flow-sensitive reference is mutable and must be looked

up in the store. As given by rule (LABELOF-FS), labelOfFS

returns the label of the reference after raising the current

label (with unlabel) to account for the fact that the label of

the reference l ′ is a value at sensitivity level l , i.e., we raise

the current label to the join of the current label and the label

on the label.

4The use of labelOf is not fundamental to this attack and in Appendix B
we show an alternative attack that does not rely on such label inspection.
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v ::= · · · | Ref TCB

FS t
t ::= · · · | upgrade

FS
t t | ⇑

E ::= · · · | upgrade
FS
E t | upgrade

FS
v E

NEWREF-FS

Σ = (lcur, μFI, μFS) lcur � l fresh(a)
μ′FS = μFS [a 	→ LbTCB lcur (Lb

TCB
l t)] Σ′ = (lcur, μFI, μ

′

FS)

〈Σ|E [newRefFS l t ]〉 −→ 〈Σ′|E [return (Ref TCB

FS a)]〉

READREF-FS

Σ = (lcur, μFI, μFS)
μFS (a) = LbTCB

l (LbTCB
l
′

t) l
′′ = l � l

′

〈Σ|E [readRefFS (Ref TCB

FS a)]〉 −→ 〈Σ|E [unlabel (LbTCB
l
′′

t)]〉

WRITEREF-FS

Σ = (lcur, μFI μFS)
μFS (a) = LbTCB

l (LbTCB
l
′

t
′) lcur � (l � l

′)
μ′FS = μFS [a 	→ LbTCB

l (LbTCB
l
′

t)] Σ′ = (lcur, μFI, μ
′

FS)

〈Σ|E [writeRefFS (Ref TCB

FS a) t ]〉 −→ 〈Σ′|E [return ()]〉

WRITEREF-FS-FAIL

Σ = (lcur, μFI μFS)
μFS (a) = LbTCB

l (LbTCB
l
′

t
′) lcur � (l � l

′)

〈Σ|E [writeRefFS (Ref TCB

FS a) t ]〉 −→ 〈Σ′|E [unlabel (LbTCB
l ⇑)]〉

LABELOF-FS

Σ = (lcur, μFI , μFS) μFS (a) = LbTCB
l (LbTCB

l
′

t)

〈Σ|E [labelOfFS (Ref TCB

FS a)]〉 −→ 〈Σ|E [unlabel (LbTCB
l l
′)]〉

UPGRADEREF

Σ = (lcur, μFI, μFS) μFS (a) = LbTCB
l v

lcur � l 〈Σ|upgrade v l
′〉 −→∗ 〈Σ|LIOTCB

v
′〉

μ′FS = μFS [a 	→ LbTCB
l v
′ ] Σ′ = (lcur, μFI, μ

′

FS)

〈Σ|E [upgrade
FS
(Ref TCB

FS a) l ′ ]〉 −→ 〈Σ′|E [return ()]〉

Figure 8: λLIO

�,FS
: λLIO

� with flow-sensitive references.

The rule for reading flow-sensitive references is standard.

As given by (READREF-FS), readRefFS simply raises the

current label to the join of the reference label and label on

the reference label (l � l ′) and returns the protected value.

This reflects the fact that the computation is observing both

data at level l (the label on the reference) and l ′ (the actual

term).

do r ← newRefFS H ()
readRefFS r

writeRefFS r ()

Figure 9: Permissiveness test.

The rule for writing

flow-sensitive references

deserves more attention.

First, writeRefFS ensures

that the current computa-

tion can write to the ref-

erence by checking that lcur � (l � l ′). We impose

this condition instead of the two conditions lcur � l

and lcur � l ′—which respectively check that the current

computation can modify both, the label of the reference,

UPGRADESTORE

Σ = (lcur, μFI , μFS) μFS = {a1 	→ v1, ..., an 	→ vn }
ti = upgrade

FS
(Ref TCB

FS ai) l , i = 1, ...,n

〈Σ|E [upgradeStore
FS
l ]〉 −→ 〈Σ|E [t1 >> ... >> tn ]〉

UNLABEL-AU

Σ = (lcur, μFI, μFS) l′cur = lcur � l

〈Σ|upgradeStore
FS
l′cur〉 −→

∗ 〈lcur, μFI , μ
′

FS|LIO
TCB ()〉

Σ′ = (l′cur, μFI, μ
′

FS)

〈Σ|E [unlabel (LbTCB
l t)]〉 −→ 〈Σ′|E [return t ]〉

Figure 10: λLIO

�,FS+AU
: Extending λLIO

�,FS
with auto-upgrades.

and the reference itself—since it is more permissive, yet

still safe. When imposing the two conditions independently,

certain programs, such as the one given in Figure 9, would

fail. In this program, we first create a flow-sensitive reference

labeled H when the current label is L (and thus the label

on H is L). Then, we raise the label by reading from the

reference. Finally, we attempt to write the to the reference.

Under our semantics, this program behaves as expected;

however, when imposing the two conditions independently,

the write fails—the current label does not flow to the label

on the label of the reference.

Another peculiarity with writeRefFS is the case when the

current label does not flow to the join of the reference label,

i.e., lcur �� l � l ′, and thus the write should not be

allowed. If the semantics simply got stuck, the current label

(at the point of the stuck term) would not reflect the fact

that the success of applying such rule depends on the label

l ′, which is itself protected by l . Indeed, this might lead to

information leaks and we thus we provide an explicit rule,

(WRITEREF-FS-FAIL), for this failure case that first raises

the current label (through unlabel) to l and then diverges;

in the rule, ⇑ represents a divergent term for which we do

not provide a reduction rule.

Finally, we note that writeRefFS does not modify the label

of the reference. This is, in part, because we wish to keep the

difference between flow-insensitive and flow-sensitive refer-

ences as small as possible. Instead, we provide upgrade
FS

precisely for this purpose; this primitive is used to raise

the label of the reference. Rule (UPGRADEREF) is straight

forward—it simply ensures that the current computation can

modify the label of the reference by checking that the current

label flows to the label on the label (lcur � l ).

A. Automatic upgrades

We can use λLIO

�,FS
to implement various applications that

rely on flow-sensitive references, even those that rely on

policies such as the popular no-sensitive upgrades [2]. (In

Section VI, we describe the encoding of a policy that is

similar to, but more permissive than, no-sensitive upgrades.)

Using λLIO

�,FS
, we can also safely implement our logging ap-

plication using a flow-sensitive reference. Unfortunately, our

system (and others like it) requires that we insert upgrades
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v ::= · · · | v , ... | ε τ,...

t ::= · · · | t , ... | withRefsFS t t
τ ::= · · · | τ, ...
E ::= · · · | E, t , ... | v , E, t , ... | withRefsFS E t

addrs(ε τ,...) � ∅

addrs(Ref TCB

FS a1, Ref TCB

FS a2, ...) � {a1, a2, ...}

WITHREFS-CTX

Σ = (lcur, μFI, μFS)
μ′FS = {a 	→ μFS (a) | a ∈ dom μFS ∩ (addrs(v))}

〈lcur, μFI, μ
′

FS |E [t ]〉 −→ 〈l′cur, μ
′

FI, μ
′′

FS|E [t ′ ]〉
Σ′′ = (l′cur, μ

′

FI, μ
′′

FS � μFS) v
′ = addrs

−1(dom μ′′FS)

〈Σ|E [withRefsFS v t ]〉 −→ 〈Σ′′|E [withRefsFS v
′

t
′ ]〉

WITHREFS-DONE

〈Σ|E [withRefsFS v v
′ ]〉 −→ 〈Σ|E [v ′ ]〉

TYPE-WITHREF

Δ′ = {a 	→ Δ (a) | a ∈ dom Δ ∩ (addrs(v))}
Δ′,Γ � v :RefFS τ1, ... Δ′,Γ � t : LIO τ

Δ,Γ � withRefsFS v t : LIO τ

Figure 11: Extending λLIO

�,FS
and λLIO

�,FS+AU
with withRefsFS .

before we raise the current label so that it is possible to

write references in a more-sensitive context, e.g., to modify

a public reference (with label on the label L) after reading

a secret. In the case of the logging example, we would need

to upgrade the label before reading any sensitive data, if we

later wish to write to the log.

Inspired by [17], we thus provide an extension to λLIO

�,FS

that can be used to automatically upgrade references. This

extension, called λLIO

�,FS+AU
, is given in Figure 10. Intuitively,

whenever the current label is about to be raised, we first

upgrade all the references in the μFS store and then raise

the current label. Rule (UPGRADESTORE) upgrades ev-

ery reference in the flow-sensitive store μFS by executing

t1 >> t2 >> · · · >> tn , where ti = upgradeFS (Ref TCB

FS ai) l .
Term t >> t ′ is similar to bind except that it discards the

result produced by t . Since unlabel is the only function

that raises the current label, we augment the (UNLABEL)

rule with (UNLABEL-AU), given in Figure 10. This ensures

that as the computation progresses it does not “lose” write

access to its references. Returning to our logging example,

with auto-upgrades, the reference used as the log never needs

to be explicitly upgraded and can always be written to—an

interface expected of a log.

Recall, however, that toLabeled is used to avoid label

creep by allowing code to only temporarily raise the current

label. Unfortunately, with auto-upgrades, when the current

label gets raised within a toLabeled block, the upgrades of

the flow-sensitive references remain even after the current

label is restored. Thus, reading from any flow-sensitive refer-

ence after the toLabeled block will raise the current label to

(at least) the current label at the end of the toLabeled block

(since all references are upgraded every time that the current

label gets raised). This can be used to carry out a poison pill-

like attack [18], wherein the (usually untrusted) computation

executing within the toLabeled block will render the outer

computation useless by imposing label creep. (We note that

this attack is possible in λLIO

�,FS
without the auto-upgrade, but

requires the attacker to manually insert all the upgrades.)

To address this issue, we extend λLIO

�,FS
(and thus λLIO

�,FS+AU
)

with withRefsFS v t which takes a bag (strict heterogeneous

list) v of references and a computation t , and executes t

in a configuration where the flow-sensitive reference store

only contains the subset of references v . This extension

and type rule (TYPE-WITHREF), which ensures that a term

cannot access a reference outside its store, are shown in

Figure 11. A bag is either empty ε τ,..., or it may contain a

set of references of (potentially) distinct types v , . .. Rules

(WITHREFS-CTX) and (WITHREFS-DONE) precisely define

the semantics of this new primitive, where meta function

addrs(·) converts a bag of references to a set of their corre-

sponding addresses, addrs
−1(·) performs the inverse conver-

sion, and � is used to merge the stores, giving preferences

to the left-hand-side store, i.e., when there is a discrepancy

on a stored value between both stores, it chooses the one

appearing on the left-hand-side. We note that (WITHREFS-

CTX) is triggered until the term under evaluation is reduced

to a value, at which point (WITHREFS-DONE) is triggered,

returning said value; we specify this big-step rule in terms of

small-steps to facilitate the formalization of our concurrent

calculus (see Section IV). Aside from the modeling of

bags, the withRefsFS primitive is straightforward and mostly

standard; indeed, the programming paradigm is similar to

that already present in some mainstream languages (e.g.,

C++’s lambda closures require the programmer to specify

the captured references). Lastly, we note that the poison pill

attack can now be addressed by simply wrapping toLabeled

with withRefsFS, which prevents (untrusted) code within the

toLabeled block from upgrading arbitrary references.

IV. CONCURRENCY

In this section, we consider flow-sensitive references in

the presence of concurrency (e.g., a web application in which

request-handling threads share a common log). Concretely,

we extend our sequential λLIO

�,FS
and λLIO

�,FS+AU
calculi with

threads and a new terminal, forkLIO, for dynamically cre-

ating new threads, as in the concurrent version of LIO [37].

Intuitively, this concurrent calculus λ‖-LIO

� simply defines a

scheduler over sequential threads, such that taking a step

in the concurrent calculus amounts to taking a step in a

sequential thread and context switching to a different one.

For brevity, we restrict our discussion in this section to the

case where the underlying sequential calculus is λLIO

�,FS+AU
,

since this calculus extends λLIO

�,FS
.

Figure 12 shows our extended concurrent calculus,

λ‖-LIO

� . A concurrent program configuration has the form
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t ::= · · · | forkLIO t | toLabeled t t

FORKLIO

〈Σ|E [forkLIO t ]〉
fork(t)
−→ 〈Σ|E [return ()]〉

WITHREFS-OPT

v = addrs
−1((addrs(v1)) ∩ (addrs(v2)))

〈Σ|E [withRefsFS v t ] −→ 〈Σ′|E [t ′ ]〉〉

〈Σ|E [withRefsFS v1 (withRefsFS v2 t)]〉 −→ 〈Σ′|E [t ′ ]〉

T-STEP

Σ = (lcur, μFI, μFS) 〈Σ|withRefsFS v t〉 −→ 〈Σ′|t ′〉
Σ′ = (l′cur, μ

′

FI , μ
′

FS) v
′ = addrs

−1(dom μ′FS)

{μFI , μFS |〈lcur, v , t〉, k2, ...} −→ {μ′FI , μ
′

FS |k2, ..., 〈l
′

cur, v
′, t ′〉}

T-STUCK

{μFI, μFS |〈lcur, v ,⇑〉, k2, ...} −→ {μFI , μFS |k2, ...}

T-DONE

{μFI, μFS|〈lcur, v , v
′〉, k2, ...} −→ {μFI , μFS |k2, ...}

T-FORK

Σ = (lcur, μFI , μFS)

〈Σ|withRefsFS v t〉
fork(t′)
−→ 〈Σ′|t ′′〉 Σ′ = (l′cur, μ

′

FI , μ
′

FS)
v
′ = addrs

−1(dom μ′FS) knew = 〈l
′

cur, v
′, t ′〉

{μFI , μFS|〈lcur, v , t〉, k2, ...} −→ {μ′FI , μ
′

FS |k2, ..., 〈l
′

cur, v
′, t ′′〉, knew}

Figure 12: Semantics for λ‖-LIO

� , parametric in the flow-

sensitivity policy, i.e., with and without auto-upgrade.

{μFI, μFS|k1, k2, ...}, where μFI and μFS are respectively the

flow-insensitive and flow-sensitive stores shared by all the

threads k1, k2, ... in the program. Since the memory stores

are global, a thread k is simply a tuple encapsulating the

current label of the thread lcur, the term under evaluation

t , and a bag of references v the thread may access, i.e.,

k = 〈lcur, v , t〉.

The reduction rules for concurrent programs are mostly

standard. Rule (T-STEP) specifies that if the first thread in

the thread pool takes a step in λLIO

�,FS+AU
, the whole concurrent

program takes a step, moving the thread to the end of the

pool. We note that the thread term t executed with its

stored current label lcur, and a subset of the flow-sensitive

memory store, by wrapping it in withRefsFS. While the

use of withRefsFS makes the extension straightforward, one

peculiarity arises: since (T-STEP) always wraps the thread

term t with withRefsFS, if t does not reduce in one step

to a value, and instead reduces to a term t ′, the next

time the thread is scheduled, we will superfluously wrap

withRefsFS t ′ with yet another withRefsFS—thus preventing

the thread from making progress! To address this problem,

we extend the calculus with rule (WITHREFS-OPT) that

leakRef :: Ref TCB Bool → LIO Bool
leakRef href = do

tmp ← newRef L ()
forkLIO $ do h ← readRef href

when h $ writeRef tmp ()
delay
return $ labelOf tmp ≡ H

Figure 13: Attack on concurrent LIO with naive flow-

sensitive reference extension.

collapses nested withRefsFS blocks.5

Rules (T-DONE) and (T-STUCK) specify that once a

thread term has reduced to a value or got stuck, which is

represented by ⇑, the scheduler removes it from the thread

pool and schedules the next thread.

As shown in Figure 12, to allow for dynamic thread

creation, we extend λLIO

�,FS+AU
’s terms with forkLIO, and add

a new reduction rule that sends an event to the scheduler,

specifying the term to execute in a new thread.6 Rule (T-

FORK) describes the corresponding scheduler rule, triggered

when a fork (t ′) event is received. Here, we create a new

thread knew whose current label l′cur and partition of the store,

i.e., bag of references v ′, is the same as that of the parent

thread; the term evaluated in the newly created thread is

provided in the event: t ′. Subsequently, we add the new

thread to the thread pool.

The final modification in extending λLIO

�,FS+AU
to λ‖-LIO

�

given in Figure 12 is the removal of toLabeled from

the underlying calculus. As described in [37], we must

remove toLabeled to guarantee termination-sensitive non-

interference. Importantly, however, forkLIO with synchro-

nization primitives (e.g., flow-insensitive labeled MVars, as

discussed in [37]) can be used to provide functionality

equivalent to that of toLabeled. Due to space constraints we

omit synchronization primitives from λ‖-LIO

� ; we only remark

that extending λ‖-LIO

� to provide flow-sensitive labeled MVars

follows in a straightforward way.

Since the flow-sensitive attack in Figure 7 relied on

toLabeled to restore the current label, a natural question,

given that we remove toLabeled, is whether we can use the

naive flow-sensitive reference semantics of Section III for

concurrent LIO. As shown by the attack code in Figure 13,

in which we use forkLIO instead of toLabeled to address a

potential label creep, the fundamental problem remains: the

label on the reference label is not protected! This precisely

motivated our principled approach of extending λLIO

�,FS+AU
to a

concurrent setting as opposed to extending concurrent LIO

with flow-sensitive references.

5This change also requires modifying (WITHREFS-CTX) to not be
triggered when the term being evaluated is a withRefsFS term.

6In fact, the reduction rule for λLIO

�,FS+AU
must be changed to account for

events. However, since fork is the only event in our system, we treat −→
as implicitly carrying an empty event.
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V. FORMAL RESULTS

In this section, we show that our flow-sensitive enforce-

ment can be embedded into the flow-insensitive version of

LIO. Additionally, we provide security guarantees in terms

of non-interference definitions by reusing previous results

about LIO.

A. Embedding into λLIO

�

We now show that we can implement our flow-sensitive

semantics in terms of flow-insensitive references. More con-

cretely, every flow-sensitive reference with label ld created

in a context where the current label is lo (and thus stored

in μFS as LbTCB lo (LbTCB ld t)), can be represented by a

flow-insensitive reference with label lo , whose contents are

another flow-insensitive reference containing t and labeled

ld .

Figure 14 shows our implementation of the flow-sensitive

reference operations in this setting. For a given store Σ,

we define the �−�Σ
FI function, which given a term t in λLIO

�,FS
,

produces a term �t�ΣFI in λLIO

� , which is obtained by expanding

the definitions of flow-sensitive operations in terms of flow-

insensitive ones. This function is applied homomorphically

in all other cases. We use the WrapRef to mark the flow-

insensitive references that are being used to represent flow-

sensitive ones, so as to distinguish them from ordinary flow-

insensitive references. The functions wrap and unwrap are

used to add and remove this boundary encoding. In the

embedding of writeRefFS, we use toLabeled to make any

changes to the current label (possibly caused by reading the

outer reference) local to this operation. Inside toLabeled,

the code fetches the inner reference (readRefFI), and then

performs the actual write of the new value. If this fails, the

computation diverges, but, importantly, the current label was

raised (with readRefFI) to reflect the fact that the label on

the label of the reference was observed. The embedding of

upgrade
FS follows similarly, but further relies on upgradeFI

which, like the upgrade function for labeled values, creates

a new reference with the same contents as the supplied

reference i , but whose label is upgraded. For the sake of

brevity, we do not explain the mapping in further detail, but

remark that it is directly based on the rules in Figure 8.

We extend this definition naturally to convert

λLIO

�,FS
environments into λLIO

� environments, by

having �(lcur, μFI, μFS)�FI � (lcur, μ
′

FI) where

μ′FI = μFI [a1 �→ v1, ..., an �→ vn ] for each binding of the

form ai �→ LbTCB li vi in μFS . Note that the domains of μFI

and μFS are disjoint because the fresh(·) predicate that we

use in the semantics is assumed to produce globally unique

addresses.

In order to prove that our implementation is correct with

respect to the semantics, we show that, if we take a program

with flow-sensitive operations, and expand those operations,

replacing them by the code in Figure 14, then its behavior

corresponds with the flow-sensitive semantics.

wrap r � WrapRef r

unwrap (WrapRef r) � r

�Ref TCB

FS r�
(lcur,μFI ,μFS)
FI � wrap (Ref TCB

FI (labelOfFI μFS (r)) r)

�newRefFS�
Σ
FI � λl t .do

i ← newRefFI l t
lcur ← getLabel
o ← newRefFI lcur i
return (wrap o)

�readRefFS�
Σ
FI � λr .readRefFI (unwrap r) >>= readRefFI

�writeRefFS�
Σ
FI � λr t .let o = unwrap r in do

lcur ← getLabel
toLabeled (lcur � (labelOf o)) $ do
i ← readRefFI o
writeRefFI i t

�labelOfFS�
Σ
FI � λr .

readRefFI (unwrap r)>>= return.labelOfFI

�upgrade
FS

�ΣFI � λr l .let o = unwrap r
l ′ = labelOf o in do

lcur ← getLabel
if (lcur � l) then ⇑ else

toLabeled l ′ $ do
i ← readRefFI o

i ′ ← upgrade
FI
i l

writeRefFI o i ′

�withRefsFS v t�
(lcur,μFI ,μFS)
FI � �t�

(lcur,μFI ,μ
′
FS
)

FI

where
μ′FS = {a 	→ μFS (a) | a ∈ dom μFS ∩ (addrs(v))}

Figure 14: Implementation mapping for flow-sensitive ref-

erences. For all other terms, the function is applied homo-

morphically.

Theorem 1 (Embedding λLIO

�,FS
in λLIO

� ): Let t be a well-

typed term in λLIO

�,FS
. Then if 〈Σ|t〉 −→∗ 〈Σ′|v〉, we have

〈�Σ�FI|�t�
Σ
FI〉 −→

∗ 〈�Σ′�FI|�v�ΣFI 〉, and if 〈Σ|t〉 −→∗ 〈Σ′|⇑〉,
then 〈�Σ�FI|�t�

Σ
FI〉 −→

∗ 〈�Σ′�FI|⇑〉.
While straight forward, this theorem highlights an important

result: in floating label systems, flow-sensitive references can

be encoded in a calculus with flow-insensitive references and

explicitly labeled values.

B. Security guarantees for λLIO

�,FS
, λLIO

�,FS+AU
and λ‖-LIO

�

From previous results, we know that LIO satisfies

termination-insensitive non-interference (TINI) in the se-

quential setting, and termination-sensitive non-interference

(TSNI) in the concurrent setting. By using the embedding

theorem we can extend these results for LIO with flow-

sensitive references.

For completeness, we now present our non-interference

theorems, as straightforward applications of the theorems in

previous work. Our security results rely on the notion of

l -equivalence for terms and configurations, which captures

the idea of terms that cannot be distinguished by an attacker

which can observe data at level l . A pair of terms t1, t2 is

said to be l -equivalent (written t1 ≈l t2) if, after erasing
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all the information more sensitive than l from t1 and t2, we

obtain syntactically equivalent terms. This definition extends

naturally to configurations.

Intuitively, non-interference means that an attacker at level

l cannot distinguish among different runs of a program with

l -equivalent initial configurations.

Theorem 2 (TINI for λLIO

�,FS
): Consider two well-typed

terms t1 and t2 in λLIO

�,FS
which do not contain any · TCB

syntax nodes, such that t1 ≈l t2, where l is the attacker

observation level. Let Σ be an initial environment, and let

〈Σ|t1〉 −→
∗ 〈Σ1|v1〉 and 〈Σ|t2〉 −→

∗ 〈Σ2|v2〉

Then, we have that 〈Σ1|v1〉 ≈l 〈Σ2|v2〉.
Proof: By expanding all the flow-sensitive operations

in t1 and t2 using their definition given in Figure 14,

we get terms in λLIO

� , which by Theorem 1 has equivalent

semantics. Therefore, the result follows from the λLIO

� TINI

result of [36].

Corollary 1 (TINI for λLIO

�,FS+AU
): The previous non-

interference result can be easily extended to λLIO

�,FS+AU
.

In λLIO

�,FS+AU
, the unlabel operation triggers the automatic

upgrades mechanism, which performs the upgrade

operation for every flow-sensitive reference in scope before

actually raising the current label. Regardless of how unlabel

is used, we note that the resulting term (after inserting the

necessary upgrades), is just an λLIO

�,FS
term. Therefore, the

main TINI result for λLIO

�,FS
applies.

For the concurrent result, we need a supporting lemma

which states that the current label is always at least as

sensitive as the label of every reference in scope. Formally,

Lemma 1: Let t be a well-typed term in λ‖-LIO

� , Σ =
(lcur, μFI, μFS) an initial environment and a the address

of a flow-sensitive reference r in Σ, where μFS (a) =
LbTCB lo (Lb

TCB ld v). Then, if 〈Σ|t〉 −→∗ 〈l′cur, μ
′

FI, μ
′

FS|t
′〉,

we have that lo � l′cur.

Proof: Note that the result holds immediately after

creating r , since the current label is the label on the label

of r , i.e., lo = lcur. It is easy to show that lo is immutable,

since there are no reduction rules that modify it. Moreover,

given that the current label is monotonic, the only way in

which lo � lcur can cease to hold is if r is accessed from a

different thread. But in order to pass r to a different thread,

a labeled object must be used as intermediary, and the label

of such object would have to be at least lcur, the current

label in the thread that created r . As a result, if we were to

pass r to another thread in this way, then the target thread

would also have to be tainted by lcur, and the result would

still hold.

We can now prove our non-interference theorem for λ‖-LIO

� .

This result is slightly stronger than TINI, since it implies that

there can be no termination or internal timing leaks.

Theorem 3 (TSNI for λ‖-LIO

� ): Consider two well-typed

terms t1 and t2 in λ‖-LIO

� which do not contain any · TCB syntax

nodes, such that t1 ≈l t2, where l is the attacker observation

level. Let Σ = (lcur, μFI, μFS) be an initial environment, and

let

{μFI, μFS |〈lcur, addrs
−1(dom μFS), t1〉} −→

∗ M1

Then, there exists some configuration M2 such that

{μFI, μFS|〈lcur, addrs
−1(dom μFS), t2〉} −→

∗ M2 and M1 ≈l

M2.

Proof: Because of Lemma 1, and looking at the em-

bedding of writeRefFS and upgradeFS , we note that the first

readRefFI operation in each toLabeled block will be trying

to raise the current label to l . However, since l � lcur, these

operations will never effectively raise the current label. This

means that using toLabeled is not necessary to preserve the

semantics, because there is no need to restore the current

label afterwards. As a result, and after removing toLabeled

in these two cases, we note that the embedding produces

valid concurrent λLIO

� terms (which does not have toLabeled).

Finally, by expanding all the flow-sensitive operations

in t1 and t2 using their definition given in Figure 14, we

get terms in concurrent λLIO

� . Therefore, the result follows

from the termination-sensitive non-interference of concur-

rent λLIO

� [37]. We remark, however, that our embedding

includes no synchronization to ensure atomicity of the

flow-sensitive operations, so certain interleavings that break

semantic equivalence are possible. Importantly, this does not

affect security.

The detailed proofs for the results in this section can be

found in the extended version of the paper [6].

C. Permissiveness

In Section VI we compare the permissiveness of our

system with previous flow-sensitive IFC systems. Here, we

solely remark that the above results imply that our flow-

sensitive calculus is as permissive as flow-insensitive LIO. In

particular, any flow-insensitive LIO program can be trivially

converted to a flow-sensitive LIO program (without auto-

upgrades) by using flow-sensitive references instead of flow-

insensitive ones. Since these references would never be up-

graded, they will behave just like their flow-insensitive coun-

terparts. This means that all existing LIO programs can be

run in our flow-sensitive monitor. This includes Hails [13],

a web framework using LIO, on top of which a number of

applications have been built (e.g., GitStar7, a code-hosting

web platform, LearnByHacking8, a blog/tutorial platform

similar to School of Haskell, and LambdaChair [39], an

EasyChair-like conference review system).

VI. RELATED WORK

The label on the label could be seen as a fixed label

that dictates which principals can read or modify the policy

(inner label) of a flow-sensitive entity. In a different setting,

7www.gitstar.com
8www.learnbyhacking.org

75

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 19:03:57 UTC from IEEE Xplore.  Restrictions apply. 



trust management frameworks have explored this idea [4],

where role-based rules are labeled to restrict the view

on policies—the mere presence of certain policies could

become inappropriate conduits of information.

Several authors propose an existence security label to re-

move leaks due to the termination covert channel [29, 30] or

certain behaviors in dynamic nested data structures [16, 32].

While the existence security label and the label on the

label are structurally isomorphic, they are used for different

purposes and in different scenarios, e.g., it is not allowed to

query labels in [16, 29, 30, 32].

Hunt and Sands [19] show the equivalence (modulo code

transformation) between flow-sensitive and flow-insensitive

type-systems. In a dynamic setting, Russo and Sabelfeld [31]

formally pin down the menace of mutable labels for purely

dynamic monitors. They prove that monitors require static

analysis in order to be more permissive than traditional

flow-sensitive type-systems. Targeting purely dynamic mon-

itors, Austin and Flanagan [2, 3] describes the label-

change policies no-sensitive-upgrade (originally proposed

by Zdancewic [43]) and permissive-upgrade, where the latter

is provably more permissive than the former, i.e., it rejects

fewer programs. The no-sensitive-upgrade discipline stops

execution on any attempt to change the label of a public

variable inside a secret context. In contrast, permissive-

upgrade allows such changes, marking the altered variables

so that the program cannot subsequently branch on them.

The marking consists in replacing the security label of the

variables with P, where L � H � P. Austin and Flanagan

propose a privatization operation to boost the permissiveness

of permissive-upgrade. It is not clear how this technique

generalizes to arbitrary lattices. Moreover, the privatization

operation can only enforce non-interference when outputs

are suppressed after branching on a marked flow-sensitive

reference. Unfortunately, none of the mentioned work con-

sider flow-sensitive in the presence of concurrency. In fact,

the notion of permissive-upgrade does not easily generalize

to the concurrent setting, as this would require tracking

occurrences of branches across threads.

The flow-sensitive extension for LIO is capable of en-

coding a generalized version of no-sensitive-upgrade by

using an extra level of indirection. To illustrate this, we

consider all the references as three-level nested labeled

values—easily expressible in λLIO

�,FS
. Specifically, we use flow-

sensitive references of type RefFS (Labeled l a), where

μFS (a) = LbTCB l (LbTCB l (LbTCB l ′ t)) for a given

flow-sensitive reference at address a. Observe that the first

and second label of the nested structure are the same—

this is effectively like having collapsed the first and second

levels of the structure. For creating a reference, we execute

r ← newRefFS lcur lv , where lcur is the current label and

lv is just a labeled value of the form LbTCB l ′′ t for an

arbitrary label l ′′. The newly created reference is of the

form LbTCB lcur (Lb
TCB lcur lv). As in the no-sensitive-upgrade

case, writing a (labeled) value into r using writeRefFS r lv ′,

requires that the current label flow to lcur, i.e., the label

on the label at the time of creating r . Howerver, the no-

sensitive-upgrade rule prevents a program from modifying a

reference r , created in a public environment (L), from being

modified in a secret context (H). However, writeRefFS r lv ′

allows changing the initially stored labeled value lv with

another arbitrary-labeled value lv ′. Such “label changes”

(of the innermost labeled value) make our encoding more

permissive than no-sensitive-upgrade, which only allows

changing the label of a reference if the new label is above

the initial label of the reference.

Recently, Hritcu et al. [18] propose a floating-label system

called Breeze. Like LIO, Breeze allows changes in the

current context label (i.e., pc) and only considered values

with flow-insensitive labels. Given the design similarities

with LIO [36], we believe that our results could be easily

adapted to Breeze.

Hedin et al. [17] recently developed JSFlow, an IFC

flow-sensitive monitor for JavaScript. The monitor uses the

no-sensitive-upgrade label changing policy. To overcome

some of the restrictions imposed by this discipline, the

primitive upgrade is introduced to explicitly change labels.

Our upgrade operation resembles that proposed by Hedin et

al. Moreover, the extension to unlabel as described Section

III can be seen as an automatic application of upgrade

every time that the current label gets raised. Using testing,

Birgisson et al. [5] automatically insert upgrade instructions

to boost the permissiveness of no-sensitive-upgrade. We

further extend this concept of (automatic) upgrades to a

concurrent setting.

The Operating System IFC community has also treated the

mutable label problem in the presence of purely dynamic

monitors. Specifically, modern IFC OSes such aas As-

bestos [9], HiStar [44], and Flume [21] distinguish between

subjects (processes), and objects ( files, sockets, etc.) such

that the security labels for objects are immutable, while

subject labels change according to the sensitivity of data

being read. As in language-based IFC systems, changing the

label of subjects and object can become a covert channel, if

not handled appropriated. Hence, HiStar and Flume require

that the label of a subject be done done explicitly by the

subject code. Asbestos, on the other hand, allowed (unsafe)

changes to labels as the result of receiving messages under

specific and safe conditions. Our work extends on these

concepts to allow for changes in object labels.

Coarse-grained IFC enforcements, similar to the ones

found in IFC OS work, have been applied to web browsers.

BFlow [42] tracks the flow of information at the granularity

of protection zones, i.e., compartments composed of iframes.

As in LIO, a zone’s label, i.e., a subject’s label, must be

explicitly updated. Different from LIO, BFlow does not have

finer-grained labeled object; hence the flow-sensitivity result

is only applicable at the protection zone level. Naturally, by
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taking a more fine grained approach, the DOM-tree could

be thought of as being composed of flow-sensitive objects,

whose security labels change according to the dynamic

behavior of the web page [32].

Hoare-like logics for IFC are often flow-sensitive [e.g.

1, 28]. Different from dynamic approaches, these logics have

the ability to observe all the execution paths and safely

approximate label changes. As a result, no leaks due to

label changes are present in provably secure programs. Le

Guernic et al. [22, 23] combine dynamic and static checks in

a flow-sensitive execution monitor. For a flow-sensitive type-

system, Foster et al. [12] propose a restrict primitive that

limits the use of variables’ aliases in a block of code. Our

withRefsFS is similar to restrict in being used to increase

the permissiveness of the analysis.

VII. CONCLUSIONS

We presented an extension of LIO with flow-sensitive

references. As in previous flow-sensitive work, our approach

allows secure label changes using an upgrade operation,

as a way to boost the permissiveness of the IFC system,

i.e., upgrade can be used to allow for the encoding of

programs that would otherwise be rejected by the IFC

monitor. Since manually inserting upgrade operations can

be cumbersome, we extend the calculus to automatically

insert upgrades whenever the current label is raised, while

still giving programmers fine-grained control over which

references untrusted code can upgrade. Importantly, our

approach extends to a concurrent setting. To the best of our

knowledge, this is the first work to address the problem

of flow-sensitive label changes for a concurrent, purely

dynamic IFC language. A further insight of this work was

to show that, by leveraging nested labeled objects, both the

sequential and concurrent calculi with flow-sensitive refer-

ences can be encoded using only flow-insensitive constructs.

As a consequence, our soundness proof can be reduced to

an invocation of previous results for LIO.
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APPENDIX A.

SEMANTICS FOR THE BASE CALCULUS

The reduction rules for pure and monadic terms are given

in Figure 15. We define substitution {t2 / x } t1 in the usual

way: homomorphic on all operators and renaming bound

names to avoid captures. Our label operations �, �, and

� rely on the label-specific implementation of these lattice

operators, as used in the premise of rule (LABELOP); we

use the meta-level partial function �·��, which maps terms

to values, to precisely capture this implementation detail.

The reduction rules for pure terms are standard. For

instance, in rule (IFTRUE), when the branch has a true

condition, i.e., E [if True then t2 else t3 ], it reduces

to the then branch (E [t2 ]). The rest are self-explanatory

and we do not discuss them any further.

Since all the IFC checks are performed by individual LIO

terms, the definition for return and (>>=) are trivial. The

former simply reduces to a monadic value by wrapping the

term with the LIOTCB constructor, while the latter evaluates

the left-hand term and supplies the result to the right-hand

term, as usual.

APPENDIX B.

ATTACK ON NAIVE FLOW-SENSITIVE REFERENCES

As in the attack of Figure 7, the leakRef of Figure 16

can be used to leak the value stored in a H reference href ,

while keeping the current label L, without using labelOf.

Internally, the value is leaked into public reference lref by

leveraging the fact that, based on a secret value, the label

of a public reference (tmp) can be changed (or not). In

the first toLabeled block, if h ≡ True, then the label of

tmp is raised to H and its value is set to True. In the
second toLabeled block, we read tmp, which may raise the

current label to H if the secret is True (and thus tmp was

upgraded). Indeed, if the secret is True (and thus t ≡ True)

we leave the public reference intact: True. However, if the

secret is False , the tmp reference is not modified in the first

toLabeled block and thus when reading it in the second

toLabeled block, the current label remains L, and since

t ≡ False , we write False into the public reference. In both

cases the value stored in lref corresponds to that of href ,

yet leaving the current label and the label of lref intact (L).

APP

E [(λx .t1) t2 ] −→ E [{t2 / x } t1 ]

FIX

E [fix (λx .t)] −→ E [{fix (λx .t) / x } t ]

IFTRUE

E [if True then t2 else t3 ] −→ E [t2 ]

IFFALSE

E [if False then t2 else t3 ] −→ E [t3 ]

LABELOP

v = �l1 ⊗ l2��

E [l1 ⊗ l2 ] −→ E [v ]

RETURN

〈Σ|E [return t ]〉 −→ 〈Σ|E [LIOTCB
t ]〉

BIND

〈Σ|E [(LIOTCB
t1)>>= t2 ]〉 −→ 〈Σ|E [t2 t1 ]〉

Figure 15: Reduction rules for standard λLIO

� terms.

leakRef :: Ref TCB Bool → LIO Bool
leakRef href = do

lref ← newRef L True
tmp ← newRef L False
toLabeled H $ do h ← readRef href

when h $ writeRef tmp True
toLabeled H $ do t ← readRef tmp

when (¬ t) $ writeRef lref False
readRef lref

Figure 16: An attack in LIO with naive flow-sensitive

reference extension without labelOf.
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