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Abstract—A number of systems have been developed for
dynamic information flow control (IFC). In such systems,
the security policy is expressed by labeling input and output
channels; it is enforced by tracking and checking labels on
data. Systems have been proven to enforce some form of
noninterference (NI), formalized as a property of two runs of
the program. In practice, NI is too strong and it is desirable to
enforce some relaxation of NI that allows downgrading under
constraints that have been classified as ‘what’, ‘where’, ‘who’,
or ‘when’ policies. To encompass a broad range of policies,
relational logic has been proposed as a means to specify and
statically enforce policy. This paper shows how relational logic
policies can be dynamically checked. To do so, we provide a
new account of monitoring, in which the monitor state is viewed
as an abstract interpretation of sets of pairs of program runs.

I. INTRODUCTION

Violations of information flow (IF) policies, such as using

untrusted inputs without proper sanitization, can often be

detected by means of data flow analysis. Such analysis can

be done statically, though there is a tradeoff between sound-

ness (catching all violations) and usability; sound analyses

may produce many false positives due to conservative ap-

proximation. Dynamic analysis, or monitoring, costs runtime

resources (e.g., for storage and propagation of labels), but it

can be precise enough to avoid false positives. And it allows

secure executions of imperfect programs. Unfortunately, data

flow is the tip of the iceberg: an attacker wishing to avoid

detection can exploit the flow of information via control

(implicit flow), as well as various timing and other channels.

Information flow control (IFC) systems are designed to

thwart implicit flows and, in some cases, other channels.

In contrast with data flow analysis, IFC systems can prov-

ably enforce noninterference (NI) properties that are both

mathematically precise and intuitively meaningful in con-

nection with practical security requirements. Recent work

demonstrates the possibility of dynamic IFC [1], [2], in

particular for fine-grained policies that allow a program

within a single thread and address space to manipulate

information at multiple security levels. Unfortunately, there

is a gap between the NI properties for which enforcement

mechanisms are known and the security requirements which

arise in practice.

Many policies both identify sensitive information and al-

low its downgrading under designated conditions. Untrusted

input can be endorsed, i.e., trusted for certain purposes

once it has been sanitized (e.g., used for SQL queries after

being cleansed of embedded SQL fragments). Confidential

information can be declassified, i.e., released for certain

purposes once it has been suitably redacted, or anonymized,

or is no longer timely. To provide a general way to express

such IF policies, researchers have turned to forms of rela-

tional logic [3], [4]. Such logics describe pairs of program

runs, as usual in notions of NI. In addition to being able

to describe indistinguishability relations between the two

runs, such logics include ordinary assertions that refer to

the program state. The program state often includes what

is relevant for policy, e.g., whether a timer has expired or

user credentials have been checked successfully. It is also

possible to add instrumentation to facilitate formulation of

policy; such “ghost code” is common practice in software

verification and has been suggested as a way to augment

type-based IF policy [5].

We seek strong IFC for practical policies that involve

downgrading. There are many challenges, such as how to

obtain precise policy specifications and how to automate IFC

for large software components. The specific problem that

motivates this paper is how to design a runtime monitor to

track policies expressed using relational logic. In a nutshell,

our first contribution is a new relational logic with small-

step semantics, catering for intermediate assumptions and

assertions to express policies concerning inputs and outputs.

Our second contribution is to show how monitored execution

can be viewed as abstracting over the set of alternate

executions. Our third contribution is deriving the design of

a monitor, along with its correctness proof, by refining the

semantic description into an implementable form.

A. Policies in relational logic

One of the motivations for use of relational logic instead

of other policy notations is that program logics can provide

expressive and precise reasoning about data structures. For

example, sensitive data can appear as subsegments of string

buffers, or as nodes in linked data structures involving

sharing or aliasing. Logics provide ways to designate the

mutable locations to which fine-grained policies apply [6],

[4]. However, in order to focus on the main topics of this

paper, we use a minimal imperative language.

An IFC system assumes that the designated secret vari-

ables/channels cannot be directly read and the designated

trusted ones cannot be directly written by the adversary.
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One technique for designating sensitive information is by

labels used as types, or attached to types. For example, we

could declare trusted out: trusted, untrusted out: untrusted, and

hostname: untrusted. This is intended to express the integrity

policy that trusted outputs are not influenced by untrusted

inputs. Influence may be formalized in terms of pairs of

executions: two runs that agree on (i.e., have the same values

for) the trusted inputs should agree on the resulting trusted

outputs. In the example below, varying the value of hostname
should not affect the value of trusted out. Confidentiality

policy is interpreted similarly: two runs that agree on public

inputs should agree on the final value of public outputs,

independent of secret inputs.

We now turn to examples of conditional downgrading

policies which are not so easily expressed as types or labels,

inspired by Common Weakness Enumeration (CWE) [7].

The first example, inspired by CWE-15, is an endorsement

policy: the input hostname should affect the actual name of

the host (represented by the trusted out channel) only if the

password provided matches the root password. The policy

is satisfied by this program:

input guess from public in
input hostname from untrusted in
input password from secret in
if guess = password then output hostname to trusted out;
else output ”Access denied” to public out;

In relational logic, variables are designated “low” by the

agreement operator A in pre- and post-conditions (written

# and � in [8], [6]). For example, the contract

requires A x ensures A y

expresses that any pair of runs that agree on the initial

value of x should agree on the final value of y. We typically

distinguish output variables from input variables; in that case

the precondition expresses agreement on the low inputs and

the postcondition expresses agreement on the low outputs.

A practical syntax will provide defaults and syntax sugar,

but in this paper we work directly with relational logic. In

these terms we formalize the integrity policy as follows.

requires (B (public in = secret in) ⇒A untrusted in)
∧ A (public in = secret in)

ensures A trusted out

The both operator, B, is used to say that a state pred-

icate holds in both runs. The precondition says that if

public in = secret in is true in both runs then they agree

on untrusted in. The postcondition says the runs agree on

trusted out. The precondition A(public in = secret in) restricts

attentions to pairs of runs that both do or both don’t satisfy

the equality of the guess and the password. A key point is

that the implication in the precondition captures the policy in

a way that directly refers to the program state. On the other

hand, the policy specification is distinct from the executable

code (which in practice might be idiomatic C).

The ability to express agreement for expressions is a key

feature of relational logic. Specifications in the logic de-

scribe allowed dependency, which can capture both integrity

and confidentiality policies. Next we consider a confidential-

ity policy in connection with the following undesirable code,

inspired by CWE-204.

input user from public in;
input guess from public in;
input password from private in;
if user != ”root” then msg := ”Incorrect username”;
else if guess = password then msg := ”Login successful”;

else msg := ”Incorrect authentication credentials”;
output msg to public out;

We need to allow disclosing whether both the user name

is found and the password matched, or not. But we should

not allow disclosing partial matches —e.g., the user name

was found, but the password didn’t match— as it would lead

to unnecessary disclosure. The following contract captures

this requirement.

requires A (user = ”root” ∧ guess = password)
ensures A public out

It can be read as saying that by observing public output,

the adversary is allowed to learn the value of the expression

(user = ”root”∧guess = password). Consider two runs that agree

on falsity but for different reasons: in one run the user

isn’t ”root”, in the other run the password is wrong. The

specification requires agreement on the output, which does

not happen with the code above.

Consider a variation of the policy where we instead

require A(user = ”root”) ∧ A(guess = password). It says that

by observing the public output the adversary is allowed to

depend on (“learn”) the value of user = ”root” and also to

depend on password = masterPassword. This policy is satisfied

by the vulnerable program presented earlier. Writing good

policies can be difficult but is beyond the scope of this paper.

So far we have used pre/post contracts to express policies,

which keeps policy and code separate. However, contracts

are not always practical. Consider C programs that perform

memory allocations via malloc. We would like to write a con-

ditional endorsement policy that guards against CWE-789

by restricting the allocation size coming from an untrusted

source. There is no single contract for malloc that is suited

to all its uses, and it is hard to give an end-to-end contract

for a large program using it. Instead our specification uses

an assertion just before the call:

assert A size; pt := malloc(size);

Elsewhere in the code, following where the tainted value of

size is obtained, we use

assume A (size < 1000) ∧ (B (size < 1000) ⇒A size)

In general, an assumption following an input plays the role

of a requires clause, and an assertion preceding an output

plays the role of an ensures. Contracts amount to an initial
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assumption and a final assertion, so we do not formalize

contracts as such.

As another example, recent cross-site scripting vulnera-

bilities in several Apache modules [9] can be prevented by

requiring all untrusted inputs to be sanitized before sending

to the client. In one such policy, we use

assume A html escape(servername)

following the input of servername. Much later in the code,

where the server name —supposed to have been sanitized—

is be written to an output buffer, we use assert A buffer.

B. Monitoring

Several recent works present monitor designs for idealized

languages, in which labels designate sensitive values and

facilitate tracking of information. In many settings, including

low-level LLVM code that is a focus of our project, it is im-

portant for labeling to be flow-sensitive; a memory location

may hold secrets at one moment and public information at

another. To avoid the cost and conservativity of static anal-

ysis, while allowing some flow sensitivity, purely dynamic

monitoring is attractive [10]. There are tradeoffs between

what can be achieved by purely dynamic monitoring versus

hybrid monitors that rely on static analysis for branches

not taken [1]. More related work is discussed in Sec. VI.

Few of these works on monitoring address any form of

downgrading. The most closely related work is by Askarov

and Sabelfeld [11] who provide a flow-insensitive monitor

that caters to declassification policies expressed by declass
statements as featured in Jif [12]. We seek to monitor rich

policies and idiomatic code, where the downgrading may be

performed by code different from the policy expression. For

example, declassify h0+h1 by t:=h0; pubout:=t+h1.

The works cited above all provide correctness proofs

with respect to precisely defined security properties. One

challenge is to formulate a security property such that

downgrading policies are interpreted in accord with intended

requirements [13]. That is not the focus of this paper. Rather,

we pursue the ideal that a correctness proof should provide a

compelling explanation for the monitor design, so that theory

could guide the design of practical monitors for production

use. To date it is not easy to discern the commonalities

and general principles among published proofs, or even the

security properties.

That said, there are some basic features found in published

security properties and correctness proofs, not only for

monitors but also for static analyses. Security is described

in terms of two executions, which are assumed to agree

on low input events and must be shown to agree on low

outputs. This is proved in terms of a more fine-grained

property in which segments of a computation are classified

as low or high contexts in accord with information in

branch conditions. Low segments of the two computations

are aligned in lockstep, whereas high segments may differ

between the two executions but an agreement invariant

is maintained (cf. “unwinding conditions”). While such

correspondence is implicit in proofs based on bisimulation

and the like, it is made explicit and called alignment by

Kovács et al [14] who present a static analysis based on

abstract interpretation of pairs of executions. A key point,

as they discuss, is that existence of a good alignment suffices

to prove NI, whereas refuting NI would require reasoning

about all possible alignments. The choice of alignment is

manifest in syntax in the works on static verification by

self-composition [15], [16].

C. Overview and contributions

A monitor has to work on a single run, which we call the

major trace following [17]. The monitor’s instrumentation

somehow tracks what could happen in alternate runs, called

minor traces. The main idea explored in this paper is that

at each step the monitor state is an abstract representation

of all possible minor traces consistent with the major trace.

This representation must be such that it can be maintained as

the computation proceeds. In this view, a monitor can allow

a step of execution provided it can ensure that the chosen

alignment(s) for every minor computation can be extended.

When a monitoring rule requires raising a security error, it is

because for some alternate run the chosen alignment cannot

be extended in a way that maintains the agreement relation.

This may be because the policy is indeed violated —in

which case no alignment exists with the desired property—

or because the chosen alignment is not one that can be used

to establish NI for these runs. The latter case is a mechanism

failure. Some mechanism failures are inevitable for a sound

monitor. However, we aim for effective runtime reasoning

about policy, e.g., leveraging runtime checking for ordinary

assertions.

Section II lays the groundwork to explore our new view of

monitoring: a simple programming language, and relational

formulas for use in assumptions and assertions. Sec. III

introduces a novel small-step semantics for relational spe-

cifications. To this end we introduce a novel classification

of pairs of traces: some conform to the policy, some are

irrelevant (because they diverge or violate assumptions), and

some are failures because they violate assertions or cannot be

aligned. A program is secure with respect to its specification

if it admits no assertion failures. Roughly, this generalizes

knowledge-based security properties like [18], [11].

In Sec. V we describe the job of a monitor as maintaining

a tracking set for the major trace, i.e., an abstraction of

the set of all possible minor traces, together with their

classification. If there are any failures, the monitor should

announce that the trace is unsafe.

For a monitor to track all minor traces it must be able

to track an arbitrary one. In Sec. IV we define what a

tracking should look like, for the various classifications.

We show how the usual monitor apparatus —labels on
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locations, plus a stack of security levels— describes the

tracking of a minor trace, and we show how it can be

updated as the major trace progresses. This provides a

rational reconstruction of extant monitors. The monitor’s

transition relation can be defined in terms of the monitor

state and underlying program configuration, independent of

the minor trace. Hence the tracking set, of which the monitor

state is an abstraction, can be maintained pointwise. Monitor

transitions play the role of “transfer function” in the theory

of abstract interpretation [19].

Because our policies are expressed in terms of assertions

and assumptions, the usual monitor apparatus is not enough.

We add one more component to the monitor state: a set of

formulas known to hold for aligned pairs of configurations.

By proving that this invariant can be maintained as the major

trace grows (Thm. 7 in Sec. IV-B), we effectively derive

a monitor that makes use of assumptions about inputs in

checking assertions about outputs.

We find it remarkable that by describing monitoring as

a kind of abstract interpretation, the actions of the monitor

can be determined hand in hand with the explanation why

it works correctly. We leave it to the reader to make the

comparison with correctness proofs found in related works

(often lengthy unpublished appendices).1 But this paper is

just a first step. Sec. VII discusses questions about our

approach that need further investigation. A key goal is to

formalize an abstraction function according to the theory of

abstract interpretation, and to “turn the crank” for a formal

derivation of the monitor. Work of this kind is included

under related work, Sec. VI. We challenge ourselves and

others to see whether the approach helps in the design

and implementation of monitors for practical programming

languages and deployment environments.

II. BACKGROUND

Section II-A defines a small-step operational semantics

for simple imperative programs, the basis for our formal

development. Sec. II-B defines a relational assertion lan-

guage to be used for policies expressed in the assertion and

assumption commands. The following Sec. III formalizes the

security property in these terms.

A. Programming Language
Simple imperative language with annotation commands

e ::= n | x | e⊕ e ( n ∈ Z, x ∈ Vars) integer expr.

e ::= tt | ff | x | e = e | e ≤ e | e ∧ e | ¬e boolean expr.

c ::= skip | x := e | c ; c | while e do c commands

| if e then c else c
| assert� Φ | assume� Φ ( � ∈ Tags) annotations

1This is not meant as a criticism of those works, which focus on other
important questions such as what are good security properties or how can
monitoring be done efficiently.

Variables are assumed to have a fixed type, either integer or

boolean. Expressions are required to be type-correct. We es-

chew formalizing the typing of expressions and commands.

Relational formulas Φ are defined in the sequel. Tags � serve

to make occurrences of annotation commands unique and

may be elided when there is no ambiguity. For brevity we

use the term annotation rather than “annotation command”.

The small-step semantics is very standard. Configurations
take the form 〈c, σ〉 where c is a command and σ a state.

Let code〈c, σ〉 be c and state〈c, σ〉 be σ. A state is a

mapping from variables to their values, which are integers

or booleans. Henceforth, σ and τ range over states. We write

σ(e) for the value of expression e in state σ, and assume

that expressions are defined in all states. We write [σ|x : v]
for the updated state that maps x to v. In concrete examples

we write states like [x : 2, y : tt].

Transition rules for commands

〈assert�Φ, σ〉 �→ 〈skip, σ〉 〈assume�Φ, σ〉 �→ 〈skip, σ〉

〈x := e, σ〉 �→ 〈skip, [σ|x : σ(e)]〉

〈skip; c, σ〉 �→ 〈c, σ〉 〈c, σ〉 �→ 〈c1, τ〉
〈c; d, σ〉 �→ 〈c1; d, τ〉

〈while e do c, σ〉 �→ 〈if e then (c;while e do c) else skip, σ〉

σ(e) = v

〈if e then ctt else cff , σ〉 �→ 〈cv, σ〉
Programs are deterministic and annotations have no effect.

Trace notations

A trace is a finite non-empty sequence of configurations that

is consecutive under the transition relation. Let T, U, V range

over traces. We write sequences by catenation2 and refer

to the length as |T |. We also treat sequences as functions

from an initial segment of the naturals. So T0 is the first

configuration and dom(T ) is the set of indices 0, . . . , |T |−1.

Write last(T ) for T|T |−1. Write T �i for the first i elements

of T , i.e., the prefix up to but not including the element Ti.

Write T ′ ≥ T to say T is a prefix of T ′. An example trace:

〈assumeΦ; assertΨ, σ〉〈skip; assertΨ, σ〉〈assertΨ, σ〉〈skip, σ〉.

We assume any considered program c is well formed in

the sense of being type-correct, a property that is preserved

by the transition relation. We also assume that in any initial

configuration 〈c, σ〉 considered, (a) no annotation tag �
occurs more than once in c, and (b) c has the form b; skip
for some b. In a more concrete semantics, instead of tags we

would use program points; tagged syntax caters for use of

2For example, we can write T 〈c, σ〉 for a trace with 〈c, σ〉 as its last
configuration. Also, 〈c, σ〉 is a trace, of length 1.
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structural operational semantics. The transition rule for while
duplicates the loop body, so tags are not necessarily unique

in non-initial configurations. Item (b) loses no generality and

helps reduce the number of cases to be considered in some

proofs. For the same reason, we have chosen to make if/then

the only branching transition. We gloss over (b) in examples.

In Sec. IV and V we restrict attention to programs of the

form assumeΦ; c; skip.

Configurations of the form 〈skip, σ〉 are terminated. Any

other reachable configuration has the form 〈c, σ〉 where c can

be factored as a sequence c ≡ b; d and b is not a sequence.

Then b is called redex(c), as it is the sub-command re-

written by the next transition, and d is called remainder(c).
Let redex〈c, σ〉 be redex(c). Note that redex(skip; c) is

skip, whereas redex(skip) is undefined.

Lemma 1. For any trace T and any 0 < i < |T |, if

redex(Ti) is an annotation command then redex(Ti−1) is

not an annotation command.

B. Relational formulas

Relational assertions amount to assertions on a pair of

states, so any first order language can be adapted to a

language of relational formulas. However, we are concerned

with relations that connect the two states by equalities —

agreements.

Relational formulas Φ for annotations

ϕ ::= e | ϕ ∨ ϕ | ¬ϕ | ∀x.ϕ unary formula

Φ ::= Ae | Bϕ | Bϕ⇒ Ae basic relational formula

Φ ::= Φ ∧ Φ conjunction of basic

formulas

Unary formulas ϕ are ordinary first order formulas; the

atomic formulas are boolean expressions of the program-

ming language, and formulas are evaluated in a single state.

Relational formulas, ranged over by the letters Φ and Ψ,

are evaluated in a pair of states. Relational formulas feature

conditional agreements, Bϕ ⇒ Ae, that require both states

to agree on the value of e if ϕ holds in both states.

Reasoning about conditional agreements is facilitated by

square relations of the form Bϕ. An unconditional agreement

Ae is equivalent to Btt⇒ Ae.

We use standard semantics for first order formulas: σ |= ϕ
means ϕ is true in state σ and �|= indicates that it is false.

Note that σ |= e iff σ(e) = tt, for boolean expression e.

Semantics of relational formulas σ|τ |= Φ

σ|τ |= Ae iff σ(e) = τ(e)

σ|τ |= Bϕ iff σ |= ϕ and τ |= ϕ

σ|τ |= Bϕ⇒ Ae iff σ|τ |= Bϕ implies σ|τ |= Ae

σ|τ |= Φ ∧Ψ iff σ|τ |= Φ and σ|τ |= Ψ

Notation: 〈c, σ〉|〈c′, σ′〉 |= Ψ means σ|σ′ |= Ψ

Free variables (FV ) are defined in the standard way.

Lemma 2. Suppose σ(x) = σ′(x) and τ(x) = τ ′(x) for all

x ∈ FV (Ψ). Then σ|τ |= Ψ iff σ′|τ ′ |= Ψ.

To define the monitor semantics, we work with extended
relational formulas of the form Φ ⇒ Ψ where Ψ may be

Aϕ or a basic relational formula; and also simply Aϕ. For

extended relational formulas, the semantics is defined as the

notation suggests: σ|τ |= Aϕ means that σ |= ϕ iff τ |= ϕ.

And σ|τ |= Φ⇒ Ψ means that either σ|τ �|= Φ or σ|τ |= Ψ.

We write |= Φ⇒ Ψ to indicate that the implication is valid,

i.e., σ|τ |= Φ⇒ Ψ for all σ, τ .

III. SMALL-STEP RELATIONAL LOGIC

To enable use of intermediate assertions and assumptions

to express downgrading policies, we introduce a novel small-

step notion of relational correctness. Its formulation caters

for the abstract interpretation described in subsequent sec-

tions of the paper, and for termination-insensitive security.

We define what it means for a trace to be safe. A program

is secure, i.e., correct with respect to its specification, iff all

its traces are safe.

Alignment, proper alignment, coverage

For traces T, U , an alignment from T to U is a relation

α ⊆ dom(T )× dom(U) that (a) is monotone, i.e., ∀i, j, k, l
with iαj and kαl, i < k ⇒ j ≤ l and j < l ⇒ i ≤ k; and

(b) has prefix-closed domain and range, i.e., i ∈ dom(α)
(resp. rng(α)) and 0 ≤ j < i imply j ∈ dom(α) (resp.

rng(α)).
A proper alignment from T to U is an alignment α such

that for all i, j with iαj, if either redex(Ti) or redex(Uj)
is an annotation then redex(Ti) = redex(Uj).

For α to cover the major trace (resp. the minor trace)

means that dom(α) = dom(T ) (resp. rng(α) = dom(U)).

Aligned annotations have the same identifying tag, not

just the same formula. Also, in a proper alignment that

covers both traces, if one trace has executed an annotation

command then the other has too. To be precise:

Lemma 3. Let α be a proper alignment that covers both T
and U . Suppose iαj and redex(Ti) is an annotation. Then

i < |T | − 1 iff j < |U | − 1.

In general, proper alignments are not unique. As

an illustration, consider two traces of a program

assumeAy; x:= y; assertAx which differ only in starting states.

Two (of several) possible proper alignments for the two

traces are shown in Fig. 1, where commands assumeΨ and

assertΨ are abbreviated as [Ψ] and {Ψ} respectively.

The following notions classify the ways in which a minor

trace U may relate to a major trace T . On first reading

it may be helpful to think about a command of the form

assumeΦ; c; assertΨ where c has no annotations.
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〈[Ay]; x:=y; {Ax}, [x:1, y:2]〉 〈[Ay]; x:=y; {Ax}, [x:3, y:2]〉
〈skip; x:=y; {Ax}, [x:1, y:2]〉 〈skip; x:=y; {Ax}, [x:3, y:2]〉

〈x:=y; {Ax}, [x:1, y:2]〉 〈x:=y; {Ax}, [x:3, y:2]〉
〈skip; {Ax}, [x:2, y:2]〉 〈skip; {Ax}, [x:2, y:2]〉

〈{Ax}, [x:2, y:2]〉 〈{Ax}, [x:2, y:2]〉
〈skip, [x:2, y:2]〉 〈skip, [x:2, y:2]〉

Figure 1. An example of two proper trace alignments (and conformances).
Trace T goes downward on the left, trace U on the right. One alignment
is shown as solid lines, another as dashed lines.

Classification of aligned trace pairs

An aligned trace pair is a triple (T, U, α) where α is a

proper alignment from T to U .

A conformance is an aligned trace pair (T, U, α) where

α covers both T and U , and for all i, j, if iαj, i < |T | − 1,

and redex(Ti) asserts or assumes Φ then Ti|Uj |= Φ.

An assumption failure is (T, U, α) where there are

i, j, �,Φ such that i < |T |, j < |U |, (i − 1)α(j − 1),
redex(Ti−1) is assume�Φ, Ti|Uj �|= Φ, and (T �i, U�j, β)
is a conformance, for β = {(k, l) | kαl ∧ k < i ∧ l < j}.

An assertion failure is the same as an assumption failure,

except that redex(Ti−1) is assert�Φ.

An alignment failure is (T, U, α) where there is i,
i < |T |, such that redex(Ti) is an annotation command,

(T �i, U, α) is a conformance, and there is U ′ > U such

that either last(U ′) is terminated or redex(last(U ′)) is an

annotation different from redex(Ti), and no proper prefix

of U ′ extends U and matches redex(Ti).
A divergence failure is (T, U, α) where there is i, i < |T |,

such that redex(Ti) is an annotation command, (T �i, U, α)
is a conformance, and there are infinitely many U ′ ≥ U ,

none of which has redex(last(U ′)) = redex(Ti).

The idea is that a computation T is secure if there are no

alternate traces resulting in assertion or alignment failure.

Assumption failures generalize preconditions, ruling out

some traces as not being of interest. We consider divergence

failures benign, which embodies the decision to focus on

termination-insensitive security properties.

Conformance allows the traces to end with an aligned

annotation that has not been executed and whose formula

may not hold. Note that (i− 1)α(j − 1) implies 0 < i and

0 < j.

For assumption failure, the redex of the last configuration

in T �i (and in U�j) is the assumption. This fits with the

definition of conformance, which does not constrain an un-

executed assumption. Note also that T and U may continue

past i, j. Finally, instead of Ti|Uj �|= Φ we could as well

write Ti−1|Uj−i �|= Φ as the transition for an assumption

does not change the state.

if x > 0 then {tt} else skip if x > 0 then {tt} else skip

{tt} skip

Figure 2. Alignment failure example. Zigzag lines show incorrect
alignments pairs. Only the code is shown; on the left, x is initially 1,
on the right 0. The initial configurations are aligned, but there is no proper
alignment that covers the traces.

Observe that, similar to proper alignments in general,

conformances are not unique. Both alignments presented in

figure 1 are indeed conformances because they are proper

and they happen to satisfy the assertions and assumptions at

trace points (0, 0) and (4, 4).
To illustrate assertion failures, we will slightly modify

our running example by removing x:=y. In this example the

alignment is unique. If both traces hadn’t made the last step

the alignment would have been considered a conformance.

〈[Ay]; {Ax}, [x:0, y:2]〉 〈[Ay]; {Ax}, [x:1, y:2]〉
〈skip; {Ax}, [x:0, y:2]〉 〈skip; {Ax}, [x:1, y:2]〉
〈{Ax}, [x:0, y:2]〉 〈{Ax}, [x:1, y:2]〉
〈skip, [x:0, y:2]〉 〈skip, [x:1, y:2]〉

Fig. 2 illustrates alignment failure. Alignment failure for

an assumption would indicate implicit flow into a downgrad-

ing, which is considered bad policy. Our security property

enforces one aspect of robust declassification [20], [11],

which allows a low observer to learn from the declassified

value but not from the fact that a declassification has

occurred.

Safe trace

Let c be a command and T a trace of c. The trace T is

safe iff for every state σ there is a trace U from 〈c, σ〉
and alignment α from T to U such that (T, U, α) is a

conformance, an assumption failure, or a divergence failure.

Recall that typical security properties quantify over states

σ that are low-equivalent to state(T0), whereas here we

quantify over all σ. That works because the policy is

intended to be expressed by an initial assumption that

serves to define low equivalence. Low-equivalence in final

states can be designated by a final assertion. Suppose the

program has an initial assumption and a final assertion, both

conjunctions of agreements on variables. If there are no

other annotations, safety is exactly the standard notion of

termination-insensitive NI.

In the definition of safety, σ may be instantiated by

state(T0). Say T has a unary assertion failure if it reaches

〈d, τ〉 where redex(d) is assertBϕ ∧ . . . and τ �|= ϕ. If

(T, T, iddom(T )) is a conformance then T is free of unary
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assertion failures. Thus, insofar as the program has assertions

of the form Bϕ, our notion of security includes absence of

unary assertion failures.

To conclude this section, the following Theorem says that

the trace classification is exhaustive. Its proof foreshadows

subsequent proofs which lead us to monitoring, and it

motivates details in the classification of aligned trace pairs.

Lemma 4. For any T with |T | > 1, if (T �(|T |−1), U, α) is

an assumption-, assertion-, alignment-, or divergence-failure

then so is (T, U, α).

Theorem 5. For any command c and trace T of c, and any

state σ, there is U ≥ 〈c, σ〉 and α such that (T, U, α) is

either a conformance or one of the four forms of failure.

Proof: By induction on T . For the base case, |T | is 1.

Let U be the singleton trace 〈c, σ〉 and α be {(0, 0)}. This

is a conformance.

For the induction step, suppose T is V 〈d, τ〉. By induction

hypothesis there are U, α such that (V,U, α) is a failure or

conformance. In case of failure, (V 〈d, τ〉, U, α) is the same

kind of failure, by Lemma 4. It remains to consider the case

that (V,U, α) is a conformance. We proceed by cases on

whether redex(d) is an annotation command.

In case redex(d) is an annotation, we extend U by steps

without active assumptions or assertions until reaching a

configuration where the redex is the same as redex(d), if

possible. More precisely, let U ′ be the shortest trace such

that U ′ ≥ U , redex(last(U ′)) = redex(d), and none of

the redexes of U ′|U |, . . . , U
′
|U ′|−2 are annotation commands.

If no such U ′ exists because a non-matching annotation

command is reached or the computation terminates, then

(V 〈d, τ〉, U, α) is an alignment failure. If no such U ′

exists because the computation diverges without reaching

any annotation command, (V 〈d, τ〉, U, α) is a divergence

failure. If U ′ does exist, let α′ be α ∪ {(|V |, |U ′| − 1)} ∪
{(|V | − 1, j) | |U | ≤ j < |U ′| − 1}. Observe that α′ is

a proper alignment from T to U ′. (To see this, note that

redex(last(V )) is not an assertion or assumption because

it is followed by d; see Lemma 1.) Finally, (V 〈d, τ〉, U ′, α′)
is a conformance.

In case redex(d) is not an annotation, we go by cases on

redex(last(V )).

• If redex(last(V )) is assume�Φ, then by proper align-

ment we have redex(last(U)) = redex(last(V )) and

(|V | − 1)α(|U | − 1). Let U ′ be U〈d′, τ ′〉 where

last(U) �→ 〈d′, τ ′〉. Let α′ = α ∪ {(|V |, |U |)}. If

τ |τ ′ |= Φ then (V 〈d, τ〉, U ′, α′) is a conformance; oth-

erwise it is an assumption failure.

• In case is assert�Φ, we proceed as in the preceding case,

but instead of an assumption failure or conformance we

get assertion failure or conformance.

• In case redex(last(V )) is not an annotation, let α′ be

α∪{(|V |, |U |−1)}. Because (V,U, α) is a conformance,

last(U) is not an annotation, so α′ is a proper alignment

from V 〈d, τ〉 to U ′, and (V 〈d, τ〉, U ′, α′) is a confor-

mance.

Owing to Lemma 1, these are the only cases.

IV. HOW TO TRACK AN ALIGNED MINOR TRACE

For a given major trace, a static analysis or runtime

monitor will attempt to find alignments that witness the

existence of minor trace U and α in the definition of safety;

and it will attempt to check assertions, given the preceding

assumptions. These attempts may fail. When a monitor raises

a security exception, it means the monitor is no longer

able to ensure that execution is secure. We use the term

mechanism failure for these.

This section considers what a monitor might do with

respect to a single minor trace. To figure out how the monitor

should work, we give constructive proofs of two results that

strengthen Thm. 5. The second proof essentially defines a

monitor, in the sense that the construction does not refer to

the minor trace. This means that the monitor is effectively

tracking all minor traces, as we spell out in Sec. V.

In the rest of the paper we require all programs to take

the form assume Φ; c. The assumption is needed in order to

determine sensible initialization for the monitor state.

A. Strong conformances

We introduce some ingredients one would expect in a

hybrid monitor. The first step adds augmentation, similar

to that in the monitors of [21], [1], that allows us to define

the particular alignments of interest. The second step, in

Sec. IV-B, makes better use of annotation. We also use

a rudimentary static analysis: let targets(c) be the set of

variables that occur on the left side of assignments in c.

Augmented configuration

An augmented configuration is 〈c, σ, λ, π〉 where the
variable levels are a map λ : Vars → {lo,hi} and the
program counter level π is either the token lo or a tuple
(hi, stk) where stk is a non-empty list of pairs (b, c) of
commands. Some notations:

λ(e) = �(mapλ (vars(e))) level of expr.

Aλ = ∧{Ax | λ(x) = lo} derived agrmnt.

�〈c, σ, λ, π〉� = 〈c, σ〉 erasure

pc〈c, σ, λ, π〉 = π get pc levels

levels〈c, σ, λ, π〉 = λ get var. levels

lift(λ)(X) = λ′

where λ′(x) = hi, if x ∈ X

λ′(x) = λ(x), otherw.

An augmented trace is a sequence of augmented con-

figurations whose erasure is a trace (i.e., consecutive under

transitions �→).

The idea is that in a trace segment where the context is

high, i.e., π = (hi, (b, c) : rest) the command c is the “low
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continuation” that represents the control flow join point and

the command b is the branch not taken in the major trace

(which provides for static analysis). It is for c to always

exist that we need the trailing skip in initial configurations.

A stack is needed to handle programs like this:

if h > 0 then (if h > 1 then m := 0 else skip) else n := 0

Consider trace T from initial state with h = 1, versus minor

trace from a state with h = 2. The minor trace follows the

same top level path, but not the same inner path.

The notions of alignment, conformance, and failure are

carried over to aligned pairs (T, U, α) where T is a trace

of augmented configurations and U a trace of ordinary

configurations.

Strong conformance

A strong conformance is a conformance (T, U, α) such that

T is an augmented trace and the following hold for all i, j
with iαj.

(a) if i > 0 and j > 0 then Ti|Uj |= A(levels(Ti)),
(b) if pc(Ti) = lo then code(Uj) = code(Ti),
(c) if pc(Ti) = (hi, (b, c) : rest) then there is k such

that k < i and code(Tk) has the form F ; c where

F = if e then btt else bff (for some e, btt, bff ), b is b¬v
and v = state(Tk)(e), i.e., b is the branch not taken.

Moreover, either

(i) code(Ti) = d; c and code(Uj) = F ; c, for some d

with bv �→∗ d, or

(ii) code(Ti) = c and code(Uj) = d; c, for some d with

F �→∗ d.

and mutatis mutandis for the rest of the stack.

For commands b, b′ we write b �→∗ b′ to abbreviate

∃σ, σ′.〈b, σ〉 �→∗ 〈b′, σ′〉.
The proof of Thm. 5 suggests that a monitor might track

a minor trace by incrementally extending the alignment.

We next strengthen Thm. 5 to strong conformances. The

decision to incrementally extend a single alignment, rather

than search among possible alignments, is obvious from

an algorithmic point of view but it comes at the price of

approximation. A chosen alignment may not be extendable

yet another may exist. For example, in two runs of the

program in Fig. 2, if both follow the true branch there will be

a proper alignment, but if the monitor treats the conditional

as a high context then that alignment will not be found. In

practical terms, the situations where this may arise can be

seen as poorly chosen policies.

The obvious thing to do is introduce a notion of me-
chanism failure: an aligned trace pair (T, U, α) where

(T �i, U, α) is a conformance, for some i. A property

like Thm. 5 but allowing mechanism failure is essentially

vacuous. What one would hope for is constraints on the

circumstances under which we declare mechanism failure.

In this paper we do not formalize such constraints (nor have

we found that done in prior work). Instead we focus on

deriving a sensible monitor. We appeal to mechanism failure

only where it seems unavoidable.

Safety now means absence of mechanism failure, align-

ment failure, and assertion failure. A difficulty is how to

ignore divergence failures. As defined in Sec. III, such a

failure occurs at the point when the major trace reaches an

annotation. In reasoning about strong conformance, however,

we need to consider the possibility of divergence of the

minor run at the join points of high branches.

Eventual divergence failure, quiescent conformance

(T, U, α) is an eventual divergence failure if it is a (strong)

conformance and there is some T ′ ≥ T such that (T ′, U, α)
is a divergence failure.

(T, U, α) is a quiescent conformance if it is a (strong)

conformance and there does not exist any T ′ ≥ T such

that redex(last(T ′)) is an annotation.

A divergence failure is a special case of eventual diver-

gence failure. For termination-insensitive security it makes

sense to ignore eventual divergence failures. The point of

quiescent conformance is that further execution of the major

trace cannot lead to assertion or alignment failure and so

need not be considered a violation of safety.

Theorem 6 [Strong conformance]. Consider any ordinary

trace V of a command c0 from state σ0, and any state τ .

Augmentation can be added to obtain a trace T , with

�T � = V , such that there is a trace U of c0 from τ , and an

alignment α, and either (T, U, α) is a strong conformance

or it is one of the failures, including mechanism failure,

eventual divergence, or quiescent conformance.

Proof: By induction on V . There are two base cases, for

V of length 1 and 2. Suppose c0 is assumeΨ; c1. (Recall that

every initial program begins with an assumption.) Choose

λ0 such that |= Ψ ⇒ Aλ0. (In the proof of Thm. 7 we

discuss how this can be implemented.) In case |V | = 1, let

T be 〈c0, σ0, λ0, lo〉. Let U := 〈c0, τ〉 and α := {(0, 0)}.
This is a strong conformance. In the other base case,

|V | = 2, let T be 〈c0, σ0, λ0, lo〉〈skip; c1, σ0, λ0, lo〉.
Let U := 〈c0, τ〉〈skip; c1, τ〉. Let α := {(0, 0), (1, 1)}. If

σ0|τ |= Ψ then this is a strong conformance; otherwise it is

an assumption failure.

We sketch the induction step, for the interesting case

where conformance holds so far. Suppose (T, U, α) is a

strong conformance. Suppose last(T ) is 〈c, σ, λ, π〉 and

〈c, σ〉 �→ 〈c′, σ′〉. We must find λ′, π′, U ′, α′ such that

(T 〈c′, σ′, λ′, π′〉, U ′, α′) is either a strong conformance or

one of the failure forms. We go by cases on π.
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In case π = lo we go by cases on redex(c):

x := e : Let π′ := lo, λ′ := [λ|x : λ(e)], U ′ := U〈d, τ〉
where last(U) �→ 〈d, τ〉, and α′ := α ∪ {(|T |, |U |)}.
The strong conformance property holds for the added

pair (|T |, |U |), because redex(c) = redex(last(U))
and if the level λ(e) is lo then σ′(x) = τ(x) as

required.

while e do d : Let λ′, π′ := λ, lo and, as in the preceding

case, α′ := α ∪ {(|T |, |U |)} and U ′ := U〈d, τ〉 where

last(U) �→ 〈d, τ〉. This yields strong conformance; the

while redex is not a branching one and the step has no

effect on state.

skip : λ′, π′, U ′, and α′ are the same as for while.

if e then ctt else cff : If λ(vars(e)) = lo then

λ′, π′, U ′, α′ are the same as in the while
case. Otherwise, let v := σ(e), λ′ := λ,

π′ := (hi, (c¬v, d) : []) where d = remainder(c), i.e.,

d is what follows the if/then command. Either way,

we have strong conformance.

assertΨ : If last(T )|last(U) |= Ψ then we get

a strong conformance, same as while. Otherwise,

(T 〈c′, σ′, λ, π〉, U〈c′, τ〉, α ∪ {(|T |, |U |)}) is an as-

sertion failure, where last(U) �→ 〈c′, τ〉. (We know

the configuration will be c′.)
assumeΨ : If last(T )|last(U) |= Ψ then same as while.

Otherwise, assumption failure as in preceding case.

In case π = (hi, (b, d) : rest) we again go by cases on

redex(c):

x := e : Let λ′ := [λ|x : hi], π′ := π, U ′ := U ,

α′ := α ∪ {(|T |, |U | − 1)}, which yields a strong con-

formance.

while e do d′ : Let λ′ := λ, π′ := π, U ′ := U , and

α′ := α ∪ {(|T |, |U | − 1)}, which yields a strong con-

formance.

skip : If c′ �= d, this step is continuing in a high segment

of the major trace, so let λ′, π′, U ′ := λ, π, U , and

α′ := α ∪ {(|T |, |U | − 1)}.
Otherwise c′ = d, i.e., this step reached the

end of a high segment in the major trace. Let

λ′ := lift(λ, targets(b)). Also π′ := (hi, rest) if

rest �= [], and π′ := lo if rest = [].
Furthermore, by definition of strong conformance

there’s if e then btt else bff such that b is btt or bff
and code(last(U)) is (if e then btt else bff); d. Let V
be the trace with initial configuration last(U), up to

and including the step from skip; d to d. In case V
exists, let U ′ := U ++ V and let α′ := α ∪ {(|T |, j) |
|U | ≤ j < |U ′|}. This forms a strong conformance.

It may be that V does not exist, because the computa-

tion from last(U) diverges. In that case, we augment

the last major step by λ′, π′, U ′, α′ := λ, π, U, α.

If further execution of the major trace can reach an

annotation then we have an eventual divergence failure.

If not, we have a quiescent conformance.

if e then btt else bff : As in the case for while, let

λ′, U ′, α′ := λ, U, α ∪ {(|T |, |U | − 1)}. However,

π′ needs to record the alternative branch. As in the

case for if/then in a low context, let v := σ(e) and

π′ := (hi, (b¬v, d′) : (b, c) : rest) where the remainder

d′ is defined by c = (if e then btt else bff); d.

assertΨ : (T 〈c′, σ′, λ, π〉, U, α) is deemed to be a me-

chanism failure (though it may well be leading to an

alignment failure).

assumeΨ : Same as assert.

B. Tracking known formulas

The construction in the preceding proof is interesting

because determining new values λ′, π′ for the variable levels

and program counter, and determining whether there is some

kind of failure, is based largely on the current configuration

of the major trace. It does refer to the minor trace to evaluate

asserted and assumed formulas. But the minor trace is a

semantic artifact with which to reason about information

flow —a monitor will have no access to the minor trace.

Our next step eliminates that, and improves the treatment of

λ′ and π′ by taking advantage of assumptions and assertions.

Consider as an example the fragment

assume A (h0 + h1); x := h1 + h0; assert A x

in a low context, where the initial λ has λ(h0) = hi and

λ(h1) = hi. According to the proof of Thm 6, the final

levels λ′′ will have λ′′(x) = hi, but if there is no assumption

failure then the two traces will agree on x. Update of the

levels needs to take into account the assumption. There is

a similar issue for if/then: In a low context, determination

of whether an if/then initiates a high context is based on

whether the two traces agree on the guard expression e.

Rather than simply checking whether λ(e) = lo, it would

be better to take prior assumptions into account, for example,

when e is h0+h1>0 following the assumption A(h0 + h1).

Fully augmented configuration, full conformance

A fully augmented configuration takes the form

〈c, σ, λ, π,Δ〉 where λ and π are as in an augmented

configuration and Δ is a set of basic relational formulas.

A full conformance is a strong conformance (T, U, α)
where T is a trace of fully augmented configurations and

for all i > 0, j > 0, if iαj then Ti|Uj |= Δ.

The set Δ is interpreted conjunctively, so we may treat

Δ as a formula, and we write σ|τ |= Δ to mean σ|τ |= Φ
for every Φ in Δ.

One could dispense with λ, by including in Δ the formula

Ax, for each x with λ(x) = lo. We retain λ, both for

clarity and because in an implementation the two sorts of

information may best have different representations.
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For an assignment x := e in a low context, λ′(x) can

be lo if |= Aλ ∧ Δ ⇒ Ae. (Recall that Aλ abbreviates

a conjunction of variable agreements Ax,Ay, . . . ,Az where

x, y, . . . z are the low variables according to λ.) Note that the

condition |= Aλ∧Δ⇒ Ae refers to validity of the formula,

rather than its truth in the current states —information about

the current states is provided by λ and Δ. This condition

also serves for determining whether there is agreement on

the guard expression of an if/then.

The next question is how to check annotations, i.e., how to

determine whether 〈c, σ, λ, π,Δ〉|〈c′, σ′〉 |= Ψ without look-

ing at σ′. In addition to appealing to the full conformance

condition σ|σ′ |= Aλ ∧ Δ, it is possible to check unary

assertions in the major trace. There are interesting connec-

tions between unary and relational assertions. For example,

B(x = 0) implies Ax, and more generally Bϕ for any ϕ that

implies a specific value for x. Also σ |= ϕ and σ|τ |= Aϕ
imply τ |= ϕ. These considerations suggest that it could

be useful to know the strongest invariant at each program

point; approximations can be obtained by static analysis.

An appropriate interface to the monitor would be to provide

this information in the form of designated assumptions, as

we discuss in Sec. V. Assertions are checked, not trusted by

our monitor, but it remembers the results from successful

checks.

The monitor can rely on functions that approximate

checks of truth and validity, specified as follows.

Specification of truth and validity checkers

eval(σ, ϕ) ∈ {tt, unknown}
eval(σ, ϕ) = tt implies σ |= ϕ

chkVal(Ψ⇒ Φ) ∈ {tt, unknown}, for basic formulas Φ

chkVal(Ψ⇒ Φ) = tt implies |= Ψ⇒ Φ

For eval, a particularly simple implementation is the

program semantics: let eval(σ, e) = tt if σ(e) = tt, for

boolean expression e, and eval(σ, ϕ) = unknown otherwise.
For chkVal , we will be particularly interested in checks

where the antecedent includes the variable agreements given
by Aλ. We sketch a simple implementation that caters for
this.

chkVal(Ψ ⇒ Ae) = tt, if Ax is in Ψ, for every x ∈ FV (e)
= unknown, otherwise

chkVal(Ψ ⇒ Aϕ) = tt, if Ax is in Ψ, for every x ∈ FV (ϕ)
= unknown, otherwise

chkVal(Ψ ⇒ Bϕ) = tt, if Ψ contains Bϕ
= unknown, otherwise

The truth and validity checkers are used by the following

function. It approximates the checking of σ|τ |= Φ, with σ
explicitly given but τ known only to be related according to

λ and Δ.

Assertion checker check(σ, λ,Δ)(Φ) ∈ {tt,ff, unknown}
check(σ, λ,Δ)(Bϕ)
= ff, if eval(σ,¬ϕ) = tt

or chkVal(Aλ ∧Δ⇒ B¬ϕ) = tt
= tt, if chkVal(Aλ ∧Δ⇒ Bϕ) = tt
= tt, if chkVal(Aλ ∧Δ⇒ Aϕ)= tt and eval(σ, ϕ)= tt
= unknown, otherwise

check(σ, λ,Δ)(Ae)
= tt, if chkVal(Aλ ∧Δ⇒ Ae) = tt
= unknown, otherwise

check(σ, λ,Δ)(Bϕ⇒ Ae)
= tt, if eval(σ,¬ϕ) = tt

or chkVal(Aλ ∧Δ ∧ Bϕ⇒ Ae) = tt
= unknown, otherwise

check(σ, λ,Δ)(Φ0 ∧ Φ1)
= tt, if check(σ, λ,Δ)(Φi) = tt for i = 0 and i = 1
= ff, if check(σ, λ,Δ)(Φi) = ff for i = 0 or i = 1
= unknown, otherwise

More sophisticated implementations are possible, includ-

ing ones that take advantage of guardedness. This refers to

formulas like Ae∧ (Be⇒ Ae′), as in examples in Sec. I-A.

Theorem 7. For any command c and initial states σ and τ ,

any trace of c from σ can be augmented to a trace T such that

there is an ordinary trace U of c from τ , and an alignment

α, such that (T, U, α) is either a full conformance or one

of the forms of failure, including eventual divergence and

quiescent conformance.

Proof: By induction on the given trace. The base cases

are the same as in the proof of Thm. 6, with the addition

that Δ0, in the first configuration of the major trace, is ∅. The

second configuration’s Δ is Ψ where the initial assumption

of c is Ψ.
For the induction step to longer major traces, sup-

pose (T, U, α) is a full conformance. Suppose last(T ) is

〈c, σ, λ, π,Δ〉 and 〈c, σ〉 �→ 〈c′, σ′〉. We must find

λ′, π′,Δ′, U ′, α′ such that (T 〈c′, σ′, λ′, π′,Δ′〉, U ′, α′) is

either a full conformance or one of the failure forms.
By cases on redex(c) and cases on whether π is lo.

In case π = lo we go by cases on redex(c):

x := e : As in the proof of Thm. 6, we let π′ := lo,

U ′ := U〈d, τ〉 where last(U) �→ 〈d, τ〉, and

α′ := α ∪ {(|T |, |U |)}. Let Δ′ = {Φ | Φ ∈ Δ ∧
x /∈ FV (Φ)}. Owing to Lemma 2 we have σ|τ |= Δ′.
Let λ′ := [λ|x : l] where l is lo if either λ(e) = lo
or chkVal(Aλ ∧ Δ ⇒ Ae) = tt. (With stronger

assumptions on chkVal , there would be no need for

checking λ(e) = lo.)3

3For low assignments, the Δ′ chosen in the proof can be seen as a crude
approximation of the strongest postcondition for the assignment acting
on each of the basic relational formulas in Δ. Better approximations are
within easy reach but would distract from our main focus. A more nuanced
treatment is also possible for the join point in a high segment.
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c π π′ λ′ Δ′

x:=e; d lo π [λ|x : l] where {Φ | Φ ∈ Δ ∧ x /∈ FV (Φ)}

l =

⎧⎨
⎩
lo if λ(e) = lo ∨

chkV al(Aλ ∧Δ ⇒ Ae)
hi otherwise

x:=e; d (hi, ) π [λ|x : hi] {Φ | Φ ∈ Δ ∧ x /∈ FV (Φ)}
while e do p; d π λ Δ
skip; d lo π λ Δ

skip; d (hi, (b, d) : []) lo lift(λ, targets(b))
{Φ | Φ ∈ Δ ∧
targets(b) ∩ FV (Φ) = ∅}

skip; d (hi, (b, d) : r) (hi, r) lift(λ, targets(b))
{Φ | Φ ∈ Δ ∧
targets(b) ∩ FV (Φ) = ∅}

skip; d (hi, (b, c′) : ) π λ Δ

if e then btt else bff ; d lo

⎧⎨
⎩
lo if λ(vars(e)) = lo ∨

chkV al(Aλ ∧Δ ⇒ Ae)
(hi, (b¬σ(e), d) : []) otherwise

λ Δ

if e then btt else bff ; d (hi, st) (hi, (b¬σ(e), d) : st) λ Δ
assert Ψ; d lo failure, if check(Ψ, σ, λ,Δ) 
= tt; otherwise, see next row:

π λ Δ,Ψ
assert Ψ; d (hi, ) failure
assume Ψ; d lo π λ Δ,Ψ
assume Ψ; d (hi, ) failure

Table I
MONITORING RULES: DEFINE λ′ , π′ AND Δ′ IN 〈c, σ, λ, π,Δ〉 �→ 〈c′, σ′, λ′, π′,Δ′〉

while e do d : Let Δ′ := Δ and the rest be as in the

proof of Thm. 6. In subsequent cases we just give the

additions and differences from that proof.

skip : Let Δ′ := Δ.

if e then ctt else cff : If λ(vars(e)) = lo or chkVal(Aλ ∧
Δ ⇒ Ae) then same as the case of while above;

otherwise, same as in Thm. 6 for entering a high branch.

Either way, let Δ′ := Δ.

assertΨ : If check(σ, λ,Δ)(Ψ) = ff we have an assertion

failure. If check(σ, λ,Δ)(Ψ) = tt we have a con-

formance, in which case the formulas of Ψ can be

recorded, i.e., Δ′ := Δ,Ψ. Otherwise we declare a

mechanism failure.

assumeΨ : Let Δ′ := Δ,Ψ. Observe that

(T 〈c′, σ′, λ, π,Δ′〉, U ′, α′) is either a full conformance

—if last(T )|last(U) |= Ψ— or an assumption failure,

so we are done. Without recourse to checking whether

last(T )|last(U) |= Ψ, it is not possible to determine

which it is.

In case π = (hi, (b, d) : rest) we again go by cases on

redex(c):

x := e : As in the proof of Thm. 6, let λ′ := [λ|x : hi],
π′ := π, U ′ := U , α′ := α ∪ {(|T |, |U | − 1)}. Let

Δ′ = {Φ | Φ ∈ Δ ∧ x /∈ FV (Φ)}. As in the case

of low assignment, this maintains the full conformance

property.

while e do d : Let Δ′ := Δ.

skip : If c′ �= d, this step is continuing in a high segment of

the major trace. We extend the construction in Thm. 6

by Δ′ := Δ. Otherwise, c′ = d, i.e., this step reached

the end of a high segment in the major trace. Again

we extend the construction in Thm. 6, in this case with

Δ′ := {Φ | Φ ∈ Δ∧ targets(b)∩FV (Φ) = ∅}. Either

way, the rest goes as in Thm. 6.

if e then ctt else cff : As in Thm. 6, adding Δ′ := Δ.

assertΨ : As in Thm. 6.

assumeΨ : As in Thm. 6.

The constructive part of the proof can be summarized

in the form of monitoring rules, given in Table I. The table

defines transition relations for monitored configurations, pro-

viding new values of the variable levels, control context, and

known formulas, given the current configuration. It should be

read as follows: Pick the first row where the values of c and

π in the current monitor configuration match the patterns

(“ ” matches everything) in the respective columns. E.g.,

if current full configuration has c that looks like (skip; d)
and π is lo, then the values of π′, λ′ and Δ′ in the next

configuration are same as in the current. (The new values

of c′ and σ′ are defined by the language semantics.) The

table indicates conditions under which there is failure. In

Sec. V we discuss what the monitor can do upon detecting

failure. By contrast with the proof of Thm. 7, we do not

distinguish between assertion failure and mechanism failure

in the checking of assertions.

The initial value of π is lo. The initial values of λ and

Δ are obtained from the first assumption in the program.

Specifically, we stipulate that any program should look like:

assumeΨ; c; skip for some Ψ and c. Then, the initial value

of Δ is going to be Ψ (treated as a set of basic formulas)

and the initial value of λ such that |= Ψ ⇒ Aλ. A simple

example of a monitored execution is presented in Fig. 3.
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step c σ λ π Δ

0 assumeAy; x:=y; assertAx; skip [x:1, y:2] [x:hi, y:lo] lo Ay
1 skip; x:=y; assertAx; skip [x:1, y:2] [x:hi, y:lo] lo Ay
2 x:=y; assertAx; skip [x:1, y:2] [x:hi, y:lo] lo Ay
3 skip; assertAx; skip [x:2, y:2] [x:lo, y:lo] lo Ay
4 assertAx; skip [x:2, y:2] [x:lo, y:lo] lo Ay
5 skip; skip [x:2, y:2] [x:lo, y:lo] lo Ay
6 skip [x:2, y:2] [x:lo, y:lo] lo Ay

Figure 3. Example monitor trace

V. MONITORING AS ABSTRACT INTERPRETATION

The preceding section considered how a single minor run

can be tracked by a major run equipped with suitable instru-

mentation. However, the use and update of instrumentation

is independent of the particular minor run. This is the key

to monitoring: the monitor computes an abstraction of the

set of possible minor traces.

It is convenient to use the following tokens to represent

the classification of trace alignments: ignore, fail , ok.

Tracking sets

A tagged minor trace for T is a quadruple (T, U, α, tag)
such that code(T ) = code(U) and (a) if tag is ignore,

(T, U, α) is an assumption failure, eventual divergence,

or quiescent conformance; (b) if tag is fail , (T, U, α) is

as assertion failure, alignment failure, or designated as a

mechanism failure; and (c) if tag is ok then (T, U, α) is a

full conformance.

A tracking set for T is a set X of tagged minor traces

for T with the following properties.

(Completeness) For all σ, there is some (T, U, α, tag)
in X such that state(U0) = σ.

(Irredundancy) For all (T, U, α, tag) and

(T, U ′, α′, tag′) in X , if state(U0) = state(U ′0)
then U = U ′, α = α′, and tag = tag′.

We include state(T0) among the states σ: As discussed

earlier, the monitor is checking ordinary unary assertion

failures too.

Here is an immediate consequence of the definitions.

Theorem 8. If X is a tracking set for T and X does not

contain the tag fail then T is safe (i.e., �T � is safe).

To determine the safety of a trace T it suffices to maintain

a tracking set. This can be done by pointwise updates, owing

to the construction in Theorems 6 and 7.

Theorem 9 [Concretion of monitored execution]. Suppose

V is an ordinary trace. Then there is a fully augmented trace

T , with �T � = V , and a tracking set for T .

Proof: By induction on V . In the base case, V
is a singleton trace 〈c, σ〉. Let T be 〈c, σ, λ, π,Δ〉
where the initial monitor state λ, π,Δ is given in the

proof of Thm. 7. Let α := {(0, 0)}. Let X be the set

{(T, 〈c, τ〉, α, ok) | τ ∈ States}. This is a tracking set.

For the induction step consider a trace V 〈c, σ〉. By

induction, let T and X be the fully augmented trace and

tracking set for V . Extend T and each tagged minor trace

in X according to the construction in the proof of Thm. 7,

choosing the appropriate tag in each case. Note that exten-

sion of T is determined entirely by the current configuration,

independent of any minor trace (Table I). In some cases it is

unknown, “from the monitor’s point of view”, which kind of

failure occurs, but it is always determined which tag applies.

Monitoring: Having determined how the monitor tracks

minor traces, what remains is to decide how it should handle

failure. One possibility is to maintain a boolean flag, initially

true and set false if failure reached. The major trace is

secure so long as the flag is true. For strong security, the

computation should be halted if failure is reached. Simply

logging the failure may be appropriate for software testing.

Failures may hint at faulty policy, or the need for additional

assumptions to facilitate reasoning by the monitor.

The monitor is evidently transparent, in the sense that

it does not alter the program behavior except for whatever

action is taken upon failure. However, a safe trace may be

considered as a failure, due to choice of alignment as well

as incompleteness of assertion checking.

What about multi-level policies? In the relational logic

approach to information flow policy, such policies are

expressed by using multiple relational specifications. One

may also want multiple policies because there are multiple

requirements. In our setting, one could choose for annotation

labels pairs (p, n) where p is a policy identifier and n
provides uniqueness. A program may have many annota-

tions, all with unique labels but several may share a given

policy name p. For each p there can be a monitor based on

the annotations for p, ignoring the other annotations. The

cartesian product of these monitors enforces all the policies.

There are obvious optimizations of the product monitor, e.g.,

the product of several λ functions can be represented by a

single one that maps to a product lattice instead of {lo,hi}.
Static and dynamic reasoning about annotations: Here

is an example of how the monitor does some reasoning.
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assume A (guess = password)
∧ (B (guess = password) ⇒A untrusted)

if guess = password then assert B (guess = password);
trusted := untrusted

assert A trusted

When the branch is taken, the intermediate assertion is

in a low context (owing to the initial assumption). It

checks successfully, because guess = password holds in the

current state and the monitor still knows the agreement

A (guess = password). For the assignment, the monitor deter-

mines the label on untrusted can be set to lo, because from

B (guess = password) and the initial assumption it knows A

untrusted.

Here is an example where hybrid monitoring can benefit

from static assertion checking.

assume A (h0+h1) ∧ A (h2+h3)
x02 := h0 + h2; x13 := h1 + h3; y := x02; y := y + x13;
assert B (y = h0 + h1 + h2 + h3);
out := y;
assert A out

Semantically, both assertions are valid. In fact the interme-

diate assertion can be established by a rudimentary unary

program verifier, and for any valid unary assertion ϕ the

assertion Bϕ is valid in relational logic. The monitor pre-

sented here cannot establish the first assertion: Although it

can test y = h0 + h1 + h2 + h3 in the current state, and it can

deduce A (h0 + h1 + h2 + h3) from the initial assumption, it

cannot deduce A y.

The point of the example is that, although prior “hy-

brid” monitors used static analysis to determine poten-

tially updated state, another useful form of static analysis

is ordinary assertion checking. In this case, that justifies

assuming B(y = h0 + h1 + h2 + h3), which then serves to inform

the monitor about the current value of y so that it can deduce

the agreement and thereby confirm the final assertion. One

can also use assumptions in this way for statically checked

relational assertions. Of course such assumptions should

be distinguished from those that are part of the policy

specification.

Another policy issue is that, for some end-to-end security

properties, it is important to disallow mutation of variables

that occur in downgrading policy assumptions. For the

monitor to track whether a given location has been assigned

or still has its initial value, one can add “old-expressions” to

the assertion language, for use in assertions like x = old(x).
Old-expressions have been implemented in several runtime

assertion checkers [22].

VI. RELATED WORK

Relational logic for specification of information flow has

been introduced by Benton [23] and Amtoft and Banerjee

[8] for simple imperative programs. Hunt and Sands [24]

provide a flow-sensitive type system that is equivalent.

Amtoft et al [6] extend the logic to object-based programs

by means of a region-based heap abstraction, so agreements

can be expressed for heap locations. Their idea inspired

development of region logic [25], a relational version of

which is work in progress. Amtoft et al [26] implement

relational contracts for SparkAda procedures, which can

express conditional agreements for array segments, including

generation of verification conditions using relational loop

invariants. To specify policies involving multiple levels

they introduce indexed agreements which compactly encode

multiple requires/ensures contracts. Nanevski et al [4] design

and implement Relational Hoare Type Theory, providing

machine-checked static verification of relational policies for

program features including dynamic allocation and deallo-

cation. Their policies are less expressive than ours insofar

as they only provide pre/post contracts. On the other hand,

their relations are expressed using full higher order logic; in

particular, this provides for an unusual notion of declassifi-

cation based on opacity of abstract predicates.

Banerjee et al [18] propose a mix of relational logic

and type checking to express policies with declassification,

extending the end-to-end property of [27]. Another ex-

tension that addresses the “what” and “where” dimensions

of declassification is given in [11]. We conjecture that by

choosing a suitable class of annotations in our relational

logic, we can obtain their security properties as consequence

of our semantics in Sec. III.

The idea of making alignments an explicit structure, with

a minor run constructed incrementally appeared in [18]

where it was used for soundness proof of their static analysis.

Kovács et al. [14] formulate and implement abstract inter-

pretation of trace pairs; we adopt their term “alignments”.

Their algorithm checks pre/post properties. They construct

alignments from trace pairs by automatic syntactic matching.

In contrast, works like [16], [15] use static analysis and

transformation to construct a syntactic representation that

determines the alignment for all pairs.

The extra components in augmented configurations (our

λ and π) have been used in existing information flow

monitors [1], [21], [28], [2], [17], [10], [29], [11]. Trace

alignments are not explicit in prior work on monitoring,

except for [2] which has hinted at their existence, calling

them “trace pairs”: “corresponding” elements of two traces

where one of the elements might not exist, and the pairing

is according to program counter values explicit in traces.

The idea of a “hybrid” monitor that uses static analysis

to account for indirect implicit flows when control flow

merges goes back to [2] and [21]. However, as shown

in [1], the former did not need to be hybrid after all,

due to being flow-insensitive. Moore and Chong [30] adapt

the monitor of [1] to programs that dynamically allocate

state, showing what sorts of heap abstraction can support

hybrid monitoring. Beringer [17] delves into the design

of flow-sensitive monitors, dissecting the components of

hybrid monitors dealing with direct and aspects of indirect

flow, studying the guarantees given by variations on existing
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enforcement mechanisms. He coined the terms “minor” and

“major” which we use.

Most of the previous work on monitoring was concerned

with plain NI policies. Askarov and Sabelfeld’s [11] stands

out as the only one, to the best of our knowledge, to address

declassification policies. The monitor carries around a set E
declassified expressions, which at first glance resembles our

Δ. But the monitor’s behavior is not affected by E; it only

serves as ghost instrumentation with which to define the

security property, an end-to-end knowledge based property

like those of [18], [11], [31]. Because policy expression

is conflated with the release action, the monitor can just

execute the declass as an assignment (and add the expression

to E). Agreement on the values of released expressions is

in the initial memory rather than the current one. Owing to

the flexibility of relational logic, their security property can

be expressed in our setting by judicious choice of policy

including specification of which variables can be modified.

Birgisson et al [32] observe that many integrity policies

simply require invariance of a predicate or value. They

augment the monitor of [11] to check an ordinary assertion

upon termination (effectively using old-expressions).

Our treatment of assumptions and assertions resembles the

security property used by Dupressoir et al [33] for (unary)

reasoning about protocol implementations. Flow-locks [5]

extend information-flow typing with state-dependent condi-

tions. Austin et al [34] describe dynamic IFC for imperative

programs by translation to a lambda calculus. Secure multi-

execution [35], [36] and faceted execution [37] are being

explored as alternatives to monitoring by label-tracking.

VII. DISCUSSION

The connection made here between information flow

monitoring and relational program logic is just a beginning,

which points to many topics for further investigation. In

ongoing work we are developing an inlined monitor for

the LLVM intermediate representation that implements the

design described in this paper. This involves a richer as-

sertion language to deal with arrays and buffered streams.

We are also exploring how to make a hybrid monitor

tunable in terms of how much it relies on static analysis,

including verification of assertions, prior to execution. We

can also tune the performance/completeness tradeoff for

runtime reasoning (eval and chkVal ). A useful feature is

detection of inconsistent assumptions.4

Although abstract interpretation is the leading idea of

the paper, our formalization does not make explicit use the

general theory of abstract interpretation. Prior work shows

how abstract transfer functions can be derived by calculation

4For example, some checking can be done by the monitor as described
in this paper. If Bϕ is a basic formula among those being assumed, and ϕ
is false in the current major state, or chkV al(Aλ∧Δ ⇒ B¬ϕ) = tt, the
assumption is inconsistent.

from concrete semantics together with an abstraction func-

tion [19], [38]. Unlike these works, however, we are dealing

with a hyperproperty so the concrete domain and abstraction

function are somewhat complicated. We leave this to future

work, aiming to build on the work of Kovács et al [14].

There has been other work on abstract interpretation for

information flow and even declassification, but using abstrac-

tions of single executions [39]. A general framework could

facilitate investigation of alternate monitoring techniques

such as fully dynamic monitoring [10], [40].

One should also investigate relationships among different

security properties and how they may or may not be ex-

pressible in our relational logic or a variation of it to cater

for termination-sensitive security properties. Our develop-

ment leans heavily on determinacy, so nondeterminacy is a

particularly interesting challenge.
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