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Abstract—Security APIs, key servers and protocols that need
to keep the status of transactions, require to maintain a global,
non-monotonic state, e.g., in the form of a database or register.
However, existing automated verification tools do not support
the analysis of such stateful security protocols – sometimes
because of fundamental reasons, such as the encoding of the
protocol as Horn clauses, which are inherently monotonic. An
exception is the recent tamarin prover which allows specifying
protocols as multiset rewrite (msr) rules, a formalism expressive
enough to encode state. As multiset rewriting is a “low-level”
specification language with no direct support for concurrent
message passing, encoding protocols correctly is a difficult and
error-prone process.

We propose a process calculus which is a variant of the
applied pi calculus with constructs for manipulation of a global
state by processes running in parallel. We show that this
language can be translated to msr rules whilst preserving all
security properties expressible in a dedicated first-order logic
for security properties. The translation has been implemented
in a prototype tool which uses the tamarin prover as a backend.
We apply the tool to several case studies among which a
simplified fragment of PKCS#11, the Yubikey security token,
and an optimistic contract signing protocol.

I. INTRODUCTION

Automated analysis of security protocols has been ex-

tremely successful. Using automated tools, flaws have been

for instance discovered in the Google Single Sign On

Protocol [1], in commercial security tokens implementing

the PKCS#11 standard [2], and one may also recall Lowe’s

attack [3] on the Needham-Schroeder public key protocol

17 years after its publication. While efficient tools such as

ProVerif [4], AVISPA [5] or Maude-NPA [6] exist, these

tools fail to analyze protocols that require non-monotonic
global state, i.e., some database, register or memory location

that can be read and altered by different parallel threads. In

particular ProVerif, one of the most efficient and widely used

protocol analysis tools, relies on an abstraction that encodes

protocols in first-order Horn clauses. This abstraction is

well suited for the monotonic knowledge of an attacker

(who never forgets), makes the tool extremely efficient for

verifying an unbounded number of protocol sessions and

allows to build on existing techniques for Horn clause

resolution. However, Horn clauses are inherently monotonic:

once a fact is true it cannot be set to false anymore. As

a result, even though ProVerif’s input language, a variant

The full version of this paper including all proofs is available at http:
//sapic.gforge.inria.fr/

of the applied pi calculus [7], allows a priori encodings of

a global memory, the abstractions performed by ProVerif

introduce false attacks. In the ProVerif user manual [8,

Section 6.3.3] such an encoding of memory cells and its

limitations are indeed explicitly discussed: “Due to the
abstractions performed by ProVerif, such a cell is treated
in an approximate way: all values written in the cell are
considered as a set, and when one reads the cell, ProVerif
just guarantees that the obtained value is one of the written
values (not necessarily the last one, and not necessarily one
written before the read).”
A prominent example where non-monotonic global state

appears are security APIs, such as the RSA PKCS#11

standard [9], IBM’s CCA [10] or the trusted platform module

(TPM) [11]. They have been known to be vulnerable to

logical attacks for some time [12], [13] and formal analysis

has shown to be a valuable tool to identify attacks and

find secure configurations. One promising paradigm for

analyzing security APIs is to regard them as a participant

in a protocol and use existing analysis tools. However, Her-

zog [14] already identified not accounting for mutable global

state as a major barrier to the application of security protocol

analysis tools to verify security APIs. Apart from security

APIs many other protocols need to maintain databases: key

servers need to store the status of keys, in optimistic contract

signing protocols a trusted party maintains the status of a

contract, RFID protocols maintain the status of tags and

more generally websites may need to store the current status

of transactions.

Our contributions: We propose a tool for analyzing

protocols that may involve non-monotonic global state, rely-

ing on Schmidt et al.’s tamarin tool [15], [16] as a backend.

We designed a new process calculus that extends the applied

pi calculus by defining, in addition to the usual constructs

for specifying concurrent processes, constructs for explicitly

manipulating global state. This calculus serves as the tool’s

input language. The heart of our tool is a translation from

this extended applied pi calculus to a set of multiset rewrite

rules that can then be analyzed by tamarin which we use

as a backend. We prove the correctness of this translation

and show that it preserves all properties expressible in a

dedicated first order logic for expressing security properties.

As a result, relying on the tamarin prover, we can analyze

protocols without bounding the number of sessions, nor

making any abstractions. Moreover it allows to model a
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wide range of cryptographic primitives by the means of

equational theories. As the underlying verification problem

is undecidable, tamarin may not terminate. However, it

offers an interactive mode with a GUI which allows to

manually guide the tool in its proof. Our specification lan-

guage includes support for private channels, global state and

locking mechanisms (which are crucial to write meaningful

programs in which concurrent threads manipulate a common

memory). The translation has been carefully engineered in

order to favor termination by tamarin. We illustrate the tool

on several case studies: a simple security API in the style

of PKCS#11, a complex case study of the Yubikey security

device, as well as several examples analyzed by other tools

that aim at analyzing stateful protocols. In all of these case

studies we were able to avoid restrictions that were necessary

in previous works.

Related work: The most closely related work is the

StatVerif tool by Arapinis et al. [17]. They propose an

extension of the applied pi calculus, similar to ours, which

is translated to Horn clauses and analyzed by the ProVerif

tool. Their translation is sound but allows for false attacks,

limiting the scope of protocols that can be analyzed. More-

over, StatVerif can only handle a finite number of memory

cells: when analyzing an optimistic contract signing protocol

this appeared to be a limitation and only the status of a

single contract was modeled, providing a manual proof to

justify the correctness of this abstraction. Finally, StatVerif is

limited to the verification of secrecy properties. As illustrated

by the Yubikey case study, our work is more general and

we are able to analyze complex injective correspondance

properties.

Mödersheim [18] proposed a language with support for

sets together with an abstraction where all objects that

belong to the same sets are identified. His language, which is

an extension of the low level AVISPA intermediate format, is

compiled into Horn clauses that are then analyzed, e. g., us-

ing ProVerif. His approach is tightly linked to this particular

abstraction limiting the scope of applicability. Mödersheim

also discusses the need for a more high-level specification

level which we provide in this work.

There has also been work tailored to particular applica-

tions. In [19], Delaune et al. show by a dedicated hand proof

that for analyzing PKCS#11 one may bound the message

size. Their analysis still requires to artificially bound the

number of keys. Similarly in spirit, Delaune et al. [20] give
a dedicated result for analyzing protocols based on the TPM

and its registers. However, the number of reboots (which

reinitialize registers) needs to be limited.

Guttman [21] also extended the strand space model by

adding support for state. While the protocol execution is

modeled using the classical strand spaces model, state is

modeled by a multiset of facts, and manipulated by multiset

rewrite rules. The extended model has been used for analyz-

ing by hand an optimistic contract signing protocol. As of

now, protocol analysis in the strand space model with state

has not been mechanized yet.

In the goal of relating different approaches for protocol

analysis Bistarelli et al. [22] also proposed a translation from
a process algebra to multiset rewriting: they do however

not consider private channels, have no support for global

state and assume that processes have a particular structure.

These limitations significantly simplify the translation and

its correctness proof. Moreover their work does not include

any tool support for automated verification.

Obviously any protocol that we are able to analyze can

be directly analyzed by the tamarin prover [15], [16] as the

rules produced by our translation could have been given

directly as an input to tamarin. Indeed, tamarin has already

been used for analyzing a model of the Yubikey device [23],

the case studies presented with Mödersheim’s abstraction, as

well as those presented with StatVerif. It is furthermore able

to reproduce the aforementioned results on PKCS#11 [19]

and the TPM [20] – moreover, it does so without bounding

the number of keys, security devices, reboots, etc. Contrary

to ProVerif, tamarin sometimes requires additional typing
lemmas which are used to guide the proof. These lemmas

need to be written by hand (but are proved automatically).

In our case studies we also needed to provide a few such

lemmas manually. In our opinion, an important disadvan-

tage of tamarin is that protocols are modeled as a set

of multiset rewrite rules. This representations is very low

level and far away from actual protocol implementations,

making it very difficult to model a protocol adequately.

Encoding private channels, nested replications and locking

mechanisms directly as multiset rewrite rules is a tricky

and error prone task. As a result we observed that, in

practice, the protocol models tend to be simplified. For

instance, locking mechanisms are often omitted, modeling

protocol steps as a single rule and making them effectively

atomic. Such more abstract models may obscure issues in

concurrent protocol steps and increase the risk of implicitly

excluding attacks in the model that are well possible in a real

implementation, e. g., race conditions. Using a more high-

level specification language, such as our process calculus,

arguably eases protocol specification and overcomes some

of these risks.

II. PRELIMINARIES

Terms and equational theories: As usual in symbolic

protocol analysis we model messages by abstract terms.

Therefore we define an order-sorted term algebra with the

sort msg and two incomparable subsorts pub and fresh . For
each of these subsorts we assume a countably infinite set

of names, FN for fresh names and PN for public names.

Fresh names will be used to model cryptographic keys and

nonces while public names model publicly known values.

We furthermore assume a countably infinite set of variables

for each sort s, Vs and let V be the union of the set of

164

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 05:27:20 UTC from IEEE Xplore.  Restrictions apply. 



variables for all sorts. We write u : s when the name or

variable u is of sort s. Let Σ be a signature, i.e., a set of

function symbols, each with an arity. We write f/n when

function symbol f is of arity n. We denote by TΣ the set

of well-sorted terms built over Σ, PN , FN and V . For a

term t we denote by names(t), respectively vars(t) the set

of names, respectively variables, appearing in t. The set of

ground terms, i.e., terms without variables, is denoted by

MΣ. When Σ is fixed or clear from the context we often

omit it and simply write T for TΣ and M for MΣ.

We equip the term algebra with an equational theory

E, that is a finite set of equations of the form M = N
where M,N ∈ T . From the equational theory we define

the binary relation =E on terms, which is the smallest

equivalence relation containing equations in E that is closed

under application of function symbols, bijective renaming

of names and substitution of variables by terms of the same

sort. Furthermore, we require E to distinguish different fresh

names, i. e., ∀a, b ∈ FN : a �= b⇒ a �=E b.

Example. Symmetric encryption can be modelled using a

signature

Σ = { senc/2, sdec/2, encCor/2, true/0 }

and an equational theory defined by

sdec(senc(m, k), k) = m encCor(senc(x, y), y) = true

The last equation allows to check whether a term can be

correctly decrypted with a certain key.

For the rest of the paper we assume that E refers to

some fixed equational theory and that the signature and

equational theory always contain symbols and equations

for pairing and projection, i.e., {〈., .〉, fst, snd} ⊆ Σ and

equations fst(〈x, y〉) = x and snd(〈x, y〉) = y are in E.

We will sometimes use 〈x1, x2, . . . , xn〉 as a shortcut for

〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉.
We also use the usual notion of positions for terms. A

position p is a sequence of positive integers and t|p denotes

the subterm of t at position p.
Facts: We also assume an unsorted signature Σfact ,

disjoint from Σ. The set of facts is defined as

F := {F (t1, . . . , tk) | ti ∈ TΣ, F ∈ Σfact of arity k}.

Facts will be used both to annotate protocols, by the means

of events, and for defining multiset rewrite rules. We par-

tition the signature Σfact into linear and persistent fact

symbols. We suppose that Σfact always contains a unary,

persistent symbol !K and a linear, unary symbol Fr. Given
a sequence or set of facts S we denote by lfacts(S) the

multiset of all linear facts in S and pfacts(S) the set of all

persistent facts in S. By notational convention facts whose

identifier starts with ‘!’ will be persistent. G denotes the set

of ground facts, i.e., the set of facts that does not contain

variables. For a fact f we denote by ginsts(f) the set

of ground instances of f . This notation is also lifted to

sequences and sets of facts as expected.

Substitutions: A substitution σ is a partial function

from variables to terms. We suppose that substitutions

are well-typed, i.e., they only map variables of sort s
to terms of sort s, or of a subsort of s. We denote by

σ = {t1/x1 , . . . ,
tn /xn} the substitution whose domain is

D(σ) = {x1, . . . , xn} and which maps xi to ti. As usual

we homomorphically extend σ to apply to terms and facts

and use a postfix notation to denote its application, e.g., we

write tσ for the application of σ to the term t. A substitution

σ is grounding for a term t if tσ is ground. Given function

g we let g(x) = ⊥ when x �∈ D(x). When g(x) = ⊥
we say that g is undefined for x. We define the function

f := g[a 
→ b] with D(f) = D(g) ∪ { a } as f(a) := b and

f(x) := g(x) for x �= a.
Sets, sequences and multisets: We write Nn for the

set {1, . . . , n}. Given a set S we denote by S∗ the set

of finite sequences of elements from S and by S# the

set of finite multisets of elements from S. We use the

superscript # to annotate usual multiset operation, e.g.

S1 ∪# S2 denotes the multiset union of multisets S1, S2.

Given a multiset S we denote by set(S) the set of elements

in S. The sequence consisting of elements e1, . . . , en will be

denoted by [e1, . . . , en] and the empty sequence is denoted

by []. We denote by |S| the length, i.e., the number of

elements of the sequence. We use · for the operation of

adding an element either to the start or to the end, e.g.,

e1 · [e2, e3] = [e1, e2, e3] = [e1, e2] · e3. Given a sequence

S, we denote by idx (S) the set of positions in S, i.e., Nn

when S has n elements, and for i ∈ idx (S) Si denotes the

ith element of the sequence. Set membership modulo E is

denoted by ∈E and defined as e ∈E S if ∃e′ ∈ S. e′ =E e.
⊂E and =E are defined for sets in a similar way. Application

of substitutions are lifted to sets, sequences and multisets

as expected. By abuse of notation we sometimes interpret

sequences as sets or multisets.

III. A CRYPTOGRAPHIC PI CALCULUS

WITH EXPLICIT STATE

A. Syntax and informal semantics

Our calculus is a variant of the applied pi calculus [7].

In addition to the usual operators for concurrency, repli-

cation, communication and name creation, it offers several

constructs for reading and updating an explicit global state.

The grammar for processes is described in Figure 1.

0 denotes the terminal process. P | Q is the parallel

execution of processes P and Q and !P the replication of

P , allowing an unbounded number of sessions in protocol

executions. The construct νn;P binds the name n in P and

models the generation of a fresh, random value. Processes

out(M,N ); P and in(M,N ); P represent the output, respec-

tively input, of message N on channel M . Readers familiar
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〈M,N〉 ::= x, y, z ∈ V
| p ∈ PN
| n ∈ FN
| f (M1,. . . ,Mn) (f ∈ Σ of arity n)

〈P ,Q〉 ::= 0

| P | Q
| ! P
| νn; P
| out(M,N ); P
| in(M,N ); P
| if M=N then P [else Q]

| event F ; P (F ∈ F)
| insert M ,N ; P
| delete M ; P
| lookup M as x in P [else Q]

| lock M ; P
| unlock M ; P
| [L] −[A]→ [R];P (L,R,A ∈ F∗)

Figure 1. Syntax

with the applied pi calculus [7] may note that we opted for

the possibility of pattern matching in the input construct,

rather than merely binding the input to a variable x. The
process if M=N then P else Q will execute P if M =E N
and Q otherwise. The event construct is merely used for

annotating processes and will be useful for stating security

properties. For readability we sometimes omit to write else
Q when Q is 0, as well as trailing 0 processes.

The remaining constructs are used for manipulating state

and are new compared to the applied pi calculus. We offer

two different mechanisms for state. The first construct is

functional and allows to associate a value to a key. The

construct insert M ,N binds the value N to a key M .

Successive inserts allow to change this binding. The delete

M operation simply “undefines” the mapping for the keyM .

The lookup M as x in P else Q allows to retrieve the value

associated to M , binding it to the variable x in P . If the

mapping is undefined for M the process behaves as Q. The

lock and unlock constructs allow to gain exclusive access

to a resource M . This is essential for writing protocols

where parallel processes may read and update a common

memory. We additionally offer another kind of global state

in form of a multiset of ground facts, as opposed to the

previously introduced functional store. This multiset can

be altered using the construct [L] −[A]→ [R];P , which

tries to match each fact in the sequence L to facts in the

current multiset and, if successful, adds the corresponding

instance of facts R to the store. The facts A are used as

annotations in a similar way to events. The purpose of this

construct is to provide access to the underlying notion of

state in tamarin, but we stress that it is distinct from the

previously introduced functional state, and its use is only

advised to expert users. We allow this “low-level” form of

state manipulation in addition to the functional state, as it

offers a great flexibility and has shown useful in one of our

case studies. This style of state manipulation is similar to

the state extension in the strand space model [21] and the

underlying specification language of the tamarin tool [15],

[16]. Note that, even though those stores are distinct (which

is a restriction imposed by our translation), data can be

moved from one to another, for example as follows: lookup
’store1’ as x in [] −[ ]→ [store2(x)].
In the following example, which will serve as our running

example, we model a security API that, even though much

simplified, illustrates the most salient issues that occur in

the analysis of security APIs such as PKCS#11 [19], [2].

Example. We consider a security device that allows the

creation of keys in its secure memory. The user can access

the device via an API. If he creates a key, he obtains a

handle, which he can use to let the device perform operations

on his behalf. For each handle the device also stores an

attribute which defines what operations are permitted for this

handle. The goal is that the user can never gain knowledge

of the key, as the user’s machine might be compromised. We

model the device by the following process (we use out(m)
as a shortcut for out(c,m) for a public channel c):

!Pnew | !Pset | !Pdec | !Pwrap , where

Pnew := νh; νk; event NewKey(h,k);
insert 〈‘key’ ,h〉 ,k;
insert 〈‘ att ’ ,h〉 , ‘dec’; out(h)

In the first line, the device creates a new handle h and a key

k and, by the means of the event NewKey(h, k), logs the

creation of this key. It then stores the key that belongs to

the handle by associating the pair 〈‘key’, h〉 to the value of

the key k. In the next line, 〈‘att’, h〉 is associated to a public

constant ‘dec’. Intuitively, we use the public constants ‘key’

and ‘att’ to distinguish two databases. The process

Pset := in(h); insert 〈‘att’,h〉, ‘wrap’
allows the attacker to change the attribute of a key from the

initial value ‘dec’ to another value ‘wrap’. If a handle has

the ‘dec’ attribute set, it can be used for decryption:

Pdec := in(〈h,c〉); lookup 〈‘att’,h〉 as a in
if a=‘dec’ then

lookup 〈‘key’ ,h〉 as k in
if encCor(c,k)=true then

event DecUsing(k,sdec(c,k));
out(sdec(c,k))

The first lookup stores the value associated to 〈‘att’, h〉 in
a. The value is compared against ‘dec’. If the comparison

and another lookup for the associated key value k succeeds,

we check whether decryption succeeds and, if so, output the

plaintext.
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If a key has the ‘wrap’ attribute set, it might be used to

encrypt the value of a second key:

Pwrap := in(〈h1,h2〉); lookup 〈‘att’,h1〉 as a1 in
if a1=‘wrap’ then

lookup 〈‘key’ ,h1〉 as k1 in
lookup 〈‘key’ , h2〉 as k2 in

event Wrap(k1,k2);
out(senc(k2,k1))

The bound names of a process are those that are bound

by νn. We suppose that all names of sort fresh appearing

in the process are under the scope of such a binder. Free

names must be of sort pub. A variable x can be bound in

three ways: (i) by the construct lookup M as x, or (ii) x ∈
vars(N) in the construct in(M,N ) and x is not under the

scope of a previous binder, (iii) x ∈ vars(L) in the construct

[L] −[A]→ [R] and x is not under the scope of a previous

binder. While the construct lookup M as x always acts as a

binder, the input and [L] −[A]→ [R] constructs do not rebind

an already bound variable but perform pattern matching. For

instance in the process

P = in(c,f(x)); in(c,g(x))

x is bound by the first input and pattern matched in the

second. It might seem odd that lookup acts as a binder,

while input does not. We justify this decision as follows:

as Pdec and Pwrap in the previous example show, lookups

appear often after input was received. If lookup were to use

pattern matching, the following process

P = in(c, x); lookup ‘store’ as x in P ′

might unexpectedly perform a check if ‘store’ contains the

message given by the adversary, instead of binding the

content of ‘store’ to x, due to an undetected clash in the

naming of variables.

A process is ground if it does not contain any free

variables. We denote by Pσ the application of the homo-

morphic extension of the substitution σ to P . As usual we

suppose that the substitution only applies to free variables.

We sometimes interpret the syntax tree of a process as a term

and write P |p to refer to the subprocess of P at position p
(where |, if and lookup are interpreted as binary symbols,

all other constructs as unary).

B. Semantics

Frames and deduction: Before giving the formal se-

mantics of our calculus we introduce the notions of frame

and deduction. A frame consists of a set of fresh names ñ
and a substitution σ and is written νñ.σ. Intuitively a frame

represents the sequence of messages that have been observed

by an adversary during a protocol execution and secrets ñ
generated by the protocol, a priori unknown to the adversary.

Deduction models the capacity of the adversary to compute

new messages from the observed ones.

Definition 1 (Deduction). We define the deduction relation
νñ.σ � t as the smallest relation between frames and terms
defined by the deduction rules in Figure 2.

Example. If one key is used to wrap a second key, then, if

the intruder learns the first key, he can deduce the second.

For ñ = k1, k2 and σ = { senc(k2,k1)/x1 ,
k1 /x2 }, νñ.σ � k2,

as witnessed by the proof tree given in Figure 3.

Operational semantics: We can now define the opera-

tional semantics of our calculus. The semantics is defined by

a labelled transition relation between process configurations.

A process configuration is a 6-tuple (E ,S,SMS,P, σ,L)
where

• E ⊆ FN is the set of fresh names generated by the

processes;

• S : MΣ → MΣ is a partial function modeling the

functional store;

• SMS ⊆ G# is a multiset of ground facts and models

the multiset of stored facts;

• P is a multiset of ground processes representing the

processes executed in parallel;

• σ is a ground substitution modeling the messages

output to the environment;

• L ⊆MΣ is the set of currently acquired locks.

The transition relation is defined by the rules described in

Figure 4. Transitions are labelled by sets of ground facts.

For readability we omit empty sets and brackets around

singletons, i.e., we write → for
∅−→ and

f−→ for
{ f }−→. We

write →∗ for the reflexive, transitive closure of → (the

transitions that are labelled by the empty sets) and write
f⇒ for →∗ f→→∗. We can now define the set of traces, i.e.,

possible executions, that a process admits.

Definition 2 (Traces of P ). Given a ground process P we
define the set of traces of P as

tracespi(P ) =
{
[F1, . . . , Fn] | (∅, ∅, ∅, {P}, ∅, ∅)

F1=⇒ (E1,S1,SMS
1 ,P1, σ1,L1)

F2=⇒ . . .
Fn=⇒ (En,Sn,SMS

n ,Pn, σn,Ln)
}

Example. In Figure 5 we display the transitions that illus-

trate how the first key is created on the security device in

our running example and witness that [NewKey(h′, k′)] ∈
tracespi(P ).

IV. LABELLED MULTISET REWRITING

We now recall the syntax and semantics of labelled

multiset rewriting rules, which constitute the input language

of the tamarin tool [15].

Definition 3 (Multiset rewrite rule). A labelled multiset
rewrite rule ri is a triple (l, a, r), l, a, r ∈ F∗, writ-
ten l −[a]→ r. We call l = prems(ri) the premises,
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a ∈ FN ∪ PN a /∈ ñ
νñ.σ � a

DNAME
νñ.σ � t t =E t′

νñ.σ � t′
DEQ

x ∈ D(σ)

νñ.σ � xσ
DFRAME

νñ.σ � t1 · · · νñ.σ � tn f ∈ Σk

νñ.σ � f(t1, . . . , tn)
DAPPL

Figure 2. Deduction rules.

x1 ∈ D(σ)

νñ.σ � senc(k2, k1)

x2 ∈ D(σ)

νñ.σ � k1

νñ.σ � sdec(senc(k2, k1), k1) sdec(senc(k2, k1), k1) =E k2
νñ.σ � k2

Figure 3. Proof tree witnessing that νñ.σ � k2

Standard operations:

(E ,S,SMS,P ∪# {0}, σ,L) −→ (E ,S,SMS,P, σ,L)
(E ,S,SMS,P ∪# {P |Q}, σ,L) −→ (E ,S,SMS,P ∪# {P,Q}, σ,L)
(E ,S,SMS,P ∪# {!P}, σ,L) −→ (E ,S,SMS,P ∪# {!P, P}, σ,L)

(E ,S,SMS,P ∪# {νa;P}, σ,L) −→ (E ∪ {a′},S,SMS,P ∪# {P{a′/a}}, σ,L)
if a′ is fresh

(E ,S,SMS,P, σ,L) K(M)−−−−→ (E ,S,SMS,P, σ,L) if νE .σ �M

(E ,S,SMS,P ∪# {out(M,N);P}, σ,L) K(M)−−−−→ (E ,S,SMS,P ∪# {P}, σ ∪ {N/x},L)
if x is fresh and νE .σ �M

(E ,S,SMS,P ∪# {in(M,N);P}, σ,L) K(〈M,Nτ〉)−−−−−−−→ (E ,S,SMS,P ∪# {Pτ}, σ,L)
if ∃τ. τ is grounding for N, νE .σ �M,νE .σ � Nτ

(E ,S,SMS,P ∪# {out(M,N);P, in(M ′, N ′);Q}, σ,L) −→ (E ,S,SMS,P ∪ {P,Qτ}, σ,L)
if M =E M ′ and ∃τ. N =E N ′τ and τ grounding for N ′

(E ,S,SMS,P ∪ {if M = N then P else Q}, σ,L) −→ (E ,S,SMS,P ∪ {P}, σ,L) if M =E N

(E ,S,SMS,P ∪ {if M = N then P else Q}, σ,L) −→ (E ,S,SMS,P ∪ {Q}, σ,L) if M �=E N

(E ,S,SMS,P ∪ {event(F ); P}, σ,L) F−→ (E ,S,SMS,P ∪ {P}, σ,L)
Operations on global state:

(E ,S,SMS,P ∪# {insert M,N ; P}, σ,L) −→ (E ,S[M 
→ N ],SMS,P ∪# {P}, σ,L)
(E ,S,SMS,P ∪# {delete M ; P}, σ,L) −→ (E ,S[M 
→ ⊥],SMS,P ∪# {P}, σ,L)

(E ,S,SMS,P ∪# {lookup M as x in P else Q }, σ,L) −→ (E ,S,SMS,P ∪# {P{V/x}}, σ,L)
if S(N) =E V is defined and N =E M

(E ,S,SMS,P ∪# {lookup M as x in P else Q }, σ,L) −→ (E ,S,SMS,P ∪# {Q}, σ,L)
if S(N) is undefined for all N =E M

(E ,S,SMS,P ∪# {lock M ; P}, σ,L) −→ (E ,S,SMS,P ∪# {P}, σ,L ∪ {M })
if M �∈EL

(E ,S,SMS,P ∪# {unlock M ; P}, σ,L) −→ (E ,S,SMS,P ∪# {P}, σ,L \ {M ′ |M ′ =E M })
(E ,S,SMS,P ∪# {[l −[a]→ r]; P}, σ,L) a′

−→ (E ,S,SMS \ lfacts(l′) ∪# r′,P ∪# {Pτ }, σ,L)
if ∃τ, l′, a′, r′. τ grounding for l −[a]→ r, l′ −[a′]→ r′ =E (l −[a]→ r)τ,

lfacts(l′) ⊆# SMS, pfacts(l′) ⊂ SMS

Figure 4. Operational semantics
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(∅, ∅, ∅, { !Pnew , !Pset |!Pdec |!Pwrap︸ ︷︷ ︸
=:P′

}#, ∅, ∅)→ (∅, ∅, ∅, {Pnew }# ∪# P ′, ∅, ∅)

→ (∅, ∅, ∅, { νh; νk; event NewKey(h, k); . . . }# ∪# P ′, ∅, ∅)
→∗({h′, k′ }, ∅, ∅, { event NewKey(h′, k′); . . . }# ∪# P ′, ∅, ∅)

NewKey(h′,k′)−−−−−−−−−→ ({h′, k′ }, ∅, ∅, { insert 〈‘key’, h′〉, k′; . . . }# ∪# P ′, ∅, ∅)
→∗({h′, k′ },S, ∅, { out(h′); 0 }# ∪# P ′, ∅, ∅)→∗ ({h′, k′ },S, ∅,P ′, { h′

/x1
}, ∅)

where S(〈‘key’,h′〉) = k′ and S(〈‘att’,h′〉) = ‘dec’.

Figure 5. Example of transitions modelling the creation of a key on a PKCS#11-like device

a = actions(ri) the actions, and r = conclusions(ri) the
conclusions of the rule.

Definition 4 (Labelled multiset rewriting system). A la-
belled multiset rewriting system is a set of labelled multiset
rewrite rules R, such that each rule l −[a]→ r ∈ R satisfies
the following conditions:
• l, a, r do not contain fresh names
• r does not contain Fr-facts

A labelled multiset rewriting system is called well-formed,
if additionally
• for each l′ −[a′]→ r′ ∈E ginsts(l −[a]→ r) we have
that ∩r′′=Er′names(r′′)∩FN ⊆ ∩l′′=E l′names(l′′)∩
FN .

We define one distinguished rule FRESH which is the only

rule allowed to have Fr-facts on the right-hand side

FRESH : [] −[]→ [Fr(x : fresh)]

The semantics of the rules is defined by a labelled

transition relation.

Definition 5 (Labelled transition relation). Given a multiset
rewriting system R we define the labeled transition relation

→R⊆ G# × P(G)× G# as

S
a−→R ((S \# lfacts(l)) ∪# r)

if and only if l −[a]→ r ∈E ginsts(R∪FRESH), lfacts(l) ⊆#

S and pfacts(l) ⊆ S.

Definition 6 (Executions). Given a multiset rewriting system
R we define its set of executions as

execmsr (R) =
{
∅ A1−→R . . .

An−→R Sn |
∀a, i, j : 0 ≤ i �= j < n.
(Si+1 \# Si) = {Fr(a)} ⇒ (Sj+1 \# Sj) �= {Fr(a)}

}
The set of executions consists of transition sequences that

respect freshness, i. e., for a given name a the fact Fr(a) is
only added once, or in other words the rule FRESH is at

most fired once for each name. We define the set of traces

in a similar way as for processes.

Definition 7 (Traces). The set of traces is defined as

tracesmsr (R) =
{
[A1, . . . , An] | ∀ 0 ≤ i ≤ n. Ai �= ∅

and ∅ A1=⇒R . . .
An=⇒R Sn ∈ execmsr (R)

}

where A
=⇒R is defined as ∅−→∗

R
A−→R

∅−→∗
R.

Note that both for processes and multiset rewrite rules the

set of traces is a sequence of sets of facts.

V. SECURITY PROPERTIES

In the tamarin tool [15] security properties are described

in an expressive two-sorted first-order logic. The sort temp
is used for time points, Vtemp are the temporal variables.

Definition 8 (Trace formulas). A trace atom is either false
⊥, a term equality t1 ≈ t2, a timepoint ordering i � j, a
timepoint equality i .

= j, or an action F@i for a fact F ∈ F
and a timepoint i. A trace formula is a first-order formula
over trace atoms.

As we will see in our case studies this logic is expressive

enough to analyze a variety of security properties, including

complex injective correspondence properties.

To define the semantics, let each sort s have a domain

D(s). D(temp) = Q, D(msg) =M, D(fresh) = FN , and

D(pub) = PN . A function θ : V →M∪Q is a valuation if

it respects sorts, that is, θ(Vs) ⊂ D(s) for all sorts s. If t is
a term, tθ is the application of the homomorphic extension

of θ to t.

Definition 9 (Satisfaction relation). The satisfaction relation
(tr , θ) � ϕ between trace tr , valuation θ and trace formula
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ϕ is defined as follows:

(tr , θ) � ⊥ never
(tr , θ) � F@i iff θ(i) ∈ idx (tr) and Fθ ∈E trθ(i)
(tr , θ) � i� j iff θ(i) < θ(j)
(tr , θ) � i

.
= j iff θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 iff t1θ =E t2θ
(tr , θ) � ¬ϕ iff not (tr , θ) � ϕ
(tr , θ) � ϕ1 ∧ ϕ2 iff (tr , θ) � ϕ1 and (tr , θ) � ϕ2

(tr , θ) � ∃x : s.ϕ iff there is u ∈ D(s) such that
(tr , θ[x 
→ u]) � ϕ

When ϕ is a ground formula we sometimes simply write

tr � ϕ as the satisfaction of ϕ is independent of the

valuation.

Definition 10 (Validity, satisfiability). Let Tr ⊆ (P(G))∗ be
a set of traces. A trace formula ϕ is said to be valid for Tr ,
written Tr �∀ ϕ, if for any trace tr ∈ Tr and any valuation
θ we have that (tr , θ) � ϕ.
A trace formula ϕ is said to be satisfiable for Tr , written

Tr �∃ ϕ, if there exist a trace tr ∈ Tr and a valuation θ
such that (tr , θ) � ϕ.

Note that Tr �∀ ϕ iff Tr ��∃ ¬ϕ. Given a multiset

rewriting system R we say that ϕ is valid, written R �∀ ϕ,
if tracesmsr (R) �∀ ϕ. We say that ϕ is satisfied in R,

written R �∃ ϕ, if tracesmsr (R) �∃ ϕ. Similarly, given

a ground process P we say that ϕ is valid, written P �∀ ϕ,
if tracespi(P ) �∀ ϕ, and that ϕ is satisfied in P , written

P �∃ ϕ, if tracespi(P ) �∃ ϕ.

Example. The following trace formula expresses secrecy of

keys generated on the security API, which we introduced in

Section III.

¬(∃h, k : msg , i, j : temp. NewKey(h, k)@i ∧K(k)@j)

VI. A TRANSLATION FROM PROCESSES INTO MULTISET

REWRITE RULES

In this section we define a translation from a process P
into a set of multiset rewrite rules �P � and a translation on

trace formulas such that P |=∀ ϕ if and only if �P � |=∀ �ϕ�.
Note that the result also holds for satisfiability, as an imme-

diate consequence. For a rather expressive subset of trace

formulas (see [15] for the exact definition of the fragment),

checking whether �P � |=∀ �ϕ� can then be discharged to

the tamarin prover that we use as a backend.

A. Definition of the translation of processes

To model the adversary’s message deduction capabilities,

we introduce the set of rules MD defined in Figure 6.

In order for our translation to be correct, we need to make

some assumptions on the set of processes we allow. These

assumptions are however, as we will see, rather mild and

most of them without loss of generality. First we define a

set of reserved variables that will be used in our translation

and whose use we therefore forbid in the processes.

Definition 11 (Reserved variables and facts). The set of
reserved variables is defined as the set containing the
elements na for any a ∈ FN and lock l for any l ∈ N.

The set of reserved facts Fres is defined as the set
containing facts f(t1, . . . , tn) where t1, . . . , tn ∈ T and
f ∈ { Init, Insert, Delete, IsIn, IsNotSet, state, Lock, Unlock,
Out, Fr, In, Msg, ProtoNonce, Eq, NotEq, Event, InEvent }.
Similar to [17], for our translation to be sound, we require

that for each process, there exists an injective mapping

assigning to every unlock t in a process a lock t that

precedes it in the process’ syntax tree. Moreover, given a

process lock t; P the corresponding unlock in P may not

be under a parallel or replication. These conditions allow

us to annotate each corresponding pair lock t, unlock t
with a unique label l. The annotated version of a process

P is denoted P . The formal definition of P is given in

Appendix A. In case the annotation fails, i.e., P violates

one of the above conditions, the process P contains ⊥.
Definition 12 (well-formed). A ground process P is well-
formed if
• no reserved variable nor reserved fact appear in P ,
• any name and variable in P is bound at most once and
• P does not contain ⊥.
• For each action l −[a]→ r that appears in the pro-
cess, the following holds: for each l′ −[a′]→ r′ ∈E

ginsts(l −[a]→ r) we have that ∩r′′=Er′names(r′′) ∩
FN ⊆ ∩l′′=E l′names(l′′) ∩ FN .

A trace formula ϕ is well-formed if no reserved variable nor
reserved fact appear in ϕ.

The two first restrictions of well-formed processes are not

a loss of generality as processes and formulas can be consis-

tently renamed to avoid reserved variables and α-converted
to avoid binding names or variables several times. Also note

that the second condition is not necessarily preserved during

an execution, e.g. when unfolding a replication, !P and P
may bind the same names. We only require this condition to

hold on the initial process for our translation to be correct.

The annotation of locks restricts the set of protocols we

can translate, but allows us to obtain better verification

results, since we can predict which unlock is “supposed”

to close a given lock. This additional information is helpful

for tamarin’s backward reasoning. We think that our locking

mechanism captures all practical use cases. Using our cal-

culus’ “low-level” multiset manipulation construct, the user

is also free to implement locks himself, e.g., as

[NotLocked()]→ []; code; []→ [NotLocked()]

(In this case the user does not benefit from the optimisation

we put into the translation of locks.) Obviously, locks can be
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Out(x) −[ ]→ !K(x) (MDOUT)
!K(x) −[K(x)]→ In(x) (MDIN)

−[ ]→ !K(x : pub) (MDPUB)
Fr(x : fresh) −[ ]→ !K(x : fresh) (MDFRESH)

!K(x1), . . . , !K(xk) −[ ]→ !K(f(x1, . . . , xk)) for f ∈ Σk (MDAPPL)

Figure 6. The set of rules MD.

modelled both in tamarin’s multiset rewriting calculus (this

is actually what the translation does) and Mödersheim’s set

rewriting calculus [18]. However, protocol steps typically

consist of a single input, followed by several database

lookups, and finally an output. In practice, they tend to be

modelled as a single rule, and are therefore atomic. Real

implementations are however different, as several entities

might be involved, database lookups could be slow, etc.

In this case, such simplified models could, e. g., miss race

conditions. To the best of our knowledge, StatVerif is the

only comparable tool that models locks explicitly and it has

stronger restrictions.

Definition 13. Given a well-formed ground process P we
define the labelled multiset rewriting system �P � as

MD ∪ {INIT} ∪ �P , [], []�

• where the rule INIT is defined as

INIT : [] −[Init()]→ [state[]()]

• �P, p, x̃� is defined inductively for process P , position
p ∈ N

∗ and sequence of variables x̃ in Figure 7.
• For a position p of P we define statep to be persistent
if P |p = !Q for some process Q; otherwise statep is
linear.

In the definition of �P, p, x̃� we intuitively use the family

of facts statep to indicate that the process is currently at

position p in its syntax tree. A fact statep will indeed be

true in an execution of these rules whenever some instance

of Pp (i.e. the process defined by the subtree at position

p of the syntax tree of P ) is in the multiset P of the

process configuration. The translation of the zero-process,

parallel and replication operators merely use statep-facts.
For instance �P | Q, p, x̃� defines the rule

[statep(x̃)]→ [statep·1(x̃), statep·2(x̃)]

which intuitively states that when a process is at position

p (modelled by the fact statep(x̃) being true) then the

process is allowed to move both to P (putting statep·1(x̃)
to true) and Q (putting statep·2(x̃) to true). The translation

of �P | Q, p, x̃� also contains the set of rules �P, p · 1, x̃� ∪
�Q, p · 2, x̃� expressing that after this transition the process

may behave as P and Q, i.e., the processes at positions

p · 1, respectively p · 2, in the process tree. Also note that

the translation of !P results in a persistent fact as !P always

remains in P . The translation of the construct ν a translates

the name a into a variable na, as msr rules must not contain

fresh names. Any instantiation of this rule will substitute na

by a fresh name, which the Fr-fact in the premise guarantees

to be new. This step is annotated with a (reserved) action

ProtoNonce , used in the proof of correctness to distinguish

adversary and protocol nonces. Note that the fact statep·1
in the conclusion carries na, so that the following protocol

steps are bound to the fresh name used to instantiate na.

The first rules of the translation of out and in model the

communication between the protocol and the adversary,

and vice versa. In the case of out, the adversary must

know the channel M , modelled by the fact In(M) in the

rule’s premisse, and learns the output message, modelled

by the fact Out(N) in the conclusion. In the case of in,
the knowledge of the message N is additionally required

and the variables of the input message are added to the

parameters of the state fact to reflect that these variables

are bound. The second and third rules of the translations

of out and in model an internal communication, which is

synchronous. For this reason, when the second rule of the

translation of out is fired, the state-fact is substituted by

an intermediate, semi-state fact, statesemi, reflecting that the

sending process can only execute the next step if the message

was successfully received. The fact Msg(M,N) models that

a message is present on the synchronous channel. Only with

the acknowledgement fact Ack(M,N), resulting from the

second rule of the translation of in, is it possible to advance

the execution of the sending process, using the third rule

in the translation of out, which transforms the semi-state

and the acknowledgement of receipt into statep·1(. . .). Only
now the next step in the execution of the sending process

can be executed. The remaining rules essentially update the

position in the state facts and add labels. Some of these

labels are used to restrict the set of executions. For instance

the label Eq(M ,N ) will be used to indicate that we only

consider executions in which M =E N . As we will see

in the next section these restrictions will be encoded in the

trace formula.

Example. Figure 8 illustrates the above translation by pre-

senting the set of msr rules �!Pnew � (omitting the rules in

MD already shown in Figure 6).

A graph representation of an example trace, generated

by the tamarin tool, is depicted in Figure 9. Every box in

this picture stands for the application of a multiset rewrite
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�0, p, x̃� = {[statep(x̃)]→ []}
�P | Q, p, x̃� = {[statep(x̃)]→ [statep·1(x̃), statep·2(x̃)]}

∪�P, p · 1, x̃� ∪ �Q, p · 2, x̃�

�!P, p, x̃� = {[!statep(x̃)]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�νa;P, p, x̃� = {[statep(x̃),Fr(na : fresh)] −[ProtoNonce(na : fresh)]→
[statep·1(x̃, na : fresh)]} ∪ �P, p · 1, (x̃, na : fresh)�

�Out(M,N);P, p, x̃� = {[statep(x̃), In(M)] −[InEvent(M)]→ [Out(N), statep·1(x̃)],

[statep(x̃)]→ [Msg(M,N), statesemi
p (x̃)],

[statesemi
p (x̃),Ack(M,N)]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�In(M,N);P, p, x̃� = {[statep(x̃), In(〈M,N〉)] −[InEvent(〈M,N〉)]→
[statep·1(x̃ ∪ vars(N))], [statep(x̃),Msg(M,N)]→
[statep·1(x̃ ∪ vars(N)),Ack(M,N)]}
∪�P, p · 1, x̃ ∪ vars(N)�

�if M = N then P else Q, p, x̃� = {[statep(x̃)] −[Eq(M,N)]→ [statep·1(x̃)],

[statep(x̃)] −[NotEq(M,N)]→ [statep·2(x̃)]}
∪�P, p · 1, x̃� ∪ �Q, p · 2, x̃�

�event F ;P, p, x̃� = {[statep(x̃)] −[Event(), F ]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�insert s, t;P, p, x̃� = {[statep(x̃)] −[Insert(s, t)]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�delete s;P, p, x̃� = {[statep(x̃)] −[Delete(s)]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�lookup M as v in P else Q, p, x̃� = {[statep(x̃)] −[IsIn(M, v)]→ [statep·1(M̃, v)],

[statep(x̃)] −[IsNotSet(M)]→ [statep·2(x̃)]}
∪�P, p · 1, (x̃, v)� ∪ �Q, p · 2, x̃�

�lockl s;P, p, x̃� = {[Fr(lockl), statep(x̃)] −[Lock(lock l, s)]→ [statep·1(x̃, lock l)]}
∪�P, p · 1, x̃�

�unlockl s;P, p, x̃� = {[statep(x̃)] −[Unlock(lock l, s)]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�[l −[a]→ r];P , p, x̃� = {[statep(x̃), l] −[Event(), a]→ [r, statep·1(x̃ ∪ vars(l))]}
∪�P, p · 1, x̃ ∪ vars(l)�

Figure 7. Translation of processes: definition of �P, p, x̃�

rule, where the premises are at the top, the conclusions at

the bottom, and the actions (if any) in the middle. Every

premise needs to have a matching conclusion, visualized by

the arrows, to ensure the graph depicts a valid msr execution.

(This is a simplification of the dependency graph repre-

sentation tamarin uses to perform backward-induction [15],

[16].) Note that the machine notation for statep() predicates
omits brackets [ ] in the position p and denotes the empty

sequence by ‘0’. We also note that in the current example

!state[1]() is persistent and can therefore be used multiple

times as a premise. As Fr( ) facts are generated by the

FRESH rule which has an empty premise and action, we

omit instances of FRESH and leave those premises, but only

those, disconnected.

Remark 1. One may note that, while for all other operators,
the translation produces well-formed multiset rewriting rules
(as long as the process is well-formed itself), this is not
the case for the translation of the lookup operator, i. e.,
it violates the well-formedness condition from Definition 4.
Tamarin’s constraint solving algorithm requires all rules,
with the exception of FRESH, to be well-formed. We show
however that, under these specific conditions, the solution
procedure is still correct. See Appendix C in the full version
for the proof.

B. Definition of the translation of trace formulas

We can now define the translation for formulas.

Definition 14. Given a well-formed trace formula ϕ we
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[] −[Init()]→ [state[]()]
[state[]()] −[ ]→ [!state[1]()]

[!state[1](),Fr(h)] −[ ]→ [state[11](h)]
[state[11](h),Fr(k)] −[ ]→ [state[111](k, h)]

[state[111](k, h)] −[Event(),NewKey(h, k)]→ [state[1111](k, h)]
[state[1111](k, h)] −[Insert(〈’key’, h〉, k)]→ [state[11111](k, h)]
[state[11111](k, h)] −[Insert(〈’att’, h〉, ’dec’)]→ [state[111111](k, h)]
[state[111111](k, h)] −[ ]→ [Out(h), state[1111111](k, h)]

Figure 8. The set of multiset rewrite rules �!Pnew � (omitting the rules in MD)

state_0111111( k, h )

Out( h ) state_01111111( k, h )

state_011111( k, h )

Insert( <'att', h>, 'dec' )

state_0111111( k, h )

state_01111( k, h )

Insert( <'key', h>, k )

state_011111( k, h )

state_0111( k, h )

Event( ),NewKey( h, k )

state_01111( k, h )

state_011( h ) Fr( k )

state_0111( k, h )

!state_01( ) Fr( h )

state_011( h )

state_0( )

!state_01( )

!state_01( ) Fr( h' )

state_011( h' )

0[Init( )]

state_0( )

state_0111111( k', h' )

Out( h' ) state_01111111( k', h' )

state_011111( k', h' )

Insert( <'att', h'>, 'dec' )

state_0111111( k', h' )

state_01111( k', h' )

Insert( <'key', h'>, k' )

state_011111( k', h' )

state_0111( k', h' )

Event( ),NewKey( h', k' )

state_01111( k', h' )

state_011( h' ) Fr( k' )

state_0111( k', h' )

Figure 9. Example trace for the translation of !Pnew .

define

�ϕ�∀ := α⇒ ϕ and �ϕ�∃ := α ∧ ϕ

where α is defined in Figure 10.

The formula α uses the actions of the generated rules to

filter out executions that we wish to discard:

• αinit ensures that the init rule is only fired once.

• αeq and αnoteq ensure that we only consider traces

where all (dis)equalities hold.

• αin and αnotin ensure that a successful lookup was

preceded by an insert that was neither revoked nor

overwritten while an unsuccessful lookup was either

never inserted, or deleted and never re-inserted.

• αlock checks that between each two matching locks

there must be an unlock. Furthermore, between the first

of these locks and the corresponding unlock, there is

neither a lock nor an unlock.

• αinev ensures that whenever an instance of MDIN is

required to generate an In-fact, it is generated as late

as possible, i. e., there is no visible event between

the action K(t) produced by MDIN, and a rule that

requires In(t).

We also note that Tr �∀ �ϕ�∀ iff Tr ��∃ �¬ϕ�∃.
The axioms in the translation of the formula are designed

to work hand in hand with the translation of the process

into rules. They express the correctness of traces with

respect to our calculus’ semantics, but are also meant to

guide tamarin’s constraint solving algorithm. αin and αnotin

illustrate what kind of axioms work well: when a node with

the action IsIn is created, by definition of the translation, this

corresponds to a lookup command. The existential translates

into a graph constraint that postulates an insert node for the

value fetched by the lookup, and three formulas assuring that

a) this insert node appears before the lookup, b) is uniquely
defined, i. e., it is the last insert to the corresponding key,

and c) there is no delete in between. Due to these conditions,

αnotin only adds one Insert node per IsIn node – the

case where an axiom postulates a node, which itself allows

for postulating yet another node needs to be avoided, as

tamarin runs into loops otherwise. Similarly, a naïve way

of implementing locks using an axiom would postulate that

every lock is preceeded by an unlock and no lock or unlock

in between, unless it is the first lock. This again would cause

tamarin to loop, because an unlock is typically preceeded

by yet another lock. The axiom αlock avoids this caveat

because it only applies to pairs of locks carrying the same

annotations.
The interaction between the αlock axiom and tamarin’s

constraint solving algorithm is described in more detail in

the full version.

C. Correctness of the translation
The correctness of our translation is stated by the follow-

ing theorem.
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α := αinit ∧ αeq ∧ αnoteq ∧ αin ∧ αnotin ∧ αlock ∧ αinev and

αinit :=∀i, j. Init()@i ∧ Init()@j =⇒ i = j

αeq :=∀x, y, i. Eq(x, y)@i =⇒ x ≈ y

αnoteq :=∀x, y, i. NotEq(x, y)@i =⇒ ¬(x ≈ y)

αin :=∀x, y, t3. IsIn(x, y)@t3 =⇒ ∃t2. Insert(x, y)@t2 ∧ t2 � t3

∧ ∀t1, y. Insert(x, y)@t1 =⇒ (t1 � t2 ∨ t1
.
= t2 ∨ t3 � t1)

∧ ∀t1. Delete(x)@t1 =⇒ (t1 � t2 ∨ t3 � t1)

αnotin :=∀x, y, t3. IsNotSet(x)@t3 =⇒ (∀t1, y. Insert(x, y)@t1 =⇒ t3 � t1)∨
(∃t1. Delete(x)@t1 ∧ t1 � t3

∧ ∀t2, y. (Insert(x, y)@t2 ∧ t2 � t3) =⇒ t2 � t1)

αlock :=∀x, l, l′, i, j. Lock(l, x)@i ∧ Lock(l′, x)@j ∧ i� j

=⇒ ∃k. Unlock(l, x)@k ∧ i� k ∧ k � j

∧ (∀l′,m. Lock(l′, x)@m =⇒ ¬(i�m ∧m� k))

∧ (∀l′,m. Unlock(l′, x)@m =⇒ ¬(i�m ∧m� k))

αinev :=∀t, i. InEvent(t)@i =⇒ ∃j. K(t)@j ∧ (∀k. Event()@k =⇒ (k � j ∨ i� k))

∧ (∀k, t′. K(t′)@k =⇒ (k � j ∨ i� k ∨ k ≈ j))

Figure 10. Definition of α.

Theorem 1. Given a well-formed ground process P and a
well-formed trace formula ϕ we have that

tracespi(P ) �� ϕ iff tracesmsr (�P �) �� �ϕ��

where � is either ∀ or ∃.

We here give an overview of the main propositions and

lemmas needed to prove Theorem 1. To show the result we

need two additional definitions. We first define an operation

that allows to restrict a set of traces to those that satisfy the

trace formula α as defined in Definition 14.

Definition 15. Let α be the trace formula as defined in
Definition 14 and Tr a set of traces. We define

filter(Tr) := {tr ∈ Tr | ∀θ.(tr , θ) � α}

The following proposition states that if a set of traces

satisfies the translated formula then the filtered traces satisfy

the original formula.

Proposition 1. Let Tr be a set of traces and ϕ a trace
formula. We have that

Tr �� �ϕ�� iff filter(Tr) �� ϕ

where � is either ∀ or ∃.

The proof (detailed in the full version) follows directly

from the definitions. Next we define the hiding operation

which removes all reserved facts from a trace.

Definition 16 (hide). Given a trace tr and a set of facts F
we inductively define hide([]) = [] and

hide(F · tr) :=
{
hide(tr) if F ⊆ Fres

(F \ Fres) · hide(tr) otherwise

Given a set of traces Tr we define hide(Tr) = {hide(t) |
t ∈ Tr}.

As expected well-formed formulas that do not contain

reserved facts evaluate the same whether reserved facts are

hidden or not.

Proposition 2. Let Tr be a set of traces and ϕ a well-formed
trace formula. We have that

Tr �� ϕ iff hide(Tr) �� ϕ

where � is either ∀ or ∃.

We can now state our main lemma which is relating the set

of traces of a process P and the set of traces of its translation

into multiset rewrite rules (proven in the full version).

Lemma 1. Let P be a well-formed ground process. We have
that

tracespi(P ) = hide(filter(tracesmsr (�P �))).

Our main theorem can now be proven by applying

Lemma 1, Proposition 2 and Proposition 1.
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Proof of Theorem 1:

tracespi(P ) �� ϕ
⇔ hide(filter(tracesmsr (�P �))) �� ϕ by Lemma 1

⇔ filter(tracesmsr (�P �)) �� ϕ by Proposition 2

⇔ tracesmsr (�P �) �� �ϕ�� by Proposition 1

VII. CASE STUDIES

In this section we briefly overview some case studies we

performed. These case studies include a simple security API

similar to PKCS#11 [9], the Yubikey security token, the

optimistic contract signing protocol by Garay, Jakobsson and

MacKenzie (GJM) [24] and a few other examples discussed

in Arapinis et al. [17] and Mödersheim [18]. The results are

summarized in Figure 11. For each case study we provide

the number of typing lemmas that were needed by the

tamarin prover and whether manual guidance of the tool

was required. In case no manual guidance is required we

also give execution times. We do not detail all the formal

models of the protocols and properties that we studied,

and sometimes present slightly simplified versions. All files

of our prototype implementation and our case studies are

available at http://sapic.gforge.inria.fr/.

Example
Typing

Lemmas

Automated

Run∗

Security API à la PKCS#11 1 yes (51s)
Yubikey Protocol [23], [25] 3 no

GJM protocol [17], [24] 0 yes (36s)
Mödersheim’s example

(locks/inserts) [18]
0 no∗∗

Mödersheim’s example

(embedded msr rules) [18]
0 yes (1s)

Security Device [17] 1 yes (21s)
Needham-Schroeder-Lowe [3] 1 yes (5s)

∗ (Running times on Intel Core2 Duo 2.66Ghz with 4GB RAM)
∗∗ (little interaction: 7 manual rule selections)

Figure 11. Case studies.

A. Security API à la PKCS#11

This example illustrates how our modelling might be

useful for the analysis of Security APIs in the style of

the PKCS#11 standard [9]. We expect studying a complete

model of PKCS#11, such as in [19], to be a straightforward

extension of this example. In addition to the processes pre-

sented in the running example in Section III the actual case

study models the following two operations: (i) encryption:
given a handle and a plain-text, the user can request an

encryption under the key the handle points to. (ii) unwrap
given a ciphertext senc(k2, k1), and a handle h1, the user

can request the ciphertext to be unwrapped, i.e. decrypted,

under the key pointed to by h1. If decryption is successful

the result is stored on the device, and a handle pointing to

k2 is returned. Moreover, contrary to the running example,

at creation time keys are assigned the attribute ‘init’, from

which they can move to either ‘wrap’, or ‘unwrap’, see the

following snippet:

1 in(〈‘ set_dec ’ ,h〉); lock 〈‘ att ’ ,h〉;
2 lookup 〈‘ att ’ ,h〉 as a in
3 if a=‘ init ’ then
4 insert 〈‘ att ’ ,h〉 , ‘dec’; unlock 〈‘ att ’ ,h〉
Note that, in contrast to the running example, it is necessary

to encapsulate the state changes between lock and unlock.

Otherwise an adversary can stop the execution after line

3, set the attribute to ‘wrap’ in a concurrent process and

produce a wrapping. After resuming operation at line 4,

he can set the key’s attribute to ‘dec’, even though the

attribute is set to ‘wrap’. Hence, the attacker is allowed to

decrypt the wrapping he has produced and can obtain the

key. Such subtleties can produce attacks that our modeling

allows to detect. If locking is handled correctly, we show

secrecy of keys produced on the device, proving the property

introduced in Example 5. If locks are removed the attack

described before is found.

B. Yubikey

The Yubikey [25] is a small hardware device designed to

authenticate a user against network-based services. Manu-

factured by Yubico, a Swedish company, the Yubikey itself

is a low cost ($25), thumb-sized USB device. In its typical

configuration, it generates one-time passwords based on

encryptions of a secret value, a running counter and some

random values using a unique AES-128 key contained in

the device. The Yubikey authentication server accepts a one-

time password only if it decrypts under the correct AES key

to a valid secret value containing a counter larger than the

last counter accepted. The counter is thus used as a means

to prevent replay attacks. To date, over a million Yubikeys

have been shipped to more than 30,000 customers includ-

ing governments, universities and enterprises, e.g. Google,

Microsoft, Agfa and Symantec [26].

Besides the counter values used in the one-time password,

the Yubikey stores three additional pieces of information:

the public id pid that is used to identify the Yubikey, a

secret id secretid that is transmitted as part of the one-time

password and only known to the server and the Yubikey, as

well as the AES key k, which is also shared with the server.

The following process PYubikey models a single Yubikey,

as well as its initial configuration, where an entry in the

server’s database for the public id pid is created. This entry

contains a tuple consisting of the Yubikey’s secret id, AES

key, and an initial counter value.

PYubikey =
ν k; ν pid; ν secretid ;
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insert 〈‘Server ’ , pid〉 , 〈 secretid , k , ‘zero’〉;
insert 〈‘Yubikey’ , pid〉 , ‘zero’+‘one’;
out(pid);
!PPlugin | !PButtonPress

Here, the processes !PPlugin and !PButtonPress model the

Yubikey being unplugged and plugged in again (possibly

on a different computer), and the emission of the one-time

password. We will only discuss PButtonPress here. When the

user presses the button on the Yubikey, the device outputs

a one-time password consisting of a counter tc, the secret

id secretid and additional randomness npr encrypted using

the AES key k.

PButtonPress =
lock pid;

lookup 〈‘Yubikey’ , pid〉 as tc in
insert 〈‘Yubikey’ , pid〉 , tc + ‘one’;
ν nonce; ν npr;
event YubiPress(pid , secretid ,k , tc );
out(〈pid ,nonce,senc(〈 secretid , tc ,npr〉 ,k)〉);

unlock pid

The one-time password senc(〈secretid, tc, npr〉, k) can be

used to authenticate against a server that shares the same

secret key, which we model in the process PServer . The

process receives the encrypted one-time password along with

the public id pid of a Yubikey and a nonce that is part of

the protocol, but is irrelevant for the authentication of the

Yubikey on the server.

The server looks up the secret id and the AES key associ-

ated to the public id, i. e., to the Yubikey sending the request,

as well as the last recorded counter value otc. If the key and

secret id used in the request match the values retrieved from

the database, then the event Smaller(otc, tc) is logged along

with the event Login(pid , k, tc), which marks a successful

login of the Yubikey pid with key k for the counter value

tc. Afterwards, the old tuple 〈secretid , k, otc〉 is replaced by

〈secretid , k, tc〉, to update the latest counter value received.

PServer =
! in(〈pid ,nonce,senc(〈 secretid , tc ,npr〉 ,k)〉);
lock pid;
lookup 〈‘Server ’ , pid〉 as tuple in

if fst ( tuple )=secretid then
if fst (snd( tuple ))=k then

event Smaller(snd(snd( tuple )) , tc )
event Login(pid,k , tc );
insert 〈‘Server ’ , pid〉 , 〈 secretid ,k , tc 〉;

unlock pid

Note that, in our modelling, the server keeps one lock per

public id, which means that it is possible to have several

active instances of the server thread in parallel as long as

all requests concern different Yubikeys.

An important part of the modelling of the protocol is to

determine whether one counter value is smaller than another.

To this end, our modelling employs a feature added to the

development version of tamarin as of October 2012, a union

operator ∪# for multisets of message terms. The operator

is denoted with a plus sign (“+”). We model the counter as

a multiset only consisting of the symbols “one” and “zero”.

The multiplicity of ‘one’ in the multiset is the value of the

counter. A counter value is considered smaller than another

one, if the first multiset is included in the second. A test

a < b is included by adding the event Smaller(a, b) and an

axiom that requires that a is a subset of b:

αSmaller :=∀i : temp, a, b : msg . Smaller(a, b)@i

⇒ ∃z : msg . a+ z = b

We incorporate this axiom into the security properties just

like in Definition 14. Intuitively, we are only interested in

traces where a is indeed smaller than b.
The process we analyse models a single authentication

server (that may run arbitrary many threads) and an arbitrary

number of Yubikeys, i. e., PServer | !PYubikey . Among other

properties, we show by the means of an injective correspon-

dence property that an attacker that controls the network

cannot perform replay attacks, and that each successful login

was preceded by a user “pressing the button”, formally:

∀ pid , k, x, t2.Login(pid , k , x )@t2 ⇒
∃sid , t1.YubiPress(pid , sid , k , x )@t1 ∧ t1 � t2

∧ ∀t3 .Login(pid , k , x )@t3 ⇒ t3 = t2

Besides injective correspondence, we show the absence of

replay attacks and the property that a successful login

invalidates previously emitted one-time passwords. All three

properties follow more or less directly from a stronger

invariant, which itself can be proven in 295 steps. To find

theses steps, tamarin needs some additional human guidance,

which can be provided using the interactive mode. This

mode still allows the user to complement his manual efforts

with automated backward search. The example files contain

the modelling in our calculus, the complete proof, and the

manual part of the proof which can be verified by tamarin

without interaction.

Our analysis makes three simplifications: First, in PServer ,

we use pattern matching instead of decryption as demon-

strated in the process Pdec we introduced in Section III.

Second, we omit the CRC checksum and the time-stamp

that are part of the one-time password in the actual protocol,

since they do not add to the security of the protocol in

the symbolic setting. Third, the Yubikey has actually two

counters instead of one, a session counter, and a token

counter. We treat the session and token counter on the

Yubikey as a single value, which we justify by the fact

that the Yubikey either increases the session counter and

resets the token counter, or increases only the token counter,

thereby implementing a complete lexicographical order on

the pair (session counter , token counter).
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A similar analysis has already been performed by Kün-

nemann and Steel, using tamarin’s multiset rewriting cal-

culus [23]. However, the model in our new calculus is

more fine-grained and we believe more readable. Security-

relevant operations like locking and tests on state are written

out in detail, resulting in a model that is closer to the

real-life operation of such a device. The modeling of the

Yubikey takes approximately 38 lines in our calculus, which

translates to 49 multiset rewrite rules. The model of [23]

contains only four rules, but they are quite complicated,

resulting in 23 lines of code. More importantly, the gap

between their model and the actual Yubikey protocol is

larger – in our calculus, it becomes clear that the server

can treat multiple authentication requests in parallel, as long

as they do not claim to stem from the same Yubikey. An

implementation on the basis of the model from Künnemann

and Steel would need to implement a global lock acces-

sible to the authentication server and all Yubikeys. This

is however unrealistic, since the Yubikeys may be used at

different places around the world, making it unlikely that

there exist means of direct communication between them.

While a server-side global lock might be conceivable (albeit

impractical for performance reasons), a real global lock

could not be implemented for the Yubikey as deployed.

C. Further Case Studies

We also investigated the case study presented by Möder-

sheim [18], a key-server example. We encoded two models

of this example, one using the insert construct, the other

manipulating state using the embedded multiset rewrite

rules. For this example the second model turned out to

be more natural and more convenient allowing for a direct

automated proof without any additional typing lemma.

We furthermore modeled the contract signing protocol by

Garay et al. [24] and a simple security device which both

served as examples in [17]. In the contract signing protocol

a trusted party needs to maintain a database with the current

status of all contracts (aborted, resolved, or no decision

has been taken). In our calculus the status information is

naturally modelled using our insert and lookup constructs.

The use of locks is indispensable to avoid the status to be

changed between a lookup and an insert. Arapinis et al. [17]

showed the crucial property that the same contract can never

be both aborted and resolved. However, due to the fact that

StatVerif only allows for a finite number of memory cells,

they have shown this property for a single contract and

provide a manual proof to lift the result to an unbounded

number of contracts. We directly prove this property for an

unbounded number of contracts. Finally we also illustrate

the tool’s ability to analyze classical security protocols, by

analyzing the Needham Schroeder Lowe protocol [3].

VIII. CONCLUSION

We present a process calculus which extends the applied

pi calculus with constructs for accessing a global, shared

memory together with an encoding of this calculus in la-

belled msr rules which enables automated verification using

the tamarin prover as a backend. Our prototype verification

tool, automating this translation, has been successfully used

to analyze several case studies. As future work we plan

to increase the degree of automation of the tool by auto-

matically generating helping lemmas. To achieve this goal

we can exploit the fact that we generate the msr rules, and

hence control their form. We also plan to use the tool for

more complex case studies including a complete model of

PKCS#11 and a study of the TPM 2.0 standard, currently

in public review. Finally, we wish to investigate how our

constructs for manipulating state can be used to encode

loops, needed to model stream protocols such as TESLA.
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APPENDIX

Definition 17 (Process annotation). Given a ground process
P we define the annotated ground process P as follows:

0 := 0

P |Q := P |Q
!P := !P

if t1 = t2 then P

else Q
:= if t1 = t2 then P else Q

lookup M as x
in P else Q

:=
lookup M as x
in P else Q

α;P := α;P
where α /∈ { lock t, unlock t : t ∈ T }
lock t;P := lockl t; au(P, t, l)

where l ∈ N is a fresh label

unlockl t;P := unlockl t;P

unlock t;P := ⊥
where au(P, t, l) annotates the first unlock that has param-
eter t with the label l, i. e.:

au(P |Q, t, l) := ⊥
au(!P , t, l) := ⊥

au(if t1 = t2 then
P else Q, t, l)

:=
if t1 = t2 then au(P, t, l)
else au(Q, t, l)

au(lookup M as x
in P else Q, t, l)

:=
lookup M as x in
au(P, t, l) else au(Q, t, l)

au(α;P , t, l) := α; au(P, t, l)
where α �= unlock t

au(unlock t;P , t, l) := unlockl t;P

au(0, t, l) := 0
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