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Abstract—This paper, for the first time, proposes to apply USDA
National Agricultural Statistics Service (NASS) Cropland Data
Layer (CDL) geospatial data for stratifying U.S. agricultural land.
A new automated method is proposed to stratify the NASS state level
area sampling frames (ASFs) by automatically calculating percent
cultivation at the primary sampling unit (PSU) level based on the
CDL data. The NASS CDLs are 30-56.0 m raster-formatted,
georeferenced, cropland cover classifications derived from satellite
data. The CDL stratification experiment was successfully conducted
for Oklahoma, Ohio, Virginia, Georgia, and Arizona. The stratifi-
cation accuracies of the traditional (visual interpretation) and new
automated CDL stratification methods were compared based on
2010 June Area Survey data. Experimental results indicated that
the CDL stratification method achieved higher accuracies in the
intensively cropped areas, while the traditional method achieved
higher accuracies in low or nonagricultural areas. The differences in
the accuracies were statistically significant at a 95% confidence
level. It was found that using multiyear composite, CDL-based
cultivated layers did not improve stratification accuracies as com-
pared to the results of single-year CDL data. Two applications of
the CDL-automated stratification method in official USDA NASS
operations are described. The novelty of the proposed method was
using geospatial CDL data to objectively and automatically com-
pute percent cultivation of the ASF PSUs as compared to the
traditional method that subjectively determines percent cultivation
using visual interpretation of satellite data. This proposed new
CDL-based process improved efficiency, objectivity, and accuracy
as compared to the traditional stratification method.

Index Terms—Area sampling frame (ASF), automated
stratification, cropland data layer (CDL), cultivated data layer,
land cover-based stratification.

1. INTRODUCTION

REA sampling frames (ASFs) are the foundation of the

agricultural statistics program of the National Agricultural
Statistics Service (NASS) and many other statistical survey
programs. Since 1954, ASFs have been used as a primary tool
for conducting surveys to gather information on crop acreage
and other agricultural information. They are considered “the
backbone to the agricultural statistics program of the National
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Agricultural Statistics Service (NASS)” [1]. NASS’ primary area
frame-based survey is the June Area Survey (JAS) in which
approximately 11 000, 1 sq mi sample segments are visited by
enumerators each year at the beginning of the growing season to
collect crop type and acreage information. Estimates of crop
acreage and livestock inventories are based on the data collected
during the JAS. The NASS ASFs are based on U.S. land cover
stratification, which classifies land cover into agricultural inten-
sity groups or strata based on percent cultivation. This traditional
stratification of land cover has been conducted using visual
interpretation of aerial or satellite data or topographic maps since
the 1950 s. This popular method requires a manual, subjective,
and labor-intensive process. It does not utilize existing land cover
data such as the cropland data layer (CDL) in an automated,
objective, and efficient manner to stratify area frames. The
accuracy of NASS’ survey statistics depends on the quality of
the ASF and subsequently the techniques used in its construction.

The USDA NASS’ traditional state area frame stratification
method has been widely used around the world [ 1]-[4]. There are
different varieties of the area frame stratification method and its
applications. The European Union’s (EU’s) Monitoring of
Agriculture with Remote Sensing (MARS) project, in 1988,
used the NASS traditional ASF construction method to conduct
the Land Use and Cover Area Frame Statistical Survey (LUCAS)
and proposed using a regular grid of square segments instead of
natural boundaries for segment delineation to reduce cost [5].
The European CORINE Land Cover (CLC) 2000 map was
tested for use in stratification in Spain, but difficulties were
encountered when multiple CLC polygons crossed individual
segment boundaries causing designation of segments to multiple
strata. The CLC was evaluated as a covariable to define strata
based on an agricultural intensity index [6]. Pradhan stratified
1 km? segments based on agricultural intensity, using visual
interpretation of SPOT-XS images and a land cover map to
identify different types of agriculture for the Hamada province
of the Islamic republic of Iran [7]. He encountered the same
difficulties faced by Gallego et al. (segments assigned to multiple
strata), but resolved the issue by assigning segments that crossed
multiple strata on the land cover map to the stratum with which
the segments most overlapped. This method obviously increased
stratification errors. Hansen and Wendt tested using USGS
National Gap Analysis Program (GAP) classifications for the strati-
fication of USDA Forest Service’s Forest Inventory Analysis
(FIA) plots in Indiana and Illinois [8]. They noticed the increased
precision of forest inventory estimates. McRoberts et al.
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conducted postsampling stratification for the states of Indiana,
Towa, Minnesota, and Missouri forest area estimation based on
the 1992 National Land Cover Dataset (NLCD 1992) [9] classes
and observation of forest inventory plots. They concluded that
the NLCD 1992 provided an effective means of postsampling
stratification, which resulted in reduced variances for estimates
of forest land area over postsampling stratification based on
visual interpretation [10], [11]. Dunham et al. further evaluated
stratifications using the NLCD 1992 and visual interpretation of
photo imagery in western Oregon and concluded that forest
inventory estimate accuracies were similar but cost was reduced
using the automated land cover-based approach [12]. Liknes
et al. used land cover classification results from MODIS for FTA
stratification and found that the results were inferior to those
based on NLCD data due to lower spatial resolution [13]. Liknes
et al. further evaluated the use of USDA NASS 2005 Wisconsin
CDL and the NLCD 1992 data for postsampling stratifica-
tion of FIA plots. The results indicated that the 2005 CDL
outperformed the NLCD 1992 for postsampling stratification
[14]. These studies indicate that utilizing geospatial land cover
classification data for area frame stratification could result in
improved estimates and significantly reduce stratification cost.
To improve the efficiency, reduce the cost, and improve the
precision of the estimates generated from the JAS, this paper
proposed for the first time to modernize the NASS traditional
ASF stratification process using CDL geospatial data. In this
paper, a new automated method has been developed to objec-
tively, consistently, and rapidly stratify U.S. land cover, based on
percent cultivation, of the ASF primary sampling units (PSUs)
using the 2010 CDL products. A performance comparison
between the NASS traditional method and the new automated
CDL stratification method was made. The effectiveness of the
traditional and CDL-based methods in determining percent
cultivation, at the Area Frame PSU level, was assessed using
in situ validation data collected at the segment level as part of
the 2010 JAS. Five states including Arizona, Georgia, Ohio,
Oklahoma, and Virginia were selected because these states serve
as a good reflection of the range (variety and quantity) of
agricultural commodities grown in the United States. The goal
of'this investigation was to determine the utility of the automated
CDL-based method for use in the stratification of U.S. land cover
and potentially in ASF construction. This new method was
designed to stratify the NASS area frames for all states. The
experiment was conducted in the five selected states. The results
indicated that this proposed new CDL-based method improved
efficiency, objectivity, and accuracy as compared to the tradi-
tional stratification method. Consequently, the method is being
implemented into the NASS operations for the entire U.S.

II. BACKGROUND
A. NASS Area Sampling Frames

The NASS ASFs are based on a stratification of land cover in
the U.S. by percent cultivated cropland and are the statistical
foundations for providing estimates with complete coverage of
U.S. agriculture. The area frame program is conducted in 49
states using approximately 11 000, 1 sq mi segments made up of

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 11, NOVEMBER 2014

TABLE I
STATE AREA FRAME IMPLEMENTATION YEAR
State Year | State Year | State Year
Alabama 1991 | Maine 1989 | Ohio 1996
Arizona 1984 | Maryland 1997 | Oklahoma 2010
Arkansas 1992 | Massachusetts 1989 | Oregon 2005
California 2011 | Michigan 1990 | Pennsylvania 2000
Colorado 1984 | Minnesota 2009 | Rhode Island 1989
Connecticut | 1989 | Mississippi 2005 | South Carolina | 1995
Delaware 1997 | Missouri 2004 | South Dakota 2009
Florida 2010 | Montana 1986 | Tennessee 2001
Georgia 1991 | Nebraska 1983 | Texas 1998
Idaho 1982 | Nevada 1987 | Utah 1988
Illinois 2006 | New Hampshire | 1989 | Vermont 1989
Indiana 2005 | New Jersey 1997 | Virginia 2005
lowa 1989 | New Mexico 1985 | Washington 2009
Kansas 1996 | New York 1995 | West Virginia 1989
Kentucky 2004 | North Carolina | 2000 | Wisconsin 2001
Louisiana 2010 | North Dakota 2011 | Wyoming 1985

approximately 41 000 individual farms. Selected farms are
visited each year by enumerators, as part of the JAS, to identify
the planting intentions for all agricultural land within the seg-
ments, including planted acreage and acreage intended for
harvest. Acreage estimates for major commodities such as corn,
soybeans, winter wheat, spring wheat, durum wheat, and cotton
are generated from the JAS at state and national levels.

The primary use of the ASF within NASS is as the foundation
of'the JAS. The ASF is also used to measure the incompleteness
of NASS list frame and for additional surveys such as NASS’
objective yield survey and the Agricultural Coverage Evaluation
Survey.

Within NASS, area frame construction is a lengthy process
conducted one state at a time. Land in a state is divided into PSUs,
which are defined by strata. This stratification process is con-
ducted using ArcGIS software, aerial photography, satellite
imagery, and ancillary agricultural information. PSUs are delin-
eated by permanent boundaries such as roads, railroads, and
streams and are approximately 3—4 sq mi for new frames. PSUs
are randomly selected by strata and only selected PSUs are
broken down using the previously described permanent bound-
aries into sampling units or segments. One sampling unit or
segment from each randomly selected PSU is selected for the
survey.

Frames are generally put in use for approximately 15-20 years
with some in operation for as long as 30 or more years.
Originally, when ASFs were created on paper, only two frames
were built each year. In recent years, three to four frames were
built each year due to technological improvements including the
use of ESRI’s ArcGIS software, aerial photography, satellite
imagery, and ancillary agricultural information. Table I illus-
trates the implementation years for the NASS area frames. On
average, five full-time employees working for a period of
4 months per state are required for new frame construction using
NASS’ traditional method [1]. Beginning in 2012, improved
efficiencies were achieved by updating frames rather than build-
ing area frames from scratch, which reduced the time and cost of
frame construction.

ASFs have been used in a variety of applications, such as
evaluating the prevalence of brown stem rot in the north central
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TABLE 11
TypicAL LAND-USE STRATIFICATION CODES AND DEFINITIONS REPRESENTED IN
THE NASS ASFs

Land -yse:stmia Codes  strata definitions
codes

11 General cropland, greater than 75% cultivated

12 General cropland, 51%—75% cultivated.

13 General cropland, greater than 50% cultivated

20 General cropland, 15%-50% cultivated

31 Ag-Urban, residential mixed with agriculture,
more than 100 dwellings per square mile.

32 Residential/commercial, more than 100
dwellings per square mile, no cultivation

40 Less than 15% cultivated (e.g., rangeland/forest)

50 Non-agricultural (e.g., military bases, airports,
national and state parks)

62 Water

United States [15], improving agricultural ground survey esti-
mates as part of the MARS [16], and comparing the utility of
frequently used estimators [17].

B. NASS ASF: Land Use Stratification

NASS’ traditional land use stratification divides land area
using permanent boundaries on the ground into broad land use
categories and is known to improve efficiency for statistical
sampling and estimation. In the construction of a NASS ASF,
general cropland (based on percentage cultivation), agriculture/
urban, residential/commercial, and nonagriculture are the com-
monly identified land covers. The agricultural stratum definitions
vary between states depending on the type and intensity of
agricultural production. Table II illustrates typical land-use
stratification codes and definitions used in NASS. It should be
noted that the states with strata 11 and 12 do not have a stratum
13. They are mutually exclusive. All strata are nonoverlapping.
Once stratum definitions are assigned, all land is subdivided into
PSUs. PSUs are designed to reduce labor cost in random
sampling. Selected PSUs are further subdivided into segments
or sample units, and a segment is randomly selected from each
allocated PSU for enumeration [1]. A consequence of using
PSUs is that all segments in the same PSU belong to the same
stratum. Therefore, stratum homogeneity is critical for the
performance of the NASS ASFs.

For the past 58 years, aerial photography and/or satellite
imagery have been used to conduct land use stratification. Most
recently, the Landsat Thematic Mapper (TM) satellite data were
used to visually identify cultivated cropland and, when neces-
sary, identify specific crop types. The National Agricultural
Imagery Program (NAIP) data, which are 1 m, orthorectified,
aerial photos acquired during the growing season are utilized as
the base for digitizing PSU boundaries.

C. NASS Cropland Data Layer

The NASS CDLs are annually updated 30- to 56.0-m raster-
formatted, georeferenced cropland classifications as shown in
Fig. 1. Rulequest Research’s See5 decision tree software is used
to perform supervised classifications of all 48 conterminous
states. Current CDL classification inputs include: Landsat 8 and
Disaster Monitoring Constellation (DMC) satellite imagery;
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Fig. 1. NASS Cropland Data Layer products.

USGS digital elevation, percent canopy, and percent impervious
raster datasets; and Farm Service Agency (FSA), Common Land
Unit (CLU), and NLCD 2006, of which the last two datasets are
used to select ground truth sample points [18].

Total crop-mapping accuracies for historic CDLs ranged from
85% to 95% for major crops [18]. These accuracy numbers are
considered high for stratification purposes as errors between crop
categories can be canceled when the categories are combined into
cultivated and noncultivated for stratification. The 1997-2013
archive of CDL data is publically available on NASS’ online
geospatial application—CropScape [19].

The primary purpose of the CDLs at NASS is to provide
independent acreage estimates to the NASS Agricultural Statis-
tics Board and field offices. NASS’ Remote Sensing Acreage
Estimation Program, which began in 1997 with one state, has
expanded to include all 48 U.S. conterminous states for 2008—
2013. NASS does not use pixel counting for acreage estimation
as pixel counting estimates often underestimate acreage as
compared to NASS official estimates [20]. Consequently, NASS
utilizes a linear model (1), which regresses the CDL pixel data to
segment summary data collected from the NASS JAS as follows:

Y=a+0X (1)

where dependent variable Y represents the estimated acres and
independent variable X represents CDL-classified acres. The
model coefficients ¢ and b are estimated from JAS-reported
acres and CDL-classified acres using a least square estimation
procedure [18], [20].

Pixel counting of the CDL underestimates acreage for several
reasons. First, roads tend to be over identified due to the CDL
30 m spatial resolution. Mixed (road/crop) pixels, the boundaries
between the fields and roads on the ground, tend to be classified
into roads because field edge pixels are excluded from the FSA
CLU training data. The FSA CLU ground truth data for training
and validation are buffered one pixel inward during preproces-
sing so that the mixed pixels at field edges are excluded from the
sampled training points and from the independent validation
dataset. The error caused by both training and validation ground
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Fig.2. (Top left) Zoom of the 2010 Oklahoma ASF with selected PSUs (red) and
the selected segments (blue) overlaying a CDL-cultivated layer (green—culti-
vated, white—noncultivated); (top right): the same ASF overlaying a 2010 CDL
image product (purple—rye, brown—winter wheat, green—soybeans, yellow—
corn, pink—alfalfa). Bottom figure identifies the figure’s location.

truth buffering is not accounted for in the CDL omission errors.
A second source of crop acreage underestimation is from the
misclassification of the CDL pixels inside crop fields because
crop signatures are not always consistent across the entire field.
This type of error is accounted for in the CDL omission error.

III. METHODOLOGY
A. Data and Preprocessing

The data files required for this investigation included: a state
level ASF with stratum specific PSUs, a 2010 state level NASS
CDL, and a 2010 JAS segment file with segment level percent
cultivation calculated. The NASS traditional state level area
frames were created using visual interpretation and used opera-
tionally to select the 2010 JAS sample. Although the NASS
traditional area frames were built prior to 2010 as shown in
Table I, they were all used operationally in 2010 and depended
upon to accurately reflect land cover conditions based on percent
cultivation. The 2010 CDLs included as many as 50 categories
and a wide variety of crops. For the purpose of stratification, a
cultivated dataset or “layer” was first generated by recoding CDL
pixels of crop categories into “cultivated” and noncrop pixels
into “noncultivated” [21]. To build the 2010 CDL-cultivated
layers, crop and noncrop categories were recoded to “1”” and “0,”
respectively. A typical cultivated layer is illustrated in Fig. 2 (top
left) with green and white colors representing the cultivated and
noncultivated areas, respectively. The cultivated layer is overlaid
with an ASF with PSU boundaries. The exact crop types in each
PSU are illustrated in Fig. 2 (top right) by overlaying the ASF
over the CDL. The numbers on both graphs represent the PSU
stratum definitions.

Fig. 3. (a) CDL-cultivated layer-based PSU percent cultivation. (b) The same
ASF with CDL-derived strata definitions. PSUs that changed stratum definition
using the automated method are highlighted in blue. The PSUs that did not change
stratum definitions are highlighted in light green.

B. Stratification Method

NASS’ traditional area frame stratification process involves
visual interpretation of satellite imagery or aerial photography to
subjectively determine PSU stratum definitions based on percent
cultivated land in a PSU boundary. The automated stratification
process replaces this traditional approach of visual interpretation
with a procedure that automatically and objectively determines
ASF PSU stratum definitions based on percent cultivated land
within a PSU boundary using available geospatial land cover
information. The detailed steps are given as follows:

1) Derive a state level cultivated layer from a current CDL by
grouping all crop categories into one cultivated (crop)
category and assigning the corresponding pixels with a
value of “1,” while grouping the remaining categories into
one noncrop category and assigning the corresponding
pixels with a value of “0.”

2) Load an individual ASF PSU boundary.

3) Load a CDL-cultivated layer.

4) Overlay an ASF PSU boundary on the CDL-cultivated
layer.

5) Compute percent cultivation of each ASF PSU by counting
the total number of pixels with value “1” (cultivated) and
the total number of all pixels within the PSU boundary. The
percent cultivated is given by the number of “1” pixels
divided by total number of pixels.

6) Determine the PSU stratum by checking the stratum
definition look-up table to map the computed percent
cultivation to a defined stratum, and label the PSU with
a corresponding stratum number as a PSU boundary
attribute.

7) Determine stratum definitions for all ASF PSUs in the state
by repeating Steps 2) to 6) for every PSU.

Fig. 3 (left) illustrates PSU percent cultivation calculated
from the CDL-based cultivated layer. With the calculated
percent cultivation, each PSU could be labeled into a stratum
category as shown in Fig. 3 (right) based on the state-specific
stratum definitions as given by Table II. Fig. 3 (right) shows the
resulting CDL-based stratification for the same frame. As a
comparison, PSUs that changed stratum definitions when com-
pared with the results from traditional method are colored in
blue. PSUs that did not change stratum definition are in light
green. This example indicates that the new method could yield
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TABLE III
Five STaTE 2010 ASF ANALYSES: TRADITIONAL VERSUS CDL STRATIFICATION METHOD

2010 ASF Stratification method comparison

Traditional Stratification CDL Stratification p value
Stratum | % Cultivated | Segments | Correct | Accuracy (p;) | Segments | Correct I Accuracy (p,) | Ha:p;#p,
Oklahoma 2010 ASF Analysis

11 >75% 140 47 33.57% 43 27 62.79% 0.001
12 51%-75% 48 9 18.75% 77 30 38.96% 0.024
20 15%-50% 74 26 35.14% 98 42 42.86% 0.305
40 <15% 61 61 100.00% 105 96 91.43% 0.027
Total 323 323

Ohio 2010 ASF Analysis
11 >75% 110 84 76.36% 85 76 89.41% 0.019
12 51%—-75% 35 15 42.86% 42 23 54.76% 0.055
20 15%-50% 42 28 66.67% 48 37 77.08% 0.271
40 <15% 53 47 88.68% 65 57 87.69% 0.869
Total 240 240

Georgia 2010 ASF Analysis
13 >50% 91 38 41.76% 28 22 78.57% 0.001
20 15%-50% 132 65 49.24% 165 100 60.61% 0.050
40 <15% 90 85 94.44% 120 106 88.33% 0.150
Total 313 313

Virginia 2010 ASF Analysis
13 >50% 15 8 53.33% 4 2 50.00% 1.000
20 15%-50% 100 50 50.00% 61 31 50.82% 0.920
40 <15% 64 60 93.75% 114 87 76.32% 0.003
Total 179 179

Arizona 2010 ASF Analysis
13 >50% 65 44 67.69% 59 45 76.27% 0.289
20 15%—-50% 23 8 34.78% 15 9 60.00% 0.127
40 <15% 54 52 96.30% 68 61 89.71% 0.296
Total 142 142

Five state 2010 Strata summary

11 >75% 250 131 52.40% 128 103 80.47% 0.000
12 51%—-75% 83 24 28.92% 119 53 44.54% 0.025
13 >50% 171 90 52.63% 91 69 75.82% 0.000
20 15%-50% 371 177 47.71% 387 219 56.59% 0.000
40 <15% 322 305 94.72% 472 407 86.23% 0.000
Total 1197 727 60.74% 1197 851 71.09% 0.000

significantly different results. It is observed that this proposed
new CDL-based process greatly improves stratification effi-
ciency and objectivity.

C. Stratification Results Evaluation

To evaluate the effectiveness of the CDL-based stratification
method, the results were compared with those of the traditional
stratification method based on 2010 JAS segment ground truth
data. Stratification performance or “accuracy” was assessed
based on the percent of the sampled and enumerated JAS
segments that matched the definition of the PSUs within which
they were selected. During the JAS, enumerators recorded crop
and noncrop acreage for all selected segments. JAS segment
stratum definitions (percent cultivation) were calculated directly
from the reported segment data. Only selected JAS segments
were enumerated. Remaining segments in the selected PSUs
were not enumerated in the JAS due to cost limitations. Due to the
fact that not all segments in the selected PSUs were enumerated,
the validation was conducted based on the enumerated segment
data, which was the only available ground truth. It was a goal of
PSU segmentation that a high percentage of sample segments
match the stratum definitions of the PSUs from which they were

selected. Therefore, it was assumed that enumerated segments
reflected the originating PSU stratum definitions. Both the
traditional and CDL stratification methods were evaluated in
the same manner.

An assessment of the resulting accuracies indicated that the
CDL stratification method generally resulted in higher accura-
cies as shown in Table III, but these results did not indicate
whether the differences in these two methods were statistically
significant. The ultimate goal of this evaluation was to determine
whether the proposed CDL stratification method achieved equiv-
alent or improved accuracies when compared with the traditional
(visual interpretation) area frame stratification method. There-
fore, two-tailed proportion tests, a chi-square test or a Fisher’s
exact test, for sample sizes less than five were conducted for
each state and each stratum. In these tests, it is assumed that p;
and p, represent the accuracy results from the traditional
stratification method and from the proposed CDL-based strati-
fication method, respectively. The hypotheses of the signifi-
cance tests were Hy: p; = po and H,: p; # po. The null
hypothesis stated that there was no difference in the accuracies
of the two stratification methods, while the alternative hypoth-
esis stated that the accuracies of the two stratification methods
were significantly different. The tests were performed for each
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state and each stratum with a confidence level of 95% or
significance level of 0.05 in this paper. The null hypothesis
was accepted if the p value exceeded 0.05.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Comparison of Traditional and CDL Stratification Results

A comparison was made between the stratification results
achieved by the traditional and CDL stratification methods using
JAS reported data as in situ validation. It should be noted that for
this analysis, strata 31, 32, 50, and 62 were merged into stratum
40 for the purpose of method comparison experiments. All
stratifications were PSU based.

Table III presents the accuracy results for both the traditional
and the CDL-derived stratification of the 2010 ASF PSUs for
Oklahoma, Ohio, Georgia, Virginia, and Arizona and as a five
state strata summary. In Table III, the accuracy results of the
traditional stratification method and the CDL stratification
method are presented side by side. The column at the far right
identifies the p values of the chi-square or Fisher’s exact tests.

As shown in Table III, for the Oklahoma 2010 traditional
stratification, of the 323 total segments in the state, 140 were in
PSUs defined as stratum 11 using visual interpretation based on
stratum definition. Of the 140 segments, JAS reported that 47
were stratum 11, an accuracy of 34%. For the CDL stratification
results, of the 323 segments, 43 were labeled in stratum 11 PSUs.
Of the 43 segments, the JAS reported 27 were stratum 11, an
accuracy of 63%.

Similarly, in Oklahoma stratum 20, 74 segments were in PSUs
identified by the traditional stratification as stratum 20. Among
these 74 segments, the JAS reported that 26 were stratum 20,
which represented an accuracy of 35%. Of the 323 segments,
98 were located in PSUs identified by the CDL-based stratifica-
tion as stratum 20. Of these 98 stratum 20 segments, the JAS
reported that 42 were stratum 20, an accuracy of 43%.

As shown in Table III, the accuracies were calculated and
summarized in the same manner for all strata. The p values were
highlighted in bold italics if the differences were considered
statistically significant at the 95% confidence level. At the
individual state level, stratum 20 was the only stratum that
showed no statistically significant difference between the two
stratification methods at the confidence level of 95%. Table III
also illustrates the individual state level analyses across five strata
for the Ohio, Georgia, Virginia, and Arizona analyses. In Ohio,
accuracy differences in stratum 11 were statistically significant at
the 95% confidence level. In Georgia, accuracy differences in
stratum 13 were statistically significant. The results for Virginia
and Arizona are not as compelling as Oklahoma, Ohio, and
Georgia. There were no significant differences in accuracy in
these two states except in Virginia stratum 40 in which the
traditional method achieved a higher accuracy than the CDL
stratification method. This result is not surprising, since the CDL
accuracy in low or nonagricultural areas is relatively low. The low
accuracy in stratum 40 stratification is inherited from low accura-
cies of the CDLs.

In summary, land cover in the five states stratified with the
automated CDL method generally had a higher rate of accuracy
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than the traditional method for all strata, except stratum 40, using
the JAS reported data as validation. As shown in Table III, the
CDL method achieved higher accuracy in the highly cultivated
strata (11 and 13). CDLs’ high total crop accuracies for major
crops in intensively cropped areas enable the new CDL stratifi-
cation method to achieve higher accuracies in highly cultivated
strata such as strata 11, 12, and 13.

The number of segments in specific strata changed signifi-
cantly when comparing the traditional versus the CDL stratifi-
cation method of the five state frames. Table III shows that the
number of segments included in stratum 11 across the five states
decreased from 250 (traditional) to 128 (CDL) segments. Fur-
thermore, the number of segments included in stratum 40 across
the five states increased from 322 (traditional) to 472 (CDL)
segments. The traditional method resulted in an over identifica-
tion of cultivated segments in high agricultural areas while the
CDL method over identified less cultivated segments.

Although the CDL method achieved higher accuracies than
the traditional method in all high to medium intensity cultivated
strata, the accuracies for both methods in strata 12 and 20 were
lower than those of stratum 11. The primary reason for reduced
accuracy in these strata was due to the heterogeneity of the land
cover. It is difficult to define a stratum 12 or 20 PSU that is
homogeneous, unless it is small. The cropland generally is
clustered in one portion of the PSU and the remainder of the
PSU has small amounts of agriculture. When the PSUs are
selected in these strata and the segments are broken down, it is
common that the selected segments not represent their PSU
stratum definitions. One recommendation, to improve PSU
homogeneity would be to reduce the size of PSUs during new
ASF construction. This would improve ASF performance in
strata 12 and 20.

The summary of the analysis results for five strata across all
five states were shown in the bottom section of Table III. As
shown in Table III, the CDL-based method achieved higher
accuracies than the traditional method statistically in four of the
five strata (11, 12, 13, and 20) when all five states were
aggregated into one large population. The traditional method
achieved higher accuracy in stratum 40 (low agriculture). This
indicated that superiority of the CDL-based method to the
traditional method was statistically sound.

B. Stratum Definition Sensitivity Analysis

To evaluate the impact of stratum definition change to strati-
fication accuracy, a sensitivity analysis was conducted on the
Oklahoma 2010 ASF. The goal of this analysis was to determine
the impact of hard thresholds, in stratum definitions (Table II), on
the accuracy results for both methods. The 2010, JAS data
collected for all Oklahoma segments were used in evaluating
the impact of small changes in stratum definitions on stratifica-
tion accuracy. Table IV summarizes the results of the sensitivity
analysis of the stratum definition range changes. As shown in
Table IV, all strata were defined by a range of percent cultivation.
To analyze the sensitivity of stratification accuracies to the
changes in stratum definition, the official range of stratum
percent cultivation was increased or decreased about 5% to
10%. The corresponding stratification accuracy was measured
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TABLE IV
OxrAaHOMA 2010 ASF ANaLysis: TRADITIONAL VERSUS CDL STRATIFICATION METHOD: SENSITIVITY ANALYSIS. (THE STRATUM DEFINITION NUMBERS WITH (¥) ARE NASS
OFFICIAL STRATUM RANGE OF PERCENT CULTIVATION)

Stratum definition Traditional stratification CDL stratification p value
Stratum_| % Cultivated | Change | Segments | Correct | Accuracy (P;) | Sensitivity [ Segments | Correct | Accuracy (P;) | Sensitivity [ Ha:P; =Py

11 >80% 5% 140 40 28.57% 1.000 43 24 55.81% 1.395 0.001

>75%* 0% 140 47 33.57% N/A 43 27 62.79% N/A 0.001

>70% 5% 140 61 43.57% 2.000 43 32 74.42% 2.326 0.004

12 55%-70% 9% 48 4 8.33% 1.157 77 20 25.97% 1.443 0.019

51%-75%* 0% 48 9 18.75% N/A 77 30 38.96% N/A 0.018

45%-80% 11% 48 13 27.08% 0.758 77 42 54.55% 1.417 0.003

20 20%—-45% 10% 74 18 24.32% 1.081 98 28 28.57% 1.429 0.533

15%-50%* 0% 74 26 35.14% N/A 98 42 42.86% N/A 0.305

10%—-55% 10% 74 30 40.54% 0.541 98 51 52.04% 0.918 0.135

40 <10% 5% 61 57 93.44% 1.311 105 86 81.90% 1.905 0.060

<15%* 0% 61 61 100.00% N/A 105 96 91.43% N/A 0.027

<20% 5% 61 61 100.00% 0.000 105 96 91.43% 0.000 0.027

Total 323 323

accordingly. Stratum sensitivity was defined by the ratio of
change in stratification accuracy to a change in the range of
percent cultivation for each stratum as follows:

Stratum definition sensitivity = A(stratificationaccuracy)/

A(percent cultivation).
(2)

As shown in Table IV, stratification accuracies changed as the
stratum definition (percent cultivation) ranges changed. The
sensitivity of the stratification accuracies vary for different
stratification methods, strata, and range changes. However, it is
observed that the patterns of change for both stratification
methods are the same. As shown in Table IV, stratification
accuracies for stratum definition 11 for both the traditional and
CDL methods are more robust when the range of percent
cultivation is reduced and more sensitive when the range of
percent cultivation is increased. This result is expected because
reduced range means increased homogeneity for high agricul-
tural PSUs. For the strata definitions 12, 20, and 40, the accura-
cies for both methods are significantly more sensitive when the
range of percent cultivation is reduced than when it is increased.
For stratum definition 12, the change in sensitivity for the new
CDL method caused by expanding or reducing the range of
percent cultivation are insignificant. For stratum definition 40,
the stratification accuracy is insensitive to increasing the range of
percent cultivation (5%) though it is sensitive to a decrease in the
range of percent cultivation. It is observed that increasing the
range of percent cultivation of the stratum definitions improves
the stratification accuracy and vice versa. This finding indicates
that a large definition range means that the strata are more
inclusive and thus yields improved accuracy especially for the
traditional method. However, how to find an optimal range for
each stratum is out of scope of this paper. Overall, as shown in
Table IV, changes in the range of percent cultivation of the
stratum definitions do not change the difference between the
stratification accuracies of the traditional and the CDL methods
statistically for all Oklahoma strata except stratum 40. For
stratum 40, originally, the stratification accuracy difference
between both methods is statistically significant. However, when
the definition range is reduced by 5%, the p value becomes 0.060,

which is slightly higher than the confidence level of 0.05. This
indicates that the accuracy difference between both methods is no
longer statistically significant. Having a significant change in
accuracy does not necessarily mean that a reduction in the range
for stratum 40 is more sensitive, since a reduction from 5% to
15% is a large change in definition range. Therefore, it is
concluded that changing the range of percent cultivation of the
stratum definitions did not change the difference between the
stratification accuracies of the traditional and the CDL methods
statistically for strata of high or medium agricultural intensity
(strata 11, 12, and 20).

C. Impact of Hay on Stratification

Additional stratification errors might be brought about by high
error rates in the identification of the “other hay/non-alfalfa”
category in the CDL classifications, especially in Ohio. Hay is
spectrally difficult to separate from the grass and pasture classes.
In many cases, the term hay refers to a land use rather than land
cover as grasses can be grown for hay production. Therefore, it
was important to determine whether including the hay class in
cultivation had a significant impact on stratification accuracy,
and if so, what mitigation procedure should be adopted in
stratification operational procedures. Consequently, the impact
of hay inclusion/exclusion on accuracies on both stratification
methods was examined based on the JAS data. Similar statistical
tests were performed to determine whether the differences in
accuracy were statistically significant. The accuracies were
compared for all states at the stratum level and as a five-state
stratum summary based on 2010 CDL data.

In Table V, the stratification results derived by including or
excluding the other hay/non-alfalfa category in the CDL-based
cultivated layer and the JAS-calculated validation data were
listed in two separated groups, respectively. As shown in Table V,
the accuracy differences for most strata in states were insignifi-
cant. However, the accuracy differences were statistically sig-
nificant for stratum 12 in Ohio and stratum 40 in Virginia. With
hay excluded, the accuracies decreased from 54.76% to 32.43%
for stratum 12 in Ohio and increased from 76.32% to 90.51% for
stratum 40 in Virginia. Overall, the five state stratum summary
shows that total accuracy increased from 71.09% to 74.69% with
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TABLE V
CDL STRATIFICATION AcCURACY ComPARISON WITH RESPECT TO HAY (FIVE STATES 2010 STRATA SUMMARY)
Hay included Hay excluded p value
Stratum | State Segments | Correct | Accuracy (p,) | Segments | Correct | Accuracy (p,)|Ha: p;#p,
Oklahoma 43 27(62.79% 27 18]66.67% 0.742
11 Ohio 85 76(89.41% 76 66|86.84% 0.614
Total 128 10380.47% 103 84181.55% 0.835
Oklahoma 71 30|38.96% 73 35|47.95% 0.267
12 Ohio 42 23154.76% 37 12132.43% 0.046
Total 119 53|44.54% 110 47142.73% 0.783
Georgia 28 22|78.57% 24 20(83.33% 0.736
13 Virginia 4 2150.00% 3 1133.33% 1.000
Arizona 59 45176.27% 58 43174.14% 0.789
Total 91 6975.82% 85 64175.29% 0.935
Oklahoma 98 42142.86% 65 30(46.15% 0.678
Ohio 48 37|77.08% 46 34173.91% 0.721
20 Georgia 165 100{60.61% 158 92158.23% 0.664
Virginia 61 31|50.82% 39 21(53.85% 0.768
Arizona 15 9160.00% 16 9156.25% 0.833
Total 387 219(56.59% 324 186(57.41% 0.826
40 Oklahoma 105 96191.43% 158 142189.87% 0.674
Ohio 65 57|87.69% 81 66|81.48% 0.306
Georgia 120 106|88.33% 131 120(91.60% 0.388
Virginia 114 87(76.32% 137 124190.51% 0.002
Arizona 68 61)89.71% 68 61189.71% 1.000
Total 472 407 86.23% 575 513(89.71% 0.141
Total 1197 851(71.09% 1197 894 (74.69% 0.048

hay excluded and a p value of 0.048 indicates that this difference
is statistically significant at a 95% confidence level though it is
marginal. These results indicate that excluding the CDLs other
hay/non-alfalfa category from the cultivated data layer may have
significant impact on state level stratification results for some
state in some strata.

These results can be explained by the fact that classification
accuracies related to the other hay/non-alfalfa category and the
geodistribution of other hay/non-alfalfa are different in different
states. For example, the producer and user accuracies for other
hay/non-alfalfa in the 2010 Ohio CDL were 14.20% and 55.20%,
respectively, which are poor for these categories [22]. The major
classification errors came from eastern Ohio, where small farms
are prevalent. In eastern Ohio, the FSA CLU data are limited with
reduced numbers of farmers signing up with FSA. Furthermore,
the spatial resolution of the satellite imagery is too coarse at 30 m
to identify and classify the fields accurately. Many of the PSUs in
this area of eastern Ohio belong to stratum 12. Merging the other
hay/non-alfalfa category into the cultivated category greatly
cancels the classification errors from other hay/non-alfalfa.
Therefore, excluding other hay/non-alfalfa will reduce the culti-
vated layer accuracy in the area. Another example is stratum 40 in
Virginia. The producer and user accuracies for other hay/non-
alfalfa in Virginia in the 2010 CDL were 48.54% and 58.66%,
respectively [22]. Excluding other hay/non-alfalfa from the
cultivated category and merging it into noncultivated category
will cancel some errors in the noncultivated category, which
constitutes a major portion of stratum 40. Thus, it may increase
the stratum 40 stratification accuracy as most land in Virginia is
low-intensity agriculture.

D. Single Versus Multiple Year CDL Data

Utilizing the multiyear CDL data might improve the cultivated
layer accuracies. Therefore, additional testing was conducted to
determine whether stratification accuracies could be improved
using multiyear CDL data for the automated stratification
process. State level stratifications using different multiyear
CDL (2007-2010) cultivated data layers were first conducted
[21]. The multiyear CDL data-based stratification accuracies
were then compared with the stratification accuracies obtained
from the single year (2010) CDL-cultivated layer of the five test
states.

The single year CDL-cultivated data layer included pixels
categorized to cultivated crop in the 2010 CDL only. The
multiyear cultivated layers were derived using different CDL
data composition rules which determined the pixels to be cate-
gorized in the output data layer as cultivated. In this experiment,
four consecutive years of CDL data (2007-2010) were used.
Two sets of cultivated data were derived with two composite
rules: a pixel was categorized to cultivated in the multiyear
cultivated layer 1) if it was classified as a cultivated crop at least
two times in the original CDL inputs and 2) if a pixel was
categorized to a cultivated crop in the 2010 CDL as well as
categorized to a cultivated crop at least two times in the original
CDL inputs. The multiyear cultivated layers composited with
rule 1) and rule 2) were called multiyear composite 1 and 2 in
Table VI, respectively. Stratification accuracies achieved using
these two datasets were listed along with accuracies using the
single year data for all states and strata in Table VI. As shown in
Table VI, the minimum p value was 0.211, which is much larger
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TABLE VI
CDL STRATIFICATION ACCURACY COMPARISON USING SINGLE YEAR VERSUS MULTIYEAR CDL Data (FIvE STATES 2010 STRATUM SUMMARY)
Single year (2010) Multi-year composite 1 Multi-year composite 2 p value p value
Stratum | Segments | Correct | Accuracy (p1) | Segments | Correct | Accuracy (p,) | Segments | Correct | Accuracy (p;) |Ha: p; # p, | Ha: pi # p3
11 103 84 81.55% 93 78 83.87% 134 101 75.37% 0.669 0.254
12 110 47 42.23% 114 54 47.37% 83 43 51.81% 0.485 0.211
13 85 64 75.29% 77 60 77.92% 102 71 69.61% 0.693 0.388
20 324 186 57.41% 286 172 60.14% 319 184 57.68% 0.494 0.944
40 575 513 89.71% 627 545 86.92% 559 505 90.34% 0.221 0.533
Total 1197 894 74.69% 1197 909 75.94% 1197 904 75.52% 0477 0.637

than 0.05 the level of significance. This result indicated that the
differences in stratification accuracies between using the single
year data and either of the two multiyear CDL composite data for
any of individual stratum in five test states were not statistically
significant. The test p values of 0.477 and 0.637 also indicated
that the differences in accuracies using single year CDL data
versus using multiyear composite 1 and 2 for all states across all
strata were not statistical significant.

Overall, the differences in stratification accuracies were very
small when using either single year or multiyear CDL composite
data because the CDL input data were consistent over time.
However, it is important to note that at the local level these
differences may be significant.

E. Applications in NASS Operation

Based on these research results, NASS has begun implement-
ing the CDL automated stratification method into NASS area
frame operations in two major applications.

First, the automated method is being used as the primary
stratification method for building state area frames. However, the
operational stratification process remains a hybrid approach, a
combination of automated and manual stratification. The new
CDL automated stratification method is applied on existing state
frames to highlight PSUs with matching or nonmatching stratum
definitions. PSUs with matching stratum definitions are assumed
correct and no changes are made. PSUs with nonmatching
stratum definitions are manually inspected using satellite data,
aerial photography, and FSA CLU data to determine the stratum
definitions. When new frames were built in the past, all analyses
were conducted from scratch with 100% of the PSUs requiring
digitization and all stratum definitions determined using visual
interpretation [1]. To improve efficiency and reduce the cost of
construction, old area frames are currently being reused with the
automated stratification process highlighting PSUs that have
potentially changed stratum definitions. Only nonmatching
PSUs, which constitute just an average of 20% of all PSUs, are
targeted for manual inspection. This is a significant improvement
in efficiency. To improve stratum homogeneity, many of the
manually inspected PSUs are broken down into smaller units.
New state frames have been created for Arizona, Georgia,
New Mexico, Oklahoma, and South Dakota, using the CDL
automated stratification method.

A second application of automated stratification within NASS
operations is using the proposed automated stratification method
as an additional tool to determine the order of revision for state
frames. Currently, four state frames are being built each year,

0 25 50Mies Y
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Fig. 4. Oklahoma ASFs (a) 2010 and (b) 2013. Stratum 11 (greater than 75%
cultivated) was overestimated in the 2010 ASF, which was created using the
traditional method and updated to more accurately reflect conditions in the 2013
ASF using the CDL-based automated stratification method.

with the recent implementation of the CDL automated method.
To determine which frames should be revised next, a careful
calculation has to be made. In the past, frame age, coefficients
of variation (CVs), percent of frame segments meeting stratum
definition (frame performance) and contribution of the state to
U.S. agriculture were the primary criteria used to determine the
order of state frame revisions. Currently, NASS Area Frame staff
members have added the automated stratification procedure as an
additional tool to objectively measure the degree of improvement
in frame performance that can be expected by using the CDL
data. This new Area Frame procedure relies on analysis of PSU
stratum definitions. The analysis is performed using the CDL
automated method and the JAS data as validation. By comparing
CDL-based stratification results to the current year’s JAS re-
ported data, the “potential” improvement expected from building
anew frame using the CDL data can be computed. Based on this
analysis, state frames are ranked from a low to high potential for
improvement. This method helps NASS objectively determine
the optimal order to conduct Area Frame updates.
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Overall, with the implementation of the CDL automated
method in NASS area frame operations, new state frames are
being built at reduced cost with improved objectivity, efficiency,
and accuracy. For example, the 2010 Oklahoma area frame was
constructed in 4552 employee hours using the NASS traditional
method as compared with the 2013 Oklahoma frame which was
constructed in 1980 employee hours using the CDL-based
stratification method. This time calculation includes additional
editing of PSUs that have changed stratum definitions and editing
to improve stratum homogeneity, all useful for improving frame
quality and performance. Furthermore, analysis of the 2010
Oklahoma frame indicated an accuracy of only 34% of segments
meeting stratum definition when compared with the 2012 JAS
segment data. After rebuilding the 2013 Oklahoma frame, an
accuracy of 79% was achieved using the 2013 JAS segment data
as in situ validation. Fig. 4 illustrates official NASS products of
the traditional 2010(a) and the CDL based 2013(b) NASS
Oklahoma ASFs. As shown in Fig. 4, stratum 11 (dark green)
was overestimated in the 2010(a) Oklahoma ASF when com-
pared with the 2013(b) Oklahoma ASF using the 2012 JAS
survey data as in situ ground truth.

V. CONCLUSION

This paper proposed a new automated CDL-based method for
deriving percent cultivation and subsequently stratifying U.S.
land cover. The goal of this research was to determine the utility
of the automated CDL-based method for use in the stratification
of U.S. land cover and potentially in ASF construction. The
CDL-based stratification of NASS ASF PSUs was successfully
conducted for Oklahoma, Ohio, Virginia, Georgia, and Arizona
as an experiment. The stratification accuracies of the traditional
and new CDL stratification methods were compared based on
in situ validation data collected by enumerators during the
2010 JAS.

Results of the five-state analyses indicated that the new auto-
mated CDL method was more accurate in determining U.S.
percent cultivation in intensively cropped areas and weaker in
low agricultural areas. The CDL-based stratification achieved
higheraccuraciesin strata 11, 12, 13, and 20, while the traditional
method achieved higher accuracies in stratum 40. The differ-
ences in the accuracies were statistically significant at a 95%
confidence level. Using multiyear composite cultivated layers
did not improve stratification accuracies as compared with results
of single year data. The differences in stratification accuracy
which resulted from including or excluding hay in cultivation
were overall marginally significant at a 95% confidence level.
However, the accuracy differences are significant for some states
such as Ohio and Virginia in certain strata, which were related to
the original CDL accuracy. To evaluate the impact of the stratum
definition change to the stratification accuracy, a sensitivity
analysis was conducted on the Oklahoma 2010 ASF results. It
was found that changes in the range of the stratum definitions did
not change the difference in stratification accuracies between the
traditional and the CDL methods statistically for strata of high or
medium agricultural intensity (strata 11, 12, and 20).

The novelty of the proposed method was using geospatial
CDL data to objectively and automatically compute percent
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cultivation of the ASF PSUs as compared to the traditional
method that subjectively determines percent cultivation using
visual interpretation of satellite data. This proposed new CDL-
based process improved efficiency, objectiveness, and accuracy
as compared to the traditional stratification method. It was
concluded that adoption of the automated CDL stratification
method in ASF construction helped NASS achieve the goals of
improving efficiency, reducing cost, and improving the precision
of JAS estimates by updating the NASS ASFs with greater
frequency and stratification accuracy.

Future research will involve assessing the stratification im-
provement derived with the CDL automated method by compar-
ing the variances of estimators using the CDL stratification as a
form of poststratification compared with the variance from the
original stratification. Also, it is necessary to further develop and
test a technique to more efficiently and objectively identify ASF
PSUs for potential subdivision, which have large variances, so
that a lower variance can be achieved.
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