
The Hidden Job Requirements for a Software Engineer

Cristina Marinovici
Pacific Northwest National
Laboratory, Richland, WA

cristina.marinovici@pnnl.gov

Harold Kirkham
Pacific Northwest National
Laboratory, Richland, WA
harold.kirkham@pnnl.gov

Kevin Glass
Pacific Northwest National
Laboratory, Richland, WA

kevin.glass@pnnl.gov

Abstract

In a world increasingly operated by computers,
where innovation depends on software, the software
engineer’s role is changing continuously and gaining
new dimensions. In commercial software development
as well as scientific research environments, the way
software developers are perceived is changing,
because they are more important to the business than
ever before. Nowadays, their job requires skills
extending beyond the regular job description posted by
HR, and more is expected. To advance and thrive in
their new roles, the software engineers must embrace
change, and practice the themes of the new era
(integration, collaboration and optimization). The
challenges may be somehow intimidating for freshly
graduated software engineers. Through this paper the
authors hope to set them on a path for success, by
helping them relinquish their fear of the unknown.

1. Introduction

Technology evolution creates a new and exciting
reality, where software is used everywhere and in
everything. Software employment in every small thing
is changing the role of the software developer and at
the same time the expectations people have of
developers. Just having the technical skills is not
enough any more. The days when developers were
working in isolation, focusing on a single task are
becoming history. Today, in some fields, the necessity
to deal with a massive volume of data is changing the
developer role, making him/her more important for the
business. In other fields, developers become testers and
act for the end users. Others may interact more and
more with customers. Moreover, developers have to be
project managers, business analysts, security experts
and even domain experts. The developers facilitate,
yield, and require more fundamental scientific
understanding of the domain that they work on,
therefore they must become domain experts. This is the

environment in which the freshly graduated software
engineer is supposed be prepared to work.

Usually, a software developer job description
presents only the quantifiable aspects of the work and
cannot account for the dynamic on-the-job aspects. It is
easy to decide whether or not the developer possesses
the domain knowledge and the skill set. But there are
other factors defining what is expected of the
(employed) software developer. These factors relate
not only to the necessary dedicated skill set and the
level of domain knowledge, but also to the ability to
communicate in and outside the team, to adapt to new
technologies and tolerate ambiguities.

For a software engineer working in a scientific
research community, the employer’s expectations are
driven by different aspects compared to the software
engineer working in a commercial software
development environment. Much of what is taught in
schools focuses on business-oriented design used to
develop commercial software. In the commercial
world, software requirements are gathered to define not
just the desired project, but to also understand future
directions. This allows the developers to design
defensively, create maintainable, reliable and
extensible code.

However, this is not a typical development
environment for a science and engineering software
project. Further, software design from an academic
perspective is radically different then the reality of
scientific software development.

The science and engineering oriented development
environment is more dynamic. Though the purpose of
the project should remain consistent through its
lifetime, the underlying algorithms, design and
numerical approaches change constantly. That may
mean that high-level requirements are more constant
than low-level ones. Sometimes even high-level
requirements could undergo several adjustments. For
scientific software projects, this entails a constant shift
to unpredictable courses that inhibit the ability to
design for future directions. An environment like this is
not amenable for gathering clear and constant software
requirements. In many cases, the programming strategy

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.611

4979

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 18:25:59 UTC from IEEE Xplore. Restrictions apply.

focuses on scientist’s personal theories, with little
attention to the broader software project, making code
difficult to extend.

These are only some of the hurdles that make
scientific software development hard to maintain,
extend and susceptible to being unreliable.

Lately, the scientific software community started to
adopt methodologies and techniques that proved to
enhance productivity in commercial software
development. This paper shares the authors’ experience
working on scientific research projects, and
extrapolates the findings with the hope of inspiring
others striving to become better software engineers.

2. Skill set

The most important and desired skill from any
engineer is the capability to “properly” design a
system. It is a matter of having a global view of the
problem, while accounting for future potentials. What
today is really high-tech and expensive, tomorrow will
be commonly used.

For example, the task of storing real data becomes
cheap and easy, being facilitated by the creation of
large data warehouses in which the information is kept.
Therefore, what is left as the most challenging task is
properly analyzing the data. “We’re still in danger of
suffering from shortsightedness when it comes to data
custodianship. Every experiment needs a clear plan in
place to ensure that a record of the original
observations is still available and readable, even
decades into the future [1].”

The traditional academic curriculum, including
research and project classes, influences the shaping of
the student software engineer, preparing him/her for
the real world work. Some of the key skills to possess
originate from this academic training. These include:

� Use of scripting languages (i.e. UNIX shell
scripting, Python) for extracting and accessing
data from various sources. Taking advantage of
increased computer speed, the scripting
languages are becoming more and more
important for the future applications [2].

� Ability to pre-process the real data and “clean”
it (remove noise, errors, duplications and a
variety of other defects), which are preliminary
steps for analysis. Often thoroughness during
this step yields the greatest benefits. It is well
accepted that you can recover from bad
analysis, but you cannot recover from bad data.
A simple analysis of clean data can be more
productive than a complex analysis of noisy
and irregular data.

� Explore data - how to go from "the bits" to
actual understanding of the data. Appropriate
statistical methods (many scientists and
engineers are surprisingly bad at statistical
analysis), and educated exploratory data analysis
can reveal great interesting trends in data [3].

� Ability to employ numerical linear algebra,
computational and statistical methods to model
data. These days, this may be as important as
coding knowledge for a software engineer.
Generating an output may be of no help
without the benefits of interpreting it and
understanding whether it makes sense or not.

� Competence in using visualization tools, which
needs to be complemented most of the times by
specific domain knowledge to interpret the
data. This brings more fundamental scientific
understanding and therefore influences the
decision-making processes. In most scientific
research projects, a picture (or a graph) is
worth a thousand words [4].

It is really important to ensure that students get
exposure to quality assurance (QA) and software
testing skills and techniques. This does indeed prepare
graduates with degrees in computer science for various
careers in software engineering. In many product
lifecycles, the testing is performed under pressure and
therefore a good QA skill base is valuable and desired
for a software engineer. Testing skills, that can be
applied in any software engineering work-field, include
the ability to :

� focus on what is really important and matters
for the product delivery,

� actively identify, listen to, and learn from
context drivers,

� dynamically prioritize testing, considering the
risk-value and impact on functionality,

� create effective decision-making workflows ,
� avoid wasteful re-work in all aspects of test

implementation and execution,
� accept mistakes as a way of learning and

embrace risk as a way to progress [5].
Doubtless there are more.
In product development, projects do not always

evolve as planned. The authors have presented detailed
descriptions of the lessons learned from the
development of a scientific research project in power
system field area in a previous paper [5]. It is important
to mention that the project was facing the de-scope
decision. To bring back the project on track, as a first
step, a “scaled-down” version, with fewer features was
produced. Adoption of Agile methodologies with
incremental releases (and reduction of feature-

4980

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 18:25:59 UTC from IEEE Xplore. Restrictions apply.

cravings) also contributed. The teams started to
communicate more, achieving quick and timely
responsiveness and better collaboration. As a result, it
has been noticed improved efficiency through better
flow of the features from design, development, testing
to integration. The team was able to see convergence
of value, and most importantly reduction in bug count.

2.1. Domain Knowledge

Domain knowledge is hard to teach but very
valuable. It requires practice and experience in the
field, and is often the requirement that distinguishes
software engineer qualifications. In scientific research
groups, the software engineers grow their skill sets and
domain knowledge by working on dedicated projects.
They are able to develop a technical vocabulary, to
understand the business and technical terms and, at the
same time, to deal with the ambiguities of the scientific
field. Ambiguities and misinterpretations of
requirements when translated from business language
into scientific language are two major factors
introducing costly defects into product design. As the
level of complexity of the product increases, the
weaving between requirements and state of the
software-product becomes more intricate [6].

2.2. Creativity

Besides really good domain knowledge, creativity

is the driving factor of the software engineering
profession. As Edward de Bono stated “creativity
involves breaking out of established patterns in order
to look at things in a different way [7].”

The necessity to incorporate rigor and subjectivity as
well as creativity into the scientific process leaves
space in every implementation for biases, and
particular threats to validity [8]. Nevertheless,
creativity has a direct impact on the business, as has
been demonstrated by the big commercial software
companies; workplaces where talent and innovation are
unleashed create a more productive, efficient, and
profitable environment. In the research community,
searching for alternative explanations, finding an
adequate software solution while accounting for the
methods’ limitations, and having a self-critical attitude
are vital.

3. Adoption of Dynamic and Evolving
Methodologies

The economic mechanisms of the market are forcing
the software industries to move away from the long
years of development efforts, and to compete with each

other in releasing better products faster . Adoption of
dynamic and evolving methodologies can unleash a
world of possibilities, if applied properly.

It may not be obvious to the recently graduated
software engineer, but improper application of
dynamic methodologies and their trends may actually
hinder creativity. Trying to develop a solution outside
the carefully monitored framework may lead to
disaster. The software engineer should keep an open
mind, understand his or her role and responsibilities
within the team framework, and just embrace the
challenges.

Adoption of new methodologies creates
psychological changes for the software engineer. The
daily scrum framework increases team interaction,
creating a camaraderie connection, and influencing
team velocity. It is important to understand that the
scrum is not a status review, it is a way of informing
the team of the potential blockers and to plan on how
to surpass them. Early tackling of blockers increases
efficiency, improves code quality and may reduce
defect counts.

The adoption of new methodologies (i.e., lean,
Agile, XP, continuous delivery, etc.) changes the
development process by asking more flexibility of the
software engineers and their product. The change also
affects the planning, forcing a better scope of the
design and approach it through incremental steps.

The effect of new methodologies adoption is visible
in the end-product. In each sprint, the code is
implemented end to end, being tested and integrated
right away; this fact makes the product almost ready
for production. Every project is different, of course,
and therefore there is no ideal sprint length. For our
scientific power system software development project,
the length of the sprint was correlated with project
milestones and resources availability.

In any project, either scientific or commercial , the
adoption of dynamic methodologies gives developers
the possibility to experience different roles (scrum
master, tester, user, developer, architect or manager).
This change in roles provides a better perspective and
understanding of the task(s), as well as a better
estimation of the work-effort. In his article, Scott
Sehlhorst describes estimation as “reflection of
probabilities distribution and not specific numbers.
Estimation carries a lot of risk. The estimates can be
wrong, the estimates can be expensive, and the
estimates can be reused. Risk is not necessarily a
reason to avoid estimating …. Estimates can have
value - informing rational top-down investment
decisions, allowing for efficient investment of team
effort by getting the most bang-for-the-buck, and

4981

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 18:25:59 UTC from IEEE Xplore. Restrictions apply.

providing motivation, feedback, and learning to team
members [9].”

3.1. Distributed Teams

Having your team distributed all over the globe is
not a new thing any more. Working in global teams has
its own problems. The time difference is the major
factor that influences team dynamics. Communication
channels should nevertheless be maintained open; for
the project’s success discussions should occur often.
Working in a distributed team on the same product will
alleviate the meaning of work hours; you will be
required to work late in the night or bright and early in
the morning to be able to communicate with your
teammates in other parts of the world.

This is one of the cases where flexibility and
adaptability of the software developer is really
important. Communication that does not happen in the
face-to-face manner will require the use of technology
(i.e., conference calls, screen sharing, and so on).

Colocation of team members is a way of improving
team interaction and allowing a better knowledge
exchange. In the case of multi-disciplinary teams the
knowledge exchange occurs more often when teams
are co-located or located in proximity to each other.

On our power system software project, being close
made it easy to ask for clarifications of the
requirements, and saved us time and reduced the
defects-count increase. As a result of pair
programming and collective efforts of a multi-
disciplinary team, the defects life-time had reduced
visibly compared with the period before Agile
methodologies adoption. This fact was supported by
studying the life time of a series of defects during a
predefined time frame. The graph in Figure 1 shows
how applying Agile methodologies improved the
average defect time span.

Figure 1. Defects life-time curve
Sometimes when multidisciplinary teams are

located together, the environment may become too
noisy. Research studies on disciplinary team colocation

showed that sometimes productivity decreases instead
of increasing [10]. In an open space environment the
level of noise can reach 80 decibels, while 65 decibels
represents the threshold at which you heart rate reaches
the heart-attack level [11]. In the effort of eliminating
noise, the team members may inadvertently shut down
the channels of communication. If the level of noise is
too high in the office, office-mates will use headphones
to filter the noise, but that will filter the technical
discussions and disable the knowledge transfer.
Scientific studies showed that people seeking help
from others in open environments are becoming more
productive, while the people offering help are having a
decrease in productivity [10]. The interruption of your
work to help others requires reacquaintance with the
details of your task every time you come back to it.
Therefore, the best approach is to set time periods
when you cannot be disturbed and periods when you
are willing to help others.

3.2. Technology to Help Work

Every company has its own preferred tool for
editing, debugging, tracking defects and requirements,
monitoring of the product life-cycles, revision control
systems for code and releases, for updating
documentation and so on. One thing it is clear: it is
hard to have exposure to all the available products in
the market. The software developer of a product should
be able to master the use of the company choices in
tools, optimize the tedious and time-consuming tasks
by making use of the available tools.

Working on a team (distributed or not, collocated or
not) requires interaction with the other teammates. The
use of instant messages, conference calls, screen
sharing and google hangouts represent the routine part
in a developer day. Interactions occur all the time
during the work day and sometimes there is the danger
of losing track of temporal knowledge. Answer to a
question like “why has this approach been chosen?”
represents temporal knowledge that may get lost in the
development process. In the Agile methodologies, the
team writes notes, keeps a history of the sprints and
backlogs, defects and translates everything in work
items. Discussing and taking decisions on the problems
with the whole team improve the knowledge exchange
and keep everyone equally involved in the
development process.

Many companies agree that cloud computing is the
direction towards which things are going [12]. The
integration of the cloud-based services is in its early
days. Based on the needs of the organization, one can
use the commercial public cloud services or build
one’s own private clouds, or do both. Cloud computing

4982

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 18:25:59 UTC from IEEE Xplore. Restrictions apply.

providers offer their services according to several
fundamental models (i.e., SaaS (Software as a Service),
PaaS (Platform as a Service), IaaS (Infrastructure as a
Service)). Using cloud computing will allow the
companies to maximize the effectiveness of the shared
resources and it can be viewed as a way of increasing
productivity.

Even in the scientific software community the
cloud computing and parallel programming are gaining
more ground, being adopted as ways to improve
quality of software and productivity. The increased
complexity of the modeled problems require high
performance computing capabilities, dedicated
platforms and sometime the possibility to integrate
hardware equipment and software parts.

4. Communication

Communication is the key to avoid “muddy
requirements” [13], by allowing transformation of tacit
knowledge, ambiguous assumptions and beliefs into
precise specification formulations. The “mud” comes
from the different knowledge of the application subject
experts and the software experts: communication is the
only solution. Engineers must create a functional
specification from the marketing concept proposal to
document specific features for implementation. The
original concept is likely written in business-readable
language, and its translation into technical functional
specifications can introduce ambiguous and
inconsistent requirements. It is important for the
functional specification document to be customer
reviewed and validated in order to enforce its technical
integrity.

Migration from one phase of the project to the the
second one may help individual knowledge to be
transferred to the whole group. In many instances, in
our scientific development project, the power-systems
engineers discussed the problem to be modeled with
the team, helping to choose the optimal approach. This
type of knowledge sharing can be viewed as a way of
saving each other’s time, if one accounts for the quality
of the code produced. In our studied case, a
productivity increase by employing pair programing
was observed; the continuing peer-review of the
software generated more flexible, cleaner and high
quality code. All the team members remained in
contact with each other and were aware of the project
needs and directions. The team gained experience in
risk assessments and was able to prevent failures by
thinking ahead in the development process.

Communication should occur at all levels in a team.
The internal team likely has dedicated communication
channels in place, but communication with customers

is a bit more difficult. If there is no direct channel of
communication between developers and customers,
and all the communication is accomplished through the
business representatives, many requirements/features
can be miscommunicated or misinterpreted.

For illustration purposes, let us include an example
that describes the unforeseen troubles of the problem
of power factor in a utility. Broadly speaking, the
problem was to keep the power factor near unity at a
substation. The solution implemented gave results as
presented in Figure 2. The diagram shows the result of
an automatic control system, operating over several
days. It is very clear that when the control is activated,
the power factor is maintained very close to unity.

Figure 2. Power factor at bus for 5-day period
The power factor on the substation was being well-

controlled. However, closer investigation revealed a
problem. The power factor on the secondary bus of the
substation was indeed quite well controlled, but on the
various lines that were fed by the bus, it was far from
well managed. An example of feeder power factor
corresponding to the time shown in Figure 2 is given in
Figure 3. It can be seen that the feeder has very large
deviations from unity power factor when the control is
active, not very different from when it is not activated.
While the control system is clearly capable of solving
the problem, the problem was not well-defined, and the
wrong problem was solved.

Figure 3. Power factor on line for same 5-day
period as Figure 2

There is a trend today to involve the software
developer in customer interaction. They can interact

4983

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 18:25:59 UTC from IEEE Xplore. Restrictions apply.

with them directly, and get direct user feedback.
Feedback is brought back into the product development
life-cycle, and that translates into a decreased risk in
customer product acceptance. Having a shorter
feedback loop can also be reflected in productivity.

Software engineers are more visible in media,
social networks and at conferences, providing the
audience with direct information on products and the
ways they were designed. Usually, software products
are not the result of an individual software developer,
especially in the commercial companies. Even if each
developer is only responsible for a specific part of a
large software product, they can and should be part of
the team promoting the result. It is hard to say whether
or not this would positively influence the product
distribution. For example, would a chat with one of the
software developers affect the decision of a car buyer,
even if the car depended on millions of lines of code?
Nevertheless, some developers are becoming more
involved in assisting their business in making its value
known in the world.

5. Conclusions

The future for the software developer looks bright.
Demand among government, scientific communities
and business entities to leverage new data sources for
business advantage is growing. Digital control is
replacing analog. User interfaces are everywhere.
Companies can tailor their customer offerings and
develop tighter connections with them. These industry
trends are creating a demand for greater numbers of
software engineers, but they are also changing the role
of software engineers. The software engineer of
tomorrow will need education and experience beyond
that of the software engineer of yesterday.

7. References

[1] Viktor T. Toth, Slava G. Turyshev, “Finding the

Source of the Pioneer Anomaly”, IEEE Spectrum,
November 2012

[2] John Ousterhout, “Scripting: Higher Level

Programming for the 21st Century”, IEEE
COMPUTER, 1998

[3] John W. Tukey, “The Technical Tools of Statistics”,

http://cm.bell-
labs.com/cm/ms/departments/sia/tukey/

[4] Harold Kirkham and Robin Dumas, “The Right

Graph: a Manual for Engineers and Scientists”, Wiley
and Sons, New York, 2009.

 [5] Cristina Marinovici, Harold Kirkham, “The many
faces of a software engineer in a research
community”, Pacific Northwest Software Quality
Conference, 2013

[6] Cristina Marinovici, Harold Kirkham, Kevin Glass,

and Leif Carlsen, “Engineering Quality while
Embracing Change: Lessons Learned”, 46th Hawaii
International Conference on System Sciences
(HICSS), 2013

[7] Edward de Bono, “Lateral Thinking: Creativity Step

by Step”, Harper & Row Publisher, New York 1973

[8] Robin Whittemore, Susan K. Chase, Carol Lynn
Mandle, “Validity in Qualitative Research”, Qual
Health Res July 2001 11: 522-537,

[9] Scott Sehlhorst, “To Estimate or Not to Estimate -

That Is the Question”, 2013,
http://www.techwell.com/2013/05/estimate-or-not-
estimate-question

[10] Beth Romanik, “Embrace the Cubicle: Open-Plan

Offices Make You Less Productive”, 2013,
http://www.techwell.com/2013/05/embrace-cubicle-
open-plan-offices-make-you-less-productive

 [11] Decibel Levels of Common Sounds,
http://home.earthlink.net/~dnitzer/4HaasEaton/Decibe
l.html

[12] Eric Knott, Galen Gruman, “What cloud computing

really means“, http://www.infoworld.com/d/cloud-
computing/what-cloud-computing-really-means-
031?page=0,0

[13] Ivy F. Hooks, Kristin. A. Farry, "Customer Centered

Products: Creating Successful Products Through
Smart Requirements Management.", AMACOM -
American Management Association, New York, 2000

4984

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 18:25:59 UTC from IEEE Xplore. Restrictions apply.

