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Abstract—Inference control is a modern topic in data usage
management, especially in the context of data-centric business
models. However, it is generally not well understood how protec-
tion mechanisms could be designed to protect the users. The
contributions of this paper are threefold: firstly, it describes
the inference problem and relate it to protection mechanisms;
secondly, it reports on a simple mechanism to provide a-priori
inference protection; thirdly, it discusses on the drawbacks of such
a mechanism, as well as on the acceptance it had on a preliminary,
controlled field study. In particular, the study shows that, contrary
to our expectations, participants prefer an a-posteriori approach
based upon audits to detect whether inferences happened.

I. INTRODUCTION

Privacy protection is essential in social networks [1], E-
commerce [2] and novel service-oriented and Cloud computing
architectures [3], which collect information related to a user
to offer individualized services [4]. This paper refers to these
services as “data-centric business models”. Users decide which
data they opt to disclose and to kept private. Privacy settings
and policy languages, such as EPAL, OSL, P3P or XACML,
formalize these preferences for processing and enforcement.

However, even if policies fully capture the preferences of
users and are effectively enforced by monitors, illegitimate
access to classified data can still occur by means of inferences.
Inference stands for the derivation of attributes based upon
observed events. Figure 1 depicts this problem. The set of
legitimately released data D (so-called core) allows for the
derivation of additional data D′ (i.e. inferential closure),
thereby violating the privacy policy of a user. As an example
of such an inference, if a user reveals his full address, further
correlations may allow one to obtain his telephone number.
Such relationships are captured by inference rules. Inferences
pose a serious threat to users’ privacy [5], [6], yet the state of
the art does not classify these threats as well as does not offer
no tool support for inference control.

This paper first analyses the inference problem in its
various dimensions and correlates them with protection mech-
anisms which could be used to tackle the problem. Spefically,
the paper presents an approach for a-priori inference control
during the privacy policy specification. The approach is based
on resolution, a reasoning technique for automated theorem
proving for sentences in propositional and first-order logic [7].
Assuming a universe of data items D, inferences are modeled
as rules of the kind A → di, where A ⊆ D and di ∈ D is
a particular data item inferable from A. Resolution employs
refutation to show, for each di ∈ D \ D, whether D |= di.
Every di for which this holds poses a specific inference
threat allowed by the policy. The paper further reports on a
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Fig. 1. Schematic view of the inference problem.

controlled, preliminary field study in which users could apply
the technique to compute the inferences based on their policies
based on an interview. The goal being to elicit their expecta-
tions on a tool for inference control and the tool at hand. While
the vast majority of users felt somewhat comfortable with the
tool, respondents stated that a tool for a-posteriori inference
control would have been more appropriate and “trustworthy”.
In sum, this paper thus makes the following contributions:

• It analyzes the inference problem and establishes it
relationship to data usage management.

• It introduces a mechanism for inference control based
on resolution to assist users in the specification and
refinement phases of complex privacy policies.

• It reports on the feedback obtained from a field study
with the mechanism.

The overarching goal of our approach is, on the one hand,
to make users aware of inference threats and the risk they pose.
On the other hand, we aim to design mechanisms for users to
control inferences and, in the long run, enhance the trust on
service providers. With regard to the particular mechanism we
provide in this paper, users can use it to refine their policies to
reduce inferences. To further allow for a qualitative distinction
of threats according to their threat level, the policy language
allows users to label data item with a sensitivity, which is
employed by the inference engine to classify the threats. This
allows the representation of inference threats in a unity circle,
a visualization cue for inferences in databases [9]. The center
of the circle stands for the core D and the inferable data items
are points in it. The distance represents the threat level of an
inference: the closer it is lies to the center, the higher the threat.

Related Work. The problem of computing and controlling in-
ferences has been extensively investigated in the setting of sta-
tistical databases, e.g. in [10], [11]. Later, inferences were con-
sidered for multidimensional general-purpose databases [12],
[13] where different users with different clearances share the
same data and the situation where the combination of lower
level data enables the inference of higher level data has to be
prevented. Up to now, inference control in data-centric business
models has been only sparsely considered and there is to be
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best of our knowledge no tool support to assist users. In the
military setting, [14] proposes the use of resolution to check
for inferability. However, the concept of user policy is not
considered. In [15], the author proposes an approach based
on logic programming to check whether a program allows
inferences that violates privacy policies. Finally, An et al. [5]
model the knowledge of an “inference-savvy” adversary using
Bayesian networks. Here, only security levels are considered
and not the particular policies of users.

Structure. §II introduces the inference problem and the cor-
responding protection mechanisms. §III presents an a-priori
approach to controlling inferences and §IV reports on a pre-
liminary field study carried out with this tool.

II. INFERENCE THREAT AND PROTECTION MECHANISMS

This section reports on the inference threat and on possible
protection mechanisms for inference control.

A. Types of Data in Data-centric Business Models

Data-centric business models call on user profiles to (1) im-
prove user experience through personalization and individu-
alized content and (2) classify users into advertising target
groups. These classifications are created by use of different
types of user data. According to Schneier [16], the following
types of data can be distinguished:

• Service data: Data a user discloses to get access to a
service (e.g. email address or credit-card information).

• Disclosed data: Data a user actively discloses in the
service (e.g. a picture upload or post).

• Entrusted data: Data a user actively discloses in the
service. As opposed to disclosed data, the user cannot
delete or modify entrusted data once disclosed (e.g.
data in a message to another user of the service).

• Incidental data: Data other users disclose about a
user (e.g. a user’s contact information synchronized
by other users with their online address books).

• Behavioral data: Data about a user’s behavior (e.g. a
user’s clickstream or “likes” on the service’s website).

• Technical data: Data disclosed passively by the user
via the devices or software used to access a service
(e.g. a user’s IP address or browser “agent”).

• Inferred data: Data about a user that is derived from all
other data types (e.g. a user’s interests inferred from
the user’s behavior).

Service data are data a user discloses in order to register
for and get access to a service, such as e.g. an email address
or credit-card information. Disclosed data and entrusted data
are actively and knowingly disclosed by the user. Technical
data is disclosed passively by the user and not necessarily
with the user’s knowledge. The latter three types of data can
be protected by state of the art privacy protection technologies.
However, users only have very limited means to control
disclosure of incidental data and behavioral data.

Fig. 2. Sample categories in Google’s Ads Preference Manager

B. Inferred Data and Privacy Threat

Inferred data is “data about you that is derived from
all the other data” [16]. Figure 2 depicts the categories of
interest and demographic information inferred by Google on
the basis of a user’s search and browsing behavior (http:
//www.google.com/settings/ads/onweb/. Inferred data such as
depicted in Fig. 2 are created by use of inference rules. There
are three general kinds reasoning underlying such inference
rules: (a) Deduction, i.e. the process of reasoning from one or
more general statements or events to reach a certain conclusion
(inferred data); (b) Abduction is the opposite of deduction, i.e.
generalizing statements based on observable events. For exam-
ple, from a search query “Franz Beckenbauer” one abduct the
fact that the user likes soccer; and (c) Induction, i.e. constructs
or evaluates general propositions (inferred data) derived from
specific examples. This kind of reasoning is particularly useful
to create behavioral patterns of user interaction.

Inference rules based upon these reasoning styles require
domain knowledge, statistical learning and automated tech-
niques to elicit patterns from collected data. Note that inferred
data is obtained not by analyzing a specific user’s data alone,
but by analysis of all data available to a data consumer, includ-
ing the data of other users. Inferred information can be used
to create more precise profiles, respectively categorizations of
users into advertising target groups. It is exactly the abundance
of data on the side of the data consumer and its capability of
cross-analyze the collected data that makes inference a severe
threat to the privacy of users in data-centric business models.

C. Possible Inference Control Mechanisms

Controlling inference and designing mechanisms for this
purpose bears a number of challenges. The problems start, as
mentioned above, with the fact that inference can be drawn
on the grounds of other users’ data. That is, even if a user
do not disclose a particular piece of data (attribute), it could
be inferred from other users considered “similar”. Of course,
such an inference might be wrong or just an approximation.
However, our experience drawn from the field study shows
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TABLE I. MECHANISMS FOR INFERENCE CONTROL.

Timepoint a priori runtime a posteriori
Design principle Information minimization Monitor inference steps and data merging Audit logs and dashboards
Mechanisms Policy analysis to detect Trusted monitors capable of detecting Secure logging and data provenance

possible inferences at complex inference steps and profile to assert quality of data and
allow policy redesign updates analysis methods to detect inference

that, e.g., Google Ads Preferences (Fig. 2) rightly infers the
age interval and gender of users.

Table I classifies the possible inference control mechanisms
according to the timepoint they act and the design principle
they follow. Orthogonal to these mechanisms one could also
consider the reasoning approaches to concretely detect infer-
ences (deduction, abduction and induction). Clearly, a priori
and runtime methods could prevent inferences from being
drawn, thereby being traditional privacy enhancing technolo-
gies; a posteriori methods would only be able to detect the
fact that inferences have been drawn based upon user’s data,
which is a transparency enhancing technology.

III. A-PRIORI INFERENCE CONTROL

This section presents an approach based upon the “deduc-
tive” reasoning style for a priori inference control.

A. Overview and Building Blocks

The approach allows users to refine the policies with regard
to the inference threats posed by a data consumer. The main
assumption underlying the approach is that the inference rules
are known by the inference engine. (These rules can be offered
by a third-party service or made public by the data consumer
– as a thrust to improve transparency.) This does not prevent
the user from adding inference rules on her/his own discretion.

The diagram in Fig. 3 shows the refinement process. (This
process is not bounded to the resolution-based engine proposed
in this paper.) Assuming a shared vocabulary for data items
(i.e. domain, see below), the user composes the privacy policy
for a particular data consumer and passes this policy to the
inference engine. With the policy and the privacy rules at hand,
the engine computes the inferential closure of the input policy
and evaluates the threats it poses according to the security
level associated to the data items, visualizing these results as
an unit circle. Given the resultant set of inferences, the user
may further refine the policy and eventually agree on a policy.

The approach comprises the following building blocks.
A domain consists of a countable set of data items D =
{d1, d2, ...}. The sensitivity associated to data objects is de-
noted as di.s ∈ [0; 1]. The domain is used to define the set of
data items used as a vocabulary for policy definitions within
a system. A privacy policy consists of a set of rules, where
each rule grants access to a set of data items for a specific
security level. Security levels are assumed to form a lattice,
where Li ≺ Lj denotes the fact that Lj is more sensitive than
Li. Formally, each policy rule ri = (O,L) of a privacy policy
PD = {r1, r2, . . . , rn} based upon a domain D consists of a
set of a data items ri.O ⊆ D and a classification level ri.L.
|PD| denotes the number of rules (cardinality) of a policy. A
default-deny configuration is assumed: attributes not explicitly
disclosed are considered to remain private.

Fig. 3. Policy refinement process.

Policies are used to extract cores for specific security levels
to then apply inference control approaches. The inference
engine subsumes at least a formalization of inference rules,
an algorithm to compute the inferential closure. An inference
rule describes a semantic relationship between data items and
is denoted by A→ di, where A ⊆ D is a possibly unitary set
of data items and di ∈ D is a data item. The data required for
inference (at the left hand side of the arrow) is called support
and the inferable data item derivate. Inference rules with a
unitary support are called binary inference rules, otherwise
combined inference rules. The following provides an example
of privacy policy and some applicable inference rules.

Example Let the security levels of a social network be orga-
nized as a lattice LSN = All ≺ FriedsofFriends ≺ Friends .
The domain D contains five data items as follows
D = {name, address, birthday , telnr , email}. The
policy PD = {r1, r2} consists of two rules:
(1) r1 = ({name, birthday},All), and (2) r2 =
({email , address},Friends). The rule r1 denotes that
the data items name and birthday can be seen by all other
users, whereas the data items email and address only by
friends. The default-deny setting prohibits access to telnr. a

Given a set of initial data items (core), the inferential
closure includes all the derivate that can be inferred by
(possibly iterated) applications of inference rules. Here, one
can distinguish between simple inferability, which means that
all the data items in the support must be in the core, and
extended inferability, in which case iterated applications of
inference rules are possible. (In particular, extended inferability
allows derived non-core data items to serve as support for a
rule.) Correspondingly, the simple inferential closure includes
all derivates computed by simple inferability, whereas the
extended inferential closure encompasses all the data items
computed by the extended inferability.
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Fig. 4. Inference engine of the resolution-based approach.

B. Resolution-based Engine for Inference Control

This section presents a resolution-based inference engine
to compute the extended inferential closure using combined
inference rules. Fig. 4 depicts the steps necessary to do so.
First, the core is extracted from the corresponding privacy
policy and passed to the resolution process, which tests for
each non-core element whether it is derivable from the core.
The inference threats are evaluated and shown to the user. The
following defines these steps in a formal manner.

Turning to the engine, assuming a finite, nonempty do-
main D = {d1, . . . , dn}, the structure of an inference rule is:

Def. 1: A → y is an inference rule where the support
A ⊆ D is a set of data items and y ∈ D is the derivate. a

Propositional logic is used to express the data items and
inference rules. The set of propositional variables is given by
the data items in D. With propositional logic, inference rules
can be rewritten as disjunctions following the equivalence (a1∧
· · · ∧ an)→ y ≡ (¬a1 ∨ · · · ∨ ¬an ∨ y). The core contains all
the elements released by a policy having at least the security
label label L. Formally:

Def. 2: A core of security level L relative to a policy P is
defined as CoreL(P ) :=

⋃
i∈|P |{o ∈ ri.O | ri.L ≺ L}. a

To extract a core from a policy, the policy P is examined
rule by rule. If ri.L ≺ L, then all data items in ri.O are
recognized as core elements. Once CoreL is determined, the
question is which elements are inferable by known inference
rules that do not belong to CoreL. Using logic, inferability
is modeled with deduction and allows the computation of the
core extent, i.e. the set of all derivate of a core given a set of
inference rules. The following defines these sets.

Def. 3: The extent of a core CoreL(PD) for a domain
D and policy PD is the set of all inferable data items from
core elements d ∈ CoreL(PD) and (iterated) inference rules
r. The set of elements not in the core is defined as E := {d ∈
D \ CoreL(PD)}. Let R be the set of inference rules,

ExtCorek(PD) :=
{d ∈ E | [∃A ⊆ CoreL(P ) : (A→ d) ∈ R]∨

[∃d1, . . . , dj ∈ E∃ A0 ⊆ CoreL(P )
∃ A1, . . . , Aj(Ai ⊆ CoreL(P ) ∪ {d1, . . . , di}) :
{(A0 → d1), (A1 → d2), . . . , (Aj → d)} ⊆ R]}.

The inferential closure C of CoreL(PD) relative to a domain
D and a policy PD is the set of all inferable data items, i.e,
CCoreL(PD) := CoreL(PD) ∪ ExtCoreL(PD). a

Given these definitions, the following defines algorithms
to determine the inferential closure and evaluate the inference
threats posed by a policy and a set of inference rules.

C. Computing the Inferential Closure

Given a core, the theory Γ (basis for resolution) consists
of the core elements and the inference rules. Prior to the
actual resolution, the theory has to be rewritten as clauses. This
preprocessing step encompasses two rules: (1) for each core
element d ∈ CoreL(PD), {d} ∈ Γ; and (2) for each inference
rule r = (a1 ∧ · · · ∧ an)→ y, {¬a1 ∨ · · · ∨ ¬an ∨ y} ∈ Γ.

The inferential closure of a given core is determined by
finding resolution proofs for the deductibility of each data item
that does not belong to the core. To this end, we employ the
David-Putnam Procedure (DPP) on the resultant theory Γ. The
algorithm is given in Alg. 1.

The function var(K) respectively var((K)) returns the
set of variables in the literals of a clause K or a clauseset
(K). Every run of the Alg. 1 considers the inferability of one
non-core variable. In Step (A) the algorithm removes clauses
that represent tautologies from the clauseset Γ′ (formulas that
evaluate to true for every possible variable assignment). In
Step (B), it determines new clauses along the actual considered
variable by applying the resolution rule and in Step (C), it
removes all clauses containing this variable. At the end, the
structure of the remaining clauseset Γ′ implies the deductibility
of d. If ∅ is derived, then Γ′ is satisfiable, i.e. the data item
cannot be inferred; otherwise, if it is {∅}, then Γ′ is not
satisfiable and thus Γ |= d is a tautology, indicating that the
data item can be inferred from Γ.

D. Visualizing Inference Threats

The resolution-based approach considers absolute infer-
ence, i.e. inferable data items are either completely inferred
or not at all. To distinguish the severity of threats, we employ
the sensitivity associated with each of the data items in the
domain, as depicted in Fig. 5. The red/gray dot stand for the
data items in the inferential closure of the core (center of the
circle). The distance between the these dots and the center
indicates the threat level of an inference (calculated for an
inferable data item d as 1− d.s): the closer a dot is placed to
the core, the higher its threat. To enhance the usability, user-
defined levels can be added (concentric circles within the unit
circle). In a refinement process as is outlined in Fig. 3, the
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Fig. 5. Unit circle depicting inference threats.

user can now make changes on his policy and check whether
these modifications lead to a reduction of the threats.

The prototypical implementation of the approach is avail-
able. Users can either compose their own policy or upload
existing policy specifications in XACML (v2.0) and P3P. The
inference rules can be uploaded into the tool or retrieved from
a server. The process of deriving and showing the inferences is
“push-button” and the refinement steps are iterative, i.e. users
return to the editing window and can then compare the whether
the new policy is more restrictive or permissive in terms of
inference. The overall tool design and presentation follows the
user-centered security engineering approach (UCSEC) [17].

IV. USER EXPERIENCE AND ACCEPTANCE

In order to understand how users would judge such a
tool, we conducted a preliminary field study based upon a
simple questionnaire within the lecture “Security in Business
Processes” offered in Freiburg in the Winter Term 2012/13.
Towards its end, the course approaches the privacy issues
inherent to the use of business processes in large enterprises. In
this context, the inference threat posed to privacy, mechanisms
to support inference and the countermeasures to protect users
were described and discussed. The pool of students in amounts
to 27 graduate students enrolled in the Master Program “Ap-
plied Computer Science” offered by the University of Freiburg,
Germany. The exercises on inference control included of the
following questions:

1) Were you aware of inferences before the lecture?
2) Were you aware of the Google “Ads Preference”?
3) Do inferences threat your privacy? Justify.
4) Would you use the tool for a-priori inference control?
5) Having the choice, which privacy protection mecha-

nism would you choose to control inferences? Why?

Of 27 respondents, only 2 were aware of inferences in data-
centric services (7 percent) and none of the respondents were
aware or had visited the Google “Ads Preference” page before.
Over 80 percent (22 respondents) consider inference as an
imminent threat to their privacy. The key argument is that infer-
ence leads to detailed profiling. The remaining five respondents

consider inference a legitimate means to improve business and
service quality and, hence, in-line with the privacy legislation.
Interestingly, 90 percent of the respondents would make use of
a privacy-enhancing tool for inference control. That is, some
of the respondents would control inference even if they do
not consider it harmful to their privacy. Around 25 percent of
the respondents (7 individuals) would use a preventive method
for inference control; 20 respondents would prefer an approach
based upon dashboards to audit the system. The main argument
to favor dashboards was the fact that they allows a more
complete and “trustworthy” view of the inferred data.

The results for Questions (1)–(4) are not surprising. Users
are generally unaware of inferences, a phenomena we could
also observe in other similar interviews. We consider surpris-
ing that respondents would have felt more confident with a
dashboard to detect inferences rather than a tool to prevent
inferences. Extrapolating these results, this could indicate that
users are more permissive in publishing their data, while they
at the same time desire a mechanism to know what happens to
data. That is, a move from strict “access control” (incarnated
as minimal data release) to “usage control” after the fact.

Due to the relatively small number of respondents and their
homogeneity, the study cannot be considered representative. It
is, however, a snap-shot which in many ways corroborates the
results of recent studies, e.g. [18], [19]. Further, the overall
study design, which is rudimentary. This includes the type of
questions we posed (predominantly open, largely disconnected
questions with free text justifications). In addition, respondents
could have been somewhat biased by the contents of the lec-
ture, even though the lecture was neutral, equally considering
the pros and cons of inferences. Finally, respondents could only
experience one kind of inference control. For fair judgment,
respondents must also test with other tools.

V. SUMMARY AND FUTURE WORK

Inference is a very useful concept for several applications
and services, and there is a need to understand its various
facets, control possibilities and implications to users’ privacy.
This paper tackled the problem of inference control in data-
centric business models. It merely touches the tip of an iceberg,
though, and several relevant issues still need to be approached.
Besides a more thorough study of users’ perception of in-
ference threats and control, future work (1) generalizes the
definition of inference to also refer to statistical data associated
to a group of users; (2) provides a detailed classification of
inference control mechanisms (and their underlying assump-
tions and techniques); (3) investigates the relationship between
inferences and “risk” (the likelihood that a piece of data
or attribute is going to be disclosed) [21]; and (4) devises
dashboard techniques to discover inferences [20].
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