
Privacy-Preserving Ridge Regression on Hundreds of Millions of Records

Valeria Nikolaenko∗, Udi Weinsberg†, Stratis Ioannidis†, Marc Joye†, Dan Boneh∗, Nina Taft†

∗Stanford University, {valerini, dabo}@cs.stanford.edu
†Technicolor, {udi.weinsberg, stratis.ioannidis, marc.joye, nina.taft}@technicolor.com

Abstract—Ridge regression is an algorithm that takes as
input a large number of data points and finds the best-fit
linear curve through these points. The algorithm is a building
block for many machine-learning operations. We present a
system for privacy-preserving ridge regression. The system
outputs the best-fit curve in the clear, but exposes no other
information about the input data. Our approach combines
both homomorphic encryption and Yao garbled circuits, where
each is used in a different part of the algorithm to obtain
the best performance. We implement the complete system
and experiment with it on real data-sets, and show that it
significantly outperforms pure implementations based only on
homomorphic encryption or Yao circuits.

I. INTRODUCTION

Recommendation systems operate by collecting the pref-

erences and ratings of many users for different items and

running a learning algorithm on the data. The learning

algorithm generates a model that can be used to predict how

a new user will rate certain items. In particular, given the

ratings that a user provides on certain items, the model can

predict how that user will rate other items. There is a vast

array of algorithms for generating such predictive models

and many are actively used at large sites like Amazon and

Netflix. Learning algorithms are also used on large medical

databases, financial data, and many other domains.

In current implementations, the learning algorithm must

see all user data in the clear in order to build the predictive

model. In this paper we ask whether the learning algorithm

can operate without the data in the clear, thereby allowing

users to retain control of their data. For medical data this

allows for a model to be built without affecting user privacy.

For books and movie preferences letting users keep control

of their data reduces the risk of future unexpected embar-

rassment in case of a data breach at the service provider.

Roughly speaking, there are three existing approaches to

data-mining private user data. The first lets users split their

data among multiple servers using secret sharing. These

servers then run the learning algorithm using a distributed

protocol such as BGW [1] and privacy is assured as long as

a majority of servers do not collude. The second is based

on homomorphic encryption where the learning algorithm

is executed over encrypted data [2] and a trusted third

party is trusted to only decrypt the final encrypted model.

The third approach is similar to the second, but instead

of homomorphic encryption one uses Yao’s garbled circuit

x

x
...

x

x1,y1

x2,y2

xn,yn

Evaluator

β

CSP

Figure 1: The parties in our system. The Evaluator learns

β, the model describing the best linear curve fit to the data

(xi, yi), i = 1, . . . , n, without seeing the data in the clear.

construction [3] to obtain the final model without learning

anything else about user data (we further expand on these

in Section VII). A fourth approach uses trusted hardware at

the service provider, but we do not consider that here.

In this paper we focus on a fundamental mechanism used

in many learning algorithms called ridge regression. Given

a large number of points in high dimension, the regression

algorithm (described in Section III-A) produces a best-fit

linear curve through these points. Our goal is to perform this

computation without exposing any other information about

user data. We target a system as shown in Figure 1: Users

send their encrypted data to a party called the Evaluator who

runs the learning algorithm. At certain points the Evaluator

may interact with a Crypto Service Provider (CSP), who is

trusted not to collude with the Evaluator. The final outcome

is the cleartext predictive model.

Our contributions. We present a hybrid approach to

privacy-preserving ridge regression that uses both homo-

morphic encryption and Yao garbled circuits. We separate

the regression algorithm into two phases, presented in detail

in Section IV. Users submit their data encrypted under a

linearly homomorphic encryption system such as Paillier [4]

or Regev [5]. The Evaluator uses the linear homomorphism

to carry out the first phase of the regression algorithm,

which requires only linear operations. This phase generates

encrypted data, but the amount of data generated is inde-

pendent of the number of users n. Consequently, when the

system is asked to process a large number of records the

bulk of the processing happens in this first phase, while

the remainder of the algorithm is independent of n. In the

second phase the Evaluator evaluates a Yao garbled circuit

2013 IEEE Symposium on Security and Privacy

© 2012, Valeria Nikolaenko. Under license to IEEE.

DOI 10.1109/SP.2013.30

334

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

that first decrypts the ciphertexts from the first phase and

then executes the remaining operations of the regression

algorithm (we also show an optimized realization that avoids

decryption inside the garbled circuit). This second phase

of the regression algorithm requires a fast linear system

solver and is highly non-linear. For this step a Yao garbled

circuit approach is much faster than current homomorphic

encryption schemes. We thus obtain the best of both worlds

using linear homomorphisms to handle a large data set and

using garbled circuits for heavy non-linear computations.

We show that this approach has many desirable properties.

Because we remove the dependence on n from the regression

computation, our system runs regression on hundreds of

millions of user records in a reasonable time. Also, in this

system users can be offline, meaning that they can send

encrypted data to the Evaluator whenever they desire, and

are not required to stay online to participate.

Our second contribution is an implementation of a com-

plete privacy-preserving regression system, including a Yao

garbled circuit for a fast linear system solver based on

Cholesky decomposition. Our implementation uses batched

Paillier as the additively homomorphic system and uses

FastGC [6] as the underlying Yao framework. We extended

FastGC with an arithmetic library that supports fixed-point

division, square roots, and other operations. We built a real

prototype in which the parties communicate over a network

and garbled circuits are properly managed in memory.

Our third contribution is an extensive evaluation of the

system using real datasets provided by UCI [7]. We demon-

strate that the benefits of our hybrid system, compared

to a pure Yao implementation, are substantial resulting in

execution times that are reduced from days to hours. It also

performs substantially better than a recent implementation

combining homomorphic encryption with secret-sharing due

to Hall, Fienberg, and Nardi [8]. Their system required two

days to compute the linear regression of roughly 51K input

vectors, each with 22 features. Our hybrid system performs

a similar computation in 3 minutes. For 100 million user

records each with 20 features, our system takes 8.75 hours.

Overall, our experiments show that for specific privacy-

preserving computations, a hybrid approach combining both

homomorphic encryption and garbled circuits can perform

significantly better than either method alone.

II. SETTINGS AND THREAT MODEL

A. Architecture and Entities

Our system is designed for many users to contribute

data to a central server called the Evaluator. The Evaluator

performs regression over the contributed data and produces

a model, which can later be used for prediction or recom-

mendation tasks. More specifically, each user i = 1, . . . , n
has a private record comprising two variables xi ∈ R

d and

yi ∈ R, and the Evaluator wishes to compute a β ∈ R
d— the

model —such that yi � βTxi. Our goal is to ensure that the

Evaluator learns nothing about the user’s records beyond

what is revealed by β, the final result of the regression

algorithm. To initialize the system we will need a third party,

which we call a “Crypto Service Provider”, that does most

of its work offline.

More precisely, the parties in the system are the following

(shown in Figure 1):

• Users: each user i has private data xi, yi that it sends

encrypted to the Evaluator.

• Evaluator: runs a regression algorithm on the encrypted

data and obtains the learned model β in the clear.

• Crypto Service Provider (CSP): initializes the system

by giving setup parameters to the users and the Evalu-

ator. The CSP does most of its work offline before users

contribute data to the Evaluator. In our most efficient

design, the CSP is also needed for a short one-round

online step when the Evaluator computes the model.

B. Threat Model

Our goal is to ensure that the Evaluator and the CSP

cannot learn anything about the data contributed by users

beyond what is revealed by the final results of the learning

algorithm. In the case that the Evaluator colludes with

some of the users, they should learn nothing about the data

contributed by other users beyond what is revealed by the

results of the learning algorithm.

In our setting, we assume that it is the Evaluator’s best

interest to produce a correct model. Hence, we are not

concerned with a malicious Evaluator who is trying to cor-

rupt the computation in the hope of producing an incorrect

result. However, the Evaluator is motivated to misbehave and

learn information about private data contributed by the users

since this data can potentially be sold to other parties, e.g.,

advertisers. Therefore, even a malicious Evaluator should

be unable to learn anything about user data beyond what

is revealed by the results of the learning algorithm. In

Section IV we describe the basic protocol which is only

secure against an honest-but-curious Evaluator. We then

explain in Section IV-G how to extend the protocol to ensure

privacy against a malicious Evaluator.

Similarly, a malicious CSP should learn nothing about

user data and should be unable to disrupt the Evaluator’s

computation. We show that the Evaluator can efficiently

verify that the result of the computation is correct, with high

probability, and if the results are correct then privacy against

a malicious CSP is ensured. Hence, a malicious CSP will

be caught if it tries to corrupt the computation. Informally,

we allow the CSP to act as a covert adversary in the sense

of [9] (see also [10]). Our approach to checking the result

of the computation makes use of the specific structure of the

regression problem the Evaluator is solving.

Non-threats: Our system is not designed to defend

against the following attacks:

335

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

• We assume that the Evaluator and the CSP do not

collude. Each one may try to subvert the system as

discussed above, but they do so independently. More

precisely, at most one of these two parties is malicious:

this is an inherent requirement without which security

cannot be achieved.

• We assume that the setup works correctly, that is all

users obtain the correct public key from the CSP. This

can be enforced in practice with appropriate use of

Certificate Authorities.

III. BACKGROUND

A. Learning a Linear Model

We briefly review ridge regression, the algorithm that the

evaluator executes to learn β. All results discussed below

are classic, and can be found in most statistics and machine

learning textbooks (e.g., [11]).
Linear Regression: Given a set of n input variables

xi ∈ R
d, and a set of output variables yi ∈ R, the problem

of learning a function f : Rd → R such that yi � f(xi) is

known as regression. For example, the input variables could

be a person’s age, weight, body mass index, etc., while the

output can be their likelihood to contract a disease.

Learning such a function from real data has many inter-

esting applications, that make regression ubiquitous in data

mining, statistics, and machine learning. On one hand, the

function itself can be used for prediction, i.e., to predict

the output value y of a new input x ∈ R
d. Moreover, the

structure of f can aid in identifying how different inputs

affect the output—establishing, e.g., that weight, rather than

age, is more strongly correlated to a disease.

Linear regression is based on the premise that f is well

approximated by a linear map,1 i.e.,

yi � βTxi , i ∈ [n] ≡ {1, . . . , n}
for some β ∈ R

d. Linear regression is one of the most

widely used methods for inference and statistical analysis in

the sciences. In addition, it is a fundamental building block

for several more advanced methods in statistical analysis

and machine learning, such as kernel methods. For example,

learning a function that is a polynomial of degree 2 reduces

to linear regression over xikxik′ , for 1 ≤ k, k′ ≤ d; the same

principle can be generalized to learn any function spanned

by a finite set of basis functions.

As mentioned above, beyond its obvious uses for pre-

diction, the vector β = (βk)k=1,...,d is interesting as it

reveals how y depends on the input variables. In particular,

the sign of a coefficient βk indicates either positive or

negative correlation to the output, while the magnitude

captures relative importance. To ensure these coefficients are

comparable, but also for numerical stability, the inputs xi are

rescaled to the same, finite domain (e.g., [−1, 1]).
1Affine maps can also be captured through linear regression, by append-

ing a 1 to each of the inputs.

Computing the Coefficients: To compute the vector β ∈
R

d, the latter is fit to the data by minimizing the following

quadratic function over Rd:

F (β) =

n∑
i=1

(yi − βTxi)
2 + λ‖β‖22 . (1)

The procedure of minimizing (1) is called ridge regression;

the objective F (β) incorporates a penalty term λ‖β‖22,

which favors parsimonious solutions. Intuitively, for λ = 0,

minimizing (1) corresponds to solving a simple least squares

problem. For positive λ > 0, the term λ‖β‖22 penalizes

solutions with high norm: between two solutions that fit the

data equally, one with fewer large coefficients is preferable.

Recalling that the coefficients of β are indicators of how

input affects output, this acts as a form of “Occam’s razor”:

simpler solutions, with few large coefficients, are preferable.

Indeed, a λ > 0 gives in practice better predictions over new

inputs than the least squares solution based.

Let y ∈ R
n be the vector of outputs and X ∈ R

n×d

be a matrix comprising the input vectors, one in each row:

y = (yi)i=1,...,n and X = (xT
i)i=1,...,n; i.e.,

y =

⎛
⎜⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎟⎠ and X =

⎛
⎜⎜⎜⎝

x11 x12 . . . x1d

x21 x22 . . . x2d

...
...

...

xn1 xn2 . . . xnd

⎞
⎟⎟⎟⎠ .

The minimizer of (1) can be computed by solving the linear

system

Aβ = b (2)

where A = XTX + λI ∈ R
d×d and b = XT y ∈ R

d.

For λ > 0, the matrix A is symmetric positive definite,

and an efficient solution can be found using the Cholesky

decomposition, as outlined in Section V.

B. Yao’s Garbled Circuits

In its basic version, Yao’s protocol (a.k.a. garbled cir-

cuits) [3] (see also [12]) allows the two-party evaluation

of a function f(x1, x2) in the presence of semi-honest

adversaries. The protocol is run between the input owners

(ai denotes the private input of user i). At the end of the

protocol, the value of f(a1, a2) is obtained but no party

learns more than what is revealed from this output value.

The protocol goes as follows. The first party, called

garbler, builds a “garbled” version of a circuit computing f .

It then gives to the second party, called evaluator, the

garbled circuit as well as the garbled-circuit input values that

correspond to a1 (and only those ones). We use the notation

GI(a1) to denote these input values. It also provides the

mapping between the garbled-circuit output values and the

actual bit values. Upon receiving the circuit, the evaluator

engages in a 1-out-of-2 oblivious transfer protocol [13],

[14] with the garbler, playing the role of the chooser, so

as to obliviously obtain the garbled-circuit input values

336

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

corresponding to its private input a2, GI(a2). From GI(a1)
and GI(a2), the evaluator can therefore calculate f(a1, a2).

In more detail, the protocol evaluates the function f
through a Boolean circuit. To each wire wi of the circuit, the

garbler associates two random cryptographic keys, K0
wi

and

K1
wi

, that respectively correspond to the bit-values bi = 0
and bi = 1. Next, for each binary gate g (e.g., an OR-gate)

with input wires (wi, wj) and output wire wk, the garbler

computes the four ciphertexts

Enc
(K

bi
wi

,K
bj
wj

)
(Kg(bi,bj)

wk
) for bi, bj ∈ {0, 1} .

The set of these four randomly ordered ciphertexts defines

the garbled gate.

gbi
bj

g(bi, bj) = bi ∨ bj

K0
wi

,K1
wi

K0
wj

,K1
wj

K0
wk

,K1
wk

Figure 2: Example of a garbled OR-gate

It is required that the symmetric encryption algorithm

Enc, which is keyed by a pair of keys, has indistinguish-

able encryptions under chosen-plaintext attacks. It is also

required that given the pair of keys (Kbi
wi
,K

bj
wj), the cor-

responding decryption process unambiguously recovers the

value of K
g(bi,bj)
wk from the four ciphertexts constituting the

garbled gate; see e.g. [15] for an efficient implementation.

It is worth noting that the knowledge of (Kbi
wi
,K

bj
wj) yields

only the value of K
g(bi,bj)
wk and that no other output values

can be recovered for this gate. So the evaluator can evaluate

the entire garbled circuit gate-by-gate so that no additional

information leaks about intermediate computations.

IV. OUR HYBRID APPROACH

Recall that, in our setup, each input and output variable

xi, yi, i ∈ [n], is private, and held by a different user.

The Evaluator wishes to learn the β determining the linear

relationship between the input and output variables, as

obtained through ridge regression with a given λ > 0.

As described in Section III-A, to obtain β, one needs the

matrix A ∈ R
d×d and the vector b ∈ R

d, as defined in

(2). Once these values are obtained, the Evaluator can solve

the linear system (2) and extract β. There are several ways

to tackle this problem in a privacy-preserving fashion. One

option is to use homomorphic encryption. Another is to use

Yao garbled circuits.

The naı̈ve way to use Yao’s approach is to design a

monolithic circuit with inputs xi, yi, for i ∈ [n] and λ > 0.

The circuit first computes the matrices A and b and then

solves the system Aβ = b. The Evaluator evaluates this

large garbled circuit using evaluation keys supplied by the n
users. A similar approach has been used for other tasks such

as sealed second price auctions [16]. Putting implementation

issues aside (such as how to design a circuit that solves a

linear system), a major shortcoming of such a solution in our

setting is that the size of resulting garbled circuit depends on

both the number of users n, as well as the dimension d of β.

In practical applications it is common that n is large, in the

order of millions of users. In contrast, d is relatively small,

in the order of 10s. To obtain a solution that can scale to

million of users it is therefore preferable that the size of the

circuit does not depend on n. To this end, we reformulate

the problem as discussed below.

A. Reformulating the Problem

We note that the matrix A and vector b can be computed in

an iterative fashion as follows. Recalling that each pair xi, yi
is held by a distinct user, each user i can locally compute the

matrix Ai = xix
T
i and the vector bi = yixi. It is then easily

verified that summing these partial contributions yields:

A =

n∑
i=1

Ai + λI and b =
n∑

i=1

bi . (3)

Equation (3) importantly shows that A and b are the result

of a series of additions. The Evaluator’s regression task

can therefore be separated into two subtasks: (a) collecting

the Ai’s and bi’s, to construct matrix A and vector b, and

(b) using these to obtain β by solving the linear system (2).

Of course, the users cannot send their local shares,

(Ai, bi), to the Evaluator in the clear. However, if the latter

are encrypted using a public-key additive homomorphic

encryption scheme, then the Evaluator can reconstruct the

encryptions of A and b from the encryptions of the (Ai, bi)’s.

The remaining challenge is to solve (2), with the help of the

CSP, without revealing (to the Evaluator or the CSP) any

additional information other than β; we describe two distinct

ways of doing so through Yao’s garbled circuits below.

More explicitly, let

Epk : (Ai; bi) ∈M 	→ ci = Epk(Ai; bi)

be a semantically secure encryption scheme indexed by a

public key pk that takes as input a pair (Ai; bi) in the

message space M and returns the encryption of (Ai; bi)
under pk, ci. Then it must hold for any pk and any two

pairs (Ai; bi), (Aj ; bj), that

Epk(Ai; bi)⊗ Epk(Aj ; bj) = Epk(Ai +Aj ; bi + bj)

for some public binary operator ⊗. Such an encryption

scheme can be constructed from any semantically secure

additive homomorphic encryption scheme by encrypting

component-wise the entries of Ai and bi. Examples include

Regev’s scheme [5] and Paillier’s scheme [4].

We refer to the phase of aggregating the user shares as

Phase 1, and note that the addition it involves depends

linearly in n. We refer to the subsequent phase, which

amounts to computing the solution to Eq. (2) from the

337

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

encrypted values of A and b, as Phase 2. We note that

Phase 2 has no dependence on n.

We are now ready to present our protocols. A high-level

description is provided in Fig. 3. Note that we assume below

the existence of a circuit that can solve the system Aβ = b;
we present an implementation of such a circuit in Section V.

B. First Protocol

Our first protocol operates as follows. It comprises three

phases: a preparation phase, Phase 1, and Phase 2. As will

become apparent (see the discussion below in Section IV-D),

only Phase 2 really requires an on-line treatment.

Preparation phase. The Evaluator provides the specifica-

tions to the CSP, such as the dimension d of the input

variables, their value range, and the number of bits used

to represent the integer and fractional parts of a number.

The CSP prepares a Yao garbled circuit to be used in

Phase 2 and makes it available to the Evaluator. The

CSP also generates a public key pkcsp and a private

key skcsp for the homomorphic encryption scheme E.

Phase 1. Each user i locally computes her partial matrix

Ai and vector bi. She then encrypts these values using

additive homomorphic encryption scheme E under the

public encryption key pkcsp of the CSP; i.e.,

ci = Epkcsp
(Ai; bi) .

The user i then sends ci to the Evaluator. (We assume

the existence of a secure channel between the users

and the Evaluator—e.g., through the standard Transport

Layer Security (TLS) protocol.)

The Evaluator computes cλ = Epkcsp
(λI;0). It then

aggregates it to all received ci’s and gets:

c =
(n⊗

i=1

ci

)⊗ cλ = Epkcsp
(
∑n

i=1 Ai + λI;
∑n

i=1 bi)

= Epkcsp
(A; b) . (4)

Phase 2. The garbled circuit provided by the CSP in the

preparation phase is a garbling of a circuit that takes

as input GI(c) and does the following two steps:

1) decrypting c with skcsp to recover A and b (here

skcsp is embedded in the garbled circuit);

2) solving Eq. (2) and returning β.

In this Phase 2, the Evaluator need only to obtain the

garbled-circuit input values corresponding to c; i.e.,

GI(c). These are obtained using a standard oblivious

transfer between the Evaluator and the CSP.

The above hybrid computation decrypts the encrypted

inputs within the garbled circuit. As this can be demand-

ing, we suggest to use for example Regev homomorphic

encryption [5] as the building block for E since the Regev

scheme has a very simple decryption circuit.

C. Second Protocol

We now present a modification that avoids decrypting

(A; b) in the garbled circuit using random masks. Phase 1

remains broadly the same. We will highlight the Phase 2

(and the corresponding preparation phase).

The idea is to exploit the homomorphic property to

obscure the inputs with an additive mask. Note that if

(μA;μb) is an element in M (namely, the message space

of homomorphic encryption E) then it follows from (4) that

c⊗ Epkcsp
(μA;μb) = Epkcsp

(A+ μA; b+ μb) .

Hence, assume that the Evaluator chooses a random mask

(μA;μb) in M, obscures c as above, and sends the resulting

value to the CSP. Then, the CSP can apply its decryption

key and recover the masked values

Â = A+ μA and b̂ = b+ μb .

As a consequence, we can apply the protocol of the previous

section where the decryption is replaced by the removal of

the mask. In more detail, we have:

Preparation phase. As before, the Evaluator sets up the

evaluation. It provides the specifications to the CSP to

build a garbled circuit supporting its evaluation. The

CSP prepares the circuit and makes it available to the

Evaluator, and generates public and private keys.

The Evaluator chooses a random mask (μA;μb) ∈ M
and engages in an oblivious transfer protocol with the

CSP to get the garbled-circuit input values correspond-

ing to (μA;μb); i.e., GI(μA;μb).
Phase 1. This is the same as in our first realization. In

addition, the Evaluator masks c as

ĉ = c⊗ Epkcsp
(μA;μb) .

Phase 2. The Evaluator sends ĉ to the CSP that decrypts it

to obtain (Â; b̂) in the clear. The CSP then sends the

garbled input values GI(Â; b̂) back to the Evaluator.

The garbled circuit provided by the CSP in the prepa-

ration phase is a garbling of a circuit that takes as input

GI(Â; b̂) and GI(μA;μb) and:

1) subtracts the mask (μA;μb) from (Â; b̂) to recover

A and b;
2) solves Eq. (2) and returns β.

The garbled circuit as well as the garbled-circuit input

values corresponding to (μA;μb), GI(μA;μb), were

obtained during the preparation phase. In this phase, the

Evaluator need only receive from the CSP the garbled-

circuit input values corresponding to (Â; b̂), GI(Â; b̂).
We note that there is no oblivious transfer in this phase.

For this second realization, the decryption is not executed

as part of the circuit. We are thus not restricted to homomor-

phic encryption schemes that can be efficiently implemented

as a circuit. Instead of Regev’s scheme, we suggest Paillier’s

scheme [4] or its generalization by Damgård and Jurik [17]

338

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

· ·
·

· ·
·

· ·
·

· · ·

cn

x
x2,y2

A2 = x2x
T
2

b2 = x2y2
c2 = Epkcsp

(A2; b2)

c2

x
x1,y1

A1 = x1x
T
1

b1 = x1y1
c1 = Epkcsp

(A1; b1)

c1

Evaluator

c =
(⊗n

i=1 ci

)
⊗ cλ

skcsp

CSP

[on-line]

skcsp

CSP

[off-line]

specif.

[+GI(skcsp)]

OT
c

GI(c)

[+GI(skcsp)]

β

P
h

a
s
e

2
P

h
a

s
e

1
P

re
p

a
ra

ti
o

n

(a) First protocol

· ·
·

· ·
·

· ·
·

· · ·

cn

x
x2,y2

A2 = x2x
T
2

b2 = x2y2
c2 = Epkcsp

(A2; b2)

c2

x
x1,y1

A1 = x1x
T
1

b1 = x1y1
c1 = Epkcsp

(A1; b1)

c1

Evaluator

c =
⊗n

i=1 ci

ĉ = c⊗
Epkcsp

(μA+λI;μb)

skcsp

CSP

(Â;b̂)=Dskcsp
(ĉ)

[on-line]

skcsp

CSP

[off-line]

specif.

OT
(μA;μb)

+GI(μA;μb)

ĉ

GI(Â;b̂)

GI(μA;μb)

β

P
h

a
s
e

2
P

h
a

s
e

1
P

re
p

a
ra

ti
o

n

(b) Second protocol

Figure 3: High-level description of the two protocols. The first protocol decrypts the data inside the garbled circuit while

the second avoid decrypting in the circuit by using random masks.

as the building block for E. These schemes have a shorter

ciphertext expansion than Regev and require smaller keys.

D. Discussion

The proposed protocols have several strengths that make

them efficient and practical in real-world scenarios. First,

there is no need for users to stay on-line during the process.

Since Phase 1 is incremental, each user can submit their

encrypted inputs, and leave the system.

Furthermore, the system can be easily applied to per-

forming ridge regression multiple times. Assuming that the

Evaluator wishes to perform � estimations, it can retrieve

� garbled circuits from the CSP during the preparation

phase.2 Multiple estimations can be used to accommodate

the arrival of new users. In particular, since the public keys

are long-lived, they do not need to be refreshed too often,

meaning that when new users submit more pairs (Ai, bi) to

the Evaluator, the latter can sum them with the prior values

and compute an updated β. Although this process requires

utilizing a new garbled circuit, the users that have already

submitted their inputs do not need to resubmit them.

Finally, significantly less communication is required than

in a secret sharing scheme, and only the Evaluator and the

CSP communicate using oblivious transfer.

E. Further Optimizations

Recall that the matrix A is in R
d×d and the vector b is

in R
d. Hence letting k denote the bit-size used to encode

2Note that, in such a case, our security requirement is that the Evaluator
learns only β� for each �; in particular, we are not concerned with how
informative such sequence might be about the xi’s and yi’s of each user.

real numbers, the matrix A and vector b respectively need

d2k bits and dk bits for their representation. Our second

protocol requires a random mask (μA;μb) in M. Suppose

that the homomorphic encryption scheme E was built on

top of Paillier’s scheme where every entry of A and of b
is individually Paillier encrypted. In this case the message

space M of E is composed of (d2 + d) elements in Z/NZ

for some Paillier modulus N . But as those elements are k-bit

values there is no need to draw the corresponding masking

values in the whole range Z/NZ. Any (k+ l)-bit values for

some (relatively short) security length l will do, as long as

they statistically hide the corresponding entry. In practice,

this leads to fewer oblivious transfers in the preparation

phase and to a smaller garbled circuit.

Another way to improve the efficiency is via a standard

batching technique, that is packing multiple plaintext entries

of A and b into a single Paillier ciphertext. For example,

packing 20 plaintext values into a single Paillier ciphertext

(separated by sufficiently many 0’s) will reduce the running

time of Phase 1 by a factor of 20.

F. Malicious CSP: Checking the Final Result

A malicious CSP can corrupt the computation in two

ways: it can contribute a garbled circuit for the wrong

function and it can incorrectly decrypt the Paillier ciphertexts

sent to it by the Evaluator. The second issue can be easily

handled by standard techniques that require the CSP to

efficiently prove in zero knowledge to the Evaluator that

Paillier decryption was done correctly.

The first issue — proving that the garbled circuit computes

339

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

the correct function — is more interesting. Observe that the

correct β is a minimizer of the quadratic function F (β)
given by (1). As such, the gradient

∇F = 2
n∑

i=1

(xix
T
i β − yixi) + 2λβ = 2(Aβ − b)

must attain a value close to zero at the correct β.

Recall that, at the completion of Phase 1 (in both protocols

presented above), the Evaluator has access to Epkcsp
(A; b),

obtained by applying an additive homomorphic encryption

scheme componentwise on A and b. Having obtained β in

the clear at the termination of Phase 2, observe that the com-

putation of the d-dimensional gradient vector δ = 2(Aβ−b)
involves only linear operations. Therefore the Evaluator can

compute Epkcsp
(δ) from Epkcsp

(A; b). Moreover, if β is

correct then the norm ‖δ‖ must be small.

These observations lead us to the following abstract

problem: the Evaluator has a ciphertext c = Epkcsp
(x) and

it wants to convince itself that x is small, say in the range

[−u, u]. It may communicate with the CSP to do so. The

Evaluator will perform this operation for all the components

of the vector δ defined above to convince itself that the

norm ‖δ‖ is small as required. We stress that, as explained

in Section II-B, here the CSP may be malicious, but the

Evaluator is honestly following the protocol. We discuss a

malicious Evaluator in the next subsection.

The protocol works as follows: first the Evaluator selects

two random masks μ(1) and μ(2) in the plaintext space and

constructs the ciphertext

c = Epkcsp

(
x · μ(1) + μ(2)

)

Next, the Evaluator sends c to the CSP who decrypts it and

sends back ẑ = Dskcsp(c). Finally, the Evaluator subtracts

the mask μ(2) from ẑ and divides by μ(1). If the resulting

value is in the range [−u, u] the Evaluator is convinced that

x is in [−u, u]. Otherwise, the Evaluator rejects β. This step

reveals ∇F to the Evaluator, but since it is low-norm and its

dimension d is independent of the number of users, revealing

this information to the Evaluator seems acceptable.

The malicious CSP cannot cause a large x to be accepted

by the Evaluator in the above protocol, even if the CSP

knows x. To see why observe that the CSP is given z =
x · μ(1) + μ(2) and we even allow it to have x. Recall that

the function family x→ μ(1)x+μ(2) mod N is ε-pair wise

independent for negligible ε (here N is the Paillier modulus).

Therefore, if the CSP responds with a ẑ �= z, the quantity

(ẑ − μ(2))/μ(1) will be close to uniform in Z/NZ in the

CSP’s view and will be in [−u, u] with probability about

2u/N , which is negligible. Hence, if the CSP responds with

ẑ �= z, the Evaluator rejects β with high probability.

G. Malicious Evaluator

So far the protocols described in this section are only

secure when the Evaluator honestly follows the protocol

(i.e., it is honest-but-curious). The Evaluator, however, is

motivated to misbehave and potentially learn the cleartext

data provided by the users. This would violate user privacy

since our goal is that only the final learned model (i.e., β)

would become public. One danger, for example, is that the

Evaluator ignores many of the values provided by the users

and simply runs the regression on the data provided by a

small subset of the users, or even on the data provided by

just a single user. The resulting output could potentially leak

or even completely reveal that user’s data.

We briefly outline an approach to preventing the Eval-

uator from misbehaving by having the CSP validate the

Evaluator’s work in zero knowledge. In particular, we use

homomorphic commitments to force the Evaluator to con-

vince the CSP that the Paillier ciphertexts the Evaluator

sent are exactly the product of the Paillier ciphertexts the

Evaluator received from all users (and multiplied by a mask

known to the Evaluator). The CSP will decrypt these Paillier

ciphertexts and send the result to the Evaluator only once it is

convinced they were constructed correctly and, in particular,

include all the data contributed by an approved list of users.

The CSP should learn nothing new from these proofs.

The commitment scheme we use is based on Pedersen

commitments [18] and we use standard zero-knowledge

protocols to prove modular arithmetic relations between the

committed values [19], [20] as well as conjunctions of such

arithmetic relations [21]. These protocols are made non-

interactive using the standard Fiat-Shamir heuristic in the

random oracle model [22].

At a high level our approach is to have the CSP share

different random one-time MAC keys with each of the users.

We use simple one-time MACs based on a linear pair-

wise independent hash as described below. When user i
sends a Paillier ciphertext to the Evaluator she also includes

a Pedersen commitment to the one-time MAC on that

ciphertext along with a short zero-knowledge proof that

the opening of this commitment is a valid one-time MAC

on the Paillier ciphertext. The Evaluator collects all the

ciphertexts and proofs from the users and forms the masked

product c of the users’ Paillier ciphertexts. It also constructs

a zero-knowledge proof that c is indeed the product of

these ciphertexts. The Evaluator submits the ciphertext c
along with all the commitments and proofs to the CSP. By

validating the proofs, the CSP learns that c is indeed the

masked product of ciphertexts received from the specified

list of users. The one-time MACs ensure that the Evaluator

did not modify or drop any of the values received from the

users. If the CSP approves the list of users, it decrypts the

masked Paillier ciphertext and sends the result back to the

Evaluator as in Figure 3.

We stress that the additional data sent from a single user to

the Evaluator, i.e., the additional commitments and proofs,

is relatively short thanks to the simple one-time MAC we

use. Nevertheless, all this data now needs to be forwarded to

340

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

the CSP. Consequently, the amount of data sent to the CSP

is now linear in the number of users n. In the honest-but-

curious protocol from Figure 3 the data sent to the CSP was

independent of the number of users. This increase seems

inherent since the CSP must be told which users submitted

their data to the Evaluator so that it can decide whether

running the data-mining algorithm on that set of users is

acceptable.

Recall that Paillier ciphertexts are elements in the group

(Z/N2
Z)∗ where N is an RSA modulus. To construct

Pedersen commitments to such values we use a prime

p = 1 mod N2 and elements g, h ∈ F
∗
p of order N2.

The Pedersen commitment to a Paillier ciphertext c is then

Com = gchr ∈ F
∗
p where 0 ≤ r < N2 is chosen

at random. This way we can prove arithmetic relations

on committed values where the arithmetic is modulo N2.

Moreover, the one-time MACs we use are built from linear

hash functions H(x) = ax+ b where the MAC signing key

is the pair of random values (a, b) in Z/N2
Z. This hash

family is a collection of ε-pair-wise independent functions

for negligible ε and therefore forms a secure one-time MAC.

Now, suppose we have a Pedersen commitment Comc to a

Paillier ciphertext c and a Pedersen commitment Comt to

its MAC t = ac+ b ∈ Z/N2
Z. Proving to the CSP that the

opening of Comt is a valid MAC on the opening of Comc

is a simple proof of arithmetic relations.

Finally, recall that to defend against a malicious CSP we

added in Section IV-F one more round between the Evaluator

and the CSP where the Evaluator submits a ciphertext c and

the CSP decrypts it. To prevent a malicious Evaluator from

abusing this step, we would also augment it with a proof that

this c is constructed correctly. The Evaluator has all the data

it needs to construct this proof. In addition, it would prove

to the CSP that it correctly evaluated the garbled circuit, but

this is straight forward using the inherent integrity properties

of Yao garbled circuits [23].

V. IMPLEMENTATION

To assess the practicality of our privacy-preserving sys-

tem, we implemented and tested it on both synthetic and

real datasets. We implemented the second protocol proposed

in Section IV, as it does not require decryption within the

garbled circuit, and allows for the use of homomorphic

encryption that is efficient for Phase 1 (that only involves

summation). We assumed in our implementation the honest-

but-curious threat model, and as such, we did not implement

the extensions for a malicious Evaluator or CSP discussed

in Sections IV-F and IV-G.

A. Phase 1 Implementation

As discussed in Section IV, for homomorphic encryption

we opted to use Paillier’s scheme with a 1024-bit modulus,

which corresponds to a 80-bit security level.

To speed up Phase 1, we also implemented batching as

outlined in Section IV-E. Given n users that contribute their

inputs, the number of elements that can be batched into

one Paillier ciphertext of 1024 bits is 1024/(b + log2 n),
where b is the total number of bits for representing numbers.

As we discuss later, b is determined as a function of the

desired accuracy, thus in our experiments, we manage to

batch between 15 and 30 elements.

B. Circuit Garbling Framework

We built our system on top of FastGC [6], a Java-based

open-source framework that enables developers to define ar-

bitrary circuits using elementary XOR, OR and AND gates.

Once the circuits are constructed, the framework handles

garbling, oblivious transfer and the complete evaluation of

the garbled circuit. The security level that FastGC provides is

80-bits which matches the security level of the homomorphic

encryption scheme that we are using.

FastGC includes several optimizations. First, the commu-

nication and computation cost for XOR gates in the circuit is

significantly reduced using the “free XOR” technique [24].

Second, using the garbled-row reduction technique [25],

FastGC reduces the communication cost for k-fan-in non-

XOR gates by 1/2k, which gives a 25% communication sav-

ing, since only 2-fan-in gates are defined in the framework.

Third, FastGC implements the OT extension [26] which can

execute a practically unlimited number of transfers at the

cost of k OTs and several symmetric-key operations per

additional OT. Finally, the last optimization is the succinct

“addition of 3 bits” circuit [27], which defines a circuit

with four XOR gates (all of which are “free” in terms of

communication and computation) and just one AND gate.

FastGC enables the garbling and evaluation to take place

concurrently. The CSP transmits the garbled tables to the

Evaluator as they are produced in the order defined by

circuit structure. The Evaluator then determines which gate

to evaluate next based on the available output values and

tables. Once a gate was evaluated its corresponding ta-

ble is immediately discarded. This amounts to the same

computation and communication costs as precomputing all

garbled circuits off-line, and also leaks , but brings memory

consumption to a constant.

Beyond FastGC, there are several other frameworks for

designing and generating Yao’s garbled circuits. The first

such implementation was Fairplay [15], which requires the

circuit to be built and stored in memory before execution, an

approach that does not scale to large circuits. TASTY [28]

and more recently L1 [29] extend Fairplay by reverting to

homomorphic encryption when the latter is more efficient.

In contrast to both systems, FastGC [6] introduced the idea

of concurrent garbling and execution, which significantly

reduces memory consumption and improves scalability to

circuits of arbitrary number of gates. As such, it is currently

341

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

the fastest implementation providing security against a semi-

honest garbler.

Several other frameworks explored extensions to mali-

cious adversaries [25], [30]–[32]. Building on earlier work

[33], a recent two-party system by Huang et al. [30] pro-

vides security against malicious adversaries by running the

protocol twice on both parties and comparing the result

using a secure equality test. Closer to our setting, Kreuter

et al. [31] designed a framework for two-party computation

in the presence of a malicious garbler. To achieve this type

of security, the refined cut-and-choose technique from [32]

is applied: the garbler is required to produce several garbled

circuits and the Evaluator will ask the garbler to reveal keys

for the circuits of her choice, checking that the circuits were

generated correctly. As such, if the garbler generates the

wrong circuit, she is detected with high probability. In our

setup, the correctness of the garbled circuit can be verified

with a much lower communication cost through the protocol

outlined in Section IV-F, so we forego using any of the above

methods in our implementation.

C. Solving a Linear System in a Circuit

One of the main challenges of our approach is designing

a circuit that solves the linear system Aβ = b, as defined in

Eq. (2). When implementing a function as a garbled circuit,

it is preferable to use operations that are data-agnostic,

i.e., whose execution path does not depend on the input.

For example, as inputs are garbled, the Evaluator needs to

execute all possible paths of an if-then-else statement, which

leads to an exponential growth of both the circuit size and

the execution time in the presence of nested conditional

statements. This renders impractical any of the traditional

algorithms for solving linear systems that require pivoting,

such as, e.g., Gaussian elimination.

A data-agnostic—but very inefficient—exact method of

solving a linear system is the standard method of Cramer’s

rule [34]. An efficient, data-agnostic, but approximate

method for solving a linear system is to minimize ‖Aβ − b‖22
through, e.g., a fixed number of iterations of conjugate

gradient descent [34], [35]. This is particularly advantageous

over exact methods when A is sparse, which is not the

case in our setup. Moreover, using a fixed number of

iterations (and, in turn, limiting the depth of the circuit)

introduces additional errors in the estimation of β. This has

a compounding effect on the error, which is also impacted

by the representation of real numbers in a fixed number of

bits. We thus opted for an exact method instead.

Data-agnostic methods for inverting the matrix A also

exist, which in turn can be used to compute β as A−1b.
Hall et al. [8] propose an iterative matrix inversion algo-

rithm which can also be implemented as a garbled circuit;

this approach however is also approximate, and introduces

errors when a fixed number of iterations is used. We

conducted a preliminary evaluation comparing this method

Algorithm 1 The Cholesky decomposition of A ∈ R
d×d

Input: A = (aij)i,j∈{1,...,d}
Output: L, s.t., A = LTL

1: for j = 1, d do

2: for k = 1, j − 1 do

3: for i = j, d do aij −= aikajk

4: ajj =
√
ajj

5: for k = j + 1, d do akj /= ajj

6: return L := A

with Cholesky decomposition, and observed that Cholesky

required a smaller number of operations for the same level

of accuracy. At present, the fastest method for inverting a

matrix is block-wise inversion [34], that has a complexity

of Θ(d2.37) (the same as matrix multiplication). For the

sake of simplicity, we implemented the standard Θ(d3)
Cholesky algorithm presented below. We note, however, that

its complexity can be further reduced to the same complexity

as block-wise inversion using similar techniques [36].

There are several decomposition methods for solving

linear systems, such as LU and QR [34]. Cholesky decompo-

sition is a data-agnostic method for solving a linear system

that is applicable only when the matrix A is symmetric

positive definite. The main advantage of Cholesky is that

it is numerically robust without the need for pivoting, as

opposed to LU and QR decompositions. In particular, it

is well suited for fixed point number representations [37].

Since A = λI+
∑n

i xix
T
i is indeed a positive definite matrix

for λ > 0, we chose Cholesky as the method of solving

Aβ = b in our implementation.

We briefly outline the main steps of Cholesky decom-

position below. The algorithm constructs a lower-triangular

matrix L such that A = LTL. Solving the system Aβ = b
then reduces to solving the following two systems:

LT y = b , and

Lβ = y .

Since matrices L and LT are triangular, these systems can

be solved easily using back substitution. Moreover, because

matrix A is positive definite, matrix L necessarily has non-

zero values on the diagonal, so no pivoting is necessary.

The decomposition A = LTL is described in Algo-

rithm 1. It involves Θ(d3) additions, Θ(d3) multiplications,

Θ(d2) divisions and Θ(d) square root operations. Moreover,

the solution of the two systems above through backwards

elimination involves Θ(d2) additions, Θ(d2) multiplications

and Θ(d) divisions. We discuss how we implement these

operations as circuits in the next two sections.

D. Representing Real Numbers

In order to solve the linear system (2), we need to

accurately represent real numbers in a binary form. We

342

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

considered two possible approaches for representing real

numbers: floating point and fixed point. Floating point

representation of a real number a is given by formula:

[a] = [m, p] , where a ≈ 1.m · 2p .

Floating point representation has the advantage of accom-

modating numbers of practically arbitrary magnitude. How-

ever, elementary operations on floating point representations,

such as addition, are difficult to implement in a data-agnostic

way. Most importantly, using Cholesky warrants using fixed

point representation, which is significantly simpler to imple-

ment. Given a real number a, its fixed point representation

is given by:

[a] = �a · 2p� , where the exponent p is fixed .

As we discuss below, many of the operations we need

to perform can be implemented in a data-agnostic fashion

over fixed point numbers. As such, the circuits generated

for fixed point representation are much smaller. Moreover,

recall that the input variables of ridge regression xi are

typically rescaled the same domain (between −1 and 1)

to ensure that the coefficients of β are comparable, and

for numerical stability. In such a setup, it is known that

Cholesky decomposition can be performed with fixed point

numbers without leading to overflows [37]. Finally, given

bounds on yi and the condition number of the matrix A, we

can compute the bits necessary to prevent overflows while

solving the last two triangular systems in the method. We

thus opted for implementing our system using fixed point

representations.

The number of bits p for the fractional part can be selected

as a system parameter, and as we show later, it creates a

trade-off between the accuracy of the system and size of

the generated circuits. However, we illustrate that selecting

p can be done in a principled way based on the desired

accuracy. We represent negative numbers using the standard

two’s complement representation.

E. Arithmetic Library

To implement Cholesky decomposition we first built a

set of sub-circuits that implement all elementary operations

over fixed point numbers, namely addition, multiplication,

subtraction, square root and division. Using fixed point

representation, all these operations reduce to their integral

version, making their implementation straightforward. In

particular:

• Addition/Subtraction: [a± b] = [a]± [b];
• Multiplication: [a · b] = [a] · [b]/2p;

• Division: [a/b] = [a] · 2p/[b];
• Square root: [

√
a] =

√
[a] · 2p.

For example, to implement division between two numbers

with fixed point representation [a] and [b], it suffices to

shift [a] left p times (corresponding to a multiplication by

2p) and perform an integer division with [b]. The resulting

number will be a/b in fixed point representation. Similarly,

computing the fixed point representation of the square root

of a number amounts to shifting it to the left p times and

finding the integer part of the square root of this number.

The FastGC library does not include multiplication. We

extended it by implementing the Karatsuba multiplication

algorithm [38]. This algorithm multiplies two k-digit num-

bers in at most 3klog2 3 ≈ 3k1.585 single digit operations,

outperforming the standard “school method” that uses k2

operations. Efficiency in division was less critical since

division is used less frequently than multiplication by a

factor of d. Hence, we implemented division using the

standard school method.

The computation of square roots is often implemented

using Newton’s method [34, Chapter 9]. This method com-

putes the square root of a number x by starting with an

estimate and refining the estimate, by halving the error

at each step. Newton’s method is problematic over fixed

point numbers because it may oscillate when performed over

integer arithmetic. Furthermore, the number of iterations

needed to reach a target accuracy level depends on the

accuracy of our initial guess, and thus we cannot correctly

predict the accuracy achieved. Therefore, we implemented a

different approach to find square roots that uses a bit-by-bit

computation [39].

This method is iterative but data-agnostic, as it always

takes a fixed number of steps. It does not require multi-

plications or divisions, and thus leads to a small, efficient

circuit. To explain this method, we denote by r the solution

for the square root of x at step i (starting at i = 0);

then, r contains the first i bits of the desired root. To find

the value of the next most significant bit, let e denote the

number with zeros everywhere except a 1 in the i + 1-st

bit. The algorithm performs the following simple test: if

(r+ e)(r+ e) = r2 + 2er+ e2 ≤ x, then the new bit is set

to 1. If this quantity exceeds x, then the bit is set to zero. The

whole process is then repeated for each subsequent bit. The

actual algorithm is summarized in Algorithm 2, which is an

optimized version that avoids the multiplications appearing

in the above computation.

VI. EXPERIMENTS

This section details the evaluation of our proposed hybrid

system. Recall our implementation focus is on the second

protocol of Section IV, since this design is the most efficient

given all the tradeoffs discussed so far.

To understand the effects of input parameters (such as

the number of users and number of features) as well as

system parameters (such as the number of bits for the

fractional representation) on our system’s performance, we

first use synthetically generated datasets. We look at the

performance in terms of the circuit size and the execution

time. The advantage of using synthetic data is that we can

343

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Integer square root

Input: x ∈ Z

Output: r = �√x�
1: Set e to be highest power of four not greater than x (this

will determine the first digit of the result)

2: while e �= 0 do

3: if x ≥ r + e then

4: x −= r + e
5: r = (r � 1) + e
6: else

7: r = r � 1
8: e = e� 2
9: return r

evaluate the performance of our methods over a wide range

of parameter values. We show how someone configuring our

system can select the right number of bits for the fractional

part of number representation. Finally, we also evaluate our

system on a number of real-world datasets, and show that

the proposed system is scalable, efficient and accurate.

All experiments were run on a commodity 1.9 GHz, 64GB

RAM server, running Ubuntu Linux 12.04, Java Runtime

Engine (JRE) 1.7. The Evaluator and the CSP run on

different Java Virtual Machines (JVMs), each using a single

processor. The users are simulated separately and their inputs

are assumed to be ready before the Evaluator starts using

their data, thus user-side computations are not accounted

for in our results.

A. Generating Synthetic Data

We created a number of different synthetic datasets, each

with a different number of users and features, using the

method depicted in Alg. 3. The algorithm first creates a

random matrix X , which captures the set of user features,

and then computes the output variable y by fixing a random

linear relationship β, and adding Gaussian noise.

Algorithm 3 Synthetic dataset generation

Input: Number of users n, Number of features d
Output: X ∈ R

n×d, y ∈ R
n

1: Generate uniformly at random X
U←− [0, 1]n×d

2: Generate uniformly at random β
U←− [0, 1]d

3: Compute y = Xβ + e, where e ∼ N(0, 1)

By adjusting λ in Equation (1) we change the condition

number of the input matrix, which enables us to study the

stability of the algorithm.

B. Phase 1 Performance

Our implementation of Phase 1 using Paillier’s scheme

sums n matrices Ai ∈ R
d×d and n vectors bi ∈ R

d under

homomorphic encryption, thus we expect the summation

n=104
n=104

n=104

n=105

n=105

n=105

n=106

n=106

n=106

T
im

e
(m

in
)

Number of features

10 15 20
0

1

2

3

4

5

6
Phase 1
Phase 2

Figure 4: Time comparison between Phase 1 and Phase 2

phase to take O(n(d + d2)), with a timing constant that

depends on the hardware. As we discussed in Section V-A,

batching in Paillier adds a speedup of roughly 20 over a

non-batched implementation. In our experiments we indeed

found a perfect linear correlation between the time to execute

the phase and the number of users, and using our hardware,

we found the constant to be 0.75μsec. For example, using

10 million users and 20 features, Phase 1 takes 52 minutes

to complete, and for 100 million users it takes 8.75 hours.

We note that we implemented a sequential summation using

Paillier’s scheme; however this could easily be parallelized

and on k processors computed roughly k times faster.

Recall that using homomorphic encryption for Phase 1

leads to a speed-up over naı̈vely implementing Phase 1 as

a circuit, as the summation can be conducted significantly

faster. We conducted an experiment with the “pure” Yao

approach to illustrate this. Using 10K users and 20 features,

Phase 1 takes 5 minutes when implemented as a circuit, as

opposed to 2.4 seconds using Paillier; for 10 million users,

Phase 1 implemented as a Yao’s circuit takes more than 3

days to compute as opposed to 52 minutes using Paillier.

In order to evaluate the scalability of our system with

the number of users, we study the time costs of Phase 1

relative to Phase 2. Figure 4 plots the time spent in the two

phases for different number of users n and different number

of features (the number of bits for number representation

is fixed to 20). The plot shows that only when the dataset

includes more than hundreds of thousands of users Phase 1

starts to take longer than Phase 2.

C. Accuracy

Since our proposed system implements regression in a

numerical way using fixed point numbers it introduces

errors. Denote by β∗ the solution to ridge regression in the

clear (we used Matlab on a 64bit commodity server), and

β to be the solution using our system. Recall that F (β), as

given in Eq. (1), is the objective function we are minimizing.

344

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

Condition number

B
its

 fo
r

fr
ac

tio
na

l p
ar

t

10
1

10
2

10
3

10
4

10
5

20

21

22

23

24

25

26

27

28

29

30

Error

1e−11

1e−10

1e−9

1e−8

1e−7

Figure 5: Tradeoffs between number of bits used for the frac-

tional part of number representation, the condition number,

and error rates

We define the error of our system as:

Errβ∗ =

∣∣∣∣
F (β)− F (β∗)

F (β∗)

∣∣∣∣ .

This error definition allows us to assess the loss of

accuracy—as captured by the objective function—that is

introduced by our system as opposed to running ridge

regression in the clear, without any privacy concerns.

Two of the most dominant features that affect the accuracy

of our system are the condition number of the input matrix

and the number of bits used to represent fractions. The

condition number of A is defined as the ratio between

its largest and smallest eigenvalues, and characterizes the

stability of the system (i.e., how much the solution β is

affected by small perturbations of A) [37].

Through a broad sweep of synthetic experiments, Figure 5

illustrates the tradeoff between the number of bits, the con-

dition number of matrix A and the resulting error rates. This

plot provides us an important design tool for configuring our

system; for example, if the condition number of the data is

expected to be 104, and the Evaluator seeks an error on the

order of 10−6, then the plot indicates that she should use

25 bits. Overall, this plot allows the Evaluator to select the

number of bits to use based on a bound on the condition

number and her target error rate. Although the Evaluator

can decide to use more bits to lower her error, as we show

next, this comes as the cost of a larger and slower circuit.

D. Phase 2 Performance

Next, we study how the inputs and parameters of our

system affect its execution time and the size of the resulting

circuit. Figure 6 shows the number of gates in the resulting

circuit for increasing numbers of bits used for representing

numbers, and for different numbers of features. We note

that because FastGC implements the “free” XOR technique,

20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5x 10
7

Total bits

T
ot

al
 n

um
be

r
of

 g
at

es

12 features
10 features
8 features
6 features
4 features
2 features

Figure 6: Number of gates in the circuit depending on

number of bits and number of features

only OR and AND gates are accounted for in the plot

(XOR gates constitute roughly 70% of the circuits). The plot

shows that the circuits are relatively large, spanning tens of

millions of gates. The garbled representation of each gate is

a 30 Bytes lookup table, thus a complete circuit is hundreds

of megabytes large. For example, a complete circuit of 20

features using 24 bits takes 270 MBytes. Such a circuit

is easy to store in the memory of any modern commodity

server. Furthermore, the size of the circuit also determines

the communication overhead, which is practical even for

Internet-scale deployments, where the Evaluator and CSP are

not co-located. For example, using a standard 10Mbps link,

it takes only a few minutes to communicate the 270 MBytes

circuit between the parties.

As expected from the analysis of Cholesky and the

complexity of our implementation of division and square

root, the circuit size is cubic in the number of features and

quadratic in the number of bits of fixed-point representation.

When computing execution time, we include the time

from the beginning of the garbling process by the CSP, until

the end of the execution process by the Evaluator. Recall that

in FastGC the garbling and execution are almost concurrent,

and delays occur mostly because of Java’s garbage collection

process. The communication overhead is negligible because

the Evaluator and CSP are executed as two processes on the

same machine.

Figure 7 shows the execution time as a function of the

number of bits for representing numbers and the number

of features (the noisy trend is the result of Java’s garbage

collection behavior). For example, a circuit with 30 bits and

12 features takes roughly 50 seconds to complete. Since

we do not parallelize the execution, the time it takes the

Evaluator to execute the circuit is proportional to the circuit

size shown in Figure 6, i.e., it has the same dependencies in

the number of features and number of bits.

345

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

20 25 30 35 40
0

20

40

60

80

100

120

140

Total bits

E
xe

cu
tio

n
an

d
ga

rb
lin

g
tim

e
(s

)

14 features
12 features
10 features
8 features
6 features
4 features
2 features

Figure 7: Time for execution of garbled circuit depending

on number of bits and number of features

E. Comparison to State of the Art

Hall et al. [8] propose a privacy-preserving linear re-

gression solution based on secret sharing, under the semi-

honest model. Using their method, linear regression on 51K

records, 22 features, and a low accuracy of 10−3, took two

days to complete out of which a full day is spent on the

inversion of the matrix alone. By extrapolating the results

in Figure 7 combined with the observation that our system

scales cubically with the number of features, we found that

our implementation will take roughly 3 minutes to carry out

a similarly sized problem.

Graepel et al. [35] propose solving a linear system in

a privacy-preserving manner through a fixed number of

iterations of gradient descent. This allows them to use

Somewhat Homomorphic Encryption that supports only a

fixed number of multiplications. On a dataset of 100 2-

dimensional points, 1 iteration of gradient descent using their

method lasts 1 minute, while 2 iterations last 75 seconds.

Our system can handle such a dataset within 2 seconds, at

an accuracy of 10−5. The relative performance benefit of our

system increases for larger datasets. Overall, these timings

demonstrate that our approach can outperform other state-of-

the-art implementations by one or two orders of magnitude.

F. Real Datasets

Finally, we ran our system on real datasets retrieved from

the UCI repository [7]. The repository includes a set of 24

real-world datasets that are commonly used for evaluating

various machine-learning algorithms. Table I summarizes

our findings. For each of the datasets, we indicate the

number of entries n and features d. The number of bits was

chosen in order to achieve a low target error of 10−5. The

penalty coefficient λ was chosen using cross-validation. The

table provides the overall communication required between

the Evaluator and CSP for sending garbled tables, and the

overall time it took the Evaluator to execute the circuit.

Table I: Experimental results using UCI datasets

Name n d Bits Comm. (MB) Time (s)

automobile.I 205 14 31 189 100

automobile.II 205 14 24 118 91

autompg 398 9 21 39 21

challenger 23 2 13 2 2

communities 1994 20 21 234 122

communities11.I 2215 20 21 234 130

communities11.II 2215 20 21 234 126

communities11.III 2215 20 23 271 146

communities11.IV 2215 20 21 234 314

computerhardware 209 7 19 21 15

concreteslumptest.I 103 7 15 15 10

concreteslumptest.II 103 7 17 18 14

concreteslumptest.III 103 7 19 21 11

concreteStrength 1030 8 19 27 17

forestFires 517 12 23 83 46

insurance 9822 14 21 102 55

flare1.I 323 20 17 170 92

flare1.II 323 20 19 200 108

flare1.III 323 20 19 200 109

flare2.I 1066 20 19 200 115

flare2.II 1066 20 21 234 132

flare2.III 1066 20 21 234 140

winequality-red 1599 11 21 60 39

winequality-white 4898 11 23 69 45

We note that the OTs execute in less than 2 seconds for all

of the datasets. Furthermore, the communication overhead

is very small, for example, for the “forestFires” dataset

the overall communication during OT is roughly 52Kbytes,

which is insignificant when compared to the 83MBytes it

takes to communicate the garbled circuit.

The smallest dataset (“challenger”) has only 2 features,

and it resulted in a small 2MB communication overhead,

and was executed in 2 seconds. The slowest execution

time of slightly more than 5 minutes is observed for the

“communities1 1.IV” dataset, that has 2215 samples and

20 features. However, this is still extremely fast for most

practical uses.

VII. RELATED WORK

Secure linear regression over private data is a subject

that has received considerable attention, although in different

settings than the one considered here. Previous work mostly

focused on data that is partitioned either horizontally or

vertically across a few databases [8], [40]–[44]. The database

owners wish to learn a linear model over their joint data

without explicitly disclosing any records they own. Some

approaches use protocols based on secret sharing [8], [45]–

[47] while others use additive homomorphic encryption (for

horizontally partitioned data) [48]. These proposed solutions

are not suited for our setting—millions of distinct users

and a single aggregator —since all contributing parties must

remain present and online throughout the entire computation.

Moreover, as shown in Section VI-E, our approach improves

the execution time in [8] by two orders of magnitude, from

days to minutes.

346

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

A different approach makes use of two party computa-

tion based on Yao garbled circuits [3]. Several frameworks

implement Yao garbled circuits and describe many appli-

cations [6], [49]. However, we are not aware of any work

applying garbled circuits to regression.

A third approach for privacy-preserving computation is

using fully homomorphic encryption (FHE) [2], which es-

chews the requirement of two non-colluding parties. Linear

regression performs a large number of both multiplica-

tion and addition steps. In such a setting, current FHE

schemes [35], [50] are not as efficient as our system.

Lauter et al. [50] mention using FHE for regression, but

do not quantify performance. Also as demonstrated in Sec-

tion VI-E, we can reduce the execution time in Graepel et

al. [35] from a minute to a few seconds.

Similar to our system, some works introduced hybrid

approaches, such as combining HE and garbled circuits for

face and fingerprints recognition [51], [52], and combining

secret sharing with garbled circuits for learning a decision

tree [53]. Constructing circuits for such discrete-valued

functions is significantly different than the regression task

we consider here; to the best of our knowledge, this work

is the first to design and implement a circuit for solving a

positive definite linear system.

Much recent research focuses on database privacy under

the differential privacy paradigm [54]–[56]. Our approach

is orthogonal to differential privacy, as we operate under

a different threat model. In differential privacy, a database

owner has full access to the data in the clear. The privacy

threat arises from releasing a function over the data to a

third party, which may use it to infer data values of users in

the database. In our work, the database owner itself (i.e., the

“Evaluator”) poses a threat. Moreover, our solution can be

augmented to provide differential privacy guarantees against

a public release of β through appropriate addition of noise

(see, e.g., [55], [56]) within the regression circuit.

VIII. CONCLUSIONS

We presented a practical system that learns ridge regres-

sion coefficients for a large number of users without learning

anything else about the users’ data. The system efficiently

scales with the number of users and features while providing

the required accuracy. To do so we employ a hybrid system

that uses homomorphic encryption to handle the linear part

of the computation and Yao garbled circuits for the non-

linear part. Using a commodity server our implementation

learned a regression model for 100 million user records, each

with 20 features, in less than 8.75 hours.

The practicality of our design invites further research on

privacy-preserving machine learning tasks, particularly ones

that use regression as a building block. For example, recom-

mender systems employ techniques like matrix factorization

to extract item profiles from ratings their users generate.

A widely used method for matrix factorization (termed the

alternating least-squares method), involves iterative execu-

tions of ridge regressions. Extending our system to this

application will enable, e.g., online video service providers

to profile their catalog, without learning potentially private

information about their users.
Beyond linear regression, many classification methods

such as logistic regression and support vector machines

(see, e.g., [11]) also build models as solutions of convex

optimization problems, parametrized by user data, similar to

the one we considered here. Extending our hybrid approach

to these settings, and providing efficient solvers for such

problems as garbled circuits, is a promising future direction

for this work.

Acknowledgments. The fifth author is supported by NSF,

DARPA, IARPA, an AFO SR MURI award, and a grant from ONR.

Funding by IARPA was provided via DoI/NBC contract number

D11PC20202. Disclaimer: The views and conclusions contained

herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either

expressed or implied, of DARPA, IARPA, DoI/NBC, or the U.S.

Government.

REFERENCES

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation,” in ACM STOC, 1988.

[2] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in ACM STOC, 2009.

[3] A. C.-C. Yao, “How to generate and exchange secrets,”
in IEEE Annual Symposium on Foundations of Computer
Science (FOCS), 1986.

[4] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Advances in Cryptology –
EUROCRYPT ’99. Springer, 1999.

[5] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography,” J. ACM, vol. 56, no. 6, 2009.

[6] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster se-
cure two-party computation using garbled circuits,” in 20th
USENIX Security Symposium. USENIX Association, 2011.

[7] UCI, “Machine Learning Repository.” [Online]. Available:
http://archive.ics.uci.edu/ml/datasets.html

[8] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple linear
regression based on homomorphic encryption,” J. Official
Statistics, vol. 27, no. 4, 2011.

[9] Y. Aumann and Y. Lindell, “Security against covert adver-
saries: Efficient protocols for realistic adversaries,” J. Cryp-
tology, vol. 23, no. 2, 2010.

[10] M. K. Franklin and M. Yung, “Communication complexity
of secure computation,” in ACM STOC, 1992.

[11] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of
Statistical Learning: Data Mining, Inference and Prediction,
2nd ed. Springer, 2009.

[12] Y. Lindell and B. Pinkas, “A proof of security of Yao’s
protocol for two-party computation,” J. Cryptology, vol. 22,
no. 2, 2009.

[13] M. O. Rabin, “How to exchange secrets by oblivious transfer,”
Harvard University, Tech. Rep. TR-81, 1981.

[14] S. Even, O. Goldreich, and A. Lempel, “A randomized
protocol for signing contracts,” Commun. ACM, vol. 28, no. 6,
1985.

347

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

[15] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay
– Secure two-party computation system,” in 13th USENIX
Security Symposium. USENIX Association, 2004.

[16] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving
auctions and mechanism design,” in 1st ACM Conference on
Electronic Commerce. ACM Press, 1999.

[17] I. Damgård and M. Jurik, “A generalisation, a simplification
and some applications of Paillier’s probabilistic public-key
system,” in Public-Key Cryptography – PKC 2001. Springer,
2001.

[18] T. P. Pedersen, “Non-interactive and information-theoretic
secure verifiable secret sharing,” in CRYPTO ’91, 1992.

[19] J. Camenisch and M. Michels, “Proving in zero-knowledge
that a number is the product of two safe primes,” in Advances
in Cryptology – EUROCRYPT ’99. Springer, 1999.

[20] S. Brands, “Untraceable off-line cash in wallets with ob-
servers,” in CRYPTO ’93. Springer, 1994.

[21] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of
partial knowledge and simplified design of witness hiding
protocols,” in CRYPTO ’94. Springer, 1994.

[22] A. Fiat and A. Shamir, “How to prove yourself: Practi-
cal solutions to identification and signature problems,” in
CRYPTO ’86. Springer, 1987.

[23] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifi-
able computing: Outsourcing computation to untrusted work-
ers,” in CRYPTO 2010. Springer, 2010.

[24] V. Kolesnikov and T. Schneider, “Improved garbled circuit:
Free XOR gates and applications,” in Automata, Languages
and Programming (ICALP). Springer, 2008.

[25] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams,
“Secure two-party computation is practical,” in Advances in
Cryptology – ASIACRYPT 2009. Springer, 2009.

[26] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending
oblivious transfers efficiently,” in CRYPTO 2003. Springer,
2003.

[27] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved
garbled circuit building blocks and applications to auctions
and computing minima,” in Cryptology and Network Security
(CANS). Springer, 2009.

[28] W. Henecka, S. K. ögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg, “TASTY: tool for automating secure two-party
computations,” in 17th ACM Conference on Computer and
Communications Security (CCS). ACM Press, 2010.

[29] A. Schropfer, F. Kerschbaum, and G. Muller, “L1 - an inter-
mediate language for mixed-protocol secure computation,” in
35th Annual Computer Software and Applications Conference
(COMPSAC). IEEE Computer Society, 2011.

[30] Y. Huang, J. Katz, and D. Evans, “Quid-pro-quo-tocols:
Strengthening semi-honest protocols with dual execution,” in
IEEE Symposium on Security and Privacy, 2012.

[31] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure
computation with malicious adversaries,” in 21st USENIX
Security Symposium. USENIX Association, 2012.

[32] Y. Lindell, B. Pinkas, and N. P. Smart, “Implementing two-
party computation efficiently with security against malicious
adversaries,” in Security and Cryptography for Networks
(SCN). Springer, 2008.

[33] P. Mohassel and M. Franklin, “Efficiency tradeoffs for ma-
licious two-party computation,” in Public-Key Cryptography
(PKC). Springer, 2006.

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Comput-
ing, 3rd ed. Cambridge University Press, 2007.

[35] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Ma-

chine learning on encrypted data,” Cryptology ePrint Archive,
Report 2012/323, 2012.

[36] F. G. Gustavson and I. Jonsson, “Minimal-storage high-
performance Cholesky factorization via blocking and recur-
sion,” IBM J. Res. Dev., vol. 44, 2000.

[37] J. H. Wilkinson, Rounding Errors in Algebraic Processes.
Prentice Hall, 1963.

[38] D. E. Knuth, The Art of Computer Programming, Vol. 2,
Semuninumerical Algorithms, 3rd ed. Addison-Wesley, 1997.

[39] J. W. Crenshaw, “Integer square roots,” Embedded Systems
Programming, Feb. 1998.

[40] A. P. Sanil, A. F. Karr, X. Lin, and J. P. Reiter, “Privacy
preserving regression modelling via distributed computation,”
in ACM KDD, 2004.

[41] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving SVM
classification on vertically partitioned data,” in Advances in
Knowledge Discovery and Data Mining (PAKDD), 2006.

[42] W. Du and M. J. Atallah, “Privacy-preserving cooperative
scientific computations,” in 14th IEEE Computer Security
Foundations Workshop (CSFW-14). IEEE Computer Society,
2001.

[43] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving multivari-
ate statistical analysis: Linear regression and classification,”
in 4th SIAM International Conference on Data Mining (SDM
2004). SIAM, 2004.

[44] J. Vaidya, C. W. Clifton, and Y. M. Zhu, Privacy Preserving
Data Mining. Springer, 2006.

[45] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Secure
regression on distributed databases,” J. Computational and
Graphical Statistics, vol. 14, no. 2, 2005.

[46] A. F. Karr, W. J. Fulp, F. Vera, S. S. Young, X. Lin, and
J. P. Reiter, “Secure, privacy-preserving analysis of distributed
databases,” Technometrics, vol. 49, no. 3, 2007.

[47] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Privacy-
preserving analysis of vertically partitioned data using secure
matrix products,” J. Official Statistics, vol. 25, no. 1, 2009.

[48] J. F. Canny, “Collaborative filtering with privacy,” in IEEE
Symposium on Security and Privacy, 2002.

[49] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are
garbled circuits better than custom protocols?” in Network
and Distributed System Security Symposium (NDSS). The
Internet Society, 2012.

[50] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can ho-
momorphic encryption be practical?” in 3rd ACM Cloud
Computing Security Workshop (CCSW). ACM Press, 2011.

[51] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient
privacy-preserving face recognition,” in Information, Security
and Cryptology – ICISC 2009. Springer, 2010.

[52] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient
privacy-preserving biometric identification,” in Network and
Distributed System Security Symposium (NDSS 2011). The
Internet Society, 2011.

[53] Y. Lindell and B. Pinkas, “Privacy preserving data mining,”
J. Cryptology, vol. 15, no. 3, 2002.

[54] C. Dwork, “Differential privacy,” in Automata, Languages
and Programming (ICALP). Springer, 2006.

[55] C. Dwork and J. Lei, “Differential privacy and robust statis-
tics,” in ACM STOC, 2009.

[56] F. McSherry and I. Mironov, “Differentially private rec-
ommender systems: Building privacy into the Netflix prize
contenders,” in ACM KDD, 2009.

348

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 09:44:31 UTC from IEEE Xplore. Restrictions apply.

