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T his tutorial explicitly states the semantics of all coor-
dinate-invariant properties and operations, and, 
more importantly, all the choices that are made in 
coordinate representations of these geometric rela-

tions. This results in a set of concrete suggestions for stan-
dardizing terminology and notation, allowing programmers 
to write fully unambiguous software interfaces, including 
automatic checks for semantic correctness of all geometric 
operations on rigid-body coordinate representations. A con-
crete proposal for community-driven standardization via the 
Robot Engineering Task Force [4] is accepted as a Robotics 
Request for Comment.

A main characteristic of robotics is that it involves three-
dimensional motion of rigid bodies (manipulated objects, 
robot links, or mobile bases). Rigid bodies are essential primi-
tives in the modeling of robotic devices, tasks, and percep-

tion. Basic geometric relations between rigid bodies include 
relative position, orientation, pose, linear velocity, angular 
velocity, and twist. Hence, robot programmers and applica-
tion developers have to deal with time-dependent geometric 
relations between rigid bodies. Therefore, there is a strong 
need for a systematic terminology for these geometric rela-
tions. In this regard, [11] and [12] enhance the terminology 
in the area of mechanism and machine science, and contain 
definitions that are of interest to define geometric relations 
between rigid bodies (such as rigid body, relative motion, dis-
placement, velocity, and angular velocity). To express geomet-
ric relations and perform mathematical operations on them 
(e.g., composition of relative motion, time differentiation, or 
integration), robot programmers have to choose coordinate 
representations with which to perform the corresponding 
numerical operations. Despite their being used for about 50 
years already in robotics, the geometric properties of rigid-
body operations, and their coordinate representations, have 
never been standardized, which has led to a proliferation of 
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mutually incompatible software libraries, in the robot control 
products of commercial manufacturers as well as in open-
source libraries such as Kinematics and Dynamics Library 
(KDL) [10], Robot Operating System (ROS) [14], Robotics 
Library (RL) [1], and so forth. All geometric relations and 
their coordinate representations entail a number of choices or 
assumptions, which are often made implicitly, but which are 
necessary to consider in view of 1) understanding the physi-
cal meaning of the numerical values that constitute the coor-
dinate representation of a geometric relation and 2) perform-
ing physically meaningful mathematical operations on these 
numerical values. None of the above libraries provide support 
for explicitly stating the above assumptions.

For example, in the calculation of the relative twist [3] 
(linear and angular velocities) between two robot end-effec-
tors out of the end-effector twists of both robots with respect 
to the world, we have to consider the choices made in the 
coordinate representations of both end-effector twists (see 
“How to Use Semantics for Geometric Relations Between 
Rigid Bodies in Robotics”). Similarly, when time-integrating 
the twist of a robot end-effector to obtain the end-effector 
pose as a function of time, we have to consider the choices 
made in the coordinate representation of the twist (see “How 
to Use Semantics for Integrating Velocities Between Rigid 
Bodies in Robotics”). Failing to make these choices explicit 
and to document them often leads to errors that may be dif-
ficult to trace, especially during integration of code from dif-
ferent origins. “Common Errors in Geometric Rigid-Body 
Relations Calculations in Robotics” lists some common 
errors that could be prevented by revealing the semantics 
underlying the geometric rigid-body relations.

In this article, we describe the full semantics underlying 
the rigid-body geometric relations of position, orientation, 
pose, linear velocity, angular velocity, and twist, including all 
the choices to be made when specifying these geometric rela-
tions. This clear definition of the semantics serves as a pro-
posal for standardization, forcing researchers and application 
developers to reveal all the hidden assumptions in their geo-
metric rigid-body relations. In particular, it also supports the 
development of software for geometric operations that 
includes semantic checks. This will avoid common errors 
and hence reduce application (and, especially, system inte-
gration) development time considerably. We make concrete 
suggestions for semantic interfaces for geometric operation 
software libraries. We are not aware of prior work revealing 
the semantics underlying the rigid-body geometric relations 
and of software offering semantic-based checks for calcula-
tions involving geometric rigid-body relations. 

Background
A rigid body is an idealization of a solid body of infinite or 
finite size in which deformation is neglected. This document 
often abbreviates rigid body to body and denotes it by a curly 
letter such as A . A body in three-dimensional space has six 
degrees of freedom: three degrees of freedom in translation and 
three in rotation. The subspace of all body displacements that 

involve only changes in the orientation is often denoted by 
SO(3) (the special orthogonal group in three-dimensional 
space). It forms a group under the operation of composition of 
relative displacements. The space of all body displacements, 
including translations, is denoted by SE(3) (the special Euclid-
ean group in three-dimensional space). A general six-dimen-
sional displacement between two bodies is called a (relative) 
pose: it contains both the position and orientation. Remark that 
the position, orientation, and pose of a body are not absolute 
concepts, since they imply a second body with respect to which 
they are defined. Hence, only the relative position, orientation, 
and pose between two bodies are relevant geometric relations.

A general six-dimensional velocity between two bodies is 
called a (relative) twist: it contains both the angular and the 
linear velocity. Similar to the position, orientation, and pose, 
the linear velocity, angular velocity, and twist of a body are 
not absolute concepts, since they imply a second body with 
respect to which they are defined. Hence, only the relative 
linear velocity, angular velocity, and twist between two bod-
ies are relevant geometric relations. 

When doing actual calculations with the geometric rela-
tions between rigid bodies (see the “Geometric Relations” 
section), one has to use the coordinate representation of the 
geometric relations and therefore has to choose a coordinate 
frame in which the coordinates are expressed to obtain 
numerical values for the geometric relations. Since the geo-
metric relation between two rigid bodies should only include 
information on the relative motion of the two rigid bodies, 
the coordinate frame is considered instantaneously fixed to 
the reference body, i.e., the body with respect to which the 
body motion is described.

Semantics

Geometric Primitives
The geometric relations between bodies are described using  
a set of geometric primitives:

●● �A (spatial) point is the primitive to represent the position 
of a body. Points have neither volume, area, length, nor 
any other higher dimensional analog. This document 
denotes points by the symbols a, b, . . ..

●● �A vector is the geometric primitive that connects a point a 
to a point b. It has a magnitude (the distance between the 
two points) and a direction (from a to b). To express the 
magnitude of a vector, a (length) scale must be chosen. [In 
order not to overload the notation, this article assumes 
that all coordinate representations use the same scales (lin-
ear, angular, and time) and units (i.e., SI units).] 

●● �An orientation frame represents an orientation, by 
means of three orthonormal vectors indicating the 
frame’s X-axis X, Y-axis Y, and Z-axis Z. This document 
denotes orientation frames by the symbols [a], [b], . . ..

●● �A (displacement) frame represents position and orienta-
tion of a bod y, by means of an orientation frame and  
a point (which is the orientation frame’s origin). This 
document denotes frames by the symbols {a}, {b}, . . ..

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 15:41:10 UTC from IEEE Xplore.  Restrictions apply. 



86 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  March 2013

How to Use Semantics for Geometric Relations Between Rigid Bodies in Robotics
We illustrate how the proposed semantics for geometric relations 
between rigid bodies can be used in robotics. To this end, we 
use the example illustrated in the Figure S1, in which two robots 
cooperate for spray painting a cylindrical object. The first robot holds 
the cylindrical object, while the other robot holds the spray gun.

To complete the painting task, the robot programmer has 
to determine the joint angles of the second robot holding the 
spray gun such that a predefined pose between the spray gun 
and cylindrical object is obtained (the joint angles of the first 
robot holding the cylindrical object are given).

In the first step, the rigid bodies and the frames attached to 
them are identified:

•	 b1" , attached to the base B1  of the first robot,
•	 e1" , attached to the end-effector E1  of the first robot,
•	 o1" ,  attached to cylindrical object O1 ,
•	 b2" , attached to the base B2  of the second robot,
•	 � e2" ,  attached to the end-effector E2  of the second  

robot, and
•	 o2" ,  attached to the spray gun O2 .

In our example the following poses are available:
•	 �PoseCoord , ,e b bE B1 1 1 1 1^ h6 @" ", ,  determined by the 

forward position kinematics of the first robot.
•	 �PoseCoord , ,b b bB B2 2 1 1 1^ h6 @" ", ,  determined by the 

mounting of the robots.
•	 �PoseCoord , ,o e eO E1 1 1 1 1^ h6 @" ", ,  determined by the 

mounting of the cylindrical object on the first robot end- 
effector.

•	 �PoseCoord , ,o e eO E2 2 2 2 2^ h6 @" ", ,  determined by the 
mounting of the spray gun on the second robot end-effector.

•	 �PoseCoord , ,o o oO O2 2 1 1 1^ h6 @" ", ,  determined by the 
desired spray-painting pose.

To find the joint angles of the second robot the robot 
programmer has to find PoseCoord , ,e b bE B2 2 2 2 2^ h6 @" ", , , 
and subsequently use the inverse kinematics of the second 
robot. Semantically, PoseCoord , ,e b bE B2 2 2 2 2^ h6 @" ", ,  can 
be obtained as:
PoseCoord , ,e E O2 2 2 2 2q q^ h6 @" ", ,

	 = inverse2 (PoseCoord , ,o e eO E2 2 2 2 2^ h6 @" ", , ),	(1)
PoseCoord , ,e o oE O2 2 1 1 1^ h6 @" ", ,

	 = �compose (PoseCoord , ,e o oE O2 2 2 2 2^ h6 @" ", , , 
PoseCoord , ,o o oO O2 2 1 1 1^ h6 @" ", , ),	 (2)

PoseCoord , ,e e eE E2 2 1 1 1^ h6 @" ", ,
	 = �compose (PoseCoord , ,e o oE O2 2 1 1 1^ h6 @" ", , , 

PoseCoord , ,o e eO E1 1 1 1 1^ h6 @" ", , ),	 (3)
PoseCoord , ,e b bE B2 2 1 1 1^ h6 @" ", , 	

	 = �compose (PoseCoord , ,e e eE E2 2 1 1 1^ h6 @" ", , , 
PoseCoord , ,e b bE B1 1 1 1 1^ h6 @" ", , ),	 (4)

PoseCoord , ,b b bB B1 1 2 2 2^ h6 @" ", , 	
	 = inverse2 (PoseCoord , ,b b bB B2 2 1 1 1^ h6 @" ", , ), 
	 and 	 (5)

PoseCoord , ,e b bE B2 2 2 2 2^ h6 @" ", , 	
	 = �compose (PoseCoord , ,e b bE B2 2 1 1 1^ h6 @" ", , , 

PoseCoord , ,b b bB B1 1 2 2 2^ h6 @" ", , ).	 (6)

Remark that the operators compose (,) and inverse2() are 
introduced in the supplemental material (Section B); while the 
meaning of compose (,) is straightforward, inverse2( ) is used 
when both the forward and the inverted geometric relation 

have to be expressed in the reference orientation frame. Every 
equation above can be checked semantically (see the “Semantic 
Operations” section) for instance by checking if the frame and 
body of one pose in the composition are equal to the reference 
frame and reference body, respectively of the other pose in the 
composition; and if the coordinate frame of every pose in the 
composition is equal to its reference orientation frame. This 
way, errors regarding the logic of composition and inversion are 
prevented (and can be supported by software checks).

Next, to do the actual calculations, the robot programmer can 
choose a particular coordinate representation (see the ”Coordinate 
Representations” section) for the pose, for instance homogeneous 
transformation matrices. Once a particular coordinate 
representation is chosen, the semantic constraints imposed by the 
coordinate representation (see the ”Semantic Constraints Imposed 
by Coordinate Representations” section) can be checked and the 
semantic operations (such as inversion or composition) can be 
translated into particular operations (such as matrix inversions or 
matrix multiplications). The homogeneous transformation matrix 
coordinate representation, for instance, imposes that the point 
and the orientation frame belong to a single frame, the reference 
point and the reference orientation frame belong to a single 
frame, and the coordinate frame equals the reference orientation 
frame; the inverse operator is replaced by a matrix inverse and 
the pose composition is replaced by matrix multiplications (where 
the multiplication order can be derived from the semantics of the 
poses). For the example the semantic operations (1)–(6) can be 
rewritten with homogeneous transformation matrices as:
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Figure S1. Two robots cooperate for spray-painting a 
cylindrical object.

Each of these geometric primitives can be fixed to a body, 
which means that the geometric primitive coincides with the 
body not only instantaneously but also over time. For the 
point a and the body C , for instance, this is written as a C . 

Figure 1 presents the geometric primitives body, point, vector, 
orientation frame, and frame graphically. To help the reader, 
we will consistently use the following naming for the geomet-
ric primitives to represent the geometric relation of a body C  

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 15:41:10 UTC from IEEE Xplore.  Restrictions apply. 



87March 2013  •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •

How to Use Semantics for Integrating Velocities Between Rigid Bodies in Robotics
Here we illustrate how the proposed semantics can be used 
for integrating velocities between rigid bodies in robotics. To 
this end, we will use the example of Figure S1 in which two 
robots cooperate for spray-painting a cylindrical object. Imagine 
the robot programmer wants to determine the pose of the first 
cylinder O1  with respect to the robot base B1  after a certain 
time t , i.e., PoseCoord , ,o b bO B1 1 1 1 1l l^ h6 @" ", ,  when either

1)	 �Twis tCoord , , b CO B te
1 1 1 1q =^ h6 @  (pose twis t  i s 

constant);
2)	 �TwistCoord , , o CO B te

1 1 1 1q =^ h6 @  (body-fixed twist is 
constant); and

3)	 �TwistCoord , ,b b CO B te
1 1 1 1 =^ h6 @  (screw twist is constant).

Since integration imposes the semantic constraint that 
the reference point and the coordinate frame have to 
belong to the same frame, integration of TwistCoord 

, , b CO B te
1 1 1 1q =^ h6 @  (first case) is semantically not allowed. 

For the other two cases integration results in
2) �Po s e C o o r d  , ,O B1 1 1 1 1q q ql l^ h6 @" ", ,  =  i n t e g r a t e 

(TwistCoord , , ,) tO B1 1 1 1q q^ h6 @ , and 
3) �Po seCoo rd  , ,b b bO B1 1 1 1 1l l^ h6 @" ", ,  =  i n t eg r a t e 

(TwistCoord , , ,b b tO B1 1 1 1^ h6 @ )
To obtain the new pose of the cylinder PoseCoord 

, ,b bO B1 1 1 1ql l^ h6 @" ", ,  the following compositions should be 
performed:

2) �PoseCoord  , ,b bO B1 1 1 1 1ql l^ h6 @" ", ,  = compose 
(integrate (TwistCoord , , , tO B1 1 1q q^ h6 @ ), PoseCoord 

, ,b bB B1 1 1 1q^ h6 @" ", , ) = compose (integrate 
(TwistCoord , , , tO B1 1 1 1q q^ h6 @ , PoseCoord 

, ,b bO B1 1 1 1 1q^ h6 @" ", , ), and
3) �PoseCoord , ,b bO B1 1 1 1 1ql l^ h6 @" ", ,  = compose 

(integrate (TwistCoord , , ,b b tO B1 1 1 1^ h6 @ ), PoseCoord 
, ,b bO O1 1 1 1 1ql l l l l^ h6 @" ", ,  = compose (integrate 

(TwistCoord , , ,b b tO B1 1 1 1^ h6 @ , 
	 PoseCoord , b bO B1 1 1 1 1q^ h6 @" ", , ).

Next, to do the actual calculations, the robot programmer 
can choose a particular coordinate representation (see the 
”Coordinate Representations” section) for the pose and  
the twist, for instance homogeneous transformation matrices for 
the pose (see the ”Pose Coordinate Presentations” section ) and 
six-dimensional vectors for the twist (see the ”Twist Coordinate 
Representations” section). Once the coordinate representations 
are chosen, the semantic constraints imposed by the coordinate 
representation (see the ”Semantic Constraints Imposed 
by Coordinate Representations” section) can be checked and  
the semantic operations (such as inversion or composition) can be 
translated into particular operations (such as matrix inversions or 
matrix multiplications). The homogeneous transformation matrix, 
for instance, imposes that the point and the orientation frame 
belong to a single frame, the reference point and the reference 
orientation frame belong to a single frame, and the coordinate 
frame equals the reference orientation frame; the integration 
operator is replaced by the matrix exponential and the pose 
composition is replaced by matrix multiplications (where the 
multiplication order can be derived from the semantics of the 
poses). For example, the semantic operations can be rewritten 
with homogeneous transformation matrices and six-dimensional 
vector twists as
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with the exponential of the six-dimensional vector twist 
as defined in [7]. The above example shows that using 
the semantics, the correct integration and order of 
multiplication in the compositions with the poses resulting 
from the integrations are automatically obtained, preventing 
common errors.

with respect to body D  in this document: e C , [ ]a C , { }g
C , f D , [ ]b D , and { }h D .

Geometric Relations
This section introduces the semantics for the following geo-
metric relations between rigid bodies: position, orientation, 
pose, linear velocity, angular velocity, and twist. To this end, 
the following systematic procedure is used for every geometric 
relation. First, the minimal but complete set of geometric 
primitives (see the “Geometric Primitives” section) needed to 
unambiguously define the geometric relation is specified. Sec-
ond, from this minimal but complete set of geometric primi-
tives, a semantic representation of the geometric relation is 
proposed. Third, the coordinate semantics for coordinate rep-
resentations of the geometric relation are specified. Table 1 
summarizes the minimal but complete set of geometric primi-
tives and the (coordinate) semantics for the geometric rela-
tions between rigid bodies handled in this section. Finally, 
some common and practically convenient semantic choices, 
i.e., choices of particular geometric primitives, are discussed.

Position
The relative position of body C  with respect to body D  can 
be represented by the position of a point fixed to body C  with 

respect to a point fixed to body D . Therefore, semantically 
the relative position between body C  and body D  is indi-
cated as Position ( e C , f D), where point e  is fixed to body 
C  and point f  is fixed to body D .

The minimal but complete set of geometric primitives for 
the position is therefore the body whose position is given 
(the body), a point on the body (the point), the body with 
respect to which the position is given (the reference body), 
and the point on the reference body (the reference point). 
Coordinate representations require an orientation frame [ ]r , 
considered instantaneously fixed to the reference body, to 
express the coordinates in (the coordinate frame), this can be 
indicated as follows: PositionCoord ( e C  , f D , [ ]r ).

In practice, it is often convenient to use origins of frames 
on the bodies (for instance frame { }g  on body C  and frame 
{ }h  on body D) to represent relative position of these bodies, 
i.e., Position ( g C , h D) and to use one of these frames as 
the coordinate frame, i.e., PositionCoord ( g C , h D , g6 @), 
or PositionCoord ( g C , h D , h6 @).

Orientation
The relative orientation of body C  with respect to body D  
can be represented by the orientation of an orientation 
frame fixed to body C  with respect to an orientation frame 
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fixed to body D . Therefore, semantically the relative orien-
tation between bodies C  and D  is indicated as Orientation 
( [ ]a C , [ ]b D ), where orientation frame [ ]a  is fixed to 
body C  and orientation frame [ ]b  is fixed to body D.

The minimal but complete set of geometric primitives for 
the orientation is therefore the body whose orientation is 
given (the body), an orientation frame on the body (the ori-
entation frame), the body with respect to which the orienta-
tion is given (the reference body), and the orientation frame 
on the reference body (the reference orientation frame).

Coordinate representations require an orientation frame 
[ ]r , considered instantaneously fixed to the reference body, 
to express the coordinates in (coordinate frame), this can be 
indicated as follows: OrientationCoord ([ ]a  C , [ ]b D , [r]).

In practice, it is often convenient to use orientation 
frames of frames on the bodies to represent their relative ori-
entation, i.e., Orientation ([ ]g C , [ ]h D), and to use one of 
these frames as an orientation frame to express the coordi-
nates in, i.e., OrientationCoord ([ ]g C, [ ]h D , g6 @) or Ori-
entationCoord ([ ]g C, [ ]h D, h6 @).

Most orientation coordinate representations (see the “Ori-
entation Coordinate Representations” section) implicitly 
assume the latter, i.e., that the coordinate frame equals the ref-
erence orientation frame.

Pose
The relative pose of body C  with respect to body D  can 
be represented by the position of a point fixed to body C  

with respect to a point fixed to body D , and the orienta-
tion of an orientation frame fixed to body C  with 
respect to an orientation frame fixed to body D. There-
fore, semantically the relative pose between body C  and 
body D  is indicated as Pose (( , [ ])e a C , ( , [ ])f b D ), 
where orientation frame [ ]a  and point e  are fixed to 
body C  and orientation frame [ ]b  and point f  are fixed 
to body D .

Common Errors in Geometric Rigid-Body Relations Calculations in Robotics
Here, we list some common errors in calculations with geo-
metric relations between rigid bodies in robotics that could be 
prevented by using the semantics proposed in this article.

1) �Logic errors in geometric relation calculations: A lot of 
logic errors can occur during geometric relation calcula-
tions. For instance, the inverse of the position of point e  
fixed to body C  with respect to point f  fixed to body D  
(Position (e C , f  D )) (the semantics of the geometric 
relation is introduced in the “Semantics” section, while 
Table 1 gives an overview of the semantics) is the rela-
tive position of point f  fixed to body D  with respect to 
point e  fixed to body C  (Position ( f , eD C )), while 
the inverse of the linear velocity of point e  fixed to 
body C  with respect to body D  (LinearVelocity (e C ,  
 D )) is the linear velocity of point e  fixed to body D  
with respect to body C  (LinearVelocity (e D ,  C )). When 
using the semantic representation proposed in this 
article, the semantics of the inverse geometric relation 
can be automatically derived from the forward geomet-
ric relation, preventing logic errors. A second example 
emerges when composing the relations involving three 
rigid bodies: to get the geometric relation of body C  
with respect to body  D , one can compose the geo-
metric relation between C  and a third body E  with the 
geometric relation between body  E  and body D  (and 
not the geometric relation between body D  and body 
E  for instance). Such a logic constraint can be checked 
easily by including, for instance, the body and reference 
body in the semantic representation of the geometric 
relations.

2) �Composition of twists with different point: Composing 
twists requires a common point (i.e., the twists have 
to express the linear velocity of the same point on the 
body). By including the point of the twist in the semantic 
representation, this constraint can be checked explicitly.

3) �Composition of geometric relations expressed in different 
coordinate frames: Composing geometric relations using 
coordinate representations such as position vectors, linear 
and angular velocity vectors, and six-dimensional vector 
twists requires that the coordinates are expressed in the 
same coordinate frame. By including the coordinate frame 
in the coordinate semantic representation of the geometric 
relations, this constraint can be checked explicitly. 

4) �Composition of poses and orientation coordinate 
representations in wrong order: The rotation matrix 
and homogeneous transformation matrix coordinate 
representations can be composed using simple multiplication. 
Since matrix multiplication is, however, not commutative, a 
common error is to use a wrong multiplication order in the 
composition. The correct multiplication order can, however, 
be directly derived when including the bodies, frames, and 
points in the coordinate semantic representation of the 
geometric relations.

5) �Integration of twists when point and coordinate frame do 
not belong to same frame: A twist can only be integrated  
when it expresses the linear velocity of the origin of the 
coordinate frame the twist is expressed in. When including 
the point and the coordinate frame in the coordinate 
semantic representation of the twist, this constraint can be 
checked explicitly. 

Figure 1. The geometric relation between rigid bodies is 
described using a set of geometric primitives: points, vectors, 
orientation frames, and frames. The geometric primitives that are 
useful to define the position, orientation, pose, linear velocity,  
angular velocity, and twist of body C  with respect to body D  
are shown: an orientation frame [ ]a , a point e , and frame{ }g
fixed to body C , an orientation frame [ ]b , a point f , and frame 
{ }h  fixed to body D , and a coordinate frame [r], considered 
instantaneously fixed to body D , in which the coordinates are 
expressed.

[a]

e

C

{g}

[b]

f

D

{h} [r]
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The minimal but complete set of geometric primitives for 
the pose is therefore the body whose pose is given (the 
body), a point on the body (the point), an orientation frame 
on the body (the orientation frame), the body with respect to 
which the pose is given (the reference body), the point on the 
reference body (the reference point), and the orientation 
frame on the reference body (the reference orientation 
frame).

In practice, it is often convenient to use frames on the bod-
ies to represent their pose. In this case, the pose of the body is 
determined by the origin of the frame, and the orientation is 
determined by the orientation of the frame. In this case, the 
relative pose between body C  and body D  is indicated as 
Pose ({g} |C , {h} |D), where frame {g} is fixed to body C  and 
frame {h} is fixed to body D .

Coordinate representations require an orientation frame  
[ ]r , considered instantaneously fixed to the reference body, to 
express the coordinates in (the coordinate frame), this can be 
indicated as follows: PoseCoord ((e, [a]) |C , ( f, [b]) |D , [r]).

In practice, it is often convenient to use the orientation 
frames of the frames on the bodies to express the coordi-
nates in, i.e., PoseCoord ({  g} |C , {h} |D , [  g]) or PoseCoord 
({g} |C , {h} |D , [h]). Most pose coordinate representations 
(see the “Pose Coordinate Representations” section) implic-
itly assume the latter, i.e., that the coordinate frame equals 
the reference orientation frame.

Linear Velocity
The relative linear velocity of body C  with respect to body D  
can be represented by the linear velocity of a point e on body 

Geometric Relation (Coordinate) Semantics Geometric Primitives
Graphical  
Representation

Position Position ,e fC D^ h
PositionCoord , ,e f rC D^ h6 @

Point e
Body C
Reference point f
Reference body D
Coordinate frame [r] [r]D

f

e
C

Orientation Orientation ,a bC D^ h6 6@ @  
OrientationCoord , ,a b rC D^ h6 6 6@ @ @

Orientation frame [a]
Body C
Reference orientation frame [b]
Reference body D
Coordinate frame [r] [r]D

C[b]

[a]

Pose Pose (( , [ ]) , , ([ ]) )e a f bC D

PoseCoord (( , [ ]) , ( , [ ]) , [ ])e a f b rC D

Point e
Orientation frame [a]
Body C
Reference point f
Reference orientation frame [b]
Reference body D
Coordinate frame [r]

[r]
D

f

Ce[b]

[a]

Pose ,g hC D^ h" ", ,
PoseCoord , ,g h rC D^ h6 @" ", ,

Frame { g}
Body C
Frame {h}
Reference body D
Coordinate frame [r] [r]D

C{h}

{g}

Linear velocity LinearVelocity , )e C D^
LinearVelocityCoord , , )e rC D^ 6 @

Point e
Body C
Reference body D
Coordinate frame [r]

[r]D

Ce

Angular velocity AngularVelocity ,C D^ h
AngularVelocityCoord , , rC D^ h6 @

Body C
Reference body D
Coordinate frame [r]

[r]D

C

Twist Twist , )e C D^
TwistCoord , , )e rC D^ 6 @

Point e
Body C
Reference body D
Coordinate frame [r]

[r]D

C
e

The table includes the minimal but complete set of geometric primitives for the position, orientation, pose, linear velocity, angular velocity, and twist  
of body C  with point e, orientation frame [a], and frame { g} with respect to D  with point f, orientation frame [b], and frame {h}, including a graphical representation.

Table 1. Minimal semantics and coordinate semantics (expressed in coordinate frame [r]).
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C  with respect to any other point on body D  (remark that 
we consider the linear velocity part of the six-dimensional 
motion and not only the special case of a pure translational 
motion). Remark that the linear velocity of two bodies is the 
same regardless of which point is chosen on the reference 
body, it is, however, not the same for all points on the moving 
body (see Section A.1 in the supplemental material available 
with the article). Therefore, semantically the relative linear 
velocity between body C  and body D  is indicated as Lin-
earVelocityCoord (e|C , D), where point e is fixed to body C .

The minimal but complete set of geometric primitives for 
the linear velocity is, therefore, the body whose linear veloc-
ity is given (the body), a point on the body (the point), and 
the body with respect to which the linear velocity is given 
(the reference body).

Remark that for a pure translational motion, the linear 
velocity is the same for every point on the body, i.e., 

,e eC C1 26 : LinearVelocity , )e C D1 =^  LinearVelocity 
, ) .e DC2^

Coordinate representations require an orientation frame 
[r], considered instantaneously fixed to the reference body, to 
express the coordinates in (the coordinate frame), this can be 
indicated as follows: LinearVelocityCoord (e|C , D , [r]).

In practice, it is often convenient to use the origin of the 
frames on the bodies to represent the relative linear velocity, 
and to use one of the orientation frames on the bodies to 
express the coordinates in, i.e., LinearVelocityCoord ( g C , 
D , g6 @), LinearVelocityCoord ( g C , D , [h]), or LinearVel-
ocityCoord (h|C , D , [h]). 

Rotational Velocity
The relative angular velocity of body C  with respect to body 
D  can be represented by the angular velocity of any orientation 
frame on body C  with respect to any another orientation frame 
on body D  (see Section A.2 in the supplemental material). 
Therefore, semantically the relative angular velocity between 
body C  and body D  is indicated as AngularVelocity (C , D).

The minimal but complete set of geometric primitives for 
the angular velocity is therefore the body whose angular 
velocity is given (the body) and the body with respect to 
which the angular velocity is given (the reference body).

Coordinate representations require an orientation frame 
[r], considered instantaneously fixed to the reference body, 
to express the coordinates in (the coordinate frame), this 
can be indicated as follows: AngularVelocityCoord (C , D , 
[r]). In practice, it is often convenient to use the orientation 
frames of the frames on the bodies to represent their rela-
tive angular velocity and to use one of these frames as an 
orientation frame to express the coordinates in, i.e., Angu-
larVelocityCoord (C , D , [g]) or AngularVelocityCoord  
(C , D , [h]).

Twist
The relative twist of body C  with respect to body D  can be rep-
resented by the angular velocity of body C  with respect to body 

D , and the linear velocity of a point e on body C  with respect 
to body D . Therefore, semantically the relative twist between 
body C  and body D  is indicated as Twist (e|C , D) and it con-
tains the information on both the linear velocity LinearVelocity 
(e|C , D) and the angular velocity, AngularVelocity (C , D).

The minimal but complete set of geometric primitives for 
the twist is therefore the body whose twist is given (the 
body), a point on the body (the point), and the body with 
respect to which the twist is given (the reference body). 

In practice, it is often convenient to use the origins and the 
orientation frames of the frames on the bodies to represent 
their relative twist, i.e., Twist ( g C , D). 

In practice, two particular choices of points and orientation 
frames on the bodies are commonly used. 1) For the pose twist 
of body C  with respect to body D , the origin of frame { g} on 
body C  is used as the reference point of body .C  A pose twist 
is therefore indicated as Twist ( g C , D). 2) For the screw 
twist of body C  with respect to body D  the origin of frame 
{h} on body C  is used as the reference point of body C , i.e., 
the point fixed to body C  that instantaneously coincides with 
the origin of frame {h} fixed to body D  is used. A screw twist 
is therefore indicated as Twist (h|C , D).

Coordinate representations require an orientation frame 
[r], considered instantaneously fixed to the reference body, to 
express the coordinates in (the coordinate frame), this can be 
indicated by TwistCoord (e|C , D , [r]). In practice, it is often 
convenient to use the origins and orientation frames of the 
frames on the bodies to represent their relative twist and to 
use one of these frames as an orientation frame to express the 
coordinates in, i.e., TwistCoord ( g|C , D , [ g]), TwistCoord 
(h|C , D , [h]), or TwistCoord ( g|C , D , [h]).

When a pose twist Twist ( g|C , D ) is expressed in the 
orientation frame [ g] defined on body C , now considered 
instantaneously fixed to the reference body, it is often called a 
body-fixed twist and indicated as TwistCoord ( g|C , D , [ g]).

Semantic Operations
On the geometric relations defined in the “Geometric Rela-
tions” section, semantic operations that compose the geomet-
ric relations or that change the point, orientation frame, 
reference point, reference orientation frame, or coordinate 
frame of the geometric relation can be applied.

These semantic operations themselves impose constraints 
on the geometric relation they are applied to and on the oper-
ation arguments (which are themselves geometric relations) 
of the operator. Section B in the supplemental material pro-
vides an example to clarify the constraints imposed by seman-
tic operations, while Tables II and III in the same section give 
an overview of semantic operations that can be applied to 
geometric relations, and list the constraints imposed by the 
operations.

Coordinate Representations
When doing actual calculations with the geometric relations 
between rigid bodies (“Geometric Relations” section), one has 
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to use the coordinate representation of the geometric relations. 
By adding an orientation frame [r], considered instantaneously 
fixed to the reference body, in which the coordinates are 
expressed (the coordinate frame), numerical values for the geo-
metric relations are obtained. Furthermore, both the linear and 
angular time scales have to be specified. (In this document, it is 
assumed that the linear and angular time scales are the same for 
all the geometric relations, and the scales are omitted to sim-
plify the notation. The scales should additionally be identified 
in the semantic information of every coordinate representation; 
the standardized system of SI units is the natural candidate for 
this semantic information.)

This section shows how particular coordinate representa-
tions for the geometric relations presented in the “Semantics” 
section can impose constraints on the semantics. Furthermore, 
it lists some commonly used coordinate representations 
together with their semantic description and reveals the 
semantic constraints imposed by them. Other coordinate rep-
resentations for the same geometric relationships can be con-
nected to the semantic description, and furthermore, these 
coordinate representations can all be transformed into the 
coordinate representations presented below. Although we pro-
vide a symbol for each of the coordinate representations, this 
symbol is less important than the name we attach to the geo-
metric relation in the semantics. In the supplemental material, 
we also provide a table containing additional commonly used 
coordinate representations, their properties, and correspond-
ing semantic representation (Table 4).

Background
As mentioned in the “Geometric Primitives” section, points,  
orientation frames, and frames are attached to bodies to express 
their relative position, orientation, pose, linear velocity, angular 
velocity, and twist. This document assumes that frames are 
orthogonal and right-handed. Often, nonminimal coordinate rep-
resentations (i.e., with more parameters than the number of physi-
cal degrees of freedom) are used to model the properties of 
rigid-body motion. The tradeoffs between such nonminimal and 
minimal representations are improved properties with respect to 
numerical stability and unambiguity in the representation, but 
extra cost because of the need to carry along a number of con-
straints between the numbers in the nonminimal representation.

Semantic Constraints Imposed by  
Coordinate Representations
Particular coordinate representations can make additional 
(and often hidden) assumptions on the choice of the point, 
orientation frame, reference point, reference orientation 
frame, or coordinate frame of the geometric relation. There-
fore, the coordinate representation itself can impose con-
straints on the geometric relations.

Position Coordinate Representations
To express the relative position of two bodies C  and D , one 
can choose points on the bodies and express their relative 
position using a position vector [13].

The position vector p ,
r

f eD C6 @  points from the point f 
fixed to body D  to the point e fixed to body C , and is 
expressed in [r], i.e.,

	 p ,
r

f eD C6 @  ~ PositionCoord , , .e f rC D^ h6 @ 	

The position vector does not impose any semantic con-
straints. The position vector is a three-dimensional vector 

x y z T^ h  containing the coordinates in [r] of the vector 
pointing from the point f fixed to body D  to the point e fixed 
to body C .

Orientation Coordinate Representations

Euler Axis-Angle and Rotation Vector
From Euler’s rotation theorem, it is known that the relative 
orientation between two bodies can be expressed as a single 
rotation about some axis with a certain angle. The axis can be 
represented as a three-dimensional unit vector and the angle 
by a scalar [13]. 

The Euler axis-angle coordinate representation 
e[ ]

,
r

b aD C6 6@ @  represents the axis and angle of rotation needed 
to rotate from the orientation frame [b] fixed to body D  to 
the orientation frame [a] fixed to body C  and is expressed in 
[r], i.e.,

e[ ]
,

r
b aD C6 6@ @  ~ OrientationCoord , , .a b D rC^ h6 6 6@ @ @

The Euler axis-angle coordinate representation is a fourdi-
mensional vector e T

i^ h  containing the coordinates of the 
unit vector e along the rotation axis in [r] and the rotation 
angle i . The Euler axis-angle coordinate representation does 
not impose any semantic constraints.

The rotation vector coordinate representation 
r[ ]

,
r

b aD C6 6@ @  represents the axis and angle of rotation needed 
to rotate from the orientation frame [b] fixed to body D  to 
the orientation frame a fixed to body C  and is expressed in 
[r], i.e.,

r[ ]
,

r
b aD C6 6@ @  ~ OrientationCoord , , .a b rC D^ h6 6 6@ @ @  

The rotation vector representation is a three-dimensional 
vector x y z T^ h  containing the coordinates of a vector e 
along the rotation axis in [r] whose norm is equal to the rota-
tion angle i . The rotation vector representation does not 
impose any semantic constraints.

Rotation Matrix
The 3 3#  rotation matrix R[ ]

[ ]
b
a
D
C  is among the most com-

monly used coordinate representations of relative orientation 
[13]. Other names for the rotation matrix are orientation 
matrix or matrix of direction cosines.

The columns of the 3 3#  rotation matrix R[ ]
[ ]
b
a
D
C  contain 

the components of the unit vectors ,e ea a
X Y , and ea

Z  along 
the axes of orientation frame [b], i.e., expressed in the ori-
entation frame [b]:
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	 ,R e e eR[ ]
[ ]

[ ] [ ] [ ]b
a

ij b
a

b
a

b
a

X Y ZD
C
= =^ ^h h 	

where e[ ]b
a

X  is notation for the coordinates of the unit vector 
ea

X  in the coordinate frame [b]. The rotation matrix repre-
sentation implicitly assumes that the relative orientation of 
[a] fixed to body C  with respect to [b] fixed to body D  is 
expressed in orientation frame [b], i.e.,

 R[ ]
[ ]
b
a
D
C

 ~ OrientationCoord , , ,a b bC D^ h6 6 6@ @ @

thereby imposing a semantic constraint.

Pose Coordinate Representations

Homogeneous Transformation Matrix
The 4 4#  homogeneous transformation matrix Th

g
D

C

"
"
,
,  is 

among the most commonly used coordinate representations of 
relative pose [13]. Other names for the homogeneous transfor-
mation matrix are pose matrix or homogeneous transform.

The homogeneous transformation matrix Th
g
D

C

"
"
,
,  com-

bines 1) the position vector p[ ]
,

h
h gD C  of the origin of { g} 

fixed to body C  with respect to the origin of {h} fixed to 
body D  and expressed in [h], plus 2) the rotation matrix 

R[ ]
[ ]
h
g
D

C  of the orientation of { g} with respect to orientation of 
{h} into a 4 4#  matrix as

	 .T R p
o 1

[ ]
[ ]

[ ]
,

h
g h

g
h

h g

1 3
D

C D

C D C

#

D
== G"

"
,
, 	 (13)

The homogeneous transformation matrix representation 
implicitly assumes that the origin and the orientation of 
the same frame on the body and reference body are used, 
and that the relative pose is expressed in the orientation 
frame fixed to the reference body, i.e.,

	 PoseCoord({ } , { } , [ ]),T g h hC Dh
g
D

C
+"

"
,
, 	

thereby imposing three semantic constraints.

Screw Axis
The screw axis (SA) of an Euclidean displacement in threedi-
mensional space is a line that is simultaneously the rotation axis 
(see the “Euler Axis-Angle and Rotation Vector” section) and 
the line along which the translation occurs. Other names for the 
SA are helical axis or twist axis. Chasles’ theorem [5], [13] states 
that each rigid-body displacement in three-dimensional space 
has a screw axis, and that this displacement can be decomposed 
into a rotation about and a translation along this screw axis.

The screw axis coordinate representation consists of a set 
of Plücker coordinates [8], [9], [13] d m T^ h  that are used 
to locate the screw axis in space (consisting of two three-
dimensional vectors d and m that identify the direction and 
location of the axis, respectively), the rotation angle i , and 
the displacement d: .d m d T

i^ h
The SA coordinate representation implicitly assumes that 

the origin and the orientation of the same frame on the body 
and reference body are used, i.e., 

SA[ ]
{ }

{ }r
g

h
C

D  ~ PoseCoord { } , { } , ,g h rC D^ h6 @  

thereby imposing two semantic constraints.

Linear Velocity Coordinate Representations
To express the relative linear velocity of two bodies C  and 
D , one can choose a point on body C  and express its lin-
ear velocity with respect D  using a three-dimensional 
vector [6].

The linear velocity vector, p , |
r

eD Co6 @ , is the derivative of the 
position vector, ,p ,

r
f eD C66 @  pointing from any point f fixed 

to body D  to the point e fixed to body C  and expressed in 
[r], i.e.,

	 p[ ]
, |

r
eD Co  ~ LinearVelocityCoord , , ) .e rC D^ 6 @

The linear velocity vector does not impose any semantic 
constraints. The linear velocity vector is a three-dimensional 
vector x y z T^ h  containing the coordinates in [r] of the 
derivative of the vector pointing from any point fixed to 
body D  to the point e fixed to body C .

Angular Velocity Coordinate Representations

Angular Velocity Vector
The relative angular velocity orientation between two bodies 
can be expressed using a single angular velocity about some 
axis with a certain angular velocity [6].

The angular velocity vector coordinate representation 
[ ]r
C

D~  represents the rotation axis and angular velocity at 
which any orientation frame fixed to body C  rotates relative 
to any orientation frame fixed to body D , and is expressed 
in [r], i.e.,

	 [ ]r
C

D~  ~ AngularVelocityCoord ( , , [ ]) .rC D

The angular velocity vector representation is a three-
dimensional vector x y z

T
~ ~ ~^ h  containing the coordi-

nates of a vector ~  along the rotation axis in [r] whose 
norm is equal to the angular velocity ~ . The angular veloc-
ity vector representation does not impose any semantic 
constraints.

Rotation Matrix Time Derivative
The rotation matrix time derivative, ,R[ ]b D

C o  is the derivative 
of the rotation matrix, ,R[ ]

[ ]
b

a
D
C6  expressing the relative orienta-

tion of orientation frame [a] fixed to body C  with respect to 
any orientation frame fixed to body D  and expressed in ori-
entation frame [b], i.e.,

	 R[ ]b D
C o  ~ AngularVelocityCoord , , .bC D^ h6 @

The rotation matrix time derivative imposes the same 
semantic constraint as the rotation matrix, i.e., that the 
coordinate frame is equal to the orientation frame fixed to 
body D .
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Twist Coordinate Representations

Six-Dimensional Vector Twist
A six-dimensional vector twist t[ ]r

e
D

C  [6] combines 1) the 
angular velocity vector [ ]r

C
D~  of body C  with respect to body 

D  expressed in [r], plus 2) the linear velocity vector p[ ]
,

r
eD Co  

of a point e fixed to body C  with respect to body D  
expressed in [r] into a six-dimensional vector as

	 .t
p[ ]

[ ]

[ ]
,r

e r

r
e

C
D

C
D

D C

~
=

o
e o 	 (14)

The six-dimensional vector twist semantically corresponds to

	 t[ ]r
e

D
C  ~ TwistCoord , , ,e rC D^ h6 @

and does not impose semantic constraints.

Instantaneous Screw Axis
The instantaneous screw axis (ISA) of a twist is a line 
around which the angular velocity occurs and the line 
along which the linear velocity occurs, and can be seen as a 
limit case of the screw axis (see the “Screw Axis” section) 
for infinitesimal displacements.

The instantaneous screw axis coordinate representa-
tion consists of a set of Plücker coordinates [8], [9], [13] 

d m T^ h  that are used to locate the instantaneous screw 
axis in space (consisting of two three-dimensional vectors 
d and m that identify the direction and location of the 
axis, respectively), the angular velocity ~ , and the linear 
velocity v, d m v T

~^ h . 
The ISA coordinate representation expresses the linear 

velocity of a point s on the screw axis, i.e.,

	 ISA[ ]r
C

D  ~ TwistCoord , , ),s rC D^ 6 @

thereby imposing a semantic constraint.

Forces, Torques, and Wrenches
Screw theory [2], [3], the algebra and calculus of pairs of 
vectors that arise in the kinematics and dynamics of rigid 
bodies, shows the parallel between wrenches, consisting of 
the torque and force vectors, and twists, consisting of linear 
and angular velocity vectors.

The parallelism between linear, angular velocity, and 
twist, on the one hand, and torque, force, and wrench, on 
the other hand, is directly reflected in the semantic repre-
sentation (see supplemental material Section D, Table V) 
and the coordinate representations.

Discussion and Conclusion
In this article, we described the complete semantics underlying 
the rigid-body geometric relations of position, orientation, 
pose, linear velocity, angular velocity, and twist, including all the 
choices to be made when specifying these geometric relations. 
This clear definition of the semantics serves as a proposal for 
standardization, forcing researchers and application developers 

to reveal all the hidden assumptions in their geometric rigid-
body relations. This article illustrated the usefulness of the pro-
posed semantics using several examples from robotics.

The proposed semantics allows to develop software for 
geometric operations that include semantic checks. This will 
avoid commonly made errors and hence reduce application 
(and, especially, system integration) development time con-
siderably. We make concrete suggestions for semantic inter-
faces for geometric operation software libraries. 

Multimedia
To download the supplemental material mentioned in this 
tutorial, see it on IEEE Xplore and click on the multimedia icon.
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