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Abstract— Crop growth stage is important information for 

decision making in many related agricultural sectors. In-time 

accurate estimation of crop growth stage is desired. Kernel-fitting 

of time series vegetation indices have shown potential in 

estimating crop growth stage while tolerant to noisy data and 

missing data. The challenge to apply such models is dealing with 

current year when incomplete data are available. This study 

proposed a progressive double sigmoid model that leverages the 

existing best model to compensate the incompleteness of data. 

The progressive double sigmoid modeling algorithm has three 

stages of estimation: pre-peak, early post-peak, and late post-

peak. Simulation results and experiments showed that the 

progressive version of double sigmoid algorithm solved the 

problem of fitting model with insufficient data at early stages. 

Double sigmoid models have been compared with other 

alternative approaches in different treatment of data analysis. 

The results showed that double sigmoid models performed better 

than moving median window smoothing and Savitzky-Golay 

alone. Further studies may consider optimizing season partitions 

and thresholds. 

Keywords-component; corn growth stage, MODIS. �DVI. time 

series. phenology 

I.  INTRODUCTION 

Crop growth stage is an important piece of information for 
decision making activities related to crop management and 
food security[1]. In-time accurate estimation of crop growth 
stage is required during growing season. Remote sensing 
approaches have been proved to be efficient in determining 
several featured stages[2–4]. Phenological stages are often 
estimated from the detected feature stages[5–10]. The detection 
of feature stages relies on the underlying profile of vegetation 
index. Different crops have different profiles and hence 
different threshold or feature points should be used in 
determining the stages[11]. Another challenge is the noises in 
remotely sensed data due to clouds and atmospheric 
condition[12], [13]. To enable the operational detection of crop 
growth stage, we developed an algorithm for automatic 
detection of crop growth stage from a multi-stage kernel-fitted 
time series of Normalized Differentiate Vegetation Index 
(NDVI) during crop growing seasons. As shown in another 
paper[14], different smoothing approaches have different effect 
on crop condition assessment results. Hence, adopting different 
smoothed data in modeling of crop growth will generate 

different results. In this paper, multiple experiments have been 
evaluated. 

II. METHODOLOGY 

A. Remote Sensing Growth Stage Esitmate 

Use of time series NDVI and other Earth Observation based 
indices starts with detection of special feature stages and then 
interpolates other non-detectable stages. The most studied 
feature stages are onset of green and end of green[15]. They are 
somewhat loosely related to physiological phenology  of 
vegetations[15], [16]. Depending on the smoothing algorithms 
and extraction strategies of feature stages, methods can be 
grouped into thresholds[17], empirical modeling,[18] change 
ratio thresholds[19], [20], maximum change rate[21], and 
logistic function fitting[22], [23]. It was reported that double 
sigmoid function fitting performed well in crop growth stage 
estimation[7], [22]. Therefore, double sigmoid function was 
chosen as the primary model to be fitted. 

Our study on crop condition assessment has experimented 
with other alternative models[14]. These models are also 
considered for comparative study on crop stage estimation. 

B. Double Sigmoid Model Fitting 

Double sigmoid is used as the base kernel. The crop growth 
stage estimation algorithm uses different fitting strategies at 
different stages. Base kernel is determined from modeling 
annual NDVI profiles of previous years at pixel level. Double 
sigmoid (DSig) fitting combines two sigmoid functions as 
shown in (1). 
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Where, Y is NDVI valu, t is time in days or weeks mostly, 
and  �,  �, �� and �� are parameters to be estimated. 

C. Progressive Double Sigmoid Model Fitting Algorithm 

To allow the operational detection of crop growth stage in 
current year when incomplete data are available in early 
growing season, we differentiate the stages for parameters to  
be fitted. Three conditioned models are used depending on 
what stage it is on the NDVI profile position: (1) pre-peak, (2) 
early post-peak, and (3) later post-peak. At early two stages, 
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previous year or closely related existing model are used as the 
base to allow partial parameter fitting with limited data. The 
transactions between stages of estimation methods are 
determined by evaluating the root mean square error of 
modeled results against actual values up to the present day. An 
empirically determined, small RMSE threshold value is used. 
In the sequence of three stage models, two models are tried and 
evaluated. If the next stage model produces lower RMSE than 
the previous model and lower RMSE than the threshold, the 
switching of stage model happens from that day on. The 
following describe the major steps of the algorithm of the 
adapted crop growth model for estimating the crop growth 
stages. 

1) Selection of good crop DSig model: The program 
computes a good model for every pixel (250 m spatial 
resolution). Considering the locality of models 
induced by many uncontrolled factors, we select the 
model as close as the one under study in terms of 
temporal and spatial closeness. Crop type should be 
the same. The good model is described using the four 
parameters, � ,  � , ��  and �� . The “closeness” is 
defined as follows: a) same crop type, b) temporally 
close, i.e. within the past one to three years, and c) 
spatially close, i.e. close pixel’s models if no previous 
pixel’s model meets the requirements along the 
temporal dimension. 

2) Pre-peak DSig model and crop stage estimate: Before 
the occurrence of peak NDVI, all four parameters 
cannot be estimated using the data of current year. 
The best estimate of model can be assumed to be 
similar to the good crop DSig model on the same crop 
but a shift of position. Therefore, the parameter to be 
estimated is the shift, s, as shown in the following 
function. � , � , ��  and ��  will be those of the 
previous good model as shown in (2). 
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Where, s is the only parameter to be estimated. 

 

3) Early post-peak DSig model and crop stage estimate: 
After the peak value occurred, it is possible to 
accurately model the first half sigmoid function and 
positions, but the span of second sigmoid function is 
not easy to accurately model. In this case, the width of 
previous good DSig model will be used. Therefore, 
the parameters, �

� , .�
� , and .��

� , are to be estimated. 
The width �� is directly borrowed from the previous 
good DSig model as shown in (3). 
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Where, �
� ,  .�

� , and .��
�  are parameters to be estimated. 

4) Later post-peak DSig model and crop stage estimate: 
Close to the end of growing season, the available data 

of the current year allow the model construction with 
a reasonable accuracy. All four parameters can be 
estimated using the data of current year as shown in 
(4). 
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Where, �
� , .�

� , .��
� , and ��

�  are parameters to be estimated. 

D. Corn Phenological Stages 

Once the model is built up for the whole year, two 
searching strategies are used with a given threshold – local 
threshold and global threshold[24], [25]. Global threshold uses 
the value given as the actual threshold value to conduct the 
search while local threshold uses an adjusted threshold against 
the range of actual data model. Local threshold guarantees that 
a match threshold day to be found. Global threshold does not 
guarantee a match threshold day if the fitted model is off.  

Five phenological stages of corn are monitored during the 
growing season in the US[26], [27]. They are 1) emerged, 2) 
silking, 3) dough, 4) dent, and 5) mature. Threshold approach 
is adopted in the study, similar to those in [17], [24], [25]. For 
the convenience of comparison across different models, we 
fixedly using thresholds 0.55, 0.75, 0.99, 0.75, and 0.55 [24] to 
respectively correspond to the five phenological stages of corn 
-  emerged, silking, dough, dent, and mature. These threshold 
values are tried out with both global and local threshold search. 
The first half of the threshold search starts from minimum and 
the second half does from maximum. In other words, threshold 
search for emerged (0.55), silking (0.75), and dough (0.99) 
search from minimum, and dent (0.75) and mature (0.55) from 
maximum. 

E. Alternatives for Pre-processing, Smoothing, and Stage 

Estimaton 

Noises and different ways of handling scaling (mixed 
pixels) can affect the model performances as shown [14].  The 
factors taken into consideration are: 1) smoothing algorithms or 
underline model, 2) threshold strategy, 3) pre-processing 
approach, and 4) masking strategies. As an extension of the 
comparative study of crop condition assessment to crop growth 
stage, we compared 32 experiments as shown in Table 1. For 
pre-processing of data, we implemented two typical 
approaches, Best Index Slope Extraction (BISE)[25] and linear 
interpolation (LI)[24], to deal with missing data and noisy data. 
In Table 1, we used the same name convention for smoothing 
algorithm and masking as those in [14], to facilitate the easy 
cross reference to the behaviors of experiments between those 
on crop condition assessment and on crop stage estimation. 

TABLE I.  CROP STAGE ESTIMATION EXPERIMENTS 

Experiment 
Description 

Smooth
a
 T

b
 Pre-

c
 Mask

d
 

dsigglobndvi DSIG G B M0 

dsigglobndvi.mask100 DSIG G B M100 
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Experiment 
Description 

Smooth
a
 T

b
 Pre-

c
 Mask

d
 

dsigglobndvi.mask90 DSIG G B M90 

dsigglobsm4253Htwice3ndv

i.mask100 
4253 G B M100 

dsigglobsmbsplinendvi.mas

k100 
BS G B M100 

dsigglobsmdsigndvi.mask10

0 
DSIG2 G B M100 

dsigglobsmpoly5ndvi.mask

100 
POL5 G B M100 

dsigglobsmsavgol3ndvi.mas

k100 
SG G B M100 

dsigndvi DSIG L N M0 

dsigndvi.mask100 DSIG L N M100 

dsigndvi.mask90 DSIG L N M90 

dsigsm4253Htwice3ndvi.ma

sk100 
4253 L B M100 

dsigsmbsplinendvi.mask100 BS L B M100 

dsigsmdsigndvi.mask100 DSIG L B M100 

dsigsmpoly5ndvi.mask100 POL5 L B M100 

dsigsmsavgol3ndvi.mask10

0 
SG L B M100 

globndvi S0 G LI M0 

globndvi.mask100 S0 G LI M100 

globndvi.mask90 S0 G LI M90 

globsm4253Htwice3ndvi.m

ask100 
4253 G LI M100 

globsmbsplinendvi.mask100 BS G N M100 

globsmdsigndvi.mask100 DSIG G N M100 

globsmpoly5ndvi.mask100 POL5 G N M100 

globsmsavgol3ndvi.mask10

0 
SG G N M100 

locndvi S0 L LI M0 

locndvi.mask100 S0 L LI M100 

locndvi.mask90 S0 L LI M90 

locsm4253Htwice3ndvi.mas

k100 
4253 L LI M100 

locsmbsplinendvi.mask100 BS L N M100 

locsmdsigndvi.mask100 DSIG L N M100 

locsmpoly5ndvi.mask100 POL5 L N M100 

locsmsavgol3ndvi.mask100 SG L N M100 

a. Smoothing algorithms include 1) S0 – no smoothing algorithm applied; 2) 4253 – 

smoothing algorithm 4253H, Twice; 3) BS-cubic B-Spline; 4) DSIG – double sigmoid 

fitting; 5) POL5 – degree 5 polynomial fitting; 6) SG – Savitzy-Golay filtering; 7)DSIG2 
– twice double sigmoid fitting.  

b. Threshold approach: 1) G – global threshold; 2) L – local threshold; 

c. Pre-processing: 1) B - Best Index Slope Extraction; 2) LI – 

linear interpolation; 3) N – no special pre-processing.  

F. Evaluation Framework 

Fig. 1 shows the overall workflow to evaluate different 
approaches. USDA NASS QuickStats[28] was used to retrieve 
the survey data online. There are steps to estimate crop growth 
stages using remotely sensed data, i.e. 1) pre-processing, 2) 
model fitting/smoothing, and 3) growth stage exctraction. 

 

 

Figure 1.  A workflow for evaluating crop stage estimate 

The root mean square error (RMSE) between estimated and 
surveyed percentage is done at state level which is the level 
where crop growth reports publicly available during growing 
season. The estimated stage percentage is summarized from 
corn pixels of a state.  

G. Evaluation Dataset 

Daily NDVI dataset for the whole year of 2006 were 
retrieved from VegScape[29].  Quality layer of original 
MODIS Surface Reflectance Dataset was used to flag cloud 
pixels[30]. For testing the progressive model and evaluate its 
behavior in details, we used the average daily NDVI series of 
2009 and 2010 in Black Hawk, Iowa, U.S.A. 

III. RESULTS AND DISCUSSIONS 

A. Double sigmoid crop stage estimation 

Fig. 2 shows the double sigmoid model fitted to the average 
daily NDVI series of year 2009 in Black Hawk County, Iowa, 
USA.  The fitted model represents well all the important 
features of interest. Peak has good match and two tails end at 
the same days. With BISE, out envelope (green circles) was 
captured well. 
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Figure 2.  Double sigmoid fitting for  year 2006, Black Hawk, Iowa, US 

 

Fig. 3 shows the animated effect of shifting an existing 
model. This demonstrates what the progressive DSig algorithm 
does during pre-peak stage. The resulted model reserves the 
curve form. Fig. 4 shows the case when the program forcefully 
constructs the model without using conditioned models with 
partial parameters from an existing good model. The severe 
distortion of constructed models is obvious. Fig. 5 shows the 
results when the progressive double sigmoid model is applied. 
With the special handling of three stages, the distortions of 
models were significantly reduced. 

Overall, the results of constructing and executing the 
models against time series NDVI in Black Hawk, Iowa showed 
the feasibility of the algorithm in detecting corn growth stages. 
Further development of the algorithm is to seek improvements 
in model selection and comparing with varieties of Markov 
models. 

 

 

Figure 3.  Effect of shitfing existing model 

 

 

Figure 4.  Yearly double sigmoid models 

 

 

 (With limited data, the models were built for the whole 
year. Notice the severe distortions of the fitted models.) 

 (The model of 2009 was used but shifted to fit model with  
limitedly available datasets during pre-peak stage. Notice 
the shape of the overall year is kept.) 

 (This is the double sigmoid model of NDVI time series of 
2009 in Black Hawk, Iowa. Red circles are data to be 
eliminated using BISE. Green circles represent data 
retained after applying BISE algorithm. Blue curve is the 
double sigmoid model built using the whole year data. ) 
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Figure 5.  Progressive double sigmoid models 

 

B. Results of Experiments 

Fig. 7 and 8 give the RMSE results of 32 experiments for 
the year of 2006, Iowa, US. The following can be observed 
from the results. 

1) Double sigmoid models have relatively low RMSE: All 

experiments with double sigmoid models applied have 

relatively lower RMSE than the rest. All experiments with 

DSig are less than 50% while others without DSig, such as 

4253H, Twice, Savitzky-Golay, and non-smoothed model, 

have RMSE higher than 50%. 

2) The lowest RMSE is still higher than 20%: The 

experiments with lowest RMSE are locsmpoly5ndvi.mask100 

(RMSE: 24.56%), globsmbsplinendvi.mask100 (RMSE: 

24.6%) and dsigglobsmsavgov3ndvi.mask100 (RMSE: 

35.4%). Their values of RMSE are still quite high. The causes 

for such high RMSE may be related to the selection of 

thresholds. The thresholds are fixed without going through any 

adjustment to the area under study. Lower RMSE should be 

achieved if improved thresholds are chosen based on 

analyzing historical dataset. 

 
Figure 6.  RMSE Results of Corn Growth Stage with Different Experiments 

in 2006, Iowa, USA (Part 1/2) 

 

 
Figure 7.  RMSE Results of Corn Growth Stage with Different Experiments 

in 2006, Iowa, USA (Part 2/2) 

  

 

 (Three stages for predicting corn growth stages of 2010 in 

Black Hawk, Iowa. Red circles are data to be eliminated 

using BISE. Green circles represent data retained after 

applying BISE algorithm. Blue curve is the double sigmoid 

model built using (2) from the data of current year before 

peak day occurred, or 208 in this case. Cyan curve is the 

double sigmoid model built using (3)  from the data of 

current year some days after peak day occurred. Cyan 

curve is the double sigmoid model built using (4) from the 

data of current year close to the end of season. ) 
) 
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IV. CONCLUSIONS 

A progressive double sigmoid modeling algorithm was 
proposed to improve the model fitting of current year when 
limited data are available. Illustrations from modeling time 
series of NDVI showed that the progressive model maintained 
the curve shape and reduced the effect of distorted models in 
early half of the growing season. Comparing to other 
alternative models with different smoothing algorithms, pre-
processing measures, threshold search strategies, and scaling, 
DSig models had a relative low RMSE. 

Further improvements on the models should consider the 
optimization of thresholds by using historical data to train and 
select thresholds. Another potential to improve the accuracy of 
DSig model fitting is partition the growing season and limit the 
DSig model to fit mono-modal part over a year of daily NDVI 
series. 
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