
Gran: model checking grsecurity RBAC policies

Michele Bugliesi Stefano Calzavara Riccardo Focardi Marco Squarcina

DAIS, Università Ca’ Foscari
Venezia, Italy

{michele,calzavara,focardi,msquarci}@dais.unive.it

Abstract—Role-based Access Control (RBAC) is one of the
most widespread security mechanisms in use today. Given
the growing complexity of policy languages and access con-
trol systems, verifying that such systems enforce the desired
invariants is recognized as a security problem of crucial
importance. In the present paper, we develop a framework
for the formal verification of grsecurity, an access control
system developed on top of Unix/Linux systems.

The verification problem in grsecurity presents much of
the complexity of modern RBAC systems, due to the presence
of policy state changes that may arise both from explicit ad-
ministrative primitives supported by grsecurity, and as the
result of the interaction with the underlying operating system
facilities. We develop a formal semantics for grsecurity’s
RBAC system, based on a labelled transition system, and
a sound abstraction of that semantics providing a bounded
approximation, amenable to model checking. We report on
the result of the experimental analysis conducted with gran,
the model checker we implemented based on our abstract
semantics, on existing public servers running grsecurity
to implement their RBAC systems.

I. INTRODUCTION

Role-based Access Control (RBAC) is one of the most

widespread security mechanisms in use today, and has been

the subject of extensive research for more than a decade

now. The central idea in the RBAC model is to factor the

assignment of access rights into two steps, separating the

distribution of permissions to system-specific roles, from the

assignment of users to roles, so as to simplify the overall

access control management task [1].

Most of the research work on RBAC (see, e.g., [2], [3],

[4]) has focused on policy verification, a problem of critical

importance for system administrators, and a challenging one

due to the complexity of the policies to be verified and to the

state changes that arise in their management. State-change is

not specific to RBAC: traditional access control frameworks

such as those studied in the seminal work of [5] include

rules to affect the structure of the access control matrix,

defining the permissions granted to subjects on objects.

Modern administrative RBAC (ARBAC) systems present

similar features by providing system administrators with

expressive languages for manipulating RBAC policies by re-

Work partially supported by the RAS Project “TESLA: Techniques for
Enforcing Security in Languages and Applications” and by the MIUR
Project IPODS “Interacting Processes in Open-ended Distributed Systems”.

assigning users to roles and/or modifying the assignment of

permissions to roles [1].

Policy verification in access control systems has tradition-

ally been stated as a safety question, answered by means of

a reachability analysis: for instance, user-role reachability

in ARBAC systems formalizes the problem of determining

whether, given an initial policy state, a target user and a

role, there exists a sequence of state changes leading to a

state in which the target user is impersonating that role.

As it turns out, this kind of analysis is challenging, as the

procedural nature of state change languages often creates

subtle, undesired effects that are hard to anticipate without

the aid of a tool for analysis.

Model checking [6] has emerged as a promising technique

for automated policy verification [4], [7], [8]. The idea is

exactly as in program verification, with the set of state-

change rules playing the role of the program to be tested,

and the reachability question as the property of interest: to

counter the state explosion that often affect the analysis,

making it unscalable to the point of making the problem

intractable [8], researchers have advocated the usage of

abstraction techniques [9].

In the present paper we continue along this line of

research, focusing our attention on the formal verification

of grsecurity [10], an access control system developed

on top of Unix/Linux systems. grsecurity is deployed

as a patch to the OS kernel that installs a reference monitor

to mediate any access to the underlying OS resources; it

supports the definition and dynamic enforcement of fine-

grained access control policies to let users operate on objects

(resources) via the subjects (executable files) provided by the

underlying file system. Users are organized in roles, which

are in turn structured as to identify a subset of privileged

roles with higher capabilities on the system resources, and

administrative control of the access control policies.

The verification problem in grsecurity presents much

of the complexity of Administrative RBAC systems, due

to the presence of policy state changes: these may arise

either from explicit administrative actions for manipulating

users and roles, as well as from the interaction between

grsecurity’s access control and the facilities provided

by the underlying operating system for setting user ids,

hence dynamically changing users and associated roles by

executing binaries operating in setuid mode [11]. This

2012 IEEE 25th Computer Security Foundations Symposium

v/12 $26.00 © 2012 IEEE

DOI

119

2012 IEEE 25th Computer Security Foundations Symposium

© 2012, Michele Bugliesi. Under license to IEEE.
DOI 10.1109/CSF.2012.29

119

2012 IEEE 25th Computer Security Foundations Symposium

126

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

dependency from state changes on the executable binaries

of the underlying file system further complicates the model

checking problem, as it causes the size of the search space

to grow unbounded in the number of states and transitions.

We tackle the problem by resorting to an abstraction tech-

nique, by which the behavior resulting from the unbounded

set of subjects available in the underlying file system is

captured by the finite number of subjects that are listed in

the security policy, which represents the input of the model

checker. We prove the abstraction sound and complete, and

employ it to carry out a reachability analysis on RBAC

policies target at unveiling (potential) security leaks, leading

to unintended accesses to sensitive resources.

The contribution of this paper may be summarized as

follows:

• we develop a formal semantics for grsecurity’s
RBAC system, based on a labeled transition system; be-

sides providing the fundamental building block for our

analysis, the LTS semantics has proved interesting in

itself, as it made it possible to understand the subtleties

of grsecurity’s RBAC rules, and to unveil a flaw

arising from the interplay between the access control

systems supported by Linux and grsecurity. As we

discuss in Section III-D, this flaw makes it possible

to unexpectedly bypass the imposed grsecurity
capability restrictions when executing a setuid/setgid

binary [12];

• we introduce an abstract semantics which provides a

bounded, yet sound and complete, representation of the

dynamic evolution of the grsecurity policy states

arising in the formal semantics; based on that, we

develop a framework for reachability analysis aimed

at detecting the presence of access leaks in any given

policy;

• we implement our framework in gran, a tool for the

automatic analysis of grsecurity policies: the tool

takes as input an RBAC policy, a user u, a set of initial

states for u (associated with the possible subjects that

may impersonate u) and a target file / object o, and

checks whether there is a path of state changes leading

to a state that grants u access to o;
• we provide a report of experiments we conducted with

the analysis of policies in use on existing, commer-

cial servers running grsecurity to implement their

RBAC systems.

Structure of the paper: Section II reviews the basic con-

cepts and notions behind grsecurity; Section III presents

our formal semantics of the grsecurity RBAC system;

Section IV describes the abstraction for the verification of

grsecurity policies, and shows its formal correspon-

dence to the previous semantics; Section V describes gran
(grsecurity analyzer), a tool that automatically looks

for security leaks in real grsecurity policies; Section

VI illustrates gran at work on some case studies; Section

VII discusses related work and Section VIII concludes the

presentation with final remarks and a discussion of future

work.

II. BACKGROUND ON GRSECURITY

grsecurity is a patch for the Linux kernel focused

on security at the operating system level. It provides many

different features on latest stable kernels, implementing a

“detection, prevention, and containment” model [10]. In

addition to the role-based access control (RBAC) system,

which is the focus of this paper, grsecurity offers pro-

tection mechanisms against privilege escalation, malicious

code execution and memory corruption; it also implements

an advanced auditing system. grsecurity is typically

adopted by hosting companies to harden web servers and

systems providing services to locally logged users [13].

A. Grsecurity RBAC

grsecurity complements the standard discretionary

access control (DAC) mechanism provided by Linux with

a form of mandatory RBAC, providing an additional

layer of protection. In the rest of the paper we identify

grsecurity with its RBAC system.

The specification of the access control requirements is

provided by a policy, whose structure is described in Sec-

tion II-B. The policy defines the available roles, which can

be of four different types. User roles are an abstraction of

standard users in Linux systems, i.e., they provide a hook

to extend the traditional DAC permission system with more

sophisticated mechanisms, available only in grsecurity.
Group roles provide a similar device for actual groups of the

system. Special roles, instead, are not directly associated to

traditional users and groups, and they are intended to provide

extra privileges to normal accounts. A default role applies

when no user, group, or special role can be granted. The

mechanism of role assignment is discussed in Section III-C.

B. RBAC Policies

A policy defines the permissions given to each role for

the different objects stored in the file system. A further level

of granularity is introduced through the standard notion of

subject, i.e., an abstraction of a process. Namely, permissions

are not directly assigned to roles, since this would lead to a

very coarse form of access control; rather, permissions are

defined for pairs of the form role-subject. For instance, user

alice could be granted read access to the object /var
only through the subject /bin/ls.

Table I presents a snippet from a grsecurity policy.

Even if it does not show all the features provided by

grsecurity RBAC, it allows us to introduce the most

important elements considered in our formalization. The pol-

icy defines a user role (flag ’u’) alice, which is permitted

to impersonate the special role professor. Transitions to

120120127

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

Table I A snippet from a grsecurity policy

role alice u {
role_transitions professor
subject / {

/
/bin x
/boot h
/dev h
/dev/null w
/dev/pts rw
/dev/tty rw
/etc r

}

subject /bin/su {
user_transition_allow root
group_transition_allow root

/ h
/bin h
/bin/su x
/dev/log rw

}

specific users and groups of the underlying Linux system

can be allowed or forbidden at the subject level, e.g., by the

user_transition_allow attribute.

Permissions are specified in terms of access modalities for

the objects in the policy. In this case, any process executed

by alice is assigned the permissions defined for subject

“/”, except for process /bin/su which specifies its own

set of modalities. In general, any process is accredited a

set of access rights for any object in the system, according

to a hierarchical matching mechanism. For instance, subject

/bin/su inherits the rights on /etc by the less specific

subject “/”, while it overrides the permissions for /bin
with its own. Similarly, accesses to object /dev/log by

subject “/” are resolved in terms of the modalities listed

for the less specific object /dev. Complete details on this

mechanism are provided in Section III-B.

The modalities we consider mirror standard Linux permis-

sions for reading ’r’, writing ’w’ and executing ’x’, plus a

hiding mode ’h’. Subjects are completely unaware of the

presence of any hidden object, e.g., the process /bin/ls
does not even list the directory /boot when it is launched

by alice. We ignore other available modalities, which are

either irrelevant for our setting (e.g., ’p’ for ptrace rejection)

or identifiable with one of the previous modalities (e.g., ’a’
for appending).

C. User and group identifiers

Before digging into the internals of grsecurity, we

need to briefly review how users and groups are identified

in Linux systems. At the kernel level, users and groups

are not distinguished by names, but by numbers. We refer

to these numbers as user identifiers (UIDs) and group

identifiers (GIDs) respectively. When a process is started,

Linux assigns it a pair of identifiers, set to the UID of the

invoking user. These identifiers are called the effective UID

and the real UID of the process, respectively. The effective

UID determines the privileges granted to the process and

is employed, e.g., for standard DAC enforcement; the real

UID, instead, affects the permissions for sending signals.

This apparently simple mechanism is complicated by an

important subtlety related to the execution of particular

binaries in the file system. Namely, any file f may be granted

the “setuid” permission, with the following effect: when f is

executed, the effective UID of the process is set to the UID

of the owner of f , irrespective of the UID of the invoking

user; the real UID, instead, is set to the UID of the caller.

This allows for temporary acquisition of additional privileges

to perform specific tasks.

We conclude by pointing out that changing to a particular

UID is considered a sensitive operation in Linux systems and

requires the process to possess the capability CAP_SETUID.
Capabilities provide finer-grained distribution of privileges

among processes since Linux 2.2. Remarkably, capabilities

are bypassed when a “setuid” binary is executed, i.e., a

process spawned by a “setuid” binary is always allowed to

set its effective UID to the UID of the owner.

All the previous discussion applies similarly to GIDs.

III. A FORMAL SEMANTICS FOR GRSECURITY

We propose a formal semantics for grsecurity in

terms of a labelled transition system. We write f : A → B
when f is a total function from A to B, while we use

f : A �→ B when f is partial. We let f(a) ↓ denote that

f is defined on a. Let f : A1 × . . . × An �→ B and let ai
range over Ai, for any k ≤ n we stipulate f(a1, . . . , ak) ↓
if and only if ∃ak+1, . . . , ∃an : f(a1, . . . , an)↓. Finally, we

let P(A) stand for the power set of A.

A. Policies

We presuppose denumerable sets U of users and G of

groups, ranged over by u and g respectively. We also let T
denote the set of role types {u,g,s} ranged over by t; C
denote the set of capabilities {set_uid,set_gid} and

M the set of access modalities {r,w,x,h}. A policy P is

a 8-tuple:

P = (R,S,O, perms, caps, role_trans, usr_trans, grp_trans),

where:

• R is a set of roles, ranged over by r. We let Rt denote

the set of roles of type t and we assume that Rt and

Rt′ are disjoint whenever t �= t′;
• S is a set of subjects, ranged over by s, and O is a set

of objects, ranged over by o. Both subjects and objects

are pathnames, as we discuss below;

• perms : R × S × O �→ P(M) defines the permissions

granted by the policy. Namely, if m ∈ perms(r, s, o),

121121128

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

then subject s running on behalf of role r has permis-

sion m on object o;
• caps : R × S �→ P(C) determines the capabilities

allowed by the policy, i.e., if c ∈ caps(r, s), then subject

s running on behalf of role r can acquire capability c;
• role_trans : R → P(Rs) defines which special roles

can be impersonated by a given role;

• usr_trans : R×S �→ P(U) defines which user identities

can be assumed by a subject running on behalf of a

given role;

• grp_trans : R × S �→ P(G) defines which group

identities can be assumed by a subject running on

behalf of a given role.

We require a number of well-formedness constraints on

policies which formalize a corresponding set of syntactic

checks performed by grsecurity. Recall that we write

perms(r, s)↓ to denote ∃o ∈ O : perms(r, s, o)↓.
1) ∀r : perms(r,/) ↓, i.e., all roles define at least the

subject “/”;
2) ∀r, ∀s : (perms(r, s) ↓ ⇒ perms(r, s,/) ↓), i.e., every

subject in every role defines at least the object “/”;
3) there exists a default role “−” such that ∀t : − /∈ Rt.

Throughout the paper, most definitions (notably, the se-

mantic rules in Tables II and III) and notation are to be

understood as parametric with respect to a given policy. To

ease readability, we do not make such dependency explicit,

and just assume P as the underlying policy instead.

B. Pathnames and matching

Subjects and objects are collectively represented within

grsecurity policies as pathnames, and these, in turn, are

defined as sequences of “/”-separated names (or wildcards)

as customary in Unix systems. For ease of presentation, we

henceforth disregard wildcards and assume the following

simplified structure of pathnames (that always presupposes a

trailing “/”). Let n be a non-empty string non including “/”,

and let “·” note string concatenation. Pathnames are defined

by the following productions:

p ::= / | / · n · p
Pathnames are ordered according to the standard prefix

order, so that p is smaller (more specific) than, or equal

to, p′ whenever p′ is a prefix of p. Formally, the ordering

relation, noted �, is the smallest relation closed under the

following rules:

(P-TOP)

p � /

(P-PATH)

p � p′

/ · n · p � / · n · p′
Clearly, � is a partial order: this ordering is paramount

in grsecurity, as it constitutes the basic building block

underlying the mechanisms for associating subjects to pro-

cesses, and for checking access rights on objects. Specif-

ically, when a process spawned by the execution of a file

f running on behalf of a role r tries to access a file f ′,
grsecurity matches f against the most specific subject

s defined in role r such that f � s. Similarly, f ′ is matched

against the most specific object o, defined in subject s of role

r, such that f ′ � o. The permissions of o are then retrieved

to evaluate whether the process can be granted access to

f ′. For instance, according to the policy in Table I, process

/bin/cat is granted read access to /etc/fstab, since
/bin/cat matches the subject “/” and /etc/fstab
matches the object /etc defined there.

We formalize the matching relation as follows. For any

set A of path names, we let min(A) denote the minimum

element of A according to the ordering �, whenever such an

element exists. Given a pathname p, we define the matching
subject for p in role r as

match_subj(p, r) = min({s | p � s ∧ perms(r, s)↓}).
Analogously, we define the matching object for p in role r
under subject s as

match_obj(p, r, s) = min({o | p � o ∧ perms(r, s, o)↓}).
Proposition 1 below and the assumption of well-formedness

of the policy imply that match_subj(p, r) is always defined;

instead, match_obj(p, r, s) is defined only if perms(r, s)↓.
Proposition 1 (Chain Property). If p � p′ and p � p′′, then
p′ � p′′ or p′′ � p′.

Proof: By induction on the sum of the depths of the

derivations of p � p′. Base case is p � / = p′ which by

(P-TOP) implies p′′ � p′. Inductive case is when p � p′

since p = / · n · p̂ and p′ = / · n · p̂′ with p̂ � p̂′. Now, if

p′′ is / we trivially have p′ � p′′. Otherwise, since p � p′′

by (P-PATH) it must be p′′ = / · n · p̂′′ with p̂ � p̂′′. By

induction we have p̂′ � p̂′′ or p̂′′ � p̂′ that, by applying

(P-PATH), gives the thesis.

C. Role assignment

Each process in grsecurity has a role and a subject

attached to it. The assignment of the subject to the process

is performed by matching the name of the running file

against the list of subjects of the current role, as discussed in

Section III-B. Roles, instead, are assigned according to the

hierarchy “special - user - group - default”. Special roles are

granted through authentication to the gradm utility and are

intended to provide extra privileges to normal user accounts:

as such, they have the highest priority. User roles, instead,

are applied when a process either is executed by a user with a

particular UID or changes to that UID. This is possible, since

the name of every user role must match up with the name

of an actual user in the system, i.e., there exists a bijective

partial mapping from UIDs to user roles. It is worth noticing

that only the real UID of the process is considered for role

assignment. Group roles behave similarly to user roles, but

they are applied to a given process only if no user role is

122122129

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

associated to the process UID. The default role is chosen

when no other role can be given.

A further remark is in order for role assignment: even

though user roles are assigned by just looking at the real

UID of the process, the presence of “setuid” binaries must

be considered with care. We recall that a process spawned

by a “setuid” binary sets its effective UID to the UID of

the owner; however, even unprivileged (i.e., without the

capability CAP_SETUID) processes can always set their real

UID to their effective UID [11]. Binaries with the “setuid”

permission set may then come into play during the role

assignment process. As usual, similar considerations apply

for “setgid” files.

D. Semantics

We assume an underlying file system, i.e., a subset of a

denumerable set of pathnames F , ranged over by f . Let rt
range over Rt ∪ {−}, a state is a 4-tuple σ = 〈rs, u, g, f〉
describing a process spawned by the execution of file f . The
process may be impersonating a special role (when rs �= −)

and is running with real UID set to u and real GID set to g.
We identify UIDs and GIDs with elements from a subset of

U and from a subset of G, respectively. The role associated

to σ is determined by the first three components of the tuple,

according to the following function role:

role(rs, u, g) =

⎧⎪⎪⎨
⎪⎪⎩

rs if rs ∈ Rs

u if rs /∈ Rs, u ∈ Ru

g if rs /∈ Rs, u /∈ Ru, g ∈ Rg

− otherwise

The function formalizes the role assignment process, accord-

ing to the hierarchy discussed before.

Attacker Model: Our semantics tracks all role transi-

tions and subject changes allowed to a given process. The

semantics depends on an underlying Linux system hosting

grsecurity, characterized by a set of users, a set of

groups and a file system, as it is apparent by the format

of the states. However, we do not explicitly model any

change to the previous sets and we just assume them to

be denumerable; we can imagine to pick different sets after

each transition, to account for the evolution of the system as

a result of background operations. Intuitively, we consider

a worst-case scenario, in which any possible action not

conflicting with the RBAC policy is eventually performed

by the process. Of course, the resulting LTS has an infinite

number of states and transitions: this problem will be tackled

in Section IV, where we will propose an abstract, finite-

state semantics, specifically designed for automated security

analysis.

Transitions: The transition rules are reported in Ta-

ble II. Rule (SETR) accounts for login operations to special

roles: such transitions must be allowed by the role_trans
function. When r′s = −, the rule models a logout from

a special role, which is always permitted. Rule (SETU)

describes a change of the process UID, which must be

allowed by the usr_trans function; moreover, the process

must possess the capability set_uid, as we discussed in

Section II-C. Notice that s is the matching subject for file

f in the role r̂ associated to the current state. Rule (SETG)

details a similar behavior for changing the process GID.

Finally, rule (EXEC) accounts for the execution of files and

is the most interesting rule. The invoked file must indeed

be executable and it must not be hidden, since hidden files

are not visible to unauthorized processes. The execution

of the file may lead to a role change, as we explained

in Section III-C. Since we do not model which “setuid”

and “setgid” binaries are actually present in the file system

and we do not explicitly keep track of changes to file

permissions, we simply assume that the execution of the

file may trigger any user or group transition allowed by the

policy for the current state. Of course, we also consider the

possibility that the execution does not alter the identifiers of

the process.

This subtle behavior when executing setuid/setgid pro-

grams was unknown before we started our formalization. In

Section VI, we will illustrate that it is potentially harmful for

security. This has also been reported to the main developer

of grsecurity, who confirmed our findings. A fix has

already been implemented in the latest stable release of

grsecurity [12]. The solution consists in requiring the

capabilities CAP_SETUID/CAP_SETGID to perform role

transitions, even upon execution of setuid/setgid binaries.

IV. VERIFICATION OF GRSECURITY POLICIES

While suitable for describing the operational behavior

of grsecurity, the semantics presented in Section III

is not amenable for security verification, as we discuss

below. We thus propose a different semantics, designed for

security analysis, which is an abstraction of the previous

one, while being suitable to be model-checked. We also

outline some properties of grsecurity policies which we

consider interesting to verify and we formalize them in our

framework.

A. An abstract semantics for grsecurity

The main problem with the presented semantics is that it

hinges on many elements specific to the underlying Linux

system hosting grsecurity, i.e., users, groups and files.

Remarkably, all these elements are inherently dynamic, so

any changes to them must be accounted for in the semantics

to get a sound tool for security analysis. As a result, the

corresponding LTS has infinite states and transitions, making

security verification difficult to perform, inaccurate, or even

infeasible. We thus design a simple abstract semantics for

grsecurity, depending only on the content of the policy,

which can be reasonably assumed to be static. If the policy

happens to change during the lifetime of the hosting system,

123123130

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

Table II Semantics of grsecurity

(SETR)

r̂ = role(rs, u, g) r′s ∈ role_trans(r̂) ∪ {−}
〈rs, u, g, f〉 set_role(r′s)−−−−−−→ 〈r′s, u, g, f〉

(SETU)

r̂ = role(rs, u, g) s = match_subj(f, r̂)
u′ ∈ usr_trans(r̂, s) set_uid ∈ caps(r̂, s)

〈rs, u, g, f〉 set_UID(u′)−−−−−−−→ 〈rs, u′, g, f〉

(SETG)

r̂ = role(rs, u, g) s = match_subj(f, r̂)
g′ ∈ grp_trans(r̂, s) set_gid ∈ caps(r̂, s)

〈rs, u, g, f〉 set_GID(g′)−−−−−−→ 〈rs, u, g′, f〉

(EXEC)

r̂ = role(rs, u, g)
s = match_subj(f, r̂) o = match_obj(f ′, r̂, s)

x ∈ perms(r̂, s, o) h /∈ perms(r̂, s, o)
u′ ∈ usr_trans(r̂, s) ∪ {u} g′ ∈ grp_trans(r̂, s) ∪ {g}

〈rs, u, g, f〉 exec(f ′)−−−−−→ 〈rs, u′, g′, f ′〉

we simply consider a different LTS and we perform again

any relevant analysis.

We start from some simple observations. First, we note

that users and groups are immaterial to grsecurity, as
only the role assigned to a process is relevant for access

control. Second, we observe that also the actual content of

the file system is somewhat disposable, since all granted

permissions are determined by finding out a matching sub-

ject or object. We thus define an abstract state as a 4-tuple

σa = 〈rs, ru, rg, s〉 describing a process spawned by the

execution of some file f � s. The role assigned to the

process is again determined by the first three components

of the tuple and can be retrieved by overloading the type of

the function role defined previously.

We first abstract from impersonation of user identities.

The intuition here is that, in general, only a subset of the

users has an associated user role, according to the definition

of the policy, and all other users can be identified by

grsecurity to the special identity “−”. We thus define

the abstraction of a user u, denoted by �u�, as follows:

�u� =

{
u if u ∈ Ru

− otherwise

We define the abstract version of the usr_trans function,

noted �usr_trans�, as the partial function with the same

domain of usr_trans such that for, every r and s, we have:

�usr_trans�(r, s) = {�u� | u ∈ usr_trans(r, s)}
In other words, transitions to users with no associated user

role are collapsed to transitions to the special identity “−”.

We introduce analogous definitions also for groups and

group transitions.

�g� =

{
g if g ∈ Rg

− otherwise

�grp_trans�(r, s) = {�g� | g ∈ grp_trans(r, s)}

We still need to address the most challenging task for the

definition of the new semantics, i.e., the approximation of the

behaviour of grsecurity upon file executions. The idea

is to identify the executed file f with its matching object

o: as a consequence of this abstraction, we can only find

out an approximation for the subject to assign to the new

process. This is done in terms of a set of possible matches,

elaborating on the following observations:

• since o is the matching object for f , then f must be

at least as specific as o (f � o). Thus, we can take as

an upper bound for the new subject the most specific

subject which is no more specific than o, i.e., the subject

min({s′ | o � s′}). For instance, the execution of the

file /bin/ls, matching the object /bin/ls, may

lead to the impersonation of the subject /bin only

if the more specific subject /bin/ls does not exist;

• since we do not know how much specific is f , every
subject s′ no more generic than o (s′ � o) may be

a possible match. However, we can filter out all the

subjects which would be associated to the execution

of a more specific object o′ which overrides o, i.e.,

we consider the set {s′ | match_obj(s′, r, s) = o},
where r and s identify the current role and subject.

For instance, the execution of a file in /bin, matching

the object /bin, may lead to the impersonation of

subject /bin/ls only if there does not exist the object

/bin/ls. Indeed, when object /bin/ls exists, the

execution of the file /bin/ls matches /bin/ls and

not the less specific object /bin. Note that the file

/bin/ls may even be non-executable, according to

the policy specification for the object /bin/ls.

This reasoning leads to the following definition of image of

an object o, given a role r and a subject s:

img(o, r, s) = {s′ | match_obj(s′, r, s) = o}
∪ {min({s′ | o � s′})}

124124131

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

Again Proposition 1 and the well-formation of the policy

imply that such a notion is always well-defined.

We finally present in Table III the reduction rules for the

abstract semantics.
Rule (A-SETR) is identical to rule (SETR), while rule

(A-SETU) is the counterpart of (SETU), abstracting from

the users of the system. When r′u = −, the rule matches a

transition to a user with no associated user role. Clearly, rule

(A-SETG) behaves in the same way for group roles. Finally,

rule (A-EXEC) accounts for the execution of processes.

Again, the choice of the new user and group role assumes a

worst case scenario, in that every user and group transition

which is allowed by the policy is taken into account by

the rule. The new subject is drawn from the image of an

executable object, according to the described approximation.

We conclude this subsection with two observations on

the abstract semantics. First we note that, for any finite

policy, the resulting LTS has a finite number of states and

any state has a finite number of outgoing transitions, since

both states and labels are built over finite sets. The LTS

can then be effectively explored using standard techniques.

We also underline our design choice to include states whose

subject is not defined in the current role. Indeed, in our

semantics we enforce an explicit match of the current subject

against the subjects defined for the role. This choice leads

to an increment of the size of the LTS, since we introduce

a number of somewhat equivalent states; however, such a

decision allows for a much more accurate security analysis,

as we discuss in Section IV-C.

B. Correlating the two semantics
We now prove that the abstract semantics in Table III is a

sound approximation of the concrete semantics in Table II,

in that every transition in the concrete semantics has a

corresponding transition in the abstract semantics.
Formally, we abstract a file f in terms of the most specific

subject which is no more specific than f itself, i.e., we let

�f� = min({s | f � s}). We can now define the abstraction

of a concrete state σ = 〈rs, u, g, f〉 as the abstract state

�σ� = 〈rs, �u�, �g�, �f�〉.
Proposition 2 (Identity Preservation). The following equal-
ities hold:
(i) role(rs, u, g) = role(rs, �u�, �g�);
(ii) match_subj(f, r) = match_subj(�f�, r).

Proof: For (i) we observe that u = �u� if u ∈ Ru and

g = �g� if g ∈ Rg. When, instead, u �∈ Ru and g �∈ Rg we

have role(rs, u, g) = role(rs,−, g) = role(rs, �u�, g) and

role(rs, u, g) = role(rs, u,−) = role(rs, u, �g�), giving the

thesis. Item (ii) holds since {s | f � s} = {s | �f� � s},
by definition of �f�.

Lemma 1 (Abstract Execution). If match_obj(f, r, s) = o,
then �f� ∈ img(o, r, s).

Proof: We first observe few, auxiliary properties. Let

p � p′, then one has:

(a) �p� � p′ or p′ � �p�;
(b) �p� � �p′�;
(c) match_obj(p, r, s) � match_obj(p′, r, s).
(a) follows directly by Proposition 1 from the observation

that p � �p�; (b) and (c) follow immediately by noting that

{p̂ | p′ � p̂} ⊆ {p̂ | p � p̂}, by transitivity of �.

We are now ready to prove the Lemma. We must show

that either match_obj(�f�, r, s) = o or �f� = min{s′ | o �
s′} = �o�. Since match_obj(f, r, s) = o, we have f � o.
Then, by (a) we can distinguish two cases, namely �f� � o
or o � �f�:

• let �f� � o and let us assume by contradiction that

match_obj(�f�, r, s) �= o. Since match_obj(f, r, s) =
o, we have match_obj(o, r, s) = o, which implies

match_obj(�f�, r, s) � o by (c) and assumption

match_obj(�f�, r, s) �= o. Given that f � �f�, we then

have match_obj(f, r, s) � match_obj(�f�, r, s) by (c),

which implies match_obj(f, r, s) � o by transitivity,

giving a contradiction;

• let o � �f� and let us assume by contradiction that

�o� � �f�, i.e., �o� � �f� and �o� �= �f�. Since f � o,
we have �f� � �o� by (b), thus we have �f� = �o� by

antisymmetry, giving a contradiction.

Theorem 1 (Soundness). If σ
α−→ σ′, then there exists a

label β such that �σ�
β−→a �σ′�.

Proof: By a case analysis on the rule applied to derive

σ
α−→ σ′. If the rule is (SETR), the conclusion follows by

the first item of Proposition 2. If the rule is (SETU) or

(SETG), the conclusion relies on both items of Proposition 2

that imply that r̂ and ŝ in the abstract semantics are the

same as r̂ and s in the concrete semantics and consequently,

�u′� ∈ �usr_trans�(r̂, ŝ) and �g� ∈ �grp_trans�(r̂, ŝ). If

the rule is (EXEC), we conclude again by Proposition 2,

in combination with Lemma 1 which additionally implies

�f ′� ∈ img(o, r̂, ŝ).

Interestingly, our formalization enjoys also a completeness

result, which states that every transition in the abstract

semantics has a corresponding transition in the concrete

semantics for some Linux system hosting grsecurity,
as far as there exist at least one user and one group that do

not have a corresponding role defined in the policy.

Lemma 2 (Concrete Execution). If s′ ∈ img(o, r, s) and
perms(r, s, o) ↓, then there exists f such that �f� = s′ and
match_obj(f, r, s) = o.

Proof: Since s′ ∈ img(o, r, s), we can distinguish two

cases. If s′ = �o�, we let f = o. Otherwise, if s′ � o and

match_obj(s′, r, s) = o, we let f = s′.

125125132

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

Table III Abstract semantics of grsecurity

(A-SETR)

r̂ = role(rs, ru, rg) r′s ∈ role_trans(r̂) ∪ {−}
〈rs, ru, rg, s〉 set_spec(r′s)−−−−−−−→a 〈r′s, ru, rg, s〉

(A-SETU)

r̂ = role(rs, ru, rg) ŝ = match_subj(s, r̂)
r′u ∈ �usr_trans�(r̂, ŝ) set_uid ∈ caps(r̂, ŝ)

〈rs, ru, rg, s〉 set_user(r′u)−−−−−−→a 〈rs, r′u, rg, s〉

(A-SETG)

r̂ = role(rs, ru, rg) ŝ = match_subj(s, r̂)
r′g ∈ �grp_trans�(r̂, ŝ) set_gid ∈ caps(r̂, ŝ)

〈rs, ru, rg, s〉
set_group(r′g)−−−−−−−→a 〈rs, ru, r′g, s〉

(A-EXEC)

r̂ = role(rs, ru, rg)
ŝ = match_subj(s, r̂) x ∈ perms(r̂, ŝ, o)

h /∈ perms(r̂, ŝ, o) r′u ∈ �usr_trans�(r̂, ŝ) ∪ {ru}
r′g ∈ �grp_trans�(r̂, ŝ) ∪ {rg} s′ ∈ img(o, r̂, ŝ)

〈rs, ru, rg, s〉 exec(s′)−−−−→a 〈rs, r′u, r′g, s′〉

Theorem 2 (Completeness). Consider a policy such that
∃u, g : u �∈ Ru, g �∈ Rg. If σ

β−→a σ′, then there exist a
label α and two concrete states σ̂, σ̂′ such that �σ̂� = σ,
�σ̂′� = σ′ and σ̂

α−→ σ̂′.

Proof: By a case analysis on the rule applied to derive

σ
β−→a σ′. For rules (A-SETR) (A-SETU) and (A-SETG)

the concrete states are the same as the abstract ones apart

from the special identity “−” that is mapped to the u or the

g that we have assumed not to belong to Ru and Rg. We rely

on Lemma 2 for finding a f in concrete rule (EXEC) such

that �f� is the same as s′ in the abstract rule (A-EXEC).

C. Security analysis

Policies in grsecurity are much more concise and

readable than policies for other access control systems as,

e.g., SELinux [14]. However, the plain syntactic structure

of the policy does not expose a number of unintended harm-

ful behaviors which can arise at runtime. Just to mention

the simplest possible issue, the system administrator may

want to prevent user alice from reading the files in bob’s
home directory, but any permission set for role alice
may be overlooked, whenever alice was somehow able

to impersonate bob through a number of role transitions.

We now devise a simple formalism for verifying through

our semantics if a policy is “secure”. The usage of the

inverted commas is intended to denote the intrinsic dif-

ficulty in answering such a question, due to the lack of

an underlying system policy, stating the desiderata of the

system administrator. General approaches to RBAC policies

verification consider a declarative notion of error in terms of

satisfiability of an arbitrary query [8]; more practical works,

instead, are tailored around specific definitions of error, like

the impersonation of undesired roles [9]. Here, we adopt

the latter approach and we validate the policy with respect

to some simple requirements on information access, which

we consider desirable goals for realistic policies. This is a

precise choice, since our research targets the development

of a tool, gran, which should be effectively usable by

system administrators. Of course, our semantics can easily fit

different kind of analyses, possibly extending or generalizing

those presented here.

The basic ingredient for verification consists in defining

which permissions are effectively granted to a given state.

Namely, we introduce two judgements σ � Read(f) and

σ �Write(f) to denote that file f is readable (writeable) in

state σ. The definition of such judgements arises as expected.

(L-READ)

r̂ = role(rs, u, g)
s = match_subj(f, r̂) o = match_obj(f ′, r̂, s)

r ∈ perms(r̂, s, o) h /∈ perms(r̂, s, o)
〈rs, u, g, f〉 � Read(f ′)

(L-WRITE)

r̂ = role(rs, u, g)
s = match_subj(f, r̂) o = match_obj(f ′, r̂, s)

w ∈ perms(r̂, s, o) h /∈ perms(r̂, s, o)
〈rs, u, g, f〉 �Write(f ′)

We assume to extend such rules to abstract states, in terms

of the judgements σ �a Read(f) and σ �a Write(f).

Lemma 3 (Safety). Let J be either Read(f) or Write(f):
(i) if σ � J , then �σ� �a J .
(ii) if σ �a J , then there exists a concrete state σ′ such

that �σ′� = σ and σ′ � J .

Proof: This immediately follows by Proposition 2.

All the security analyses we propose below are based on

the reachability of a state with given permissions. Lemma 3,

in combination with Theorem 1, guarantees that the prop-

erties can be soundly validated on the abstract semantics;

in combination with Theorem 2, instead, it ensures that

any security violation found in the abstract semantics has a

126126133

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

counterpart in some Linux system. Thus, verification turns

out to be decidable and can be effectively performed, as we

discuss in Section V. For readability, we state the analyses

only for the concrete semantics.

Specification of the analyses: The first analysis we

propose focuses on direct accesses to files, both for reading

and for writing. In particular, we want to verify if a user

u can eventually get read (write) access to a given file f .
While easy to specify, we believe that such property fits the

needs of many system administrators, since the operational

behaviour of grsecurity is subtler than expected. The

formal description of the property we consider is reminis-

cent of similar specifications through temporal logics for

verification like CTL and LTL [15], [16]. Namely, we define

two judgements σ � ERead(f, σ′) and σ � EWrite(f, σ′) to

denote that file f can eventually be read (written) in state

σ′, starting from state σ.

(L-EREAD)

σ
α1−→ . . .

αn−−→ σ′ σ′ � Read(f)

σ � ERead(f, σ′)

The rule for σ � EWrite(f, σ′) arises as expected. We

just write σ � ERead(f) and σ � EWrite(f) when σ′ is

unimportant.
Given a user u, we denote with S(u) the set of the initial

states of u. Any initial state for u has the form 〈−, u, g, f〉,
where g is the primary group assigned to u by the underlying

Linux system and f is a possible entry point for u. For

instance, /bin/bash may be the standard entry point for

users interfacing to the system through a “bash” shell. Here,

we just assume to be given a set of initial entry points for

any user and we defer the discussion on the definition of

such sets to Section V. Note also that for initial states we

are assuming that the user is not acting under any special

role, since impersonation of such roles may happen only

through authentication to the gradm utility, after a standard

login operation to the Linux system.

Definition 1 (Eventual Read Access). A user u can even-
tually read file f if and only if there exists σ ∈ S(u) such

that σ � ERead(f).

Eventual write access is defined accordingly.

We now build on our first analysis to specify a stronger

property, inspired by the literature on information flow

control [17]. We note, however, that in our setting we do

not have any explicit notion of security label, so we focus

on flows among different roles. Namely, if a user u1 can read

the content of file f and then write on an object o readable

by u2, then there exists a possible flow of information from

u1 to u2 through o. This is an adaptation to our framework

of the well-known “star-property” [18].

Definition 2 (Reading Flow). There exists a reading flow
on file f from user u1 to user u2 if and only if:

(i) there exists σ ∈ S(u1) such that σ � ERead(f, σ′) and

σ′ � EWrite(o) for some o;
(ii) there exists σ′′ ∈ S(u2) such that σ′′ � ERead(o).

Writing flows can be dually defined to address integrity

issues. Again, this is just a reformulation into our setting of

a standard property [19].

Definition 3 (Writing Flow). There exists a writing flow on

file f from user u1 to user u2 if and only if:

(i) there exists σ ∈ S(u1) such that σ � EWrite(o) for

some o;
(ii) there exists σ′ ∈ S(u2) such that σ′ � ERead(o, σ′′)

and σ′′ � EWrite(f).

Note that both previous definitions ignore flows generated

by multiple interacting users through a set of intermediate

objects. While there is no technical difficulty in generalizing

the definitions to such cases, we note that the current

formulation already describes very strong properties.

The last analysis we consider accounts for a dangerous

combination of permissions over the same object. Namely, if

a user can acquire both permissions ’w’ and ’x’ on o, then o
can be exploited for malicious code injection. grsecurity
identifies this as an important problem, so it prevents the

administrator from granting both said permissions for the

same object; however, such a situation can arise at runtime,

so we consider interesting to monitor it. We omit the formal

specification of the analysis, much along the same lines of

the previous proposals. We refer to Section VI for details

on our experiments.

V. GRAN: A TOOL FOR POLICY VERIFICATION

We present gran, a security analyser for grsecurity
policies. The tool is written in Python and comprises

around 1000 lines of code. At the time of writing,

gran is still under active development; the source code

for a beta release of gran can be downloaded at

http://github.com/secgroup/gran.
Given a grsecurity policy, gran performs a pre-

processing, which involves the expansion of the include
and replace directives. These are just syntactic sugar,

used to import fragment of other policies and to define

macros, respectively. The tool then generates a model of the

policy based on our formalization, i.e., it constructs a tuple

(R,S,O, perms, caps, role_trans, usr_trans, grp_trans).
Roles, subjects and objects are retrieved simply by parsing

the policy specification. The generation of perms involves

an unfolding of the pre-processed policy, to cope with the

inheritance mechanism of grsecurity. We recall that, if

a subject s does not specify any permission for object o,
but a less specific subject defines an entry for it, then s
inherits the same permissions for o. The only exception to

this rule is when the subject specifies the “override” mode

’o’, which prevents this behaviour. Thus, the permissions

127127134

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

stored in perms correspond to a properly unfolded version

of those specified in the original policy.

Every capability is allowed by default, so for every role

r and subject s we initially let caps(r, s) = C, then we

remove any forbidden capability. Addition and revocation

of capabilities is performed through the rules +CAP_NAME
and -CAP_NAME, respectively. The overall result is order-

sensitive, i.e., specifying first +CAP_SETUID and then

-CAP_SETUID forbids the capability, while swapping the

rules allows it. We also account for inheritance of capabili-

ties among subjects defined in the same role.

Transitions to special roles are forbidden by default,

so for every role r we initially let role_trans(r) = ∅
and then we introduce in the set only the transitions ex-

plicitly allowed by the attribute role_transitions.
Conversely, transitions to user roles are allowed by de-

fault, so we let usr_trans(r, s) = Ru ∪ {−} for any

role r and subject s not providing any further specifica-

tion. We recall that we abstract users with no associated

user role by the distinguished identity “−”. The attribute

user_transition_allow can be used to restrict al-

lowed user transitions to the ones specified. Conversely, the

attribute user_transition_deny can be used to permit

all users transitions except those listed. The two attributes

cannot coexist. If subject s in role r specifies a set U of

allowed user transitions, we let usr_trans(r, s) = {�u� | u ∈
U}. Conversely, if U is a set of denied user transitions, we

let usr_trans(r, s) = (Ru \ U) ∪ {−}. We apply a similar

processing to construct the function grp_trans.
The tool disregards features that are not modeled, such as

resource restrictions and socket policies. Domains, i.e., sets

of user or group roles sharing a common set of permissions,

are handled through unfolding as a set of user or group

roles. Nested subjects are not supported, since the learning

system of grsecurity does not account for them. In

fact, grsecurity features the possibility to automatically

generate a policy by inferring the right permissions from the

standard usage of the system, to avoid burdening the user

with the necessity of specifying all the details about access

control. Since most users perform a full system learning and

then tweak the generated policy around their own needs,

we think nested subjects can be safely disregarded by our

analysis.

After the parsing of the policy, gran generates all the

possible states of the model and computes the set of the

transitions. The tool implements all the analyses described

in Section IV-C: the initial states and the sensible objects to

consider for verification can be specified through command-

line parameters. As a default choice, gran generates an

initial state for each non-special role in the policy, assuming

“/” as the subject entry point. If no target is specified for

the analysis, gran infers a set of sensible resources by

the specification provided in the configuration files of the

learning system.

VI. CASE STUDIES

We illustrate the outcome of practical experiments with

gran and we give general considerations about possible

vulnerabilities found by the tool.

A. Verification of existing policies

We asked the grsecurity community for policies to

be verified using gran. Unfortunately, most system ad-

ministrators are unwilling to provide their policies, since

they can reveal a number of potentially harmful information

about the system. However, we managed to gather a small

set of real policies and we analyzed them with our tool.

Due to privacy reasons, we cannot reveal any detail of

such policies, so we report a properly sanitized outcome

of the verification process. Our preliminary results were

favorably welcome by the lead developer of grsecurity,
who proposed us to integrate our tool in the gradm utility

for policy management [20]. We consider this an important

opportunity to continue our investigation on a larger scale,

since users are for sure more comfortable to provide us the

results of the validation rather than to disclose their policy.

We performed the verification of five different policies:

the first and the second one from small web servers, the

third one from a server running at our department, the fourth

one generated by the learning system of grsecurity,
and the fifth one from a large web server. In all cases,

gran performed very effectively, providing the results of the

analysis in less that one minute on a standard commercial

machine. The output of the analysis was manually reviewed,

looking for possible vulnerabilities: the process took from

10 to 30 minutes for each policy.

We start by reporting on direct accesses to sensitive

information. In some cases, we noticed that critical files like

/etc/shadow were readable by untrusted users. Even if

this is not a vulnerability by itself, since the underlying DAC

enforced by Linux does prevent this behavior, we believe

that this is a poor specification at the very least. Indeed,

system critical files on a hardened server are better be pro-

tected also by a MAC policy. Interestingly, a similar warning

sometimes applies also for resources which are publicly

readable, according to the default settings of Linux DAC,

but are considered highly sensitive by the standard configu-

ration files of the learning system of grsecurity. Exam-

ples of such resources include files as /proc/slabinfo
and /proc/kallsyms, whose content may be poten-

tially exploited by an attacker. We also noticed a danger-

ous specification in one of the analyzed policies: subject

/etc/cron.monthly was provided almighty access to

the system. This can have a tremendous impact on security,

since cronjobs are usually executed with root privileges,

thus mostly bypassing standard DAC. We argue that such a

dangerous specification was provided for convenience, since

scheduled jobs may need many different access rights and

a careful assignment of permissions should feature very

128128135

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

high granularity. Finally, we noticed that at least one of the

users was not fully aware of the workings of the inheritance

mechanism and, by manually tweaking the policy after

the learning process, had created some unwanted cascade

propagation of permissions.

We also performed some tests based on the other kinds

of analyses described in Section IV-C. In particular, we

noticed that unwanted writing accesses are much less fre-

quent than undesired reading accesses: this is comforting

and it was somehow expected, since the learning system of

grsecurity tends to grant really few write permissions.

The analysis also highlighted that usually only “physical”

users, i.e., users with shell access to the system, have the

opportunity to get both write and execution permissions over

the same object, thus compromised services are unlikely to

execute arbitrary code. Users, instead, probably need such

permissions to effectively work on the system.

We think that the overall security of the analyzed

grsecurity policies was fairly satisfying. We argue that

much of the robustness, especially against undesired write

accesses, comes from the sophisticated learning system of

grsecurity, which tries to grant minimal privileges to

each user. Indeed, the analyzed auto-generated policy turned

out to be quite resilient to vulnerabilities; unfortunately, most

administrators need to manually tweak the policy to get an

usable system for their users and the overall impact of local

changes may be easily overlooked. We think that our tool

helps in getting the big picture on the security of the system.

B. Exploits through “setuid” binaries

The analysis presented in the previous section was per-

formed using the “-b” option of gran, which discharges

potential attacks due to the “setuid” flaw pointed out in

Section III. We decided to make this choice, since a fix

is already going to be merged in grsecurity, and in

our worst-case scenario almost every object of the policy

turns out to be potentially vulnerable. Precisely, the amended

abstract semantics assumes that no role transition can be

performed upon execution. Here, we discuss the impact of

the flaw we found out, by describing a realistic scenario

where it can be harmfully exploited by an attacker.

One of the goal of grsecurity is to try to drop many

of the privileges normally granted to root, thus limiting

the impact of many known vulnerabilities; however, during

the learning process, some background operations may be

overlooked, leading to undesired assignment of permissions.

For instance, let us assume that an administrator starts

full system learning to generate his own policy, when a

scheduled cronjob performs an access to a sensitive resource:

in this case the learning system could provide root with

liberal access rights on the resource, since it would consider

it as a normal system behaviour. If the administrator does

not take care in manually strengthening the policy after the

learning process, “setuid” binaries can lead to unintended

Table IV A snippet of a flawed grsecurity policy

role root uG
role_transitions admin
...
subject /usr/sbin/cron o {
user_transition_allow alice
group_transition_allow users

/ h
/usr h
/usr/sbin/cron rx

}

role alice u
...
subject / {

/usr/bin
}
subject /usr/sbin/cron {

/usr/bin rx
}
subject /usr/bin/python2.7 o {

/ h
/tmp rw
/home r
/home/alice/bin r
-CAP_ALL

}

role bob u
subject / o {

/ h
/bin x
-CAP_ALL

}
subject /bin/bash {

/tmp rw
/home/bob rw

}

impersonation of a powerful root role, bypassing the

capability system. Indeed, even if the learning process tries

to forbid as many capabilities as possible to user roles, such

a practice does not offer the expected level of security, due

to the subtle interplay between grsecurity and Linux.

C. Information leakage analysis

We conclude our experiments by performing an informa-

tion leakage analysis on a policy we generated for testing.

We agree on the common statement that compartmentaliza-

tion between users is a too strict property for many realistic

systems; still, it can be interesting in some highly sensitive

settings [18], [19]. Our sample policy is shipped with the

gran package and a subset of it is depicted in Table IV.

When we process the policy with gran, we find out that

user alice is able to share some confidential information

in her home directory with her accomplice bob through a

leakage on /tmp. The attack is mounted on top of cron,
which our experiments seem to identify as a subtle subject.

The output of gran looks as follows:

129129136

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

[!!] Indirect flow found for target
/home/alice on object /tmp
Traces for writing:
[1] root:U:/usr/sbin/cron

-set_UID(alice)->
alice:U:/usr/sbin/cron
-exec(/usr/bin)->
alice:U:/usr/bin/python2.7

Traces for reading:
[1] bob:U:/

-exec(/bin)->
bob:U:/bin/bash

We assume that alice can schedule her tasks

through cron. The daemon initially runs as root,
changes its identity to alice and selects for execu-

tion a Python script in /home/alice/bin. The sub-

ject /usr/bin/python2.7 defined for alice can read

/home/alice/bin and write on /tmp. bob cannot

directly read /tmp, but he can execute /bin/bash and

get read access on /tmp. It is worth noticing that alice
cannot directly execute Python to get write access on /tmp,
since her default subject “/” does not allow execution of

files under /usr/bin.
Our tool is then able to identify a subtle and unintended

flow, which is unlikely to be noticed by just looking at

the policy. We think that gran can help in strengthening

the system against leakage of some particularly sensitive

targets.

VII. RELATED WORK

To the best of our knowledge, the present work is the first

research paper focusing on the verification of grsecurity
RBAC policies. However, there exists a huge literature

on the analysis of (A)RBAC policies in general, mainly

targeted to the isolation of restricted classes of policies

whose verification is tractable.

Sasturkar et al. [2] show that role reachability is PSPACE-

complete for ARBAC and identify restrictions on the policy

language to partially tame this complexity; similar results

are presented by Jha et al. in later work [8]. Li and Tripuni-

tara [21] perform a security analysis on restricted ARBAC

fragments and identify a specific class of queries which can

be answered efficiently. Stoller et al. [22] isolate subsets

of policies of practical interest and develop algorithms

to analyze them; their techniques are implemented in the

RBAC-PAT tool [4], which supports also information flow

analysis much in the spirit of the one provided by gran.
Jayaraman et al. [9] propose Mohawk, a model-checker

implementing an abstraction-refinement technique aimed to

error finding in complex ARBAC policies.

Contrary to all these works, our framework is not targeted

to the analysis of generic ARBAC policies, but of real,

full-fledged grsecurity RBAC policies, which turn out

to be amenable for efficient static verification. A formal

comparison with previous work, however, might be useful to

understand how possible extensions of grsecurity would

impact on the complexity of the analysis. We leave this as

future work.

VIII. CONCLUSION

We have presented a framework for a formal, automated

analysis of grsecurity’s RBAC system, to help system

administrators validate and maintain their policies. As we

have illustrated, our endeavor has proved useful, as gran
has unveiled a series of ambiguities and unexpected behav-

iors that have been reported to the main developer, confirmed

and fixed. The preliminary results we have illustrated have

been well-received by the developer, who have requested to

integrate the tool in the grsecurity distribution.

There are a number of further issues that are part of

our plans for future work, some of which we discuss

below. First, it would be worthwhile to integrate gran
with information from the actual file-system, to make the

analysis more precise and prune attack traces prevented

by the underlying Linux DAC system. For example, the

setuid/setgid binaries might be inspected in order to know

what transitions to different users are actually admissible

when executing a given object. This integration would point

out what is the actual Trusted Computing Base (TCB) of the

whole system, i.e., the minimal set of trusted components so

that the combination of RBAC and DAC systems is enough

to prevent security flaws.

Moreover, it would be interesting to integrate gran with

existing model checkers. This could be done by implement-

ing a back-end module for the generation of the model

checker input after the policy parsing. As a result, gran
would become amenable for additional formal reasoning,

while, at the same time, be still able to perform a concrete

analysis of real systems.

A further desirable extension to gran involves inte-

grating the tool with the additional components of the

grsecurity’s RBAC system (notably, the network com-

ponent). While we believe the tool should scale well without

significant performance issues, such integration will cer-

tainly constitute a non-trivial engineering task.

REFERENCES

[1] R. S. Sandhu, V. Bhamidipati, and Q. Munawer, “The arbac97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Secur., vol. 2, no. 1, pp. 105–135, 1999.

[2] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan,
“Policy analysis for administrative role based access control,”
in CSFW. IEEE Computer Society, 2006, pp. 124–138.

[3] A. Armando and S. Ranise, “Automated symbolic analysis
of arbac-policies,” in STM, ser. Lecture Notes in Computer
Science, J. Cuéllar, J. Lopez, G. Barthe, and A. Pretschner,
Eds., vol. 6710. Springer, 2010, pp. 17–34.

130130137

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

[4] M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and
S. D. Stoller, “Rbac-pat: A policy analysis tool for role based
access control,” in TACAS, ser. Lecture Notes in Computer
Science, S. Kowalewski and A. Philippou, Eds., vol. 5505.
Springer, 2009, pp. 46–49.

[5] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection
in operating systems,” Commun. ACM, vol. 19, no. 8, pp.
461–471, 1976.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. The MIT Press, 1999.

[7] N. Zhang, M. Ryan, and D. P. Guelev, “Synthesising verified
access control systems through model checking,” Journal of
Computer Security, vol. 16, no. 1, pp. 1–61, 2008.

[8] S. Jha, N. Li, M. V. Tripunitara, Q. Wang, and W. H. Wins-
borough, “Towards formal verification of role-based access
control policies,” IEEE Trans. Dependable Sec. Comput.,
vol. 5, no. 4, pp. 242–255, 2008.

[9] K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard,
and S. J. Chapin, “Automatic error finding in access-control
policies,” in ACM Conference on Computer and Communica-
tions Security, Y. Chen, G. Danezis, and V. Shmatikov, Eds.
ACM, 2011, pp. 163–174.

[10] B. Spengler, “Increasing performance and granularity in role-
based access control systems,” 2004. [Online]. Available:
http://grsecurity.net/researchpaper.pdf

[11] “man page for function setreuid.” [Online]. Available:
http://linux.die.net/man/2/setreuid

[12] B. Spengler, “Changelog of grsecurity,” February 2012,
commit 3981059c35e8463002517935c28f3d74b8e3703c.
[Online]. Available: http://grsecurity.net/changelog-stable2.txt

[13] “Sponsor page of grsecurity.” [Online]. Available:
http://grsecurity.net/sponsors.php

[14] M. Fox, J. Giordano, L. Stotler, and A. Thomas, “SELinux
and grsecurity: A case study comparing linux security kernel
enhancements,” University of Virginia. [Online]. Available:
http://www.cs.virginia.edu/jcg8f/GrsecuritySELinuxCaseStudy.pdf

[15] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications,” ACM Trans. Program. Lang. Syst.,
vol. 8, no. 2, pp. 244–263, 1986.

[16] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977,
pp. 46–57.

[17] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, 2003.

[18] D. E. Bell and L. J. LaPadula, “Secure computer systems:
Mathematical foundations,” MITRE Corporation, Tech. Rep.,
1973.

[19] K. J. Biba, “Integrity Considerations for Secure Computer
Systems,” USAF Electronic Systems Division, Tech. Rep.,
1977.

[20] B. Spengler, “Private communication,” February 2012.

[21] N. Li and M. V. Tripunitara, “Security analysis in role-based
access control,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 4,
pp. 391–420, 2006.

[22] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I.
Gofman, “Efficient policy analysis for administrative role
based access control,” in ACM Conference on Computer and
Communications Security, P. Ning, S. D. C. di Vimercati, and
P. F. Syverson, Eds. ACM, 2007, pp. 445–455.

131131138

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 20:22:22 UTC from IEEE Xplore. Restrictions apply.

