2012 IEEE Symposium on Security and Privacy

ObliviAd: Provably Secure and Practical Online Behavioral Advertising

Michael Backes*T, Aniket Kate*, Matteo Maffeil, and Kim Pecinal

* MPI-SWS, Germany {backes,aniket}@mpi-sws.org
t Saarland University, Germany {maffei,pecina}@cs.uni-saarland.de

Abstract—Online behavioral advertising (OBA) in-
volves the tracking of web users’ online activities in
order to deliver tailored advertisements. OBA has
become a rapidly increasing source of revenue for a
number of web services, and it is typically conducted
by third-party data analytics firms such as brokers,
which track user behaviors across web-sessions using
mechanisms such as persistent cookies. This practice
raises significant privacy concerns among users and
privacy advocates alike. Therefore, the task of de-
signing OBA systems that do not reveal user profiles
to third parties has been receiving growing interest
from the research community. Nevertheless, existing
solutions are not ideal for privacy preserving OBA:
some of them do not provide adequate privacy to
users or adequate targeting information to brokers,
while others require trusted third parties that are
difficult to realize.

In this paper, we propose ObliviAd,! a provably
secure architecture for privacy preserving OBA. The
distinguishing features of our approach are the us-
age of secure hardware-based private information
retrieval for distributing advertisements and high-
latency mixing of electronic tokens for billing adver-
tisers without disclosing any information about client
profiles to brokers. ObliviAd does not assume any
trusted party and provides brokers an economical
alternative that preserves the privacy of users without
hampering the precision of ads selection.

We present the first formal security definitions
for OBA systems (namely, profile privacy, profile
unlinkability, and billing correctness) and conduct a
formal security analysis of ObliviAd using ProVerif,
an automated cryptographic protocol verifier, estab-
lishing the aforementioned security properties against
a strong adversarial model. Finally, we demonstrated
the practicality of our approach with an experimental
evaluation.

I. INTRODUCTION

Today, a large majority of online services garner most
of their revenues through advertising. Online advertise-
ments, however, are not effective unless they are targeted
to the right audience. As a result, online advertisements
are no longer shown in a scattershot way but rather
targeted to reach a clientele that is selected according

1The name is derived from Obliviate! and Ad. Obliviate! is a
charm from the famous Harry Potter books that lets an individual
(in our case the broker) forget a specific memory (in our case all
user-related data).

© 2012, Michael Backes. Under license to IEEE.
DOI 10.1109/SP.2012.25

257

to various traits such as demographics, previously visited
urls, the current web page, information stored in cookies,
and, in general, any kind of observed behavior.

A. Online Behavioral Advertising

An online behavioral advertising (OBA) system con-
sists of four principal players: the advertisers, brokers,
publishers, and clients. Advertisers want the ads for their
products to reach plausible clients (e.g., Ford wants to
inform those people interested in buying a car about
a new model) and they are willing to pay for this ser-
vice. Publishers (e.g., newspapers such as the New York
Times) are willing to place ads on their webpages, but
they expect to be payed in return. Brokers (e.g., Google
and Yahoo) mediate between advertisers, publishers, and
clients: the advertisers send their ads and bids to the
broker, who then distributes them to the publishers’
webpages, which are in turn viewed by the clients. The
client may click on an ad if she finds it to be relevant
to her needs or interests. For every ad viewed in the
pay-per-view (PPV) advertising model or clicked in the
pay-per-click (PPC) advertising model, the advertiser
pays the broker who in turn pays the publisher. The
PPC, being a pay-for-performance model, receives more
attention in the industry. OBA protocols are divided in
two phases: the distribution phase, in which the brokers
distributes the ads, and the tallying phase, in which the
broker computes the number of viewed (or clicked) ads
for billing purposes.

In the existing online behavioral advertising (OBA)
systems, publishers embed a link for the broker on their
webpages. The sole purpose of these broker links is user
tracking. When a user views the webpage, the user’s
browser contacts the broker’s servers, which enables the
broker to track the user across all partnering publishers.
The broker then runs its own algorithm over the tracked
data to decide which ad to present on the publisher’s
page. This tracking practice poses a significant threat to
the privacy of users as research has shown that it is often
easy to link tracked information with an individual’s
personally identifying information (PII) [32], [33].

There have been a number of proposals for addressing
these privacy concerns. Consumers groups have sug-
gested that the behavioral advertising industry undergo

@co‘r%%uter
soclety

N

N

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

regulatory reform, with the goal of enhancing users’
privacy and data protection by constraining the role and
the activities of third-parties such as advertisers and
brokers [14], [30]. However, the effectiveness of such a
reform is questionable, since it is hard to prevent third
parties from passively gathering PII and later destroying
any traces in the case of a future investigation [31].
Initiatives like Do Not Track [35] enable users to opt out
of tracking by analytics services, advertising networks,
and social platforms. These initiatives do not solve the
core problem, however, as they significantly hamper the
economic model of free online services that depend solely
on advertising revenue. Furthermore, they prevent users
from viewing ads that are relevant to their current needs
and interests. Although anonymous browsing solutions
such as Tor [48] can also enforce the desired privacy
goals, they make detection of client-side fraud (e.g., click
fraud?) infeasible. Moreover, they are not considered
scalable enough to support the existing user base [37].
Thus, there is still need for a scalable solution that si-
multaneously satisfies the financial goals of web services
and the privacy requirements of users.

B. Our Contributions

We present ObliviAd, a novel OBA architecture that
preserves the privacy of user profiles, is compatible
with the existing business model, supports arbitrary
ad-selection algorithms, and provides high performance.
The distinguishing features of our architecture are the
usage of secure hardware-based private information re-
trieval (PIR) for distributing advertisements and high-
latency mixing of electronic tokens for billing advertisers
without disclosing any information about client profiles
to brokers. Following the approach proposed by Williams
and Sion [51], we implement our PIR protocol using
a secure coprocessor (SC'), such as the 4765 crypto-
graphic coprocessor by IBM [27], which provides secure
storage for semsitive data as well as a trustworthy,?
programmable execution environment. This solution en-
sures the privacy of data as well as the integrity of the
computation, even if the broker is malicious.

In our protocol, while fetching an ad, the user sends
her profile in encrypted form to a secure coprocessor
that resides on the broker side. The broker may learn
the identity of the user, since we do not assume any
anonymous channel, but not the user profile. The SC
selects the advertisement that best fits the user profile
according to the algorithm specified by the broker. We
build on a state-of-the-art oblivious RAM (ORAM)

2Click-fraud consist of users or bots clicking on ads in order to
drive up a given advertiser’s costs, a publisher’s revenue, the click-
through rate of an advertisement, and so on.

35Cs offer a remote code attestation procedure that allows
clients to verify what code is being executed [46].

258

protocol [43], to prevent the broker from learning any
information about the selected advertisement. We mod-
ify this ORAM scheme to handle multiple entries per
keyword, i.e., multiple different advertisements can be
stored and retrieved for a single keyword, and we prove
our modifications secure. The advertisement is finally
shipped in encrypted form to the user along with a fresh
electronic token, i.e., a signed piece of data comprising a
sequential timestamp and the symmetrically encrypted
advertisement id. The creation of such tokens causes only
a minimal computational overhead. As soon as the ad
is clicked or viewed, depending on the business model,
the token is sent back to the broker. After gathering
a sufficiently large number of tokens, the broker passes
the tokens to the SC, which decrypts, mixes, and finally
publishes them in order to charge the advertisers.

Our cryptographic construction preserves the privacy
of the user profile, which implies that the broker does
not learn which advertisement is shown to which user,
and unlinkability of subsequently observed units of in-
formation. In addition, our protocol fulfills a number
of broker and advertiser desiderata, such as client-side
fraud prevention, click success measures, and high per-
formance. In fact, the motivation behind ODbliviAd is
not to replace the existing OBA infrastructure. It rather
aims at complementing the existing infrastructure so
that PII of users is secured without advertisers or brokers
being forced to change their business model. Our system
does not introduce significant computational overhead
or financial costs to either the users or the broker. We
avoid fancy cryptography at the user ends as we want
our solution to work even for web browsers on handheld
devices. ObliviAd design is scalable, since brokers can
utilize multiple secure coprocessors, thus improving the
performance without altering the privacy properties of
our system. We believe that the privacy guarantees that
the broker may demonstrate to the privacy-conscious
user base make the investment into ObliviAd a worth-
while venture.

We formalize two fundamental privacy properties
(namely, privacy of the user profile and profile unlink-
ability) as observational equivalence relations and the
correctness of the billing process as a trace property.
We conduct a formal security analysis of ObliviAd using
ProVerif, an automated cryptographic protocol veri-
fier, establishing the aforementioned security properties
against a strong adversarial model. We believe both the
definitions and the security analysis are of independent
interest, since they are the first for an OBA system.

We also demonstrate the practicality of ObliviAd by
performing an experimental evaluation of our proof-of-
concept implementation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

C. Organization

The rest of the paper is organized as follows. In the
next section, we define the problem of non-tracking
behavioral advertising. Section III presents an overview
of the ObliviAd architecture. In Section IV, we describe
our ORAM construction in details. We analyze the per-
formance of our system in Section V. In Section VI, we
conduct a formal security analysis. Section VII discusses
the related work and Section VIII concludes.

II. PRIVACY-PRESERVING OBA

In this section, we describe the privacy goals and sys-
tem properties that are desirable in a privacy-preserving
OBA system (Section II-A) and we specify the threat
model considered in this paper (Section II-B).

A. Privacy and System Goals

A privacy-preserving OBA system should achieve the
following privacy goals [41]:

Profile Privacy. The broker cannot associate any unit
of learned information (e.g., clicked ads) with any
user PII (including network address).*

Profile Unlinkability. The broker cannot associate sepa-
rate units of learned information with a single client.

The former property is analogous to vote privacy in
the setting of electronic voting, i.e., the impossibility of
associating a vote in the final tally with a specific voter.
The latter property prevents a broker from building up
a user profile and then associating it with a known user
using externally gathered information. For instance, even
if the broker knows that two users have seen two ads each
and the four ads comprise two car ads and two football
ads, the broker does not know whether the two car-ads
were seen by the same user or not, i.e., whether or not
the two users have disjoint interests.

In principle, both privacy goals can be trivially sat-
isfied by any anonymous browsing solution [2], [48].
Existing anonymity networks, however, have two draw-
backs: they do not provide adequate performance (ads
should be displayed almost instantaneously) and they
make the users unaccountable [7], whose implications are
not acceptable to the ad industry. In general, an OBA
solution needs to satisfy the following system properties.
Client-side Fraud Detection. The likelihood of detec-

tion of clients’ malicious behaviors should not de-
crease as compared to existing systems.

Click Success Measures. Computations of success mea-
sures such as click-through rate [19] or click-
probability [41] should be possible on the broker or
client’s side.

4In [41], this property is termed anonymity, which we find to be
slightly inaccurate as users need not be anonymous here.

259

Performance. Privacy-preserving mechanisms should
not hamper the system performance and the auction
mechanism should achieve close-to-ideal ranking of
ads.

B. Adversary Model

We assume an active adversary with read and write ca-
pabilities on the public network, on the SC-to-database
bus, and on the database itself. The adversary exercises
full control over the broker® and the publisher can
issue arbitrary requests to the secure coprocessor (SC),
obtain the respective response, and observe the resulting
operations on the database. The trusted computing base
is limited to the management of key material within the
SC i.e., we assume that secret keys are not leaked. The
integrity of the code executed by the SC can be enforced,
since modern secure coprocessors offer a remote code
attestation procedure [46] that gives clients the ability
to verify that the SC' is executing a certain code. In our
architecture, this server-side code is made public for peer
scrutiny.

Unlike other privacy-preserving advertising sys-
tems [25] where brokers are assumed to be honest-but-
curious, we do not make any assumptions about them.
We also allow the attacker to arbitrarily corrupt or create
client principals and act on their behalf.

In the case of the user clicking on the retrieved ad,
we have to assume that the advertiser and the brokers
are not colluding; profile privacy is otherwise impossible
without using an external anonymity solution such as
Tor [48] or Anonymizer [2], since the client reveals her
identity to the broker when retrieving an advertisement
and clicking on it reveals her identity along with the re-
trieved advertisement, i.e., her profile, to the advertiser.

III. ProTOCOL OVERVIEW

We first introduce the cryptographic concepts that
are required for the understanding of our system (Sec-
tion ITI-A). We then describe the cryptographic assump-
tions and requirements of our system (Section III-B).
Finally, we present a high-level protocol description (Sec-
tion ITI-C) and discuss the most important properties of
our architecture (Section ITI-D).

A. Preliminaries

Digital Signatures and Encryption Schemes. Our con-
struction requires an existentially unforgeable digital
signature scheme [22] and an authenticated encryption
scheme (i.e., INT-CTXT and IND-CPA secure [5]).

We do not rely on any particular digital signature
or encryption scheme. In fact, our construction is fully

5 Assuming the broker is a malicious (as opposed to honest but
curious) party is reasonable, since the user cannot select the broker
and, in fact, the identity of the broker is not known to the user.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

parametric in these two cryptographic primitives, inas-
much as they satisfy the respective security definitions.

Oblivious RAM (ORAM). Oblivious RAM was originally
devised to protect the access pattern of software on the
local memory and thus to prevent the reverse engineering
of that software [21]. The observation is that encryption
by itself prevents an attacker from learning the content of
any memory cell but monitoring how memory is accessed
and modified may still leak a great amount of sensitive
information.

In the ORAM model, the processor executing a pro-
gram is considered a black box, i.e., it is impossible to
observe the processor’s internal state, internal storage,
and internal operations. The external storage and the
bus connecting that storage with the processor are ob-
servable and ORAM schemes use sophisticated combi-
nations of data structure and cryptographic operations
to mask their access pattern on the external storage.
In our construction, the ORAM scheme is running on
a secure coprocessor (SC'), which enforces the black-
box characteristics. Clients contact the black box via a
secure channel (e.g., TLS) to prevent an attacker from
obtaining any information on the requested operation.
The ORAM storage is organized as a data structure such
that every entry contains a keyword kw and a payload
(i.e., an ad and possibly additional information in our
case). ORAM schemes export two methods, namely
Read(kw) and Write(kw, ad). The former returns the
list of ads associated with kw and, for access privacy
reasons, removes the corresponding entries from the data
structure; the latter adds the entry (kw, ad) to the data
structure.

Private Information Retrieval (PIR). Private informa-
tion retrieval schemes allow a client to access a database
stored on a server, while hiding the query and the
resulting answer from the database [12]. In this work,
we use a PIR scheme to allow the client to download
relevant ads from the broker, without the broker learning
any information about such ads or the user profile.
PIR can be achieved in either an information-theoretic
or a computational setting. Information-theoretic PIR
requires multiple non-colluding database servers, and the
non-collusion assumption is certainly inappropriate for
broker servers. Computational PIR, instead, relies on
cryptographic assumptions, is suitable also for a single
database server, and thus fits our setting better. Ac-
cording to recent analyses, however, none of the existing
computational PIR schemes significantly outperforms
the trivial solution of downloading the whole database
(i.e., all advertisements in our case) [38], [44]. For this
reason, we follow the approach proposed by Wang et
al. [17], [50] and Williams et al. [51], which consists of
implementing a computational PIR scheme using ORAM

260

over a secure coprocessor (SC'). This solution turns
out to be orders of magnitude faster than the other
computational PIR solutions. However, as we discuss in
Section IV, the previously mentioned ORAM construc-
tions are not useful for OBA systems. Our construction
instead builds on the ORAM protocol recently developed
by Shi et al. [43], which we modify to fit our needs and,
in particular, to run on a SC and to associate an ad with
multiple keywords.

This solution is also well-suited for clients with only
little computational power such as cell phones and net-
books, because the main work (i.e., the cryptographic
operations) is performed by the SC, which has dedicated
cryptographic hardware and resides on the broker’s side;
the client has merely to establish a secure connection to
the SC, e.g., via TLS, send the query, and receive the
result.

Electronic Tokens. Electronic tokens are the digital
equivalent of real-world money, i.e., it is impossible or, at
least, computationally infeasible to fake them; a token by
itself reveals neither its spender nor what it was spent
on; and double-spending a token is detectable. In our
construction, electronic tokens enforce the correct billing
of the advertiser, while preventing brokers from tracking
the respective user.

Electronic tokens may resemble electronic coins [10],
[11]. Our tokens, however, are purely based on highly
efficient symmetric encryption and digital signature
schemes.

Mizing. The concept of mixing was introduced by
Chaum [9]. Here, we use it to prevent the attacker from
learning the correlation between the content of electronic
tokens and the respective users. Specifically, the broker
provides the SC with a set of (symmetrically) encrypted
tokens containing the ad identifiers. The SC' decrypts
those tokens on behalf of the broker. It also randomly
permutes (or mixes) the resulting ad identifiers in order
to maintain profile privacy and profile unlinkability.

B. Cryptographic Assumptions and Requirements

We assume a publicly verifiable binding between the
SC and its public key. Such a binding is easily pos-
sible with a chain of certificates with the root public
key stored in the user’s browser. Using this binding,
the client software can establish authenticated and en-
crypted TLS connections with the SC.

Our broker-side code must be executed in a trusted
environment, and it requires a rich set operations, e.g.,
file I/0O, data structure management, TLS connections,
digital signatures and authenticated encryptions; thus,
we need a programmable SC' [47]. Furthermore, to guar-
antee that a SC' is executing a correct program, we also
expect a remote attestation capability from the SC' [46].

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

C.

Publisher

Untrusted Broker
Environment

3. Perform ORAM for
keywords to add
and retrieve ads

2. Provide
a webpage

4. Send ads to
the client

Ads DB

1. Upload ads,
keywords

and bids
Advertiser iii

Distribution phase

2. Send profile
keywords to
TPM

User Device
with
Broker Client

Broker
Client

Figure 1.

Protocol Overview

We now overview the cryptographic protocol underly-

ing
1)

ObliviAd.

The advertisers initiate the protocol by uploading
each of their ads ad, the corresponding keywords
kws, and other information (e.g., bids) to the broker
server. The broker forwards these tuples to the SC
along with unique ad identifiers. The SC' includes
these tuples in the ORAM structure, i.e., it stores
tuples containing the advertisement ad, the corre-
sponding identifier id,q4, and one keyword kw,q in
encrypted form on the broker’s server. Notice that
the number of triples referring to the same ad is the
same as the number of keywords associated with
that ad. Publishers that are interested in showing
ads on their webpages must also register with the
broker as they are interested in showing ads on their
webpages.

When a user visits a publisher’s webpage containing
an ad box, the broker’s client program on the user
machine is invoked. This program maintains the
user’s profile in the form of keywords kws y based on
the user’s online behavioral history and sends those
keywords to the SC over a secure and (server-side)
authenticated channel.

The SC then searches the ORAM structure for
kws y, collects the resulting ads, and selects a subset
according to the ranking algorithm specified by the
broker, which usually takes into account a number
of factors, such as bids, click-probabilities, and so
on. Finally, the SC attaches an electronic token
to each selected ad for the future accounting. The
electronic token for the advertisement ad is of the

form sig(enc(id oq, kW ad)k, V) skses 1-€., it consists of

Publisher

8. Provide shares to Publisher

N
'\
- 4
. . N
e £ 6. Send accumulated tokens to SC and \
pa— { P)
— | receive mixed ad reference numbers y
\ 4
|
4 |
: /
5. Send the token for B /
the clicked ad \ g
R : / 5 /
- AdsDB . I
h _ -
.
Y

User Device
- Broker
with ah
Broker Client [

8)

e 7./Charge Advertiser
s, forits ad3.

4

5. Send the User Click
to Advertiser

Advertiser

Figure 2. Tallying phase

a digital signature produced by SC on (i) the
ciphertext obtained by encrypting the ad’s identifier
idqq and the corresponding keyword kw,q with
a symmetric key k, which is chosen by the SC
and kept secret, and on (i7) a timestamp ¢ (or,
alternatively, on an increasing number).

Once the SC has finished its processing, it sends
ads and associated tokens to the client software over
the secure and authenticated channel. The client
software then presents a selection of these ads to
the user.

When the presented ad is viewed by the user in
the PPV model or is clicked in the PPC model, the
client software sends back the token to the broker
server.

Following the mixing methodology, the broker
server accumulates the tokens over a predefined
billing period and sends the set of accumulated
tokens to the SC. The SC removes duplicates (i.e.,
tokens with the same timestamp), removes the to-
kens with timestamps outside of the current billing
period, decrypts the ads in the remaining tokens,
and publishes a random permutation thereof.

The broker then distributes these identifiers to the
corresponding advertisers and charges them accord-
ingly. The ad keywords retrieved from the tokens
may be used for improving future auctions, e.g., for
further click-through analysis.

Finally, the broker provides revenue shares to pub-
lishers.

D. Discussion

Role of the Client. Similarly to other privacy preserv-
ing OBA architectures (e.g., Adnostic and Privad), we

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

assume that user profiles, encoded as sets of keywords,
are created and managed in the broker’s client software,
which is envisioned as a browser extension on the user’s
device. The client monitors user behavior (i.e. the user’s
browsing, ads viewed and clicked and so on) in order
to create and maintain the user profile. We assume that
the client is not compromised and specifically does not
leak the keywords or the ads to the broker. Although
our system is flexible in the choice and implementation
of the client, privacy preserving browser-based mining of
core interests can be performed using, for instance, the
recently introduced RePriv platform [20].

Role of the SC. The secure coprocessor establishes a
secure program execution environment on the server.
A certificate signed by a certificate authority ensures
the user that she is communicating with the SC and a
remote code attestation procedure [46] ensures the user
that the correct program is running.

Privacy of the User Profile. User profiles are transferred
to the SC in encrypted form over secured channels, and
are therefore not visible to any third party. The ORAM
architecture on the broker’s side ensures that not even
the selection of ads leaks any information about user
profiles to the broker. Although the broker may learn
which electronic token was processed by which user,
since we do not assume anonymous channels, the broker
cannot learn which electronic token corresponds to which
ad, thanks to the mixing performed by the SC. It is
interesting to observe that the degree of privacy of the
user profile is determined by the number of electronic
tokens that are provided by non-compromised clients in
the respective mixing procedure, given that the tally of
the ads must be made public for billing purposes. If all
other electronic tokens are provided by the attacker, the
privacy of the user profile cannot be guaranteed. This
is reminiscent of electronic elections, where the privacy
of the user vote cannot be guaranteed if all other voters
are under the control of the attacker, given that the final
tally is public [16].

Notice that a malicious broker could in principle derive
a particular user profile by allowing only the tokens
of that honest client to reach the SC. The resulting
bill would reveal the user profile, thus breaking the
desired privacy property. For protecting client profiles
unconditionally, the usage of anonymous channels is
indispensable, a solution we do not advocate due to its
computational cost and network delay. Typical brokers,
however, behave rationally, i.e., their primary goal is to
excel in commerce rather than to identify users at all
costs. Our scheme protects the privacy of the user profile
against rationally-behaving brokers: excluding user to-
kens from the tally leads to a significant monetary loss,
since the timestamp mechanism prevents those tokens

262

from being counted in the next tallying periods. It is
interesting to observe that privacy-aware users can get
perfect privacy (i.e., even against non-rational brokers)
in the pay-per-click model, which is the most common
one, by simply avoiding clicking on ads.

Profile Unlinkability. Not only is the broker not able
to learn which user saw which ad, but it cannot even
learn whether or not two or more ads were seen by the
same user. This property is enforced by (i) the structure
of the electronic tokens, which are unlinkable and do
not reveal any information about the user profile, and
(74) the mixing, which breaks the correlation between
the list of tallied ads and the list of received tokens.
Breaking this correlation is crucial since the attacker
may learn the correlation between tokens and clients by
looking at the traffic on the non-anonymous communi-
cation channel between clients and SC.

Billing Correctness. The timestamp mechanism also
serves the purpose of ensuring the correctness of the
billing process, since each ad cannot be counted more
than once in the final tally and it is counted only if the
client has forwarded the electronic token to the broker,
i.e., the user has viewed (or clicked) the ad.

Click-related Information. Without using an anonymous
browsing solution, which we do not want to adopt for ef-
ficiency reasons and for the sake of click-fraud detection
(see below), it is impossible to prevent the advertiser
from learning which user clicked which ad. In practice,
the broker may try to collude with the advertiser to
obtain this information. If OBA is the only goal of the
broker, however, there is no motivation for the broker
to determine which user clicked a particular ad. The
information required to hold auctions, such as the click-
through rate or the click-probability of an ad, is derivable
by the broker from the tally produced by the SC.

Click-Fraud Detection. In our design the interaction pat-
tern between the clients and the broker remains almost
unchanged and the broker is still notified when the client
clicks on an ad, although it does not know which ad
was clicked. Thus, real-time click-fraud detection mech-
anisms, which typically monitor the click-ratio of each
user, are expected to continue to work. Offline detection
mechanisms are expected to continue to work as well,
since they are typically enforced on the advertiser side
and, in our architecture, advertisers know who clicked
their ads.

IV. ORAM CONSTRUCTION

We adopt the ORAM scheme by Shi et at. [43], which
we modify to fit the OBA setting. We first review their
basic construction (Section IV-A) and later discuss our
modifications (Section IV-B).

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

Reyword- Lear)
Keyword - Leaf —>: Root-leaf connection

.: Node selected for eviction

kw 5 kw,ad traversed for Read(kw) —>: Connection affected by
-------- eviction
kw,ad>
kw,ads
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Searching for kw

Figure 3.

A. ORAM Scheme by Shi et al.

Shi et al. propose three different constructions. In this
work, we adopt their “basic construction with trivial
buckets”. The complete database is stored as a binary
tree. Every node in the binary tree is a bucket ORAM,
i.e., an array of entries. Each entry consists of a keyword
kw and a payload in encrypted form. An authenticated
encryption scheme is used to prevent an active attacker
from learning and modifying entries in an unobservable
way.

Initially, the bucket is filled with dummy entries.
The ORAM scheme manipulates buckets via the
ReadAndRemove(kw,b) and Add(b,e) operations. Both
traverse the complete bucket b, reading and decrypting
every entry egq, and replacing eyq with a new entry
énew- 10 case of ReadAndRemove(kw, b), this new entry
is either a re-randomization of eqq if the keyword does
not match eqyq, or an encryption of a dummy entry
otherwise. In case of Add(b, e), this new entry is either e
if eglq 18 a dummy entry and e has not been stored yet,
or a re-randomization of e,q otherwise. The IND-CPA
indistinguishability property of the encryption scheme
ensures that the adversary cannot differentiate between
a dummy entry and an entry comprising a kw and a
payload.

The ORAM construction maintains the invariant that
the entries for every keyword kw are located on a unique
path from the root node to a leaf ¢ assigned to that key-
word. This keyword-leaf (kw,¢) assignment is securely
maintained in the ORAM program (i.e., in the SC in
our case).

To read the entry for a keyword kw, the Read opera-
tion (cf. Section ITI-A) traverses the complete path from
the root node to the leaf assigned to kw, searching for a
bucket containing kw (see Figure 3). The entry for kw is
removed from that bucket using ReadAndRemove bucket
operations and stored in the ORAM program. Finally,

263

Eviction with v =1

ORAM Operations for a bucket size of 2 and a tree depth of 4.

the program assigns a new randomly chosen leaf ¢ to
the keyword kw, and moves the retrieved entry from its
internal memory to the root node using the Add bucket
operation. Any subsequent query for the same keyword
kw is indistinguishable from queries to other keywords
as the search paths are randomly distributed in the tree.

To write a new entry for the keyword kw, the Write
operation first retrieves the entry stored for that keyword
and drops it. This enforces that at most one entry per
keyword is present in the database. The new entry is
added to the root node.

If we keep on adding entries to the root bucket, it will
eventually overflow. To prevent that, a background evic-
tion process continuously moves entries from the root
towards their designated leaves. After every query and
on every tree level (starting from the root towards the
leaves), a constant number v of buckets is randomly cho-
sen and evicted (a bucket can be chosen multiple times
during one eviction phase). One entry (kw,payload) in
a chosen bucket A is removed and written to the next
bucket on the path towards the leaf ¢ assigned to kw; the
other child bucket of N is re-randomized; if A/ contains
only dummy elements, both of its child buckets are re-
randomized. To make this operation oblivious, the order
is fixed and the left child is always processed before the
right child. Figure 3 provides an example of the eviction
process for v 1. Notice that it is not necessary for
the security of the scheme to perform an eviction after
every ORAM operation and, in fact, eviction is only
necessary to prevent bucket overflows and to guarantee
the performance of the scheme, although the eviction
process must, of course, be performed in an oblivious
way.

We now state the security property for ORAM
schemes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (ORAM security [43]): A data request
sequence I is an operation-argument tuple sequence
Z = ((opy,argy),...,(opy,arg,)) where arg; kw if
op; Read and arg; = (kw,ad) if op; = Write for
keyword kw and data ad. We let ops(Z) := (opy,...,0p,)
and A(Z) denote the access pattern resulting for the
execution of the data request sequence .

An ORAM construction is secure if and only if for
every two arbitrary data request sequences = and gy such
that ops(Z) = ops(¥), the access patterns A(Z) and A(7)
are computationally indistinguishable.

The ORAM scheme by Shi et al. is secure and, thanks
to its background eviction process, it achieves the best
worst-case time complexity among the existing ORAM
schemes.

Theorem 1 (ORAM properties [43]): The data struc-
ture by Shi et al. is a secure oblivious RAM with
(9(10g2 N) worst-case and average-case time complexity
and program storage of O(K log N) size, where N is the
number of entries in the database and K is the number
of keywords.

B. Our Construction

In OBA, there can be multiple ads for every kw. It is
therefore natural to have multiple entries for a keyword
kw in our database, and we need to obtain all of them
while searching (the Read operation) for a kw. Note that
the ability to store and retrieve multiple elements per
keyword is not definitional to ORAM. In fact, ORAM
designs based on the so-called square-root solution [23],
[24] cannot retrieve more than one entry per query
from their ORAM architecture. In contrast, the ORAM
scheme by Shi et al. can retrieve all possible entries
associated with a kw, which, together with its best worst-
case complexity, is the reason we chose it as a building
block for ObliviAd. We now explain how the ORAM data
structure described above can handle multiple entries
per keyword without hampering the access privacy.

In the ORAM construction, it is possible to retrieve
(Read) all the entries for a specific keyword while the
SC' goes through the complete path (from the root to
the leaf) assigned to the keyword. This is achieved by
modifying the ReadAndRemove operation to store in the
ORAM memory and removing from the traversed bucket
these entries. The subsequent Write operation stores the
retrieved entries back into the root bucket. We stress
that these modifications do not affect the cryptographic
operations performed in the query processing, but only
the amount of retrieved data.

Like the original ReadAndRemove (resp. Add) opera-
tion, the adapted ReadAndRemove (resp. Add) operation
also modifies the complete bucket; thus, this operation

264

remains secure as the IND-CPA property of the en-
cryption scheme prevents the attacker from learning the
number of entries which have been replaced by (resp.
have replaced) dummy entries. As a result, there is
no difference in the adversarial view of ORAM from
a privacy perspective between the original ORAM con-
struction and our variant.

One further important difference is that the ORAM
client is replaced by a SC in our setting, as we use
ORAM to efficiently perform PIR. As a result, during an
ORAM Read operation, we cache the retrieved entries
inside the SC' internal memory before sending the re-
sponse to the client and putting (via the Add operation)
the retrieved entries into the root node bucket.

Let K be the number of keywords in the system.
Let N be the number of keyword-advertisement entries
(kw,id 44, ad) to be stored in the database, where every
entry is of size B bits. Note that IV is generally greater
than the number of ads as there can be multiple key-
words kws attached to an ad. Therefore, the database
size D is equal to N - B, which we expect to be in
the order of several GB or even a couple of TB for
some brokers. Further, we expect the server storage n
to be larger than D due to the overhead imposed by the
ORAM construction. We also expect the SC' to have an
internal storage of size m = Q(K log N), which we use
to store a mapping between keywords and leaves.

The tree contains N nodes and we let the ORAM
buckets be of size O(log N), implicitly bounding the
maximum number of entries per keyword to O(log N)
(otherwise, it is impossible for a leaf to contain all the
entries assigned to it). It can be shown that, in our con-
struction, the Read and Evict operations take O(log? N)
time, while the write operation takes O(log N) time.
Intuitively, Read and Evict operate on each level of the
tree (from the root to leaves) a constant number of times,
while Write operates on the root only (and, therefore, are
faster by a log N factor than in the original scheme).

Theorem 2 (Properties of our ORAM scheme): The
data structure by Shi et al. with the modifications
detailed above is a secure oblivious RAM with
O(log2 N) worst-case and average-case time complexity
and O(K log(N)) SC storage requirement.

Proof (Sketch): The ORAM property follows from
the ORAM property of the original scheme [43]. The
required decryption and encryption operations are per-
formed also in the original version and our modifications
are not distinguishable for the attacker thanks to the
IND-CPA property of the encryption scheme. []

V. PERFORMANCE ANALYSIS

In this section, we describe the implementation and
evaluate the practicality of our ORAM construction,

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

which dominates the computational cost of our solution.
We also suggest some optimizations based on our anal-
ysis and discuss other important system factors of our
solution.

A. Implementation

We have developed a prototype to demonstrate the
feasibility of our construction. Our implementation is
a single-threaded application, comprising approximately
1200 lines of Java code, which performs the operations
that in a concrete implementation of our system would
be performed by the SC.

In our implementation, we assume that the ranking
and selection of ads is conducted inside the SC [39];
note that it would, in principle, be possible to shift such
auctions to the client side, if required [41]. We imple-
mented buckets as arrays. The array size is determined
at compile-time. Every array slot holds an advertisement
and the corresponding keyword. Typically, buckets are
only a few MB in size and fit easily into the SC
memory. Therefore, we encrypt at the bucket level and
not at the slot level. Consequently, if the advertisements
differ greatly in size, we must apply a padding before
encrypting a bucket.

B. Ezxperiments

All experiments were conducted on a commodity PC
with an Intel i5 quad-core processor with 3.3 GHz and
8 GB RAM. The hard drive has a speed of 7200 RPM
and a cache of 16 MB. We implement the authenticated
encryption scheme with AES encryption and HMAC.
The cryptographic implementation was provided by the
standard SunJCE Provider. To get consistent and com-
parable results, we set the advertisement size to 20KB
and fix the tree depth to 24,5 and report the average of
100 repetitions of the following experiments:

o We measure the impact of the bucket size (in terms
of array slots) on the overall performance of our
system. Figure 4a) displays the time required to
read an advertisement from the database and the
time required for the eviction process for a bucket
size varying between 10 and 50. The tree depth
remains unchanged at 25.

For a reasonable bucket size of 30, we are able to
read advertisements for a keyword in 750 ms. Even
for a large bucket of size 50, we only require 750 ms
where more than 85% of the time was spent on the
cryptographic operations.

The eviction process takes longer (in between 1 and
4.1 seconds, depending on the bucket size) but is

6A tree with depth 24 stores more than 16 million advertise-
ments. Given an average advertisement size of 20 KB, the database
stores over 300 GB of advertisement data.

265

performed after the reply is sent and, therefore, not
experienced by the user.

We measure how the number of ads retrieved in a
single query influences the system performance. We
fix the bucket size to 50 (the tree depth remains
unmodified) and we store various amounts of ad-
vertisements for a single keyword inside the ORAM.
Figure 4b) depicts the time required to read all the
advertisements for the given keyword and the time
spent by the eviction process. The results show that
the number of ads does not affect the retrieval time.
We show the scalability of our approach and fix
the bucket size to 30 and let the depth of the
tree vary from 10 to 30; i.e., we let the number
of advertisements stored in the tree vary from one
million to over one billion. Figure 4¢) depicts the
obtained timings; the experienced delay increases
linearly from 280 ms for one million advertisements
to 780 ms for one billion advertisements.

C. Discussion

Impact on the User-experienced Delay. The experiments
show that the Read operation requires up to 750 ms and
the Evict operation requires up to 4.2 seconds. As the
eviction is not necessary for achieving security, a client
does not have to wait for the eviction process to finish.
We can deliver the retrieved ad as soon as the Read
process has terminated, increasing the overall delay of
our system only by the amount of time required by a
Read operation.

Our experimental results show that on a commodity
PC with the cryptographic operations performed in
software, our implementation requires, depending on the
bucket size, between 150 ms and 728 ms. More than 85%
of that that time is spent in the various cryptographic
routines. A dedicated hardware implementation as avail-
able in an SC will further decrease the time required to
retrieve an advertisement and increase the performance
of our system.

We use a secure and authenticated link between user
devices and the SC' to privately download the ads. Com-
prehensive studies [13] show that this delay is negligible
compared to the ORAM-induced delay and, as SC CPU
speeds increases, this delay will drop even further. The
generation of an electronic token takes only 1.4 ms
using RSA signatures and also constitutes a negligible
overhead in comparison with the ORAM computations.
Since the final tallying among the broker, publishers,
and advertisers remains virtually identical to the existing
system, the overall experienced user delay is dominated
by the delay induced by the ORAM scheme.

Other System Delays. We determined that individual
token verification operations takes only 0.08 ms for

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

4,000 H_g_Read operation 5 000 || ~®@ Read operation ‘ 5,000 [[-@-Read operation | | ‘ . |
30001 o Eviction 4'500 || Eviction | gggg ||-= Eviction /./-/.)
2,000 |- PP I .,
1,500 + _— o on 2,000 - b
] _— B arx . N »
Z1000| W = 50 2 1500] i
5o 1 =300 =
g ‘ 2 2,500 |- 4 91,000 4
500 |- 1 B = |
i & 2,000 15 750
1,500 + B
i 500 - 1
250 |- 7 1,000 |- |
9o o o o o
500 |- B
125 . . . = 0L L L ! | ! 250 ! ! L [
10 20 30 40 50 1 10 20 30 40 50 10 15 20 25 30
Bucket size # of advertisements retrieved per query Tree depth
a) b) ¢)
Figure 4. Results of our microbenchmark. For experiments a) and b), the tree depth is fixed to 24. For experiment c), the bucket size is
fixed to 30.

RSA signatures. In addition, batched verification tech-
niques [4] can further improve the overall verification
performance during the tallying phase. Thus, our billing
system can quickly process large amounts of electronic
tokens.

Replication and Concurrency. The bottleneck of our
construction is the SC' fetching an advertisement from
the database. Replications of the database and resulting
concurrent computations can significantly improve the
performance. It is possible for the broker to employ
multiple SC units so that each of them maintains its
own replicated copy of the database and caters to a
different set of users in a completely parallel fashion.
This replication does not affect the profile privacy of
the users as their network addresses are known to the
broker anyway. Realizing such a replication is harder in
anonymity-based solutions to privacy preserving OBA
(e.g., Privad).

It is also possible to let multiple SC units operate
on the same ORAM storage since all ORAM operations
consist of bucket-level operations, which are independent
from each other. We just have to let all SC' units share
the same key material and enforce that at most one SC
unit operates on a single bucket. Consequently, the only
concurrency issue that needs to be taken care of is that
all collaborating SC' chips maintain the same copy of the
keyword-leaf assignment. In that respect, the only block-
ing operation is the Add operation at the root node (as
it changes the keyword-leaf assignment). At the cost of
using memory in the SC' chip, it is possible to postpone
these Add operations, thus improving the performance.
Finally, we mention that the eviction procedure is also
highly parallelizable since it operates on distinct buckets.

VI. FORMAL VERIFICATION

We conduct a formal security analysis of our system.
Although the deployed cryptographic primitives are se-
cure by themselves, we must ensure the absence of flaws

266

in the protocol design, e.g., unintended, attacker-driven
interleavings of concurrently executed protocol sessions
that break the security properties. To exclude such flaws
and to establish a security proof, we model our protocol
in the applied-pi calculus [1], a process calculus for the
specification and analysis of cryptographic protocols. We
formalize privacy properties as observational equivalence
relations between processes and correctness properties as
trace properties. The verification is automatically con-
ducted using ProVerif [6], a state-of-the-art automated
theorem prover based on Horn-clause resolution, which
provides security proofs for an unbounded number of
concurrent protocol sessions. The ProVerif scripts used
in the analysis are publicly available [3].

A. Profile Privacy

We verify that an attacker cannot obtain any infor-
mation about client profiles, even when in full control
of the advertiser, the publisher, and the broker. We
model this property as an indistinguishability game
(technically, an observational equivalence relation =~ [1])
between two processes, as depicted in Figure 5. Here and
throughout the rest of this paper, we let E,; denote
the symmetric encryption enc(idqq, kwaq)r of the ad
identifier id,q along with the ad keyword kw,q. In the
first process P (left-hand side), A and B’s profiles consist
of the keywords kw4 and kwp, respectively. In the
second process Q (right-hand side), the two profiles are
swapped. If the processes P and Q are observationally
equivalent, written P =~ Q, then the attacker cannot
learn which profile belongs to which client. We assume
a very pessimistic setting where the attacker has the
control over arbitrarily many clients and knows the two
profiles kw4 and kwp. More precisely, our game works
as follows:

0. The attacker chooses two advertisements ad 4 and
ad g and stores them in the SC' (this corresponds to
the broker filling her ORAM database via the SC').

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

Compromised clients
1A. Kwa > 4.
. 2A.
<€ ady, sign(Eaa,, ta)skg&

Client A %% = Sign(Eaa,, ta)sk = >

sk oo™

1B.

kws
. 2B.
<€ ady, sign(Ead,, tB)skge

Client B2* = Sign(Ead, t8)skgz,= > ady, adz

Compromised clients
4,

< kws 12

2= ady, sign(Eady, te)skss®
<€ - sigN(Ead,, ta)skg,~ - Client A

€ kwa 18

2B ady, sign(Ead;, ta)skes>

ad, adz <€ - sign(Ead;, ta)sk .= & Client B

—»: Transmission via secure channel - = »: Transmission via public channel

Figure 5.

These two advertisements match the two profiles
kwa and kwp, respectively.
1A./1B. Client A and Client B send their profile to the
SC' via a secure channel.
2A./2B. The SC sends back the response, comprising
the advertisement that best matches the received
profile along with the accompanying token.
3A./3B. The two clients publish their token on a public
channel.
Corrupted clients, i.e., clients acting exclusively on
behalf of the attacker, can arbitrarily interact with
the SC.
After collecting the two honest clients’ tokens, and
possibly other tokens from compromised clients, the
SC initiates the accounting process. The SC verifies
the signatures in the tokens, verifies the timestamps,
decrypts the ad identifiers, and publishes a permu-
tation thereof, which constitutes the bill.

4.

The attacker has full control over scheduling decisions,
e.g., the actions of client A, client B, and compromised
clients can be interleaved in any order, with the natural
constraint that client A and client B follow the protocol,
i.e., their respective actions are executed in the right
order.

Theorem 3 (Profile Privacy): The
equivalence relation P ~ Q holds true.
Proof: Automatically proven using ProVerif.

observational

B. Profile Unlinkability

When verifying the privacy of the client profiles, we
assume the worst case scenario, i.e., the attacker knows
the client profiles. We now analyze a different prop-
erty, namely, profile unlinkability. In this scenario, the
attacker does not know the client profiles. We verify
that it is impossible for an attacker to deduce any
information about client profiles by observing the tokens
sent by that client and the final tally, even when in full
control of the advertiser, the publisher, and the broker.
We model this property as an indistinguishability game

267

Overview of the observational equivalence relation. The left side of the picture corresponds to P and the right side to Q.

between two processes P (left-hand side) and Q (right-
hand side), as depicted in Figure 6. In both processes,
A and B'’s profiles consist of the keyword kw4 and kwpg,
respectively. The game obeys the following steps:

0. The attacker chooses four advertisements ady, ads,
ads, and ady, and stores them in the SC' (this corre-
sponds to the broker filling her ORAM database via
the SC). In process P, advertisements ad; and ads
are the best-matching advertisements for kw4 and
kwp, and ads and ads are the second-best-matching
advertisements for kw 4 and kw g, respectively.” No-
tice that we assume the worst-case scenario, i.e., the
two client profiles kw4 and kwp are disjoint and,
thus, easier to be distinguished. In process Q, ads
and ads are swapped, i.e., client profiles are different
in P and Q.

1A./1B to 3A./3B. Client A and B both send their key-
word to the SC' via a secured channel and receive
back the best-matching advertisements (i.e., ad;
and ads in P and ad; and ady in Q), and the
corresponding tokens. Following the protocol, the
tokens are immediately sent to the SC.

4A./4B to 6A./6B. Both clients perform the same steps

as above. The returned advertisements, however, are

the second-best-matching ones (i.e., ads and ady

in P and ads and ad4 in Q).

Compromised clients can arbitrarily interact with

the SC.

After collecting the four honest clients’ tokens, and

possibly other tokens from compromised clients, the

SC initiates the accounting process. The SC veri-

fies the signatures on the tokens, verifies the time

stamps, decrypts the ad identifiers, and publishes a

permutation thereof, which constitutes the bill.

As in the game for profile privacy, the attacker has

full control over scheduling decisions and the above

described game steps can be interleaved in any order,

"We recall that the SC ranks the advertisements according to
each user profile.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

1A.
kwa EA 2A< kws 1A.
<€ ady, sign(Ead;, ta)skgs— = ads, sign(Ead,, iB)skSC—)
3A. . i 3A.
4-A- - SigN(Ead;, t)sz - > Compromised clients Compromised clients < - Sign(Eag;, fe)skg= - =
— kwa > A7 7w, < kws = |

Client A< adz, sign(Ead,, t’A)sksc—sA‘ = ads, sign(Ead;, t's)sk ;= Client A

O - sign(Ead,. ta)skg > <- Sign(Eagy, te)skz - 2N
1B kws EB 2B(_ kWA—18'
<€ ads, sign(Eads, tB)skgz= = adz, sign(Ead,, ta)sk gz

%B: - sign(Eag,, to)skgm > < - SigN(Eady, t)skgm =2
4B. . 4B.

- kws > € kwa >
Client B . s 5B. 5B. . , Client B
:;Bad‘h Sion(Ead,., Tl —>: Transmission via secure channel : ad4f Slgn(Ead",’ Fa)scss >

== =sign(Eady, tB)skgs= ¥ - = »: Transmission via public channel < -Sign(Eaa,, tA)sksé- -6B.

Figure 6. Overview of the observational equivalence relation. The left side of the picture corresponds to P and the right side to Q.

as long as the actions of client A and client B follow the SendToken predicate, which is in turn preceded by a dis-
protocol. If the processes P and Q are observationally tinct IssueHonToken predicate (token for honest clients),
equivalent, then the profiles are unlinkable, i.e., the or by a distinct IssueCompToken predicate (tokens for
adversary cannot determine which entries in the final compromised clients). In the literature, this kind of prop-
tally were caused by which profile. For instance, if the erties are known as injective agreement [34]. The billing

final tally contains two entries for cars and two for sports, correctness property can be formalized in ProVerif no-
it is impossible to say if each client is interested only tation as follows:
%n one of t.he two topicsZ or if the two clients are both CountToken(id gq, t) ==>1
interested in sports and in cars. (SendToken(id 44, t) ==>1 IssueHonToken(id 44, t))
Theorem 4 (Profile Unlinkability): The observational V IssueCompToken(id 4, t)
equivalence relation P ~ Q holds true. (1)
Proof: Automatically proven using ProVerif. [where P, ==>; P, denotes the requirement that each

predicate P; must be preceded by a distinct predicate P
in all protocol executions. The above property says that

A fundamental goal of our system is the correctness of tokens are never counted more than once. For honest
the billing process. Brokers expect to be reimbursed for clients, we also know that whenever a token is counted,
their services and the advertiser is only willing to pay then the corresponding ad has been watched. Compro-
for advertisements that have been seen or clicked on. mised clients cannot be decorated with events, reflecting
A first property we expect is non-reusability of tokens, the fact that a compromised client might forward the
i.e., each tokens is counted at most once. A second token to the broker behind the scenes, i.e., without the
property is billing fairness, i.e., whenever a token is user really watching the ad.
counted, then the corresponding ad was really watched Theorem 5: The trace property stated in equation (1)

by the user. We formalize and verify these two properties holds true in all possible execution traces of the pro-
in a strong adversarial model, in which the attacker cess P.

C. Billing Correctness

has the control over arbitrarily many corrupted clients. Proof: Automatically proven using ProVerif. ™
Therefore, we distinguish whether a token sig(Eq, t) sk o0

is issued for a honest client, annotated with the predi- VIL. RELATED WORK

cate IssueHonToken(id 44, t), or for a compromised client, Given the significance of the privacy-preserving OBA
marked with the predicate IssueCompToken(id 44, t). Ad- problem to the masses, the privacy enhancing technolo-

ditionally, we decorate the point in the protocol where gies (PETSs) research community is showing a growing
a honest client watches the ad and sends her token interest in this problem [18], [20], [25], [26], [28], [29], [49].
with SendToken(id,q,t) and the point where the SC Instead of blocking OBA, as it is done by tools such as
counts a token with CountToken(id,q,t). Notice that [15], [40], these PETs are meant to be practical privacy
we cannot decorate compromised clients, since they run preserving alternatives that the advertising industry
arbitrary code under the control of the attacker. Figure 7 should also find attractive. The solutions proposed so
depicts the process P annotated with these predicates. far, however, fall short of providing an adequate degree
We want to verify that in all protocol executions each of privacy and a satisfactory performance at the same
CountToken predicate is preceded either by a distinct time.

268

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

kw

IssueHonToken(ii

<€— ad, sign(Ead, f)sk g

Client gendToken(id, t)
3

N

—»: Transmission via secure channel - - »: Transmission via public channel

Figure 7.

Juels [28] was the first to explore the notion of targeted
yet privacy preserving advertising and the first to suggest
the usage of client-side proxies to manage user profiles, a
concept used by almost all privacy preserving advertising
systems today. Like us, Juels utilizes a PIR scheme
for privacy preserving distribution of ads. That PIR
scheme, however, is impractical for a real time use and,
in particular, makes it impossible to retrieve ads on-the-
fly. Furthermore, that work does not secure the tallying
phase, in which the broker computes the number of ads
viewed by clients for billing purposes. Finally, provable
anonymity is achieved against a threshold adversary,
which is not a good model of real life brokers. In contrast,
we use a highly efficient PIR solution based on a secure
coprocessor, which enables us to retrieve ads on-the-fly.
We also secure the tallying phase using electronic tokens
that are mixed by the SC' in order to preserve the privacy
of the client profiles.

Privad [25], [26] presents a complete system for privacy
preserving targeted advertising. Along with the usual
client software and broker entities, Privad introduces
a reference monitor that watches the client software
to ensure that no information is sent by the client to
the broker through a covert channel, and a dealer that
works as an anonymizing proxy between the user and the
broker. Similar to our system, the Privad client builds
a user profile and requests relevant ads from the broker
by sending the profile information to the broker system,
with the fundamental difference that every communi-
cation in Privad is proxied by the dealer. Further, in
Privad, any communication between the client and the
broker is encrypted with the broker’s public key or an
agreed session key so that the dealer cannot see the
profile information or the downloaded, viewed or clicked
ads.

Privad achieves profile privacy through the anonymity
of the client. In order to facilitate client-side fraud
detection, Privad does not employ a reliable anonymity
solution like Tor [48]; it instead asks for a privacy
preserving proxy (the dealer) that is assumed to be
honest-but-curious and, specifically, to not collude with
the broker. For detecting client-side fraud, however, the

269

The process P, annotated with logical predicates, used in the verification of the trace property in equation (1).

dealer needs to satisfy the advertiser’s and the broker’s
demands. Realizing such a party looks to be a difficult
problem to solve from the administrative, legal, and
technological perspective. Even if realized, the dealer is
highly susceptible to traffic analysis attacks and may
also introduce a single-point-of-failure in the advertising
system. In our solution, we avoid such an entity and
completely eliminate the corresponding trust require-
ment by introducing a broker-side trusted hardware. As
a result, we achieve profile privacy without enforcing user
anonymity.®

Adnostic [49] provides a completely different approach
to privacy preserving OBA. Here, a privacy-protecting
client software obtains a small set of ads, randomly
chosen by the broker, when the user visits a webpage
containing slots for ads. The software then selects the
most appropriate ad based on the user profile and shows
it to the user. For these viewed ads, Adnostic performs
homomorphic encryptions and creates zero-knowledge
proofs at the user devices to allow the broker to reliably
settle the accounts with the publishers and the adver-
tisers without knowing who viewed which ad. A funda-
mental assumption in Adnostic is that the advertisers
and the broker will always collaborate; thus, ad-clicks
are treated the same as in current ad networks, where
the client reports clicks directly to the broker.

Unlike ObliviAd and Privad, Adnostic does not hide
users’ web browsing or clicking behavior from the broker,
which makes their privacy goals considerably weaker.
Further, as ads are sent without any behavioral targeting
and only in small sets, it seems that this approach would
be more comparable to the old scattershot approach
than today’s modern OBA methods. Further, although
their accounting solution is novel and interesting cryp-
tographically, it does not provide any information about
the viewed ads. This information is needed for conducing
future ad-auctions and click-through analysis; thus, the
quality of OBA will not improve, even over a longer
period. Finally, our solution is significantly more efficient
on both the client and the broker sides: Adnostic uses rel-

8If the user wants to anonymously access web services,
anonymity networks like Tor are necessary anyway.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

atively expensive public-key homomorphic encryptions
and zero knowledge proofs, while we instead relay on
inexpensive symmetric-key encryptions.

An interesting work in the field of OBA is RePriv [20],
an architecture that provides an ideal solution for re-
alizing the client-side software required by virtually
all privacy preserving OBA systems, including ours.
Reznichenko, Guha and Francis [41] have recently pro-
posed a solution for running advertising auctions that
leverage user profiles for ad ranking without compromis-
ing their privacy. We observe that their auction design
can easily be incorporated in our system.

VIII. CoNCLUSION AND FUTURE WORK

Online behavioral advertising is receiving increasing
attention by the financial and research community. The
essence of the current business model is to target adver-
tisements according to user profiles. This poses a signifi-
cant threat to the privacy of users. In this paper, we show
that it is possible to achieve strong privacy properties
while retaining the current business and system model.
Our solution utilizes PIR technology, which we imple-
ment using a secure coprocessor and an efficient ORAM
construction, in order to allow the clients to retrieve
advertisements that best match their behavioral profile
without the broker learning any personal information. At
the same time, our architecture allows brokers to learn
any non-personal information that they may find useful
for improving their business model (e.g., click-through
rate, statistics for click-fraud detection, etc.).

We formalize two fundamental privacy goals (i.e.,
profile privacy and profile unlinkability) as observational
equivalence relations and the billing correctness require-
ment as a trace property. These are the first formal
security definitions for OBA. We used ProVerif, an
automated cryptographic protocol verifier, to formally
establish them on ObliviAd. An experimental evaluation
demonstrates the feasibility of our approach.

We are developing a complete implementation of our
system, comprising a browser plugin and open-source
software for brokers. We also intend to devise an ORAM
construction that is tailored to our low-latency system,
for instance, by natively supporting multiple entries
per keyword and by increasing the fanout of the tree.
Finally, we plan to identify and formalize further security
properties for OBA systems (e.g., click-fraud detection)
and develop tools for their verification.

A trusted platform module (TPM) is a downscaled
and inexpensive version of the secure coprocessors that
provide only a restricted set of operations such as trusted
boot, remote attestation, and sealed storage. Recent
efforts [8], [36], [42], [45] suggest that more involved
secure operations can also be performed from these
commodity chips. It would be interesting to explore

270

the usage of TPM architectures for implementing our
ORAM construction, in order to provide an inexpensive
alternative to cryptographic coprocessors.

Acknowledgments. This work was partially supported by
the initiative for excellence and the Emmy Noether pro-
gram of the German federal government, and the Center
for IT-Security, Privacy and Accountability (CISPA).

REFERENCES

[1] M. Abadi and C. Fournet, “Mobile values, new names,
and secure communication,” in Proc. Symposium on
Principles of Programming Languages (POPL’01).
ACM Press, 2001, pp. 104-115.
http://www.anonymizer.com.

M. Backes, A. Kate, M. Maffei, and K. Pecina,
“ObliviAd ProVerif Scripts,”
http://lbs.cs.uni-saarland.de/obliviad.

M. Bellare, J. A. Garay, and T. Rabin, “Fast Batch
Verification for Modular Exponentiation and Digital
Signatures,” in Advances in Cryptology
(EUROCRYPT’98), 1998, pp. 236-250.

M. Bellare and C. Namprempre, “Authenticated
Encryption: Relations among Notions and Analysis of
the Generic Composition Paradigm,” Journal of
Cryptology, vol. 21, no. 4, pp. 469-491, 2008.

B. Blanchet, “An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules.” in Proc. IEEE
Computer Security Foundations Workshop (CSFW’01).
IEEE Computer Society Press, 2001, pp. 82-96.

A. W. Branscomb, “Anonymity, Autonomy, and
Accountability: Challenges to the First Amendment in
Cyberspaces,” The Yale Law Journal, vol. 104, no. 7,
1995.

A. Brown and J. Chase, “Trusted
Platform-as-a-Service: A Foundation for Trustworthy
Cloud-Hosted Applications,” in The ACM Cloud
Computing Security Workshop (CCSW’11), 2011.

D. Chaum, “Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms,” Journal of the
ACM, vol. 24, no. 2, pp. 84-88, 1981.

[9]

[10] ——, “Blind Signatures for Untraceable Payments,” in
Proc. Advances in Cryptology (CRYPTO’87), 1982, pp.
199-203.

[11] D. Chaum, A. Fiat, and M. Naor, “Untraceable

Electronic Cash,” in Proc. Advances in Cryptology
(CRYPTO’88), 1990, pp. 319-327.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan,
“Private information retrieval,” in Proc. IEEE
Symposium on Foundations of Computer Science
(FOCS’95), 1995, pp. 41-50.

C. Coarfa, P. Druschel, and D. S. Wallach,
“Performance analysis of TLS Web servers,” ACM
Trans. Comput. Syst., vol. 24, no. 1, pp. 39-69, 2006.
F. T. Commission, “FTC Staff Report: Self-Regulatory
Principles For Online Behavioral Advertising,”
http://www.ftc.gov/opa/2009/02/behavad.shtm, Feb
2009, accessed October 2011.
http://www.aboutads.info/choices/.

S. Delaune, S. Kremer, and M. Ryan, “Verifying
privacy-type properties of electronic voting protocols,”
JCS, vol. 17, pp. 435-487, 2009.

[12]

[13]

[14]

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

32]

(33]

(34]

X. Ding, Y. Yang, R. H. Deng, and S. Wang, “A new
hardware-assisted PIR with O(n) shuffle cost,” Inter.
Journal of Information Security, vol. 9, no. 4, pp.
237-252, 2010.

D. S. Evans, “The Online Advertising Industry:
Economics, Evolution, and Privacy,” Journal of
Economic Perspectives, vol. 23, no. 3, pp. 37-60, 2009.
J. Feng, H. K. Bhargava, and D. M. Pennock,
“Implementing Sponsored Search in Web Search
Engines: Computational Evaluation of Alternative
Mechanisms,” INFORMS J. on Computing, vol. 19, pp.
137-148, January 2007.

M. Fredrikson and B. Livshits, “RePriv: Re-imagining
Content Personalization and In-browser Privacy,” in
Proc. IEEE Symposium on Security € Privacy
(S€P°11), 2011, pp. 131-146.

O. Goldreich, “Towards a theory of software protection
and simulation by oblivious RAMSs,” in Proc. ACM
Symposium on Theory of Computing (STOC’87), 1987,
pp. 182-194.

——, Foundations of Cryptography: Basic Tools.
Cambridge University Press, 2001.

O. Goldreich and R. Ostrovsky, “Software Protection
and Simulation on Oblivious RAMSs,” Journal of the
ACM, vol. 43, pp. 431-473, May 1996.

M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia, “Oblivious RAM Simulation with
Efficient Worst-Case Access Overhead,” in Proc. ACM
Workshop on Cloud Computing Security (CCSW’11),
2011, pp. 95-100.

S. Guha, B. Cheng, and P. Francis, “Privad: Practical
Privacy in Online Advertising,” in Proc. Symposium on
Networked Systems Design and Implementation
(NSDI’11), Mar 2011.

S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and
P. Francis, “Serving Ads from localhost for
Performance, Privacy, and Profit,” in Proc. Workshop
on Hot Topics in Networks (HotNets), 2009.
http://www-03.ibm.com/security /cryptocards/.

A. Juels, “Targeted Advertising ... And Privacy Too,”
in CT-RSA’01, 2001, pp. 408-424.

P. Kazienko and M. Adamski, “AdROSA - Adaptive
personalization of web advertising,” Inf. Sci., vol. 177,
no. 11, pp. 2269-2295, 2007.

N. J. King, “Why privacy discussions about pervasive
online customer profiling should focus on the
expanding roles of third-parties,” International Journal
of Private Law, vol. 4, no. 2, pp. 193-229, 2011.

S. Komanduri, R. Shay, B. U. Greg Norcie, and L. F.
Cranor, “AdChoices? Compliance with Online
Behavioral Advertising Notice and Choice
Requirements,” Carnegie Mellon University, Tech. Rep.
CMU-CyLab-11-005, October 2011.

B. Krishnamurthy and C. E. Wills, “Cat and mouse:
content delivery tradeoffs in web access,” in Proc.
International World WideWeb Conference (WWW’06),
2006, pp. 337-346.

——, “Privacy diffusion on the web: a longitudinal
perspective,” in Proc. International World Wide Web
Conference (WWW’09), 2009, pp. 541-550.

G. Lowe, “A Hierarchy of Authentication
Specifications,” in Proc. IEEFE Computer Security
Foundations Workshop (CSFW’97). 1EEE Computer
Society Press, 1997, pp. 31-44.

[35]

[36]

37]

[38]

39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

J. Mayer and A. Narayanan, “Do Not Track: Universal
Web Tracking Opt-Out,” http://donottrack.us,
Stanford University, accessed October 2011.

J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki, “Flicker: an execution infrastructure for tcb
minimization,” in Proc. Furopean Professional Society
on Computer Systems (EUROSYS’08). ACM Press,
2008, pp. 315-328.

J. McLachlan, A. Tran, N. Hopper, and Y. Kim,
“Scalable onion routing with torsk,” in Proc. ACM
Conference on Computer and Communications Security
(CCS°09), 2009, pp. 590-599.

F. Olumofin and I. Goldberg, “Revisiting the
Computational Practicality of Private Information
Retrieval,” in Proc. Inter. Conference on Financial
Cryptography and Data Security (FC’11), 2011.

A. Perrig, S. W. Smith, D. X. Song, and J. D. Tygar,
“SAM: A Flexible and Secure Auction Architecture
Using Trusted Hardware,” in Proc. International
Parallel & Distributed Processing Symposium
(IPDPS’01), 2001, p. 170,
http://sparrow.ece.cmu.edu/ " adrian/projects/SAM/.
http://www.privacychoice.org/privacymark.

A. Reznichenko, S. Guha, and P. Francis, “Auctions in
Do-Not-Track Compliant Internet Advertising,” in
Proc. ACM Conference on Computer and
Communications Security (CCS’11), 2011, pp. 667-676.
N. Santos, K. P. Gummadi, and R. Rodrigues,
“Towards trusted cloud computing,” in Proc.
Conference on Hot topics in Cloud Computing
(HotCloud’09), 2009.

E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li,
“Oblivious RAM with O((logN)?) Worst-Case Cost,”
in Advances in Cryptology (ASIACRYPT’11), 2011, pp.
197-214.

R. Sion and B. Carbunar, “On the Practicality of
Private Information Retrieval,” in Proc. ISOC Network
and Distributed System Security Symposium
(NDSS’07). Internet Society, 2007.

E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,

K. Walsh, D. Williams, and F. B. Schneider, “Logical
attestation: an authorization architecture for
trustworthy computing,” in Proc. Symposium on
Operating Principles (SOSP’11), 2011, pp. 249264,
http://www.cs.cornell.edu/people/egs/nexus/.

S. W. Smith, “Outbound Authentication for
Programmable Secure Coprocessors,” Inter. Journal of
Information Security, vol. 3, no. 1, pp. 28-41, 2004.

S. W. Smith and S. Weingart, “Building a
high-performance, programmable secure coprocessor,”
Computer Networks, vol. 31, no. 8, pp. 831-860, 1999.
“The Tor Project,” https://www.torproject.org/, 2003,
accessed October 2011.

V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum,
and S. Barocas, “Adnostic: Privacy Preserving Targeted
Advertising,” in Proc. Network and Distributed System
Security Symposium (NDSS’10), 2010.

S. Wang, X. Ding, R. H. Deng, and F. Bao, “Private
Information Retrieval Using Trusted Hardware,” in
Proc. European Symposium on Research in Computer
Security (ESORICS’06), 2006, pp. 49—-64.

P. Williams and R. Sion, “Usable PIR,” in Proc. ISOC
Network and Distributed System Security Symposium
(NDSS’08), 2008.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 03:52:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

