
Safe Loading - A Foundation for Secure Execution of Untrusted Programs

Mathias Payer

ETH Zurich, Switzerland

Tobias Hartmann

ETH Zurich, Switzerland

Thomas R. Gross

ETH Zurich, Switzerland

Abstract—The standard loader (ld.so) is a common target
of attacks. The loader is a trusted component of the application,
and faults in the loader are problematic; e.g., they may lead
to local privilege escalation for SUID binaries.

Software-based fault isolation (SFI) provides a framework
to execute arbitrary code while protecting the host system. A
problem of current approaches to SFI is that fault isolation is
decoupled from the dynamic loader, which is treated as a black
box. The sandbox has no information about the (expected)
execution behavior of the application and the connections
between different shared objects. As a consequence, SFI is
limited in its ability to identify devious application behavior.

This paper presents a new approach to run untrusted
code in a user-space sandbox. The approach replaces the
standard loader with a security-aware trusted loader. The
secure loader and the sandbox together cooperate to allow
controlled execution of untrusted programs. A secure loader
makes security a first class concept and ensures that the SFI
system does not allow any unchecked code to be executed.
The user-space sandbox builds on the secure loader and sub-
sequently dynamically checks for malicious code and ensures
that all control flow instructions of the application adhere to
an execution model.

The combination of the secure loader and the user-space
sandbox enables the safe execution of untrusted code in user-
space. Code injection attacks are stopped before any unin-
tended code is executed. Furthermore, additional information
provided by the loader can be used to support additional
security properties, e.g., inlining of Procedure Linkage Table
calls reduces the number of indirect control flow transfers and
therefore limits jump-oriented attacks.

This approach implements a secure platform for privileged
applications and applications reachable over the network that
anticipates and confines security threats from the beginning.

I. INTRODUCTION

Secure execution of applications in user-space remains

a hard problem. Software-based fault isolation (SFI) has

been embraced by many projects [29], [43], [42], [22], [37]

to address this problem. SFI aims to provide an execution

environment that allows the safe and undisturbed execution

of applications. An advantage of SFI is that other techniques

to protect the execution of applications (e.g., Address Space

Layout Randomization (ASLR) [35], [8], [9], Data Execu-

tion Prevention (DEP) [46], stack canaries [27], and policy-

based system call authorization) are orthogonal to SFI and

can be combined with SFI. The protection techniques can be

used to strengthen the implementation of the SFI platform

(that forms a crucial element of the trusted computing base)

as well as the application code.

A key component of every system is the dynamic loader.

The loader takes control of the application before the

application is even started. The dynamic loader maps the

application into memory and resolves all symbols that are

used from different shared libraries. These relocations and

symbol lookups enable a program to use libraries and to

implement different techniques like position independent

code. After the program has been prepared for execution

(i.e., after the loader has finished the initial relocation and

loading), the initialization code of the application is executed

and the application starts.

The loader has access to all symbols and relocated objects

at runtime and shares this information with the executing

program. The standard Linux dynamic loader is optimized

for fast relocation and aims to offer a rich functionality. The

combination of the rich functionality (and complexity) and

the fact that all applications (e.g., privileged applications,

applications reachable over the network, local applications)

use the same loader makes it a promising attack vector.

Recent attacks [17], [34], [33], [40] illustrate the problem.

Our approach replaces the standard dynamic loader by a tool

that makes security a first class concept.
This paper introduces a Trusted Runtime Environment

(TRuE) for the safe execution of untrusted code. TRuE is

the combination of a secure loader and a sandbox. These

two components of the trusted computing base are small

and provide a a safe (the implementation is reviewed and

bug-free) and secure (the design does not provide attack

vectors in the offered functionality) environment. This com-

bination enables a safe foundation for software-based fault

isolation where all application code is executed under the

control of the sandbox. The sandbox separates user-space

into two privilege domains, the privileged sandbox domain

that contains the secure loader and the sandbox, and the

application domain that executes application code.

The standard loader focuses on feature support and low

loading times, whereas the secure loader focuses on a

rigorous security concept. The secure loader implements the

safe foundation for the SFI framework, provides information

for the sandbox that executes application code, and supports

basic loader functionality. The secure loader collects infor-

mation about all symbol locations and relocated pointers.

This information is then used in the sandbox to secure the

execution of the untrusted code.

This approach to a user-space sandbox implements a

holistic view of the program execution. Inter-module control

2012 IEEE Symposium on Security and Privacy

 © 2012, Mathias Payer. Under license to IEEE.
DOI 10.1109/SP.2012.11

18

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

flow transfers are no longer implemented as jump tables but

the loader forwards the information about the target location

into the sandbox. The sandbox directly encodes the correct

target location at the source control transfer instruction. This

dynamic setup removes the additional indirections needed

to cross module boundaries while still enabling dynamic

loading of shared objects. The presentation in this paper

focuses on a Unix-like context, but the ideas apply to other

contexts as well.

We position TRuE as a replacement of the standard

execution model for applications that run with a higher

privilege level than the user that accesses the application.

Two examples of such applications are (i) privileged “SUID”

applications and (ii) applications that are connected to the

network. A third possible use-case for TRuE is the execution

of potentially malicious code in combination with specific

system call policies. The interactions between the malicious

binary (e.g., the program, a library, or a module) and the

regular system libraries is controlled and checked using

dynamic security guards.

The contributions of this paper are as follows:

1) the design of TRuE, a Trusted Runtime Environment

for the creation of secured processes. TRuE builds on

two principles, (i) a security-aware secure loader, and

(ii) a sandbox that enforces the security policy of the

execution model.

2) a report on a prototype implementation of TRuE.

The prototype implementation demonstrates that the

integration of the secure loader into an existing user-

space sandbox is practical.

The rest of the paper is organized as follows. Section II

defines the attack model and the execution model. Sec-

tion III presents background information about the dynamic

loading and sandboxing. Section IV describes problems of

the standard approach. Section V defines the design and

concepts of safe loading and secure execution in a trusted

runtime environment. Section VI highlights the implemen-

tation of TRuE. Section VII presents the evaluation of the

prototype implementation and discusses possible limitations.

Section VIII presents related work and Section IX concludes.

II. ATTACK MODEL AND EXECUTION MODEL

The Trusted Runtime Environment (TRuE) places the

loader in the trusted computing base and runs all applica-

tion code in a sandbox. The loader informs the sandbox

about valid code regions of the application. The sandbox

weaves additional checks (security guards) into translated

application code. The sandbox does not implement full

memory tracing to limit the overhead of SFI. The translated

application code can read any readable memory location

and can write any writable memory location without any

additional penalties.

The attack model defines the constraints for an attack,

the properties of a successful attack, and limitations of the

trusted runtime environment. The execution model explains

which applications can be protected and describes changes

to the original memory layout of the application. The flow

of execution in an application can be seen as a graph

where control flow transfers are the edges and the nodes are

individual basic blocks. The execution model describes how

a sandbox transforms this graph at runtime to protect the

execution flow and to ensure that no alternate “unwanted”

locations are reached.

A. Attack model

A potential attacker tries to escalate the available priv-

ileges by executing injected or constructed code. A local

attacker escalates the available privileges to a higher privi-

leged account, e.g., by triggering an exploit in a “SUID”

application to gain super-user access. A remote attacker

without shell access, e.g., using a web service, gains user-

level access by escalating the available privileges to a local

user account, e.g., www-data.

The security guards of the sandbox protect the application

from all code injection attacks. Code can be injected (as

data) through, e.g., a buffer overflow, but the sandbox

never executes the injected code. The sandbox either detects

an illegal region that contains code when a “control flow

instruction”1 attempts to transfer control to a data region

or the kernel generates a protection fault if the application

tries to write a code region. A shadow stack [23], [38] in

the sandbox domain ensures that return-oriented program-

ming [44] attacks are not possible. The different privilege

level of the sandbox domain naturally protects the shadow

stack. The sandbox dynamically removes indirect control

flow transfers whenever possible to reduce the opportunities

for jump-oriented programming [10]. The sandbox uses per-

application system call policies to protect from remain-

ing attack vectors. Data-based attacks and jump-oriented

programming are stopped whenever an illegal system call

is executed. Attacks against the sandbox are limited by

protecting internal data. All data structures of the sandbox

domain (including the secure loader) are write-protected

during the execution of translated code.

The sandbox kills the application if an attack is detected.

Denial of service attacks (e.g., an attacker can repeatedly

kill an application by trying to exploit a vulnerability) are

outside of the scope of the attack model. Several mitigation

techniques exist to restart failed services but they are not the

topic of this paper.

B. Execution model

A binary-only application is executed under the control

of the dynamic sandbox. The binary itself is untrusted but

not malicious (i.e., the binary can contain implementation

1Any instruction that changes the control flow of the program, e.g.,
jump instructions, indirect jump instructions, call instructions, indirect call
instructions, or return instructions.

19

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

bugs but the binary is not controlled by the attacker). No

static modifications or static analysis are needed to execute

an application in the sandbox. The sandbox implements an

additional protection domain in user-space, splitting the user-

space into an application domain and a sandbox domain.

TRuE creates a secure process in three steps: (i) TRuE

initializes the secure loader and the sandbox during startup,

(ii) the secure loader then loads the application in the

sandbox and resolves all dependencies to external libraries,

and (iii) the sandbox starts the main application thread in

the application domain. The secure loader is a part of the

sandbox domain. Accesses of the application into the loader

are intercepted and redirected to the protected domain.

The sandbox dynamically translates all application code

before it is executed. Original code regions in the applica-

tion are mapped as read-only. The targets of static control

flow instructions (direct jumps, direct calls, and conditional

jumps) are verified during the translation. Dynamic control

flow instructions incur a runtime check that verifies for each

execution that the target is valid.

Self-modifying code in the application is not supported2,

i.e., the application is not allowed to generate new code at

runtime. Code can only be added to the runtime image of

an application through the secure loader API.

III. BACKGROUND INFORMATION

The startup process of an application is as follows: the

loader opens the application, analyzes the dependences,

loads and initializes the required libraries, and passes control

to the application.

TRuE changes this approach. The secure loader first

initializes the secure sandbox. The secure loader then opens

and analyzes the application and all needed libraries. All

application and library code is executed under the control

of the sandbox, no unchecked code is executed directly.

A sandbox controls the executed application code. The

sandbox combines software-based fault isolation (SFI) con-

cepts and policy-based system call authorization to ensure

that neither the application nor any exploits can escape the

sandbox.

A. Dynamic loading

Linux uses the Executable and Linkable Format [41],

[19] (ELF) to describe the on-disk layout of Dynamically

Shared Objects (DSO) and executables. The ELF format

defines two views for applications and libraries. The first

view contains essential information for the loader about the

different segments (areas with same page permissions) in the

object. The second view contains the section header table

with more fine-grained information like symbol tables.

2A sandbox that supports self-modifying code must move the modifica-
tion engine (i.e., the JIT compiler) into the trusted sandbox domain to ensure
that the generated code conforms to the execution model. This approach
increases complexity but guarantees that only the trusted modification
engine can generate dynamic code for the application.

Libraries contain one or two symbol tables: .dynsym, a

dynamic symbol table that contains information (size, type,

permissions, and others) about all exported symbols; and

.symtab an optional table that contains information about

all symbols in the library. The optional table is available by

default and removed if the object is stripped.

Libraries are mapped to dynamic (non-constant) addresses

in memory, the compiled code must therefore be posi-

tion independent. Position independent code relies on the

Global Offset Table (GOT), which contains information

about imported and exported symbols for each DSO. This

information is used to access symbols in other DSOs with

non-constant addresses. The Procedure Linkage Table (PLT)

is used to transfer control to symbols in other DSOs, entries

in the PLT correspond to an indirect jump through a GOT

slot, see Figure 1 for an example.

���

���

��	

���

��������

	
���	
���	�
��

���

���

��
�����	������

���

�����������
��

��
	����

���

���

��	

���

	
���	�

�������

���

��
������

�

�

�

���

���

Figure 1. Example of PLT-based position independent code. The function
in the code section transfers control to the PLT slot (1), the code in the
PLT slot executes a lookup in the GOT section (2), and transfers control
to the other shared object (3).

Function references in the GOT are initialized with a

pointer to the dynamic loader. The first execution resolves

the actual symbol and stores the resolved pointer in the GOT

slot. Later calls to the same function result in a direct transfer

to the resolved symbol. This feature allows lazy binding.

B. Sandboxing applications

Sandboxing or SFI is a technique that enforces a security

policy on executed code. The security policy includes guards

and restrictions on memory accesses, restrictions on control

flow transfers, and restrictions on instructions and combi-

nations of instructions that can be executed. Many dynamic

SFI tools use binary translation to check the executed code.

20

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

SFI translates and encapsulates all executed instructions of

the application.
Dynamic binary translation, the technique used to imple-

ment SFI, translates all executed code on-the-fly. Translated

code is placed in a code cache to lower translation costs.

The user-space dynamic binary translator (BT) takes control

and implements a second privilege domain in user-space.

Translated application code is executed with lower privileges

than the BT. The BT ensures (during the translation) that

the translated application code has no access to the data

structures and to the code of the binary translator.
Figure 2 shows the design of a dynamic BT as presented

in [37]. Each basic block is translated before execution

and placed in the code cache. A mapping table maps basic

blocks from the original program to translated basic blocks.

Outgoing edges in translated basic blocks point to other

translated basic blocks or back to the translator if the

basic block is not translated. Untranslated basic blocks are

translated on demand. Most instructions are copied verbatim

for regular binary translation, all instructions that change

control flow need special treatment.
The translator emits extra code that handles direct control

flow transfers (e.g., jump instructions, conditional jump

instructions, call instructions, interrupts, and system calls).

Jump instructions and conditional jump instructions are

redirected to the translated basic blocks in the code cache,

interrupts and system calls are replaced with a code sequence

that traps into the privileged domain of the BT. Indirect

control flow transfers (e.g., indirect jumps, indirect calls,

or function returns) are replaced with code sequences that

execute a lookup in the mapping table and an indirect control

flow transfer to the translated basic block. The special

treatment of indirect control flow transfers is needed to keep

up the illusion that the application is running in its native

environment. No pointers and return addresses are changed

by the BT, therefore the BT must trap the indirect control

flow transfers to keep control of the program.

��������	�

��	
��

�����
��

��

��

�����	������	�

�����������

�	
�������

�

�

� �

�

����������	����

�������

�������

�������

�������������

Figure 2. Overview of a dynamic binary translator.

BT enables the checking of machine code instructions

before they are executed. SFI extends BT, the translation

process (often using a code cache for already translated

code) weaves additional guards (e.g., unexecutable stack,

shadow stack, and write-protected executable code) into the

translated code that ensure that the targets of control flow

instructions cannot be changed by code based exploits.

System calls are requested using specific instructions and

the sandbox is in the unique position to replace these

instructions with special sandbox code. The sandbox checks

individual system calls and verifies system call numbers,

parameters, and locations according to a given system call

policy. This concept is known as policy-based system call

authorization.

IV. PROBLEMS OF THE STANDARD LOADER

The standard loader has several problems if it is used

in a security-relevant context. Bugs in the standard loader

lead to direct privilege escalation. If the application and the

sandbox share the same loader then the sandbox can be

attacked through the loader. All dynamically loadable appli-

cations rely on features of the loader to dynamically resolve

references or to load additional modules. If the loader is

translated alongside the application then the application must

have the privileges to map code as executable which pose a

security risk.

A. Exploiting the standard loader

The standard execution model uses the same loader for all

applications, no matter if they are regular user applications,

privileged applications, or remotely accessible applications.

The standard loader supports a wide range of dynamic

functionality (e.g., debugging, dynamic library replacement,

and tracing of method calls) and a huge feature-set (e.g.,

many different relocation types). Large parts of the function-

ality are not needed or even harmful for privileged programs.

Extra checks ensure that it is not possible to (i) preload

alternate libraries or to (ii) replace the standard search path

for libraries if an application uses the SUID flag.

Missing or faulty checks for privileged applications or

other bugs in the standard loader [17], [34], [33], [40]

can therefore be exploited to escalate privileges for SUID

applications.

These problems can be mitigated or reduced if the func-

tionality and feature-set of the loader is restricted to the

bare minimum of necessary features to execute current

applications.

B. The late interception problem

Many dynamic interception tools ([43], [45], [29], [11]

use LD_PRELOAD3 to gain control of the application. The

application, the standard loader, and the binary translator

(BT) share the same memory space. The data structures

3LD_PRELOAD is an option for the dynamic loader that injects an addi-
tional library into the process space of the application; this option executes
the initialization code of the injected library prior to the initialization of
the application.

21

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

of the loader contain pointers to the BT as well as to the

application. The loader is in the application domain and the

loader functionality can be used to gather information about

the BT (i.e., resulting in an information leak) or to break

the integrity of the BT. A potential exploit uses the data

from the loader (e.g., modifies the GOT section of the BT)

to compromise the BT itself and to redirect BT functions to

malicious code.

The standard loader treats a BT that uses LD_PRELOAD
just like any other shared object and enables the application

to read information about the shared object (e.g., address

space, PLT, and GOT sections). The standard loader does

not guarantee that the BT initialization function is the first

sequence of instructions that is executed after the loader

finished its initialization. For example, the INITFIRST flag

that can be set by multiple libraries. Preloaded libraries are

loaded first but the standard loader executes the initialization

code of the last loaded library with this flag first.

Another example is a symbol of the GNU_IFUNC reloca-

tion type. The standard libc uses GNU_IFUNC to select the

best possible version of a function for the current hardware at

runtime. Such a scenario may trigger the executing of setup

code before the LD_PRELOAD-based BT is initialized. The

BT is deprived of control of its environment if application

code is executed before the BT is initialized.

C. The loader black box

In related work [43], [45], [29], [37], [11] the sandbox

is either (i) unaware of the standard loader and translates

the code of the standard loader as part of the application,

or (ii) does not support dynamic loading [47], [31], [1],

[20]. Solutions that are unaware of the loading process treat

library loading as a black box.

The loader plays a privileged part during the runtime

of all application that use shared libraries. The dynamic

loader manages information about all loaded shared objects

(libraries) and about all exported symbols that can be used

in other objects.

The sandbox uses functionality of the loader to discover

the loaded shared objects and the exported functions. The

sandbox also relies on information about executable regions

and data regions that is exported by the standard loader.

The loader is a crucial component of the application as

it can load and map new code into the running process. If

the loader is translated as a black box then the application

must have the privileges to load and map any code (e.g.,

using the mmap system call, or the mprotect system call

to map memory regions as executable). On the other hand

if the sandbox provides a transparent and secure loader API

then the privilege to map executable memory regions can

be abstracted into the trusted sandbox domain. The sandbox

can control the application and limit the loading process to

predefined libraries.

An extension of the secure loader can be used to imple-

ment a clear separation between the different shared objects.

Privileges and permissions (e.g., specific system calls and

parameters to the system calls) can be tuned and specified

on a per-object basis and are no longer enabled for all parts

of an application.

V. SAFE LOADING IN A TRUSTED RUNTIME

ENVIRONMENT

The Trusted Runtime Environment presents an alternate

model for process creation (turning an executable and all

associated libraries into a running program) and is the first

technique that takes complete control over an application

in user-space. The standard dynamic loader is replaced

by a secure loader that is part of the sandbox domain.

As a result the application domain no longer needs the

permissions to map executable code. A secure loader must

be safe (the implementation is reviewed and bug-free) and

secure (the design does not provide attack vectors in the

offered functionality). This approach bridges programming

languages and operating systems, a language independent

loader is used to secure and confine binary-only applications

in their execution pattern running on an operating system.

Figure 3 provides a comparison between the standard run-

time environment and TRuE.

�����

��	
������
����

���
������������

����������

�������

���

���

���
���������

����

��
����

����������

�������

���

��������	
��
���	���
��

��

��

���������
��������
��
�������	���������������

Figure 3. Comparison between a regular sandboxing approach and safe
loading as provided by TRuE with a secure loader. The left-hand side shows
two problems: 1) the late interception problem and 2) the loader black box
problem.

The secure loader runs as part of the privileged sandbox

domain. The secure loader is the only entity that is allowed

to load new code and the application is only allowed to

access loader functions through a well defined API. The

sandbox and the loader are tightly coupled and share infor-

mation about the program. The loader analyzes segment and

section information of the application and all dynamically

22

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

loaded objects and enables per object privileges. The loader

resolves objects, symbols, and relocations for the sandbox

that then embeds resolved addresses in the translated code.

The tight coupling of the loader and the sandbox enables

module separation. Control transfers between modules are

inlined directly into the translated code. The translated

source object contains a direct reference (that is unreadable

from the application) to the target object and no call through

the PLT and GOT is needed. The PLT data structure is only

kept for reference reasons.

The secure loader solves problems of the standard loader

that are discussed in Section IV. The secure loader ensures

that the SFI library is initialized first and treated specially

so that symbols are neither added to the global scope nor

accessible through any API functions.

A. The sandbox

The sandbox implements two privilege domains in user-

space: the sandbox domain (a trusted domain that contains

the loader and the sandbox proper) and the application

domain, an untrusted domain that contains the application

code and all needed libraries.

The sandbox domain ensures that no unchecked code

is executed in the application domain. Application code is

examined by the sandbox before execution and additional

security guards are added to ensure that the executed code

cannot escape out of the sandbox.

Binary Translation (BT) is a key component for user-space

software-based fault isolation (SFI). A dynamic translation

system translates and checks every machine code instruction

before it is executed. Translated code is placed in a code

cache. Indirect control flow transfers trap into the privileged

sandbox domain and are checked upon every execution,

ensuring that only translated branch targets are reached.

The translator can change, adapt, or remove any invalid

instruction and is able to intercept system calls before they

are executed.

An important requirement for the integrity of the sandbox

is that return addresses of the translated application remain

unchanged on the stack. Translated return addresses on the

application stack would leak pointers into the code cache.

Unchanged return addresses add additional complexity when

handling return instructions as they are translated to a lookup

in the mapping table (the mapping table is a sandbox-

internal data structure that relates between translated and

untranslated code) and an indirect control transfer. On the

other hand an unchanged stack ensures that the original

program can use the return instruction pointer on the stack

for (i) exception management, (ii) debugging, and (iii) return

trampolines. Additionally, the user program has no easy way

to discover that it runs in a sandboxed environment, and

the address of the code cache is only known by the binary

translator.

B. Solving the loader’s security problems
Combining a secure loader and a safe sandbox to form a

trusted execution environment solves the problems defined in

Section IV. The loader must be separated from the applica-

tion and the application may not access the loader’s internal

data structures directly. The privileged sandbox domain is

a perfect location for the secure loader. The secure loader

and the sandbox share information about all loaded shared

objects and symbols. The shared information enables the

sandbox to restrict control flow transfers in the application

domain. The loader needs privileges to resolve dependencies

and to map executable code, these privileges are best placed

in the sandbox domain.
1) Restricting privilege escalation attacks: The secure

loader implements a subset of the features of the standard

loader. The subset is complete enough to run in practice any

programs compiled with a recent version of the compiler

toolchain. The supported programs are independent of the

source language (C, C++, Fortran, and handwritten assembly

programs were tested).
The feature set of the secure loader is limited to relocation

types needed on the current platform (the standard loader

supports relocation of other platforms as well), no run-

time configuration, no debugging features that execute user-

specified code, no backwards compatibility to old formats,

and no direct access to loader internal data structures from

the application are available.
TRuE targets programs running with a higher privilege

level than the user interacting with the program. The secure

loader does not read any environment variables and has

no configuration files that are parsed at runtime. A user

is not allowed to change settings for privileged programs.

All settings are hardcoded during the compilation. Library

paths, debugging features, and loader settings can only be

changed before the compilation of the secure loader. The

secure loader does not allow changes to any settings at

runtime.
The removal of these user-settable features protects from

attacks mentioned in Section IV-A. Privileged applications

do not need these features, therefore removing the features

altogether is more secure than executing additional checks

before accessing the features (as done by the standard

loader).
2) Protecting all executed application code: The initial-

ization code of the secure loader is the first code that runs

when an application is started. This initialization code starts

and initializes the sandbox as well.
The secure loader can execute all application code under

the control of the sandbox because the loader is part of the

privileged sandbox domain. The secure loader tells the sand-

box to translate an entry point to application code whenever

the standard loader would pass control to application code.

The application traps into the sandbox domain when it uses

any loader functionality (e.g., resolving symbols, loading

23

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

additional modules, or loading PLT entries). The secure

loader verifies the correctness of the request, and returns the

result to the application domain. The secure loader cleans all

references to internal data from any returned structures as an

additional level of protection (next to setting internal data

structures read-only when executing translated application

code). The application uses the loader features through a

well-defined API and can no longer read or write internal

loader data. Trapping into the sandbox domain switches the

stack of the current thread, stores information about the

current state of the application thread (i.e., registers and PC),

and adds write permission for the internal data structures of

the secure loader; these changes are reversed when returning

to translated application code.

This procedure ensures the safety of the secure loader,

the sandbox, and the internal data structures at all times.

Consequently the problems mentioned in Section IV-B do

not exist for the secure loader.

3) Opening the loader black box: Placing the loader in

the sandbox domain solves the loader black box problem

from Section IV-C. The sandbox and the loader are in the

same trust domain and together provide the base for trusted

execution. Loader and sandbox can share data structures and

exchange information about executable code regions, data

regions, and symbol locations.

The loader is no longer translated by the sandbox as

a part of the application but is an integral part of the

sandbox. The application no longer needs privileges to map

executable code into the application memory space but uses

the loader API provided by the sandbox. All applications

remain unchanged but calls to the loader are redirected to

the secure loader API in the sandbox domain.

C. PLT inlining

The tight integration of the secure loader into the sandbox

enables PLT inlining. The PLT is originally used to enable

position independent code. The binary translator in the

sandbox can remove the PLT code and inline the resolved

target addresses directly into the generated code.

This optimization reduces the amount of indirect control

flow transfers (these control flow transfers account for the

main overhead in dynamic binary translation) and hides the

location of other objects from the application.

The addresses are encoded directly in the code cache and

the application has no access to the instructions in the code

cache. This feature enables module separation and raises the

bar for security exploits because a potential exploit is unable

to determine the locations of specific functions in other

objects. The total number of indirect control flow transfers

is reduced, limiting jump-oriented attacks.

Format string attacks [36] and other data-oriented attacks

can be used to circumvent guards in the application do-

main like ASLR, DEP, and stack canaries. These attacks

overwrite pointers in GOT sections of shared objects and

use the indirect jump instructions in the corresponding PLT

regions to set up arbitrary code execution. Each PLT call

in the application code can be used as a gadget for jump-

oriented programming. PLT inlining closes this attack vector.

Remaining indirect jump instructions in the application code

(e.g., C switch statements are compiled to indirect jumps

through jump tables) may still be used for jump-oriented

programming attacks. The frequency of these remaining

indirect jump instructions is low, thereby severely limiting

the opportunities for jump-oriented programming.

D. Additional security features

A custom tailored exploit could target the binary translator

itself. If the program is able to locate the internal data

structures of the binary translator (e.g., the code cache), it

could modify the executed code by directly changing instruc-

tions in the code cache and break out of the isolation layer.

Therefore any pointers to internal data are only allowed in

the sandbox domain, and a protection guard in the sandbox

must ensure that all data of the sandbox domain is write-

protected whenever application code is executed.

The basic binary translator is extended by the following

security guards that secure the user-space isolation sandbox

and to ensure that application code cannot escape the sand-

box: Non-executable data and code ensures that neither data

nor code of the original application can be executed directly

(by setting the non-executable bit on all memory pages of

the application). This guard prevents code injection attacks.

Only translated code in the code cache and code of the sand-

box domain are executable. A shadow stack in the sandbox

domain protects all return addresses on the application stack.

This guard prevents return-oriented programming [44]. The

sandbox uses Address Space Layout Randomization (ASLR)

to allocate internal data structures at random addresses.

ASLR is an additional probabilistic protection against bugs

in the implementation of the sandbox. The sandbox uses

a dedicated stack for all privileged code to prevent data

leaks to the unprivileged domain. A trampoline switches the

context (and stack) whenever privileged code is executed.

A protection guard ensures that no data from the sandbox

domain is writable when code from the application domain

is executed. The protection guard uses information from the

sandbox internal memory allocator and mprotect system

calls to write-protect all sandbox internal data structures

whenever translated application code is executed.

VI. IMPLEMENTATION

The Trusted Runtime Environment (TRuE) is imple-

mented as a combination of a secure loader and an extended

version of the libdetox [37] sandbox. TRuE integrates the

information from the loader into the security guards. The

secure loader initializes the sandbox before any application

24

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

or library code is loaded or executed. All application and

library code is then executed in the sandbox4.

The secure loader uses ELF information and symbol table

information [41] and implements all needed functionality to

load most programs (e.g., OpenOffice, and the SPEC CPU

benchmarks).

The SFI platform is tightly coupled with the secure loader.

The loader first maps libdetox into the address space and

initializes the SFI platform. This special treatment ensures

that the SFI platform is initialized and that the application

has no access to or knowledge of the sandbox domain. The

next steps are the relocation of the application and all needed

shared objects. The loader controls all data that is passed to

the application and runs all user code under the control of

the SFI platform.

The prototype implementation of TRuE is small. Accord-

ing to ohcount5 the secure loader consists of around 5,400

lines of code (including 2,100 lines of comments) and the

sandbox platform consists of around 20,200 lines of code

(including 5,000 lines of comments and 4,900 lines for the

full IA32 translation tables6).

A. Application and library loading

The secure loader implements the most common subset

of features from the standard loader. Some features (e.g.,

overwriting library search paths, runtime debugging, or de-

bugging features that execute user-supplied code for specific

events) are removed and not implemented out of security

concerns. Unimplemented features result in an error message

and graceful termination of the program. The current imple-

mentation prototype covers the core functionality needed to

execute in practice any ELF programs of Ubuntu 11.04 that

originally use the standard loader (i.e., any ELF program

that uses shared libraries). Further options (e.g., obscure

relocation patterns, additional callbacks from the application

into the loader, and access to internal loader data7) can be

added if needed.

The standard loader has no protection for internal data

structures and leaks pointers to the internal data structures

to the application. The API of the secure loader that is

accessible from the application (e.g., dlopen, dladdr,

and dlsym) ensures that no protected internal data is leaked

to the application. The sandbox write-protects all internal

data whenever (translated) application code is executed by

using mprotect on all memory regions of the sandbox.

4The source code of the prototype implementation of TRuE is available
as open-source at http://nebelwelt.net/projects/TRuE.

5ohcount is a tool to measure different code metrics like lines of code.
6The IA32 translation tables contain detailed information about all IA32

instructions. The translation tables enable the BT to decode and to translate
individual IA32 instructions.

7GDB uses undocumented direct access to the internal data from the
loader to get more information about individual symbols. This feature can
be implemented as a proxy that projects information out of the secure loader
if needed.

The secure loader must handle the startup of new applica-

tions. First of all the loader is completely independent from

any libraries (even the standard libc) and is just mapped

into memory. This loader then examines the ELF headers

of the application and maps the runtime sections of the

application to a fixed address in memory. Then the list of

needed libraries is examined and entries are added to a “to-

process-list”. The loader dequeues one entry at a time and

loads and initializes this library at random addresses. If the

library depends on other libraries then they are added at

the end of the “to-process-list”. This algorithm conforms

to a breadth-first traversal of the dependence graph of the

application starting with the application as the root node.

References to needed libraries only contain the name of

the library but not the path. When the loader locates a new

library several paths are examined: first a per-DSO variable

that specifies one or more search paths per DSO, then the

standard search paths defined in /etc/ld.so.conf. The

standard libc loader also supports additional search directo-

ries using the LD_LIBRARY_PATH environment variable

and the local cache file /etc/ld.so.cache. Out of

security reasons the secure loader does not support runtime-

configurable paths.

B. Symbol resolving

The loader resolves symbols using the symbol tables in

the different shared objects. Every shared object contains

the .dynsym table with all exported symbols. If the loader

needs to resolve an imported symbol then the loader checks

different lookup scopes. The loader defines three different

lookup scopes that are checked one after the other:

1) Loader scope: this scope contains the symbols that

are exported by the secure loader. The loader scope

is checked first and symbols in this scope cannot be

overwritten.

2) Local scope: the local scope of a DSO contains its

own symbols and the symbols of all libraries that the

DSO depends on. This scope is a subset of the global

scope.

3) Global scope: shared objects that are in the initial

set of objects loaded during the startup of the ap-

plication (e.g., all objects in the dependence graph)

or shared objects that are loaded at runtime with the

RTLD_GLOBAL flag set are in the global scope.

A special feature is symbol versioning where symbols can

be defined multiple times with different versions. The correct

symbol is then selected based on a matching version.

The secure loader supports the GNU IFUNC relocation

format (STT_GNU_IFUNC) where a piece of code is ex-

ecuted to determine the correct location of the symbol.

This feature is, e.g., used in the libc to select between

multiple implementations of a function. The test function

checks if a specific CPU feature is available and returns the

most optimized version for the current environment. The

25

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

Nr Name Type Size Flags
0 NULL 0
1 .note.gnu.build-i NOTE 24 R
2 .note.ABI-tag NOTE 0x20 R
3 .gnu.hash GNU HASH 0x3c38 R
4 .dynsym DYNSYM 9200 R
5 .dynstr STRTAB 005acd R
6 .gnu.version VERSYM 0x1240 R
7 .gnu.version d VERDEF 0x3d8 R
8 .gnu.version r VERNEED 0x40 R
9 .rel.dyn REL 0x2a20 R
10 .rel.plt REL 0x40 R
11 .plt PROGBITS 0x90 RX
12 .text PROGBITS 0x1088d4 RX
13 libc freeres fn PROGBITS 0xfc8 RX
14 libc thread fre PROGBITS 0x182 RX
15 .rodata PROGBITS 0x1b808 R
16 .interp PROGBITS 0x13be68 R
17 .eh frame hdr PROGBITS 0x333c R
18 .eh frame PROGBITS 0x132b4 R
19 .gcc except table PROGBITS 0x5c1 R
20 .hash HASH 0x3484 R
21 .tdata PROGBITS 0x8 RWT
22 .tbss NOBITS 0x38 RWT
23 .fini array FINI ARRAY 0x4 RW
24 .ctors PROGBITS 0x14 RW
25 .dtors PROGBITS 0x8 R
26 libc subfreeres PROGBITS 0x70 RW
27 libc atexit PROGBITS 0x4 RW
28 libc thread sub PROGBITS 0xc RW
29 .data.rel.ro PROGBITS 0x1afc RW
30 .dynamic DYNAMIC 0xf0 RW
31 .got PROGBITS 0x174 RW
32 .got.plt PROGBITS 0x2c RW
33 .data PROGBITS 0x97c RW
34 .bss NOBITS 0x3068 RW

...
68 not allocated

Table I
THESE SECTIONS OF THE STANDARD LIBC ARE MAPPED AT RUNTIME

USING THE GIVEN FLAGS (X - EXECUTE, W - WRITABLE, R -
READABLE, T - THREAD LOCAL STORAGE). COMMAND USED TO GET

THIS INFORMATION: READELF -S /LIB32/LIBC-2.13.SO .

loader then uses this function pointer and forwards it to the

requesting DSO where the function pointer can be embedded

in the GOT.

C. Memory protection

One of the advantages of a secure loader is that all loader-

related data structures can be write-protected. The secure

loader manages two kinds of data structures, internal data

structures and application data structures.

Internal data structures contain information about the dif-

ferent relations between shared objects, scope information,

and other details about the loaded objects. This information

is updated by the secure loader whenever new shared objects

(e.g., additional shared libraries) are loaded and initialized.

The secure loader maps these data structures read-only

whenever application code is executed.

Shared objects contain data structures that are only

changed by the loader and are only read by the appli-

cation. If we take the standard libc 2.13 as an example

we see in Table I that there are 34 ELF sections that are

mapped to memory. 11 sections are mapped writable (.tdata,

.tbss, .fini array, .ctors, libc subfreeres, libc atexit,

libc thread sub, .data.rel.ro, .dynamic, .got, .got.plt, .data,

.bss) and 1 section (.dtors) is marked read-only but on

the same memory page as .ctors and is therefore writable

as well. Most of these sections are used only during the

initialization of the shared object. The sections .data.rel.ro,

.dynamic, .got, .got.plt are critical for the loader and can

be used in attacks against a classic sandbox that does not

integrate the loader into the security concept. The standard

loader maps .data.rel.ro as read-only after the initialization

but the other sections remain writable. Out of the writable

set of sections only .data and .bss are used by the libc code.

The secure loader write-protects all sections except .data

and .bss dynamically to protect the application from mod-

ification attacks in these sections whenever translated ap-

plication code is executed. If the secure loader needs to

update write-protected structures (e.g., a GOT entry) then

the write-permission is set temporarily during the update in

the sandbox domain. The write-permission is removed when

returning to the application domain.

D. Loader optimizations

The secure loader currently implements two optimiza-

tions, lazy binding and PLT inlining.

Lazy binding reduces the amount of relocations that have

to be calculated when a library is loaded. Only symbols in

the data region are relocated but symbols in the PLT region

are only resolved and relocated when the function is exe-

cuted the first time. This optimization is also implemented

in the standard loader.

The implementation of PLT inlining follows the design

in Section V-C and uses the close relationship between the

secure loader and the sandbox. The sandbox intercepts all

call instructions and checks for each instruction if the call is

a PLT call. The secure loader then resolves the static target

address of the PLT target. The original call and indirect

jump of the PLT call are then replaced by a translated call

instruction to the resolved target. This removes an indirect

jump including an indirect control flow check for every PLT

call that is executed.

During the loading process weak symbols of prior DSOs

can be overwritten by symbols in the current DSO. Library

loading forces all threads to trap into the sandbox domain

and to flush their code caches. If the weak symbol points

to a function and this function was inlined (through a PLT

slot) then the sandbox has an invalid reference in the code

cache and must therefore flush the code cache to retranslate

the given PLT slot.

E. Handling of the sandbox

The secure loader handles the sandbox in a special way.

The loader resolves the additional sandbox code before any

26

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

shared library or application code is loaded and initialized.

The symbols of the TRuE framework are also resolved in a

protected scope that is only accessible by the secure loader

and the sandbox.

Any application or library code that is then executed

during the initialization phase is executed under the control

of the sandbox, enabling security right from the start.

F. Changes to the regular sandbox

The safe sandbox in Figure 3 is based on the libdetox [37]

open-source project. Changes to the original implementation

are an API for the secure loader, an alternate sandbox stack

for functions in the sandbox domain, and a new shadow

stack to store information about the application stack in the

sandbox domain.

The sandbox uses the secure loader to lookup information

on the different sections. The sandbox uses this information

to decide if code is in an executable section of a shared

object or in some other region. The same information is used

to implement PLT inlining as described in Section VI-D.

Our sandbox uses specific entry and exit trampolines to

simplify the transition between the application domain and

the sandbox domain. The entry trampoline handles the tran-

sition from translated application code to privileged sandbox

code. The application stack remains unchanged, registers

are spilled to a thread-local storage area in the sandbox

domain and the stack is swapped to a sandbox stack. Code

running in the sandbox domain uses the sandbox stack to

store local information. The exit trampoline returns from the

sandbox domain to the application domain. The trampoline

restores registers, switches back to the application stack, and

continues the execution of the translated code.

Events that trigger a switch from the application domain

to the sandbox domain are:

Lookup misses in the mapping table: if an indirect con-

trol flow transfer cannot be resolved with the inlined

assembler code (e.g., a quick lookup in the first entry of

the mapping hash table) then the control flow transfer

code escalates to the sandbox domain and requests a

slow-path lookup.

Untranslated code: if the translated application code

branches to untranslated code an exception is triggered

and the sandbox either translates the untranslated code

and continues execution or faults.

Signals and exceptions: the sandbox installs special han-

dlers to catch all signals and exceptions. These handlers

check the signal or exception, resolve the original

instruction pointer8, check if the signal or exception

is legit, and pass the information to the application.

System calls: system calls trigger a switch to the sandbox

domain. A handler copies the arguments of the system

8The kernel passes an instruction pointer to the code cache that must
be resolved to a pointer in the application domain before the signal or
exception is passed to the application.

call into the sandbox domain. If an argument is a

pointer to a data structure then only the pointer is

copied. The handler then checks the combination of

system call and parameters using a per-application

policy. The system call is evaluated in the sandbox

domain to protect from time of check to time of use
attacks by concurrent threads.

The shadow stack protects the application from return-

oriented programming attacks. The basic concept of the

shadow stack keeps information about the application stack

frames in the sandbox domain. The shadow stack uses triples

of pointers of return instruction pointer, translated return

instruction pointer, and stored application stack pointer.

The original libdetox implementation uses only pairs of

pointers of return instruction pointer and translated return

instruction pointer. The advantage of using triples is that

the stack can be resynchronized if there is a mismatch. If

the last translated function removed multiple stack frames

(e.g., through exception handling) then the reauthentication

method can pop stack frames on the shadow stack until the

application stack pointer matches the stored stack pointer on

the shadow stack, resynchronizing the shadow stack with the

application stack.

G. Implementation alternatives

We discuss two implementation alternatives that offer a

similar security concept to the combination of a secure

loader with a sandbox. The first alternative uses static

recompilation. All libraries are compiled to a statically

linked binary, guards are added during the recompilation,

and the loader is no longer needed. This approach has

several drawbacks: (i) there is no second protection domain;

exploits can get control of the user-space and then execute

arbitrary system calls, (ii) static recompilation is limited to

statically known targets and code locations (e.g., handling

of dynamic jump-tables for switch statements), (iii) a secure

static runtime environment must restrict the ISA and the dy-

namic control flow transfer instructions to limit the dynamic

options of the IA32 ISA.

A second alternative implements a sandbox without

changing the loader. The sandbox is hidden from the ap-

plication using loader tricks that alter the data structures

of the loader, or the sandbox is added as a binary blob

and injected into the process image by an external process.

This implementation approach has the disadvantage that it

is hard to hide the sandbox from the loader/application

and to remove all traces from the sandbox in the loader

data structures. A second disadvantage is that loader code

is translated as well, especially when new symbols are

resolved. This disadvantage leaves the loader black box

problem unsolved.

27

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

VII. EVALUATION AND DISCUSSION

This section evaluates and discusses the implementation

prototype of the secure execution platform to demonstrate

its practicability. The evaluation shows a performance eval-

uation for the SPEC CPU benchmarks and discusses limita-

tions of the current implementation.

A. SPEC CPU benchmarks

We use the SPEC CPU2006 benchmarks version 1.0.1 to

evaluate the performance and feasibility of our prototype

implementation. The SPEC benchmarks are run on an Intel

Xeon E5520 CPU at 2.27GHz on Ubuntu Jaunty with gcc

version 4.3.3 on a x64 kernel with 32bit support. We evaluate

a subset of the SPEC CPU 2006 benchmarks. The missing

C++ benchmarks did not compile with the gcc 4.3.3 due

to changes of the C++ header files; the missing fortran

benchmarks did not link due to library problems under

64bit. These missing SPEC CPU 2006 benchmarks run if the

source files (for C++ based benchmarks) or the Makefile (for

fortran based benchmarks) are patched. This section only

reports on the unmodified SPEC CPU2006 benchmarks.

Table II displays the number of relocations per benchmark

run and the number of loaded DSOs for a subset of the SPEC

CPU2006 benchmarks. The total number of relocations

is low (between 1,381 and 1,597 relocations) for all the

evaluated SPEC CPU 2006 benchmarks.

Table III shows the overhead of the secure loader com-

pared to the standard loader. The performance of the secure

loader is competitive to the standard loader. Comparing the

columns of the secure loader to the secure loader with

memory protection illustrates that the overhead of the secure

loader to protect all writable sections except .data and

.bss is negligible. The cost for protecting the memory

pages that contain the loader data for each shared object

is amortized during the runtime of the program.

Benchmark Relocations DSOs Runs
400.perlbench 1,447 3 3
401.bzip2 1,368 2 6
403.gcc 1,437 3 9
429.mcf 1,381 3 1
445.gobmk 1,422 3 5
456.hmmer 1,431 3 2
464.h264ref 1,423 3 3
435.gromacs 1,597 5 1
470.lbm 1,377 3 1

Table II
PER BENCHMARK AVERAGE NUMBER OF RELOCATIONS, LOADED

DSOS, AND NUMBER OF BINARIES EXECUTED IN A BENCHMARK RUN

FOR A SUBSET OF THE SPEC BENCHMARKS.

The last column displays the overhead of TRuE (including

secure loader, memory protection from Section VI-C and full

sandboxing of all application code). Most programs have

low overhead and safe execution is feasible. Running all

Benchmark SL SL+mprot TRuE
400.perlbench -0.3% -0.2% 85%
401.bzip2 -0.1% -0.1% 4.9%
403.gcc -0.9% -0.9% 38%
429.mcf -0.1% -0.1% 0.5%
445.gobmk 0.0% 0.0% 32%
456.hmmer 0.0% 0.0% 5.3%
458.sjeng 0.0% 0.0% 58%
464.h264ref -0.3% -0.3% 41%
473.astar 0.1% 0.0% 8.3%
433.milc -0.1% 0.0% 3.7%
434.zeusmp 0.0% 0.3% -0.5%
445.gromacs 0.0% 0.0% 0.8%
436.cactusADM 0.2% 0.8% 0.6%
444.namd 0.0% 0.0% 1.1%
450.soplex -0.2% -0.2% 8.4%
459.GemsFDTD -0.2% -0.2% 3.0%
470.lbm 0.0% 0.1% 0.2%
482.sphinx3 0.1% 0.1% 0.5%
462.libquantum 0.0% 0.0% 2.2%
Average -0.1% 0.0% 15%

Table III
PER BENCHMARK AVERAGE OVERHEAD COMPARED TO THE STANDARD

LOADER. THE COLUMNS ARE THE SECURE LOADER, SECURE LOADER

PLUS MEMORY PROTECTION (SECTION VI-C), AND TRUE: SECURE

LOADER, MEMORY PROTECTION AND FULL SANDBOXING OF ALL CODE.

application code in a sandbox and checking all control flow

transfers results in additional overhead between 0.5% and

85% for the SPEC benchmarks compared to the standard

loader. The overhead results mostly from binary translation

(i.e., the execution of indirect control flow transfers) and

only little overhead is induced through the additional secu-

rity checks.

Benchmarks with a very high number of indirect control

flow transfers (these transfers incur a runtime check in

the sandbox) have higher overhead (e.g., 400.perlbench,

403.gcc, or 464.h264ref). Every executed indirect control

flow transfer needs a runtime lookup in the mapping table of

the BT. The BT implementation reduces the cost of runtime

through caching of source target pairs, fast paths for often

executed targets, and other optimizations. Nevertheless they

are the biggest factor in the overall overhead.

The average overhead for all evaluated benchmarks is

15% which is tolerable for the combination of safe loading

and sandboxing. The overhead of TRuE for individual

benchmarks is comparable to the sandboxing overhead of

libdetox [37].

B. OpenOffice 3.2.1

We measured OpenOffice startup as a stress test and

worst-performance metric, 145 DSOs are loaded, relocated,

and executed with very low code reuse. OpenOffice was run

on an Intel Core i7 CPU at 3.07GHz on Ubuntu Maverick.

OpenOffice 3.2.1 executes 265,067 relocations during the

startup phase and loads 145 individual shared objects. The

secure loader imposes an overhead of 44% for OpenOffice

and 77% overhead for the additional memory protection. If

28

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

the full protection sandbox and the secure loader are used in

combination then the start-up of OpenOffice is slowed down

by 188%.

The overhead for OpenOffice results from additional

checks that are carried out whenever a new shared object

is loaded and all relocation entries need to be resolved.

The OpenOffice startup sequence is evaluated as a worst-

case scenario. Code is rarely reused and a huge number of

references between objects need to be resolved. The over-

head for the secure loader comes from less efficient loading

and symbol resolving. The additional overhead between the

secure loader and the secure loader plus memory protection

comes from the additional mprotect system calls used to

protect all runtime sections except .data, .bss, .tdata,

and .tbss.

standard loader secure loader loader ovhd.
native 178,336 kB 208,312 kB (16.8%)
sandbox 256,156 kB 289,569 kB (13.0%)
sandbox ovhd. (43.6%) (39.0%)

Table IV
OPENOFFICE MEMORY CONSUMPTION SHOWING THE MEMORY

OVERHEAD OF THE SECURE LOADER AND THE SANDBOX.

Table IV shows OpenOffice memory consumption as

given by ps -o vsz,command. The secure loader con-

sumes between 13.0% and 16.8% more memory than the

standard loader. The standard loader uses malloc and

free to allocate memory. The secure loader does not use

any external libraries and relies on direct mmap calls and

a less-efficient internal memory management system. The

secure loader memory overhead can be reduced with a more

efficient memory management system.

Sandboxing results in 39.0% to 43.6% memory overhead

due to the internal data structures of the sandbox, the

mapping cache, and the code cache for translated application

code. An overhead of 77,820 kB to 81,257 kB to sandbox

large applications like OpenOffice is both tolerable and

feasible.

C. Discussion of TRuE’s security features

TRuE combines a sandbox that enables the execution of

untrusted code with a secure loader. The secure loader can

load and relocate unmodified binaries and shared libraries

that are then executed under the control of the sandbox.

The sandbox uses the internal information of the secure

loader to optimize the code layout of the internal cache.

TRuE protects unmodified binary applications from code-

based attack vectors and enables a safe foundation to execute

applications that use shared libraries.

TRuE splits the user-space into two execution domains,

the privileged sandbox domain that controls an application

and the application domain that executes translated appli-

cation code. The secure loader starts and initializes the

sandbox before the application binary is opened. The loader

then loads and relocates the application and all libraries.

Any application code is executed under the control of the

sandbox.

The sandbox ensures that no untranslated code is ex-

ecuted. The memory layout of the sandbox ensures that

no code-injection attacks are possible. All memory regions

are either executable or writable, but never executable and

writable. The security guards that are woven into the trans-

lated code ensure that any direct or indirect control flow

transfers only redirect control flow to already known and

verified targets.

The secure loader only implements bare-bones functional-

ity needed to load and relocate applications on a single plat-

form. No inter-platform operability, no debugging features,

no runtime-configurable settings, and no runtime-changeable

settings are implemented. This bare bone paradigm drasti-

cally reduces the total number of lines of code needed to

implement the loader functionality.

The standard loader executes extra checks that disable

some features for privileged applications. These checks can

contain bugs [17], [33], [34] that enable an arbitrary user

to execute code as privileged user. These features are not

available in the secure loader and cannot be exploited.

The combination of a secure loader with a sandbox

offers several advantages. The secure loader enables a clean

foundation to implementing a secure sandbox, unmodified

binary applications are safely executed in the unprivileged

application domain. Any requests for system calls, indirect

control flow transfers, or functionality of the dynamic loader

trap into the sandbox domain. The application domain has

no privileges to map executable code. The sandbox ensures

that no untrusted application code is executed outside of the

sandbox. Any calls into the loader trap into handler functions

in the privileged sandbox domain where the parameters can

be checked and verified.

D. Limitations of the current implementation

TRuE protects from all code injection based attacks (on

the stack and on the heap). Regular code sections of the

application are mapped read-only and only translated appli-

cation code in the code cache is executable. Other memory

pages of the application are never mapped executable.

The shadow stack protects the return instruction pointer

using a privileged shadow stack in the sandbox domain. This

guard protects from all stack-oriented attacks (return to libc

attacks and return-oriented programming [44]).

A limitation of the current approach is that jump-oriented

programming attacks [10] and data-only attacks (application

data is over-written using a malicious write to a memory

page) are still possible. Jump-oriented attacks and data-only

attacks can redirect the control flow to alternate locations

in the code but the attacks can never introduce new code or

break out of the sandbox. Only translated code is executable

29

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

and all outgoing edges at the end of a basic block in the code

cache are either patched to other translated basic blocks or

trigger a fallback into the sandbox to translate previously

untranslated code.

Similar to libdetox [37] we can use a system call policy

to ensure that the application code cannot break out of the

sandbox and to protect from jump-oriented attacks and data

attacks at the more coarse-grained system-call level. An

advantage of moving the loader into the sandbox domain

is that we do not need to consider the system calls needed

by the loader in our application policy. The policy can

be reduced to the functionality actually needed by the

application and is not polluted by system calls that are

needed for loader functionality.

A second limitation that is shared with libdetox is the

inability to securely support self-modifying code (i.e., JIT

compilers). A JIT compiler can generate arbitrary code.

TRuE uses a privileged sandbox domain to handle code

generation and module loading. If an application contains

a JIT compiler then it is placed in the untrusted application

domain. The application domain is not allowed to generate

new code. If the application domain was allowed to generate

new code then a JIT compiler would not be distinguishable

from a code injection attack. A possible solution for appli-

cations that need a JIT compiler is to either promote the JIT

compiler to the sandbox domain or to define a secure API

that is used by the JIT compiler in the application domain to

notify the sandbox domain of newly generated correct code.

This extension is a topic for future work.

VIII. RELATED WORK

This section presents information about related work.

Many different sandboxing techniques already exist. Most

dynamic techniques use either an LD_PRELOAD based

approach or rely on trusted application code to initialize the

sandbox. Policy-based system call authorization checks all

system calls and system call parameters of an application.

Policy-based system call authorization can be used as an

extension of sandboxing or by itself.

Sandboxing uses binary translation to encapsulate run-

ning code [11], [30], [32], [45]. Libdetox [37], Vx32 [22],

Strata [43], [42], and program shepherding [29] implement

software-based fault isolation using binary translation. Ad-

ditional guards like non-executable memory regions, stack

protection, and system call policies can be added during the

dynamic translation of the machine code.

The basic SFI framework must be fast, extensible, and

secure. Many different instrumentation frameworks exist and

one must be aware of the limitations that several optimiza-

tions pose to security.

Policy-based system call authorization stops the applica-

tion when system calls are executed. The arguments and

the location of the system call are then matched against a

given policy. The program is terminated if a policy violation

Product/Feature T
ec

h
n

iq
u

es
u

se
d

a

S
y

st
em

ca
ll

in
te

rp
o

si
ti

o
n

S
y

st
em

ca
ll

p
o

li
ci

es

F
u

ll
IS

A
su

p
p

o
rt

ed

C
o

m
p

le
te

ly
tr

an
sp

ar
en

t
tr

an
sl

at
io

n

S
ta

ck
ex

p
lo

it
p

ro
te

ct
io

n
(r

et
2

li
b

c)

C
o

n
tr

o
l

fl
o
w

in
te

g
ri

ty

N
o

sp
ec

ia
l

k
er

n
el

-m
o

d
u

le
n

ee
d

ed

N
o

ap
p

li
ca

ti
o

n
ch

an
g

es
n

ee
d

ed

S
ep

ar
at

e
se

cu
re

st
ac

k
fo

r
m

o
n

it
o

rb

S
ep

ar
at

e
sh

ad
o
w

st
ac

k
fo

r
ap

p
li

ca
ti

o
n

T
O

C
T

T
O

U
aw

ar
e

u
si

n
g

sa
fe

-g
u

ar
d

s

S
o

u
rc

e
co

d
e

av
ai

la
b

le

TRuE 1 x x x x x (x) x x x x x x
libdetox [37] 1 x x x (x) (x) (x) x x (x) x
Vx32 [22] 1 x c x x
Strata [43], [42] 1 x ? ? ? x x ?

Prog. sheph. [29] 1 x (x)d x x (x)e (x) x x x
Janus [26] 3 x x x x x x

AppArmor [6]f 3 x x x x x
SysTrace [39] 3 x x x x x
Switchblade [21] 3 x x
Ostia [24] 3 x x
NaCl [47] 2 x x x
PittSField [31] 2 x x x
CFI/XFI [1], [20] 2 g x x x x
StackGuard [16] 4 x x (x) x
libverify [4] 4 x x (x) x
Propolice [27] 4 x x (x) x
PointGuard [14] 4 x (x) (x)

The different features describe limitations and possibilities of each ap-
proach. x includes an available feature, (x) marks a limited feature, a blank
marks a missing feature, a ? indicates that no information about this item
is available.

a1: dynamic BT; 2: static BT; 3: kernel module or kernel support; 4:
compiler extension

bMonitor has a separate stack (e.g., permission check or code translation).
cImplements IA32 subset: no FPU, MMX, SSE, and 3 byte opcodes.
dStatic hard-coded policy, only open and execve calls are intercepted.
eret must target instructions immediately after any call instruction.
fMAPbox [2], SubDomain [15], and Consh [3] use a comparable ap-

proach.
gAccording to the paper at least no FPU, MMX, and SSE.

Table V
SUMMARY OF RELATED WORK.

is detected. Different techniques can be used to imple-

ment system call authorization, e.g., ptrace-support [26],

trusted code in the kernel [6], [39], [21], [24], or binary

translation [29], [37].

Apart from user-space isolation there exist other pos-

sibilities to secure a running systems. Dynamic systems

add additional guards and checks to a running application.

These systems all work at different levels of granularity.

Full system virtualization [7], [18], [12], [5] encapsulates a

complete running system and works at a very coarse-grained

level of granularity [25], [28], [13]; system call interposition

30

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

encapsulates the application at the system call level and

works at the granularity level of individual applications and

their system calls.

Static protection reduces the potential overhead but either

restricts the instruction set or introduces complicated static

analysis. Static verification allows only a sub-set of the

instruction set or imposes other additional checks. Compiler

extensions can be used as a quick fix to patch a specific

static problem.

Table V presents a concise summary of related work and

distinguishes features, design and implementation details of

these different approaches.

IX. CONCLUDING REMARKS

This paper presents a Trusted Runtime Environment

(TRuE) consisting of a secure loader and a user-space

sandbox. The secure loader enables safe loading that is

a foundation for safe software-based fault isolation. TRuE

replaces the standard loader with a security-hardened bare-

bones implementation and uses user-space process sandbox-

ing to execute application code under the control of dynamic

security guards.

Bugs in the standard loader are often used to escalate

privileges. The secure loader is restricted to the basic func-

tionality. The restricted functionality protects from many

exploits against the standard loader. Safe loading ensures

that SFI is seamlessly integrated into the loader and guaran-

tees that no unchecked code is executed. The trusted, secure

loader enables additional security guards in the sandbox.

The sandbox is aware of all loaded code regions and the

connections between the different shared objects (i.e., the

application, or libraries). This information is used to restrict

applications to a secure execution model. The loader is

no longer treated as a black box but integrated into the

security concept. The secure loader and the sandbox run

in the same protection domain and share information about

the application. Calls from the application to the loader are

redirected into the sandbox domain where the requests are

verified. Applications running in the sandbox need fewer

privileges, and code-oriented attacks are no longer possible.

An additional advantage of the shared information between

the loader and the sandbox is the potential to remove

many indirect control flow transfers between modules. This

optimization reduces the overhead of the sandbox and limits

jump-oriented programming attacks. This approach bridges

the security context of programming languages and oper-

ating systems by enabling a language-independent secure

execution of applications.

TRuE enables a secure way to create and control appli-

cations in user-space with low overhead. Privileged applica-

tions and applications that are reachable over the network

should be hardened and protected from security exploits:

safe loading provides a foundation to solve this problem.

REFERENCES

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity. In CCS’05: Proc. 12th Conf. Computer
and Communications Security (2005), pp. 340–353.

[2] ACHARYA, A., AND RAJE, M. MAPbox: using parameter-
ized behavior classes to confine untrusted applications. In
SSYM’00: Proc. 9th Conf. USENIX Security Symp. (2000),
pp. 1–17.

[3] ALEXANDROV, A., KMIEC, P., AND SCHAUSER, K. Consh:
Confined execution environment for internet computa-
tions. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.57.488 (1999).

[4] BARATLOO, A., SINGH, N., AND TSAI, T. Transparent run-
time defense against stack smashing attacks. In Proc. USENIX
ATC (2000), pp. 251–262.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In SOSP
’03 (2003), pp. 164–177.

[6] BAUER, M. Paranoid penguin: an introduction to Novell
AppArmor. Linux J. 2006, 148 (2006), 13.

[7] BELLARD, F. QEMU, a fast and portable dynamic translator.
In Proc. USENIX ATC (2005), pp. 41–41.

[8] BHATKAR, E., DUVARNEY, D. C., AND SEKAR, R. Address
obfuscation: an efficient approach to combat a broad range
of memory error exploits. In SSYM’03: Proc. 12th USENIX
Security Symp. (2003), pp. 105–120.

[9] BHATKAR, S., BHATKAR, E., SEKAR, R., AND DUVARNEY,
D. C. Efficient techniques for comprehensive protection from
memory error exploits. In SSYM’05: Proc. 14th USENIX
Security Symp. (2005), pp. 255–270.

[10] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z.
Jump-oriented programming: a new class of code-reuse at-
tack. In ASIACCS’11: Proc. 6th ACM Symp. on Information,
Computer and Communications Security (2011), pp. 30–40.

[11] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
infrastructure for adaptive dynamic optimization. In CGO ’03
(2003), pp. 265–275.

[12] BUGNION, E. Dynamic binary translator with a system
and method for updating and maintaining coherency of a
translation cache. US Patent 6704925, March 2004.

[13] CHOW, J., GARFINKEL, T., AND CHEN, P. Decoupling
dynamic program analysis from execution in virtual environ-
ments. In Proc. USENIX ATC (2008), pp. 1–14.

[14] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE,
P. PointguardTM: protecting pointers from buffer overflow
vulnerabilities. In SSYM’03: Proc. 12th USENIX Security
Symp. (2003).

[15] COWAN, C., BEATTIE, S., KROAH-HARTMAN, G., PU, C.,
WAGLE, P., AND GLIGOR, V. SubDomain: Parsimonious
server security. In Proc. 14th USENIX Conf. System Admin-
istration (2000), pp. 355–368.

31

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

[16] COWAN, C., PU, C., MAIER, D., HINTONY, H., WALPOLE,
J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., AND

ZHANG, Q. StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In SSYM’98: Proc. 7th
USENIX Security Symp. (1998).

[17] DANEN, V. CVE-2011-1658: ld.so ORIGIN expansion com-
bined with RPATH. https://bugzilla.redhat.com/show bug.
cgi?id=CVE-2011-1658.

[18] DEVINE, S. W., BUGNION, E., AND ROSENBLUM, M. Vir-
tualization system including a virtual machine monitor for a
computer with a segmented architecture. US Patent 6397242.

[19] DREPPER, U. How to write shared libraries. http://www.
akkadia.org/drepper/dsohowto.pdf (Dec. 2010).

[20] ERLINGSSON, Ú., ABADI, M., VRABLE, M., BUDIU, M.,
AND NECULA, G. C. XFI: Software guards for system
address spaces. In OSDI’06 (2006), pp. 75–88.

[21] FETZER, C., AND SUESSKRAUT, M. Switchblade: enforcing
dynamic personalized system call models. In EuroSys’08:
Proc. 3rd Europ. Conf. Computer Systems (2008), pp. 273–
286.

[22] FORD, B., AND COX, R. Vx32: lightweight user-level
sandboxing on the x86. In Proc. USENIX ATC (2008),
pp. 293–306.

[23] FRANTZEN, M., AND SHUEY, M. StackGhost: Hardware
facilitated stack protection. In SSYM’01: Proc 10th USENIX
Security Symp. (2001).

[24] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia:
A delegating architecture for secure system call interposition.
In NDSS’04: Proc. Network and Distributed Systems Security
Symp. (2004).

[25] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine
introspection based architecture for intrusion detection. In
NDSS’03: Proc. Network and Distributed Systems Security
Symp. (2003).

[26] GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER,
E. A. A secure environment for untrusted helper applications:
Confining the wily hacker. In SSYM’06: Proc. 6th USENIX
Security Symp. (1996).

[27] HIROAKI, E., AND KUNIKAZU, Y. propolice : Improved
stack-smashing attack detection. IPSJ SIG Notes, 75 (2001),
181–188.

[28] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND

HAND, S. Practical taint-based protection using demand
emulation. In EuroSys’06: Proc. 1st Europ. Conf. Comp. Sys.
(2006), pp. 29–41.

[29] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P.
Secure execution via program shepherding. In SSYM’02:
Proc. 11th USENIX Security Symp. (2002), pp. 191–206.

[30] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI’05 (2005), pp. 190–
200.

[31] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a
CISC architecture. In SSYM’06: Proc. 15th USENIX Security
Symp. (2006), pp. 209–224.

[32] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In PLDI’07
(2007), pp. 89–100.

[33] ORMANDY, T. CVE-2010-3847: GNU C library dy-
namic linker $ORIGIN expansion vulnerability. http://www.
exploit-db.com/exploits/15274/ .

[34] ORMANDY, T. CVE-2010-3856: GNU C library dynamic
linker LD AUDIT arbitrary DSO load vulnerability. http:
//www.exploit-db.com/exploits/15304/ .

[35] PAX-TEAM. PaX ASLR (Address Space Layout Randomiza-
tion). http://pax.grsecurity.net/docs/aslr.txt.

[36] PAYER, M. String oriented programming - circumventing
aslr, dep and other guards. In 28c3’11: Proc. 28th Chaos
Communication Congress (2011).

[37] PAYER, M., AND GROSS, T. R. Fine-grained user-space
security through virtualization. In VEE’11: Proc. 7th Int’l
Conf. Virtual Execution Environments (2011), pp. 157–168.

[38] PRASAD, M., AND CKER CHIUEH, T. A binary rewriting
defense against stack based buffer overflow attacks. In Proc.
12th USENIX ATC (2003), pp. 211–224.

[39] PROVOS, N. Improving host security with system call
policies. In SSYM’03: Proc. 12th USENIX Security Symp.
(2003).

[40] ROSENBERG, D. CVE-2010-0830: Integer overflow
in ld.so. http://drosenbe.blogspot.com/2010/05/
integer-overflow-in-ldso-cve-2010-0830.html.

[41] SCO. System V Application Binary Interface, Intel386
Architecture Processor Supplement. http://www.sco.com/
developers/devspecs/abi386-4.pdf (1996).

[42] SCOTT, K., AND DAVIDSON, J. Strata: A software dynamic
translation infrastructure. Tech. rep., University of Virginia,
2001.

[43] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using
software dynamic translation. ACSAC’02: Annual Comp.
Security Applications Conf. (2002), 209.

[44] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
CCS’07: Proc. 14th Computer and Communications Security
(2007), pp. 552–561.

[45] SRIDHAR, S., SHAPIRO, J. S., NORTHUP, E., AND BUN-
GALE, P. P. HDTrans: an open source, low-level dynamic
instrumentation system. In VEE’06: Proc. 2nd Virtual Exe-
cution Environments (2006), pp. 175–185.

[46] VAN DE VEN, A., AND MOLNAR, I. Exec shield. https:
//www.redhat.com/f/pdf/rhel/WHP0006US Execshield.pdf.

[47] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLA-
GAR, N. Native client: A sandbox for portable, untrusted
x86 native code. In IEEE Symp. on Security and Privacy
(2009), pp. 79–93.

32

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 01,2024 at 11:39:15 UTC from IEEE Xplore. Restrictions apply.

