
Semantic comparison of security policies : from
access control policies to flow properties

Mathieu Jaume
SPI LIP6

University Pierre and Marie Curie
Paris, France

Email: Mathieu.Jaume@lip6.fr

Abstract—This paper introduces two generic mechanisms al-
lowing to compare security policies from a semantical point of
view. First, a notion of embedding is defined in order to compare
policies over a common domain. Then, interpretations of security
policies are introduced in order to consider their properties
over arbitrary domains. Thus, combining interpretations and
embeddings allows to compare policies expressed over different
domains. Along the lines of this paper, we illustrate our definitions
by defining a flow-based interpretation of access control and
by comparing classical access control policies according to a
hierarchy of abstract flow policies, thus characterizing flow
properties which can be ensured by access control policies.

I. INTRODUCTION

Several points of view exist on security policies, among
which two main approaches can be distinguished: the rule-
based approach (which consists in specifying the conditions
under which an action is granted) and the property-based
approach (which consists in specifying the security properties
the policy aims to enforce). In [1], these two approaches have
been fully formalized and their expressive power has been
compared. Moreover, an operational mechanism allowing to
enforce such policies over transition systems has also been
defined together with a formal proof of its soundness [2].
In fact, such a framework allows to characterize the various
entities involved in the definition of a security policy together
with their role. Hence, it provides a semantical specification of
security policies. Several developments on access control poli-
cies and flow policies have been done within this framework.
In [3], an operational mechanism (parameterized by an access
control policy) allowing to detect illegal information flows has
been formalized. Such a mechanism is useful when the access
control mechanism is not sufficient to ensure flow properties.
For example, this is generally the case for discretionary access
control policies, while MLS (MultiLevel Security) policies are
clearly access control policies that can be used to enforce
some flow policies. In [4], by considering morphisms between
terms algebras, a first formalization of the comparison between
access control policies and flow policies has been proposed
within a variant of our framework based on rewrite systems.
However, such a work is strongly related to the notion of
terms algebras and we aim to provide semantical comparison
mechanisms which do not depend on the syntax used to
describe the policies. Hence, in this paper, we investigate at
a deeper and more abstract level the property-based approach

in order to define generic comparison mechanisms of security
policies from a semantical point of view. First, we introduce a
notion of embeddings of security policies allowing to compare
the expressive power of policies over the same domain. For ex-
ample, this can be useful when considering two access control
policies based on different notions of security configurations:
for instance, this allows to know if authorizations induced by
a hierarchy of roles for a RBAC (Role-Based Access Control)
policy can be obtained with a partial order of security levels
for a MLS policy. However, in practice, it can also be useful to
compare policies over different domains. As a typical example,
some access control policies are designed for ensuring flow
properties: such policies do not deal with information flow
but only with objects containing information to be traced.
Characterizing which flow properties are ensured by which
access control policies requires to interpret accesses by flows.
Hence, we also introduce the generic notion of interpretation
of security policies allowing to understand security properties
expressed over some entities induced by a policy whose
domain is based on different entities. In fact, combining
embeddings and interpretations provides a powerful way to
analyse and to compare security policies from a semantical
point of view. Along the lines of this paper, we illustrate
our definitions by considering access control policies and flow
policies. First, we use embeddings to compare the expressive
power of access control policies and to build a hierarchy of
abstract flow policies. Then, by introducing interpretations, we
add access control policies into the hierarchy of flow policies,
thus providing a formal characterization of flow properties
induced by classical access control policies.

II. SECURITY POLICIES

A. Property-based security policies

By following a property-based approach, a security policy
is a characterization of secure elements of a set according to
some security information. Thus, specifying a policy P first
consists in defining a set T of “things” that the policy aims
to control, called the security targets, in order to ensure the
desired security properties (these “things” can be the actions
simultaneously done in the system, or some information
about the entities of the system). Then, a set C of security
configurations is introduced: configurations correspond to the
information needed to characterize secure elements of T

2012 IEEE Symposium on Security and Privacy Workshops

© 2012, Mathieu Jaume. Under license to IEEE.
DOI 10.1109/SPW.2012.33

60

IEEE CS Security and Privacy Workshops

60

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

according to the policy. Last, the policy is specified by a binary
relation
 between targets and configurations: c
 t means that
the target t is secure according to the configuration c.

Definition 1 (Security policies): A security policy is a tuple
P = (T, C,
) where T is a set of security targets, C is a set of
security configurations and
⊆ C ×T is a relation specifying
secure targets according to configurations.

In fact, a policy can be viewed as the definition of a
semantics for its configurations. Indeed, each configuration c
denotes the set of targets:

JcKP = {t ∈ T | c
 t}

that c authorizes. Such definition is similar to the one intro-
duced in [5], in the context of access control, where a policy
is defined in terms of sets of authorized accesses.

B. Access control policies

Access control policies aim at controlling sets of accesses
that can be simultaneously done by active entities, the subjects
in S, over some passive entities, the objects in O, according
to some access modes belonging to a set A (in this paper,
we consider the set A = {read,write}). An access can be
represented by a triple (s, o, a) expressing that the subject s
has an access over the object o according to the access mode
a. In this context, we define the set TA = ℘(S × O ×A) of
security targets of access control policies as the powerset of
the cartesian product S ×O×A: targets are sets of accesses.
We consider here two main approaches for access control:
• HRU [6] and RBAC [7] policies which are based on per-

missions (respectively associated with subjects and roles),
• and MLS policies [8], like the well-known Bell & La-

Padula [9] or Biba [10] policies, which are based on a
partial order of security levels.

Formal definitions of these policies are summarized in table I.
A configuration for HRU is just a set m ∈ Chru of authorized

accesses (both targets and configurations are sets of accesses
and we have Chru = TA), and the HRU policy specifies secure
sets of accesses as sets only containing authorized accesses.
Within the RBAC policy, each user of a system is associated
with roles, themselves associated with elements of P = O ×
A, where (o, a) ∈ P specifies a permission to access to o
according to a. Configurations are tuples:

(U, (R,≤R),UA,PA, user, roles) ∈ Crbac

where U is a set of users, (R,≤R) is the partial order of roles,
UA ⊆ U × R specifies which users can activate which roles
(and the roles lower to them according to ≤R), PA ⊆ P × R
is a relation associating permissions with roles, user : S → U
allows to know the user corresponding to a subject (viewed
here as a session), and roles : S → ℘(R) specifies the set
of roles that have been activated by a subject, and such that
roles(s) ⊆ ER(s) for all s ∈ S, where, given a subject s ∈ S,
ER(s) is the set of roles that s can activate according to UA:

ER(s) = {r ∈ R | ∃r′ ∈ R r ≤R r′ ∧ (user(s), r′) ∈ UA}

This allows to specifiy granted accesses as accesses done
by subjects that have activated a role associated with the
permissions of its accesses. Given a subject s, we write EP(s)
the set of permissions associated with the roles activated by s:

EP(s) =
⋃

r∈roles(s)

{
(o, a) ∈ P |
∃r′ ∈ R r′ ≤R r ∧ ((o, a), r′) ∈ PA

}
MLS policies are defined from a partially ordered set (L,�)

of security levels (or sensitivities) and consists in associating
security levels with objects and/or subjects to specify what are
authorized accesses in terms of security levels. We consider
here four classical examples showing how to define confin-
ment, confidentiality and integrity policies as MLS policies.
Of course, the main purpose of these access control policies
is to constrain information flows. We define two confinment
policies, P↑mls (“no write down”) and P↓mls (“no write up”),
which are both based on the set Cmls = {(L,�, fO)} of
configurations, where fO : O → L defines the security level
of objects. By considering configurations in CSmls = {(L,�
, fO, fS)} (where fS : S → L) specifying security levels
to objects and subjects, it becomes possible to define the
confidentiality policy PC

mls and the integrity policy PI
mls.

C. Abstract flow policies

Flow policies aim at controlling information flows between
entities of a system. This control is explicitly described by
considering sets of flows occurring in a system, without any
consideration about the origin of such flows (execution of a
program, accesses done in a system, etc). Hence, such policies
can be seen as abstract policies since we don’t take here into
account how such flows are generated. These flows can be
flows between objects (confinment flow policy), flows from
objects to subjects (confidentiality flow policy), and flows from
subjects to objects (integrity flow policy). Hence, targets of
such policies are tuple (

ooy,
osy,

soy) where:
ooy⊆ oo

↪→= O ×O osy⊆ os
↪→= O × S soy⊆ so

↪→= S ×O

specifying three sets of flows done in the system: o1
ooy o2

means that the information contained into o1 flows into o2,
o

osy s means that the subject s has (in a direct or indirect
way) a read access over the information initially contained
into o, and s

soy o means that the subject s has (in a direct or
indirect way) a write access to o. Of course, targets specify
“coherent” sets of flows and belong to the set:

TF =



(
ooy,

osy,
soy) |

ooy=
(

ooy
)?

∧ ∀s ∈ S ∀o1, o2 ∈ O
(o1

ooy o2 ∧ o2
osy s)⇒ o1

osy s
∧ ∀s ∈ S ∀o1, o2 ∈ O

(s
soy o1 ∧ o1

ooy o2)⇒ s
soy o2

∧ ooy=
(

soy ◦ osy
)
∪ {o oo

↪→ o | o ∈ O}


Indeed, the relation characterizing flows between objects is
clearly transitive and if there is an information flow from o1

6161

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ACCESS CONTROL POLICIES

Policy Configuration c
 E ⇔
Phru m ∈ Chru E ⊆ m

Prbac
(U, (R,≤R),UA,PA,
user, roles) ∈ Crbac

∀(s, o, a) ∈ S ×O ×A (s, o, a) ∈ E ⇒ (o, a) ∈ EP(s)

P↑
mls

(L,�, fO) ∈ Cmls ∀s ∈ S ∀o1, o2 ∈ O ((s, o1, read) ∈ E ∧ (s, o2,write) ∈ E)⇒ fO(o1) � fO(o2)

P↓
mls

(L,�, fO) ∈ Cmls ∀s ∈ S ∀o1, o2 ∈ O ((s, o1, read) ∈ E ∧ (s, o2,write) ∈ E)⇒ fO(o2) � fO(o1)

PC
mls (L,�, fO, fS) ∈ CSmls

∀s ∈ S ∀o1, o2 ∈ O ((s, o1, read) ∈ E ∧ (s, o2,write) ∈ E)⇒ fO(o1) � fO(o2)
∧ ∀(s, o, read) ∈ E fO(o) � fS(s)

PI
mls (L,�, fO, fS) ∈ CSmls

∀s ∈ S ∀o1, o2 ∈ O ((s, o1, read) ∈ E ∧ (s, o2,write) ∈ E)⇒ fO(o2) � fO(o1)
∧ ∀(s, o,write) ∈ E fO(o) � fS(s)

to o2 and if a subject s has a read access to o2 (resp. has a write
access to o1), then s has also a read access to the information
contained into o1 (resp. has a write access to o2). Furthermore,
flows between objects are only generated by read and write
accesses done by subjects over objects, and thus are obtained
by composition1 of flows between subjects and objects.

Flows policies are based on configurations specifying sets of
authorized flows, from which we define several flow policies,
summarized in table II. We write oo

 , os
 and so

 the subsets
of

oo
↪→,

os
↪→ and

so
↪→ specifying authorized sets of flows of a

configuration. Note that when considering configurations of
the form (

oo
 ,

os
), a flow between objects granted by oo

may lead a subject s, which is not allowed (by os

) to know
the information contained into an object o, to access to this
information if another subject allowed to read o generates a
flow from o to an object o′ such that s is allowed to know
o′ according to os

 . Hence, it may be relevant to constrain
configurations by considering the set CCoos ⊆ Coos. Similarly,
when considering configurations of the form (

oo
 ,

so
), a flow

between objects granted by oo
 may lead a subject s, which

is not allowed (by so
) to write information into an object o,

to perform this action by writing into an object o′ such that
there is a granted flow from o′ to o. We define CIsoo ⊆ Csoo
in order to avoid such situation. Since composition of flows
between objects and subjects leads to flows between objects,
three subsets of Cci are defined for similar reasons.

III. EMBEDDINGS OF SECURITY POLICIES

A. Interpretation of security configurations

We introduce here the notion of embeddings of policies.
Intuitively, we say that a policy P1 can be embedded into a
policy P2 (based on the same set of targets than P1) iff the
control done by P1 can be done by P2. Hence, P1 can be
embedded into P2, iff each configuration c1 of P1 can be in-
terpreted by a configuration c2 of P2 which authorizes exactly
the same targets. This leads us to introduce interpretations of
configurations of P1 by configurations of P2 allowing to define
embedding operators.

1Given two relations R1 ⊆ A×B and R2 ⊆ B×C, R2 ◦R1 ⊆ A×C
is the relation defined by ∀a, c ∈ A×C, (a, c) ∈ R2 ◦R1 iff ∃b ∈ B, such
that (a, b) ∈ R1 and (b, c) ∈ R2.

Definition 2 (Embeddings): Let P1 = (T, C1,
1) and P2 =
(T, C2,
2) be two security policies.
• P1 can be embedded into P2, which is written P1EP2, iff:

∀c1 ∈ C1 ∃c2 ∈ C2 ∀t ∈ T c1
1 t⇔ c2
2 t

• An interpretation I of configurations of P1 by configura-
tions of P2 is a function I : C1 → C2.

• An embedding operator of P1 into P2 is an interpretation
I : C1 → C2 such that:

∀c1 ∈ C1 ∀t ∈ T c1
1 t⇔ I(c1)
2 t

In other words, P1 can be embedded into P2 iff for all
configuration c1 ∈ C1, there exists a configuration c2 ∈ C2
such that Jc1KP1

= Jc2KP2
and thus c2 = I(c1) means that the

configurations c1 and c2 allow exactly the same targets.
Hence, P1EP2 means that P2 has at least the same expres-

sive power than P1. Of course, if there exists an embedding
operator I : C1 → C2, then P1 E P2. However, note that such
an embedding operator is not necessarily unique. Indeed, this
is the case when P2 is defined from a set of configurations
such that there exists several configurations associated with
the same set of secure targets. The relation E clearly defines
a preorder relation and we write P1 ≡ P2 when P1 E P2 and
P2 E P1.

Example 1: If we consider the flow policies Poo and PT
oo,

introduced in table II, we have PT
oo E Poo, since, clearly, the

interpretation such that:

∀ oo
 ∈ Coo I(

oo
) = (

oo
)?

defines an embedding operator of PT
oo into Poo.

B. Application to access control and flows policies
The relation E has been used to compare HRU and RBAC

policies and also to compare the abstract flows policies in-
troduced in table II. Of course, not surprisingly, HRU and
RBAC policies have the same expressive power in terms of
authorizations (which does not mean that they are equivalent
from an administrative point of view). More formally, we have
proved the following proposition.

Proposition 1:
1) For each pair of flow policies (P1,P2) defined in table II,

there is a path from P1 to P2 in figure 1 iff P1 E P2.
2) Phru ≡ Prbac

6262

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ABSTRACT FLOW POLICIES

Policy Configurations c
 (
ooy,

osy,
soy)⇔

Poo Coo = {oo ⊆
oo
↪→} ooy⊆oo

PT
oo Coo = {oo ⊆

oo
↪→} ooy⊆ (

oo
)?

Pos Cos = {
os
 ⊆

os
↪→} osy⊆ os

Pso Cso = { so | so ⊆
so
↪→} soy⊆ so

Poos Coos = {(
oo
 ,

os
) ⊆

oo
↪→ ×

os
↪→} ooy⊆oo

 ∧ osy⊆ os

PT
oos Coos = {(

oo
 ,

os
) ⊆

oo
↪→ ×

os
↪→} ooy⊆ (

oo
)?∧ osy⊆ os

PC
oos CCoos =

{
(
oo
 ,

os
) | ∀o1, o2 ∈ O ∀s ∈ S (o1(

oo
)?o2 ∧ o2

os
 s)⇒ o1

os
 s

}
ooy⊆ (

oo
)?∧ osy⊆ os

Psoo Csoo = {(oo ,
so
) ⊆

oo
↪→ ×

so
↪→} ooy⊆oo

 ∧ soy⊆ so

PT
soo Csoo = {(oo ,

so
) ⊆

oo
↪→ ×

so
↪→} ooy⊆ (

oo
)?∧ soy⊆ so

PI
soo CIsoo =

{
(
oo
 ,

so
) | ∀o1, o2 ∈ O ∀s ∈ S (s

os
 o1 ∧ o1(

oo
)?o2)⇒ s

os
 o2

}
ooy⊆ (

oo
)?∧ soy⊆ so

Pci Cci = {(
os
 ,

so
) ⊆

os
↪→ ×

so
↪→} osy⊆ os

 ∧ soy⊆ so

PC
ci CCci =

{
(
os
 ,

so
) | ∀o1, o2 ∈ O ∀s ∈ S ((o1, o2) ∈ (

so
 ◦ os

) ∧ o2
os
 s)⇒ o1

os
 s

}
osy⊆ os
 ∧ soy⊆ so

PI
ci CIci =

{
(
os
 ,

so
) | ∀o1, o2 ∈ O ∀s ∈ S ((o1, o2) ∈ (

so
 ◦ os

) ∧ s
so
 o1)⇒ s

so
 o2

}
osy⊆ os
 ∧ soy⊆ so

PCI
ci CCI

ci = CCci ∩ C
I
ci

osy⊆ os
 ∧ soy⊆ so

PT
oo

Poo

PC
oos

PT
oos

PI
ci

Poos

Pos

PI
soo

PT
soo

PC
ci

Psoo

Pso

PCI
ci

Pci

Fig. 1. Hierarchy of abstract flow policies

IV. INTERPRETATION OF SECURITY POLICIES

A. Interpretation of security targets

Comparing two security policies according to the pre-
order E requires that they share the same set of targets. In
practice, this is not always the case. For example, character-
izing flow properties induced by an access control policy first
requires to interpret the access control policy by a flow policy
and then to compare this flow policy with other known flow
policies by using embeddings. Interpreting a security policy
over a different set of targets leads to interpret its targets. In
fact, we can generalize the semantics J KP of configurations of
a policy P by considering interpretations of the set T of targets
over an arbitrary domain D.

Definition 3 (Interpreted policies): Let P = (T, C,
) be a
policy. A D-interpretation I of T is a mapping J KI : T→ D

from which we define the interpreted policy:

JPKI = (JTKI , JCKI , J
KI)

where:
• ∀T ⊆ T JT KI = {JtKI | t ∈ T}
• ∀C ⊆ C JCKI = {JcKI | c ∈ C}

where ∀c ∈ C JcKI = {JtKI | c
 t} = JJcKPKI
• ∀cI ∈ JCKI ∀tI ∈ JTKI cI J
KI tI ⇔ tI ∈ cI

In fact, a D-interpretation I of targets of P provides a way to
obtain an “extensional” representation JPKI of P, for which the
targets are some elements of D and the configurations are some
subsets of D (a configuration c is represented by the set of the
interpretation of targets that c authorizes). Such a mechanism
allows to give an uniform representation of several policies,
and eases some analysis (such as comparison) or operations
over policies (such as composition). Of course, interpretations
of policies preserve embeddings as shown by the following
proposition which is an immediate consequence of definitions.

Proposition 2: Let P1 = (T, C1,
1) and P2 = (T, C2,
2)
be two security policies, and I be an interpretation of T.

P1 E P2 ⇔ JP1KI E JP2KI

Remark 1: The semantics of configurations J KP can be de-
fined by considering the identity T-interpretation Id : T→ T
of T (i.e. ∀t ∈ T JtKId = t). Indeed, for all c ∈ C, we have
JcKP = JcKId. Hence, P1 = (T, C1,
1)E P2 = (T, C2,
2) iff
JC1KP1

⊆ JC2KP2
, and thus, P1 ≡ P2 means that JP1KId and

JP2KId define the same security policy.

B. Flow-based interpretation of sets of accesses

In the next section, we will interpret access control poli-
cies by flow policies in order to compare them. Hence, we
introduce here a TF -interpretation IF : TA → TF of TA

allowing to characterize flows generated by a set of accesses.

6363

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

s1

s2

s3

si

si+1

sk+1

o1

o′1

o′2

o′i−1

o′i

o′k

o2

read
write
read
write
read
write

write
read
write
read
write

write
read
write

Fig. 2. Information flows

Indeed, accesses done in the system generate information
flows between objects, and between subjects and objects. An
elementary flow of the information contained into an object o1
to an object o2 can occur iff there exists a subject s reading o1
and writing into o2.

Definition 4: Given a set E ∈ TA of accesses, the set of
elementary flows generated by E is defined by:

7→E=
{
o1

oo
↪→ o2 | ∃s ∈ S {(s, o1, read), (s, o2,write)} ⊆ E

}
We can now introduce a

oo
↪→-interpretation Ioo of TA al-

lowing to characterize flows between objects generated by
a set E of accesses: the information contained into o1 can
flow into o2 (in this case, we write o1

oo
↪→E o2 instead of

(o1, o2) ∈ JEKIoo) iff there exists in E a chain of read and
write accesses starting from a read access over o1 and ending
at a write access over o2. The flows between objects generated
by a set E of accesses are thus simply defined as the reflexive
and transitive closure of 7→E .

Definition 5: JEKIoo =
oo
↪→E=7→?

E

Hence (see figure 2), we have o1
oo
↪→E o2 iff either o1 = o2

or:

∃s1, · · · , sk, sk+1 ∈ S ∃o′1, · · · , o′k ∈ O
(s1, o1, read), (s1, o′1,write),
(s2, o

′
1, read), (s2, o′2,write), · · · ,

(si, o
′
i−1, read), (si, o′i,write), · · · ,

(sk+1, o
′
k, read), (sk+1, o2,write)

 ⊆ E

Example 2: The set of flows generated by the set of ac-
cesses:

E =

 (s1, o1, read), (s1, o1,write), (s1, o3, read),
(s2, o1, read), (s2, o2, read), (s2, o2,write),
(s3, o2, read), (s3, o2,write), (s3, o4,write)



is defined by :

oo
↪→E=


o1

oo
↪→ o1, o2

oo
↪→ o2, o3

oo
↪→ o3, o4

oo
↪→ o4,

o3
oo
↪→ o1, o1

oo
↪→ o2, o2

oo
↪→ o4, o1

oo
↪→ o4,

o3
oo
↪→ o2, o3

oo
↪→ o4


Remark 2: Note that we assume here the “worst” case:

we suppose here that if there is a potential for information
flow then the flow actually occurs. Indeed, the definition of
oo
↪→E over-estimates the information flow generated by a set of
accesses. In fact, this definition does not take into account
the temporal aspect of accesses since a set of accesses is
unordered. However, it is possible to refine this definition
by considering sequences of flows corresponding to ordered
subsets of the set 7→E of elementary flows generated by a set
E of accesses. For example, this can be done by observing
flows at the operating system level. More formally, from a set
of accesses E, if the behavior of the system can be described
by a sequence S of elementary flows, we can define flows
occurring during this sequence as follows:

oo
�S=


∅ if S = ()

{o1
oo
↪→ o2}∪

oo
�S′ ∪{o oo

↪→ o2 | o
oo
�S′ o1}

if S = S′.(o1
oo
↪→ o2)

Of course, elementary flows occurring in S have to be realiz-
able according to E, and we have

oo
�S⊆

oo
↪→E .

From the definition of
oo
↪→E , we can now introduce the

os
↪→-

interpretation Ios and the
so
↪→-interpretation Iso of TA allowing

to characterize flows occurring between subjects and objects
which are generated by a set of accesses E:

JEKIos =
os
↪→E=

{
o1

os
↪→ s | o1

oo
↪→E o2 ∧ (s, o2, read) ∈ E

}
JEKIso =

so
↪→E=

{
s

so
↪→ o2 | (s, o1,write) ∈ E ∧ o1

oo
↪→E o2

}
Example 3: If we consider again the set E of accesses

introduced in example 2, we have:

os
↪→E=

{
o1

os
↪→ s1, o3

os
↪→ s1, o1

os
↪→ s2, o2

os
↪→ s2,

o3
os
↪→ s2, o1

os
↪→ s3, o2

os
↪→ s3, o3

os
↪→ s3

}

so
↪→E=

{
s1

so
↪→ o1, s1

so
↪→ o2, s2

so
↪→ o2, s1

so
↪→ o4,

s2
so
↪→ o4, s3

so
↪→ o4

}
Of course, flows between objects are generated by flows

from subjects to objects and by flows from objects to subjects,
and we have proved the following proposition.

Proposition 3: ∀E ∈ TA (
oo
↪→E ,

os
↪→E ,

so
↪→E) ∈ TF

Remark 3: Conversely, we have proved that for any target
(
ooy,

osy,
soy) ∈ TF , the set of accesses:

E =
{
(s, o, read) | o osy s

}
∪
{
(s, o,write) | s soy o

}
∈ TA

is such that (
oo
↪→E ,

os
↪→E ,

so
↪→E) = (

ooy,
osy,

soy).
Thanks to proposition 3, we finally introduce the flow-based

interpretation of access control policies defined as the TF -
interpretation IF of TA such that:

JEKIF = (JEKIoo , JEKIos , JEKIso) = (
oo
↪→E ,

os
↪→E ,

so
↪→E)

6464

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

V. EQUIVALENT SECURITY POLICIES

A. Proving equivalence between policies

Interpretations of configurations and interpretations of tar-
gets are both semantical mechanisms allowing to build bridges
between security policies and they can be combined to
compare arbitrary security policies. In practice, proving that
interpreting a policy P1 with an interpretation (of targets) I
leads to a policy equivalent (by embeddings) to a policy P2,
can be done by mapping each configuration c1 ∈ C1 by an
“equivalent” configuration c2 ∈ C2. The following proposition
formally explicit such a construction.

Proposition 4: Let P1 = (T1, C1,
1), P2 = (T2, C2,
2)
be two security policies, and I : T1 → T2 be a T2-
interpretation of T1. JP1KI ≡ P2 iff there exists an interpre-
tation I : C1 → C2 such that:

JP1KI = J(T2, I(C1),
2)KId = JP2KId
Proof: (⇒) We write P′2 the policy (T2, I(C1),
2). First

note that since JP1KI ≡ P2, we have T2 = JT1KI (hence, I is
surjective). Furthermore, for all T2 ⊆ T2 such that T2 ∈ JC1KI
(where T2 = Jc1KI for a configuration c1 ∈ C1), by hypothesis,
there exists c2 ∈ C2 such that for all t2 ∈ T2, t2 ∈ T2 iff c2
2

t2. Hence, there exists an interpretation I : C1 → C2 such that
for all c1 ∈ C1, for all t2 ∈ T2, t2 ∈ Jc1KI iff I(c1)
2 t2.
We first prove that JP1KI = JP′2KId. Equality of sets of targets
follows from definitions (JT1KI = T2 = JT2KId). Equality of
sets of configurations is also obtained by definition as follows:

JC1KI = {Jc1KI | c1 ∈ C1}
= {{Jt1KI | c1
1 t1} | c1 ∈ C1}
= {{Jt1KI | Jt1KI ∈ Jc1KI} | c1 ∈ C1}
= {{Jt1KI | I(c1)
2 Jt1KI} | c1 ∈ C1}
=
{

JI(c1)KP′
2
| c1 ∈ C1

}
= JI(C1)KP′

2
= JI(C1)KId (for P′2)

(1)

Last it remains to prove that J
1KI = J
2KId (for P′2). Indeed,
for all t1 ∈ T1 and c1 ∈ C1, we have:

Jc1KI J
1KI Jt1KI
⇔ Jt1KI ∈ Jc1KI
⇔ Jt1KI ∈ JI(c1)KP′

2
(by (1))

⇔ JI(c1)KP′
2
J
2KId Jt1KI

⇔ Jc1KI J
2KId Jt1KI (by (1))

Now, to obtain JP′2KId = JP2KId, it remains to prove
JI(C1)KId = JC2KId which can be obtained from (1) since
JJC1KIKId = JC1KI = JC2KId (because JP1KI ≡ P2).
(⇐) By hypothesis, the interpretation I1 : JC1KI → C2 such
that:

∀c1 ∈ C1 I1(Jc1KI) = I(c1)

is clearly an embedding operator of JP1KI into P2, thus prov-
ing JP1KI E P2. Similarly, since, by hypothesis, JI(C1)KId =
JC2KId, for all c2 ∈ C2 there exists at least one configuration
c1 ∈ C1 such that I(c1) = c2. Hence, by hypothesis, there
exists an interpretation I2 : C2 → JC1KI such that:

I2(c2) = Jc1KI where I(c1) = c2

PT
oo

Poo

PC
oos

PT
oos

PI
ci

Poos

Pos

PI
soo

PT
soo

PC
ci

Psoo

Pso

PCI
ci

PciJPhruKIF JPrbacKIF

r
P↑mls

z

IF

r
P↓mls

z

IF

q
PC
mls

y
IF

q
PI
mls

y
IF

Fig. 3. Hierarchy of security policies

which is an embedding operator of P2 into JP1KI . thus proving
P2 E JP1KI .

B. From access control policies to flow properties
We are now in position to complete the hierarchy of flow

policies by considering the flow-based interpreted access con-
trol policies introduced in table I. The complete hierarchy is
represented by figure 3. Indeed, we have proved the following
proposition.

Proposition 5: For each pair of flow policies (P1,P2), there
is a path from P1 to P2 in figure 3 iff P1 E P2.

Remark 4: Only the flow-based interpretation of Phru has
been considered. Results about the flow-based interpretation
of Prbac have been obtained by propositions 1.2 and 2.

Remark 5: The “no-write-down” and “no-write-up” poli-
cies are equivalent up to an inversion of the partial order over
security levels, and thus can both be viewed as a confinment
policy.

Proposition 5 formally justifies why MLS policies can be
interpreted as flow policies. Indeed, for each MLS access
control policy PA = (TA, CA,
A), there exists a flow policy
PF = (TF , CF ,
F) (defined in table II) such that JPAKIF ≡
PF . This means that PA and PF have the same expressive
power to control flows. In other words, flows generated by
authorized sets of accesses specified by configurations in CA
and authorized flows specified by configurations in CF are the
same. This is formally expressed by the equality

JCAKIF = {JcKPF
| c ∈ CF }

which can be obtained from JPAKIF ≡ PF . More precisely,
by proposition 4, there exists an interpretation IC : CA → CF
such that:

JPAKIF = J(TF , IC(CA),
F)KId = JPF KId
This means that:
∀cA ∈ CA JcAKIF = JIC(cA)KPF

∀cF ∈ CF ∃cA ∈ CA cF = IC(cA) ∧ JcF KPF
= JcAKIF

6565

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

For example, the equivalence
r
P↑mls

z

IF
≡ PT

oo can be proved
by considering the interpretation IC : Cmls → Coo defined by:

IC((L,�, fO)) = {o1
oo
↪→ o2 | fO(o1) � fO(o2)}

Such a definition can be generalized since it leads us to
consider IC as an embedding operator of the flow-based
interpretation of PA into PF (interpreted by the identity TF -
interpretation Id) and thus, given a configuration cA ∈ CA,
IC(cA) specifies the following sets of authorized flows:

oo
 cA= {o1

oo
↪→ o2 | ∃E ∈ TA cA
A E ∧ o1

oo
↪→E o2}

os
 cA= {o

os
↪→ s | ∃E ∈ TA cA
A E ∧ (s, o, read) ∈ E}

so
 cA= {s

os
↪→ o | ∃E ∈ TA cA
A E ∧ (s, o,write) ∈ E}

On the contrary, for access control policies which are not
equivalent to a flow policy, like HRU or RBAC, there exists
at least a configuration cA ∈ CA such that JcAKPA

contains a
set of accesses generating an illegal flow according to oo

 cA ,
os
 cA , or so

 cA and in this case we have:

JcAKIF 6⊆ JIC(cA)KPF

For example, if we consider the configuration cA of HRU
specifying that authorized accesses are those in the set E
defined in example 2:
• s1 can read o3 and write into o1 on which s2 can make a

read access, even if s2 cannot read o3 (hence the flow
o3

os
↪→ s2 can be generated by an authorized set of

accesses according to cA while it is not authorized by
os
 cA since a target containing the access (s2, o3, read) is
not secure according to cA)

• s2 can write into o2 and then s3 can read o2 and write
into o4, even if s2 cannot write into o4 (hence the flow
s2

so
↪→ o4 can be generated by an authorized set of

accesses according to cA while it is not authorized by
so
 cA since a target containing the access (s2, o4,write)
is not secure according to cA)

In fact, only a subset of configurations of such policies can
be viewed as a “coherent” (according to CCI

ci) specification
of authorized flows. However, as we said, enforcing the HRU
policy with a configuration cA ∈ Chru is clearly not sufficient
to control flows according to oo

 cA , os
 cA , and so

 cA . Indeed,
if we consider again the configuration cA = E where E is
defined in example 2, we would like for example that:
• s2 can read o1 while o1 does not contain information

coming from objects that s2 is not authorized to read
• s3 can write into o4 while objects read by s3 do not

contain information coming from subjects that are not
authorized to write into o4

Of course, such a control cannot be done by only observing
sets of accesses since it requires to know the origin of
information contained into objects. Hence, in this case, a sup-
plementary information has to be considered together with sets
of accesses. For example, in [11], [12], [13], [14], intrusion
detection systems have been defined by considering a tagging
system over objects allowing to detect illegal information

flows according to the flow policies oo
 cA , os

 cA , and so
 cA

induced by the configuration cA of an access control policy.
In [3], such a tagging system (together with the proofs of
its soundness and its completeness) has been formalised in
our framework. Hence, this paper may also be viewed as the
development a posteriori of theoretical foundations on which
such mechanisms are based.

VI. RELATED WORK

Although there exist some papers focusing on comparisons
and translations between security policies such as [15], [16],
[17], these developments are not expressed within a common
framework. Hence, it is rather difficult to compare (or to
compose) these translations. In a previous work [18], we
have introduced a comparison mechanism between policies
sharing the same set of targets and based on the notion
of simulation of transition systems enforcing the policies.
We have compared the Bell & LaPadula, Chinese Wall and
the RBAC policies according to this mechanism. Such an
approach is similar to the one introduced in [19]. A more
different approach is introduced in [20], where the comparison
of the expressive power of access control models is based
on security analysis. However, here again, the definition of
reduction they introduced to compare access control models
can be seen as a relaxation of a notion of simulation. In [15],
the equivalence between a core RBAC model (without roles
hierarchy and constraints) and the ACL (Access Control Lists)
model is presented. Moreover, a way to extend this equivalence
to an RBAC model with a roles hierarchy (as the one we
consider) is stated. However, their comparison is not done
by first introducing a generic framework to express access
control models and then using it in order to compare the two
models. Thus, we cannot really put into perspective the work
of the author and ours if not by observing that his conclusion
that RBAC is equivalent to ACL matches ours that RBAC is
equivalent to HRU. Similarly, in [16], the authors concentrate
on the fact that RBAC can be used to simulate Lattice Based
Access Control (LBAC) and Discretionnary Access Control
(DAC), by showing systematic constructions of RBAC in order
to enforce those two kinds of access control. Here again, this
work is not developed in a common framework, so this limits
our interest in it, and the investigation of equivalences or
absence of equivalences between RBAC and LBAC on the
one hand, and, RBAC and DAC on the other hand has not be
done, whereas we have shown that RBAC is not equivalent to
MLS policies but that it is equivalent to HRU.

VII. CONCLUSION – FUTURE WORK

The goal of security policies is to achieve security proper-
ties. On the other hand, the relation between these properties
and the properties on which security mechanisms are based is
not always obvious. Hence, a question naturally emerges: how
to bridge the gap in such a case? In this paper, to answer this
question, we have introduced formal definitions based on the
semantics of security policies providing methodological tools
allowing to handle such situations. More precisely, this paper

6666

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

addresses the problem of comparing security policies, focus-
ing in particular on the relationship between access control
policies on one side and flow control policies on the other.
Our approach has been described within a generic framework
previously introduced in [1] and allowing to define security
policies. In fact, when designing this framework, our main
motivation was to be able to provide some methodological
guidelines to specify security policies but also to be able to
compare these policies. Defining policies within a common
formalism allows to ease their comparison. This framework
can be used to consider many developments since it does not
depend on the syntax used to described policies but only on
some semantics aspects of policies. It allows to identify the
various entities involved in the definition of a policy and their
role. The main developments done within our framework is
concerned with flow analysis of access control policies. In
fact, access control policies allow to grant or to revoke the
rights for some subjects to access some objects, but cannot
always control how the information is used once it has been
accessed (there is no control on its propagation). Intuitively, a
link is needed between “what you do” (the policy) and “what
you want” (the goal for which the policy is designed). In
this paper, we have formalized this link through notions of
interpretations. Of course results about access control and flow
control expressed in proposition 5 may seem unsurprising.
However, we think they allow us to gain a better understanding
of the flow control induced by an access control and to
define additional mechanisms to ensure flow properties (i.e.
mechanisms allowing to detect illegal information flows).
Moreover, our approach also provides a way to reuse the
same specification of a security property in order to analyse
or to verify several policies and systems, thus showing the
benefits of a library of generic security properties, dedicated
to particular domains (like information flows) and that can
be considered in several contexts. For example, it becomes
possible to check the same abstract information flow property
expressed by a specification for several access control policies.

Comparing and understanding relationship between policies
requires attention in emerging contexts where policies under
different domains might need to be compared or merged.
Our work can be viewed as a first step in this direction.
However, several issues remain to be addressed. For example,
we are currently working on administrative policies. Indeed,
our framework only consider static policies in the sense that
security configurations correspond to a static information.
Nevertheless, in practice, security configurations are modified
during the lifetime of a system and it seems desirable to
control such transformations in order to preserve some security
properties. This leads us to consider administrative policies
whose targets are configurations of the administrated policies.
We also plan to focus on composition of security policies,
which can be very useful in a distributed context. We would
like to define a language allowing to express how several
policies can be combined and to characterize the security
property induced by this combination (expressed from the
properties of the initial policies).

ACKNOWLEDGMENT

The author would like to thank L. Habib, T. Hardin, L. Mé
and V. Viet Triem Tong for enlightening discussions about
access control policies flow policies, and their comparison, as
well as the anonymous referees for their very useful comments.

REFERENCES

[1] M. Jaume, “Security rules versus security properties,” in Information
Systems Security - 6th International Conference, ICISS 2010, Proceed-
ings, ser. LNCS, vol. 6503. Springer, 2010, pp. 231–245.

[2] D. Doligez, M. Jaume, and R. Rioboo, “Development of secured systems
by mixing programs, specifications and proofs in an object-oriented
programming environment,” in ACM SIGPLAN Seventh Workshop on
Programming Languages and Analysis for Security (PLAS 2012) Pro-
ceedings. To appear, 2012.

[3] M. Jaume, V. Viet Triem Tong, and L. Mé, “Flow-based interpretation
of access control: Detection of illegal information flows,” in Information
Systems Security - 7th International Conference, ICISS 2011, Proceed-
ings, ser. LNCS, vol. 7093. Springer, 2011, pp. 72–86.

[4] T. Bourdier, H. Cirstea, M. Jaume, and H. Kirchner, “Formal specifica-
tion and validation of security policies,” in Foundations & Practice of
Security, FPS, ser. LNCS, vol. 6888. Springer, 2011, pp. 148–163.

[5] P. Bonatti, S. D. C. di Vimercati, and P. Samarati, “An algebra for
composing access control policies,” ACM Trans. on Inf. and Syst.
Security, vol. 5, no. 1, pp. 1–35, 2002.

[6] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in operating sys-
tems,” Communications of the ACM, vol. 19, pp. 461–471, 1976.

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[8] R. S. Sandhu, “Lattice-based access control models,” IEEE Computer,
vol. 26, no. 11, pp. 9–19, 1993.

[9] D. Bell and L. LaPadula, “Secure Computer Systems: a Mathematical
Model,” MITRE, Tech. Rep. MTR-2547 (Vol. II), 1973.

[10] R. S. Sandhu, “On five definitions of data integrity,” in Proc. of the
IFIP WG11.3 Working Conference on Database Security, ser. IFIP
Transactions, vol. A-47, 1993, pp. 257–267.

[11] S. Geller, C. Hauser, F. Tronel, and V. Viet Triem Tong, “Information
flow control for intrusion detection derived from mac policy,” in IEEE
International Conference on Communications (ICC’11), 2011.

[12] G. Hiet, V. Viet Triem Tong, L. Mé, and B. Morin, “Policy-based
intrusion detection in web applications by monitoring java information
flows,” in 3nd International Conference on Risks and Security of Internet
and Systems (CRiSIS 2008), 2008.

[13] V. Viet Triem Tong, A. Clark, and L. Mé, “Specifying and enforcing
a fined-grained information flow policy : Model and experiments,”
in Journal of Wireless Mobile Networks, Ubiquitous Computing and
Dependable Applications (JOWUA), 2010.

[14] J. Zimmermann, L. Mé, and C. Bidan, “An improved reference flow
control model for policy-based intrusion detection,” in Proceedings
of the 8th European Symposium on Research in Computer Security
(ESORICS), 2003.

[15] J. Barkley, “Comparing simple role based access control models and
access control lists,” in ACM Workshop on Role-Based Access Control,
1997, pp. 127–132.

[16] S. L. Osborn, R. S. Sandhu, and Q. Munawer, “Configuring role-based
access control to enforce mandatory and discretionary access control
policies,” ACM Transactions on Information and System Security, vol. 3,
no. 2, pp. 85–106, 2000.

[17] R. S. Sandhu, “A lattice interpretation of the Chinese Wall policy,”
in Proceedings of the 15th NIST-NCSC National Computer Security
Conference, 1992, pp. 329–339.

[18] L. Habib, M. Jaume, and C. Morisset, “Formal definition and comparison
of access control models,” J. of Information Assurance and Security,
vol. 4, no. 4, pp. 372–381, 2009.

[19] A. Chander, J. Mitchell, and D. Dean, “A state-transition model of
trust management and access control,” in Proceedings of the 14th IEEE
Computer Security Foundation Workshop CSFW. IEEE Comp. Society
Press, 2001, pp. 27–43.

[20] M. Tripunitara and N. Li, “Comparing the expressive power of access
control models,” in 11th ACM Conf. on Computer and Communications
Security, 2004.

6767

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 01,2024 at 18:56:48 UTC from IEEE Xplore. Restrictions apply.

