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Abstract—We introduce Slender PUF protocol, an ef-
ficient and secure method to authenticate the responses
generated from a Strong Physical Unclonable Function
(PUF). The new method is lightweight, and suitable for
energy constrained platforms such as ultra-low power em-
bedded systems for use in identification and authentication
applications. The proposed protocol does not follow the
classic paradigm of exposing the full PUF responses (or
a transformation of the full string of responses) on the
communication channel. Instead, random subsets of the
responses are revealed and sent for authentication. The
response patterns are used for authenticating the prover
device with a very high probability. We perform a thorough
analysis of the method’s resiliency to various attacks
which guides adjustment of our protocol parameters for
an efficient and secure implementation. We demonstrate
that Slender PUF protocol, if carefully designed, will be
resilient against all known machine learning attacks. In
addition, it has the great advantage of an inbuilt PUF error
tolerance. Thus, Slender PUF protocol is lightweight and
does not require costly additional error correction, fuzzy
extractors, and hash modules suggested in most previously
known PUF-based robust authentication techniques. The
low overhead and practicality of the protocol are confirmed
by a set of hardware implementation and evaluations.

I. INTRODUCTION

Semiconductor devices and systems should be able to
preserve the privacy of customers, provide identification,
and be resilient against security attacks.
Classic security paradigms rely on a stored secret

binary key and cryptographic algorithms. Secret keys are
stored in on-chip non-volatile memory (NVM). However,

on-chip NVM storage is prone to invasive physical
attacks (e.g., probing) and non-invasive imaging attacks
(e.g., SEM). Moreover, classic cryptographic algorithms
are resource-intensive for many low power applications.
Physical unclonable functions (PUFs) have been pro-

posed [1] to provide the desired integrity and robust
resiliency against security attacks, while keeping the
implementation costs at the minimum for authentication
applications.
Silicon PUFs make it possible to have secrets that

are physically bound to the hardware [2]. Silicon PUFs
use the unclonable intrinsic process variability of silicon
devices to provide a unique mapping from a set of digital
inputs (challenges) to a set of digital outputs (responses).
The imperfections and uncertainties in the fabrication
technology make cloning of a hardware circuit with the
exact same device characteristics impossible, hence the
term unclonable. Moreover, PUFs can be designed to
make it prohibitively hard to simulate, emulate, or predict
their behavior [2]. Excellent surveys of various PUF
designs can be found in [3]–[5].
Strong PUFs are a subclass of PUFs which natu-

rally enjoy the unclonability of a physical-disorder-based
medium. In addition, a Strong PUF has the property
that the number of its possible challenge-response pairs
(CRPs) has an exponential relationship with respect to
the number of its physical components. This huge space
of possible CRPs hinders attacks based on pre-recording
and replaying previously used CRPs. A secure Strong
PUF should be resilient against machine learning attacks
which aim at predicting the PUF response to random
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new challenges by studying a set of known PUF CRPs.
Strong PUFs have been used in several applications of
identification and authentication of hardware systems [3].
Since the number of actual physical components of a

Strong PUF is finite, a compact polynomial-order model
of the CRP relationships can be built. In particular, a
trusted IP owner with physical access to the device (e.g.,
the original manufacturer) can build such a compact
model by measuring the PUF components; physical
access can be permanently disabled before deployment
to avoid direct compact modeling. Such compact models
can be treated as a secret which can be used by a trusted
verifier to authenticate the prover’s PUF. To date, a
number of machine learning attacks have been launched
against Strong PUFs [6]. Several such machine learning
attacks were carried out by recording and analyzing a
finite set of CRPs. Such attacks were possible because
the CRPs leak structural information about the PUF and
compact models. Our protocol aims at thwarting this
class of attack.
In this paper, we introduce Slender PUF protocol,

a lightweight secure and robust authentication protocol
based on a Strong PUF. The protocol enables a prover
with physical access to the PUF to authenticate itself to
a verifier. It is assumed that verifier knows the secret
relationship between the PUF challenge-response pairs
through a pre-trained compact PUF model. The protocol
leaks minimal amount of information about secret PUF
parameters on the shared communication channel. The
protocol is devised such that the verifier and the prover
jointly generate the challenges to the PUF. This joint
challenge generation is done such that neither a dishonest
prover nor a dishonest verifier can soley control the
challenges used for authentication. While none of the
authenticating parties can solely control the challenges,
the resulting challenge values are publicly known.
Using the set of known challenges, the prover’s PUF

generates a string of responses of a certain length.
Instead of revealing the whole response string to the
verifier, the prover randomly selects a response substring
of fixed size and shares it with the verifier. The randomly
selected index pointing to the location of the substring is
kept as a secret at the prover side. An honest verifier with
access to the PUF secret model could search and match
the received substring to its estimated PUF response
sequence and find the secret index. The authentication is
successful if the prover’s response substring matches at
some location in the verifier’s estimated response string
within a predefined threshold.
To ensure security, we also provide a thorough dis-

cussion of attacks and protocol parameter adjustments.
We demonstrate that the main advantage of keeping
the index secret is enabling resiliency against machine
learning attacks. The protocol also achieves robustness
against inherent noise in PUF response bits, without
costly traditional error correction modules. Note that
recent work has used pattern matching for correcting
errors while generating secret keys from a PUF [7].
However, the number of generated secret keys were
limited. To the best of our knowledge, no application
of pattern matching for authentication of Strong PUFs
has been proposed thus far.
We demonstrate that our protocol can be implemented

with a few simple modules, excluding the need for
expensive cryptographic hashing and classic error cor-
rection techniques that have been suggested in earlier
literature for achieving security. In brief, the main con-
tributions of our paper are as follows:

• Introduction of Slender PUF protocol, lightweight
and secure Strong PUF based device authentication
based on pattern matching. The method is very
suitable for ultra-low power and embedded devices.

• The protocol automatically provides robustness
against inherent noise in the PUF response string,
without requiring externally added and costly tradi-
tional error correction modules.

• We perform a thorough analysis of the protocol’s
resiliency to various attacks which guides adjust-
ment of the protocol parameters. In particular, we
demonstrate that our method, if carefully designed,
will be resilient against all known Strong PUF
machine learning attacks.

• The lightweight nature, security, and practicality of
the new protocol are confirmed by a set of hardware
implementation and evaluations.

The remainder of the paper is organized as follows.
Section II provides a background on Strong PUFs. In
Section III, related literature is discussed and the new
aspects of our work are highlighted. In Section IV, the
Slender PUF methodology is introduced and explained
in detail. The parameters of our method and its security
against multiple attacks are investigated in Section V.
Hardware implementation and performance evaluations
are presented in Section VI. Section VII concludes the
paper.

II. BACKGROUND
In this section, we provide a brief background on

Strong PUFs using the implementation of an instance
of Strong PUFs known as arbiter PUF or delay-based
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PUF. Desired statistical properties of a Strong PUF are
briefly reviewed, and XOR mixing of arbiter PUFs to
improve the statistical properties is discussed.
Note the proposed protocol can work with any Strong

PUF that satisfies the requirements discussed in this
section. We use arbiter PUF to demonstrate the protocol
only due to its widespread use and ease of implementa-
tion.

A. Strong PUFs and their implementation

There are a number of different PUF types, each with
a set of unique properties and applications. For example,
Weak PUFs, also known as Physically Obfuscated Keys
(POKs) are commonly used for key generation applica-
tions. Following the taxonomy in [8], the class of PUF
that is of interest in this paper is called a Strong PUF.
Strong PUFs are built based on the unclonability and
disorder in the physical device features, with very many
challenge-response pairs. The size of the CRP space is
an exponential function of the number of underlying
components. Strong PUFs have the property that they
are prohibitively hard to clone; a complete enumeration
of all their CRPs is intractable. To be secure, they
should be resilient to machine learning and prediction
attacks. Important applications of Strong PUFs include
identification, authentication, and key establishment [8].
A well-known implementation of a Strong PUF is

the delay-based arbiter PUF introduced in [9] which we
also use in this paper. In this PUF structure, the delay
difference between two parallel paths is compared. The
paths are built identically to make their nominal delays
equal by construction, but due to process variations,
one of the paths has slightly longer or shorter delay
in practice. The architecture of the delay-based PUF is
illustrated in Fig. 1. A step input simultaneously triggers
the two paths. At the end of the two parallel (racing)
paths, an arbiter (typically implemented with a D-Flip
Flop) is used to convert the analog difference between
the path to a digital value. The arbiter output becomes
one if the signal arrives at its first input earlier than
the second one, i.e., the path ending at the first arbiter
input has a shorter delay. The arbiter output stays zero
otherwise. The two paths are divided into several smaller
sub-paths by inserting path swapping switches. Each set
of inputs to the switches acts as a challenge set (denoted
by Ci).
This type of PUF falls into the class of linear Strong

PUFs, since the PUF only consists of linear addition
and subtraction of delay elements. The behavior of the
PUF in Fig. 1 can be modeled by the following linear

Fig. 1. An arbiter linear PUF block with N challenges and one
response bit.

inequality [10]:

N∑
j=1

(−1)ρjδj + δN+1

r=0
≶
r=1

0, (1)

where ρj is related to the input challenge that controls
the switch selectors by the following relation,

ρi =
⊕

x=i,i+1,...,N

cx = ci ⊕ ci+1 ⊕ ...⊕ cN . (2)

According to Inequality 1, if the difference between
the sum of delays on the top and bottom paths is greater
than zero, then the response will be ‘1’; the response
is ‘0’ otherwise. To simplify the notations, Inequality 1,
can be rewritten as:

r = Sign(Δ.Φ), (3)

where Δ = [δ1, δ2, ..., δN+1] is the delay param-
eter vector, Φ = [(−1)ρ1 , (−1)ρ2 , ..., (−1)ρN , 1] =
[ϕ1, ϕ2, ..., ϕN+1] is the transformed challenge vector in
which ϕi ∈ {−1, 1}, ‘.’ is the scalar product operation, r
is the response bit, and Sign is the sign function. We will
refer to C as the input challenge vector in the remainder
of the paper. Note that the parameters ϕ, ρ, and c are
related.

B. Linear Arbiter PUF statistical properties

Before describing the protocol, we briefly review the
statistical properties of a linear arbiter PUF circuit. It has
been demonstrated in [11] that when the delay parame-
ters δ ∈ Δ come from identical symmetric distributions
with zero mean (in particular it is safe to assume that
the δ’s are i.i.d Gaussian, i.e., δ ∈ N(0, σ)), then the
following statistical properties hold for a linear arbiter
PUF:

• The output response bits are equally likely over the
entire space of challenges, i.e, Prob{r = −1} =
Prob{r = 1} = 0.5. Half of the challenges map to
r = −1 and the other half maps to r = 1.
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• The responses to similar challenges are similar.
Hamming distance is used as the measure of sim-
ilarity. In other words, the probability that the re-
sponses r0 and r1 to two input challenge vectors C0

and C1 are different is a monotonically increasing
function of the Hamming distance between the input
challenges, i.e., Prob{r0 �= r1}=f (HD(C0,C1)).
For example, In the trivial cases HD(C0,C1)=0, i.e.
C0=C1, then Prob{r0 �= r1} = 0.

The Hamming distance between challenges Cx and Cy

is defined as HD(Cx, Cy) =
∑N

i=1 | Cx[i]− Cy[i] | /N
where Cx[i], Cy [i] ∈ {−1, 1}. The boxplot in Fig. 2
shows the distribution of output transition probabilities
obtained for 50 synthetic PUF instances as a func-
tion of the input challenge Hamming distances. As the
Hamming distances between the input challenge vector
becomes larger, the probability of having different PUF
response bits increases.
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Fig. 2. The probability of output response transition as a function
of the input challenge pair Hamming distance for a population of 50
linear arbiter PUFs.

Ideally it is expected that any flip in the challenge
bits will cause half of the response bits to flip. This is
known as the strict avalanche criterion. Any deviation
from the avalanche criterion reduces the security of the
system built based on these PUFs. Later in this paper,
we discuss the direct implication of the PUF avalanche
criterion in the proposed protocol’s security.
Thus, it is desirable to have the curves in Fig. 2 to

be as close as possible to the probability of 0.5. To
improve the statistical properties of a linear PUF, the
output of independent PUFs are XOR-mixed together as
shown in Fig. 3 [11]. Fig. 4 shows the probability of
output flipping versus the Hamming distance between
two challenge sequences for 2, 4, and 8 independent
XOR-mixed arbiter PUFs.

The figure shows that this probability is very close to
the ideal 0.5 probability when just four independent PUF
output bits are mixed by an XOR. As more independent
PUF response bits are mixed, the curve moves closer
to the ideal case; however, this would linearly increase
the probability of error in the mixed output bit. For
instance, for a single PUF response bit error of 5%, the
probability of error for a 4-XOR-mixed PUF is reported
to be 19% [11].
In addition to achieving the avalanche criterion, the

XOR-mixed arbiter PUF requires a significantly larger
set of challenge response pairs to successfully train the
PUF model for a given target accuracy level. (A 6-XOR
arbiter PUF is currently out of reach for state-of-the-art
modeling attacks.)

Fig. 3. Two independent linear arbiter PUFs are XOR-mixed in
order to implement an arbiter PUF with better statistical properties.
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Fig. 4. The probability of the arbiter PUF output flipping versus the
Hamming distance between two challenge sequences for 2, 4, and 8
independent XOR-mixed PUFs [11]

In the rest of the paper, we build our Slender PUF
protocol based on the assumption that the PUF at hand
is a linear XOR-mixed arbiter PUF with near ideal
statistical properties as depicted in Fig. 4. We argue
that our Slender PUF protocol is applicable to any
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lightweight Strong PUF which follows the statistical
properties discussed in this Section. Furthermore, as
mentioned earlier the protocol can be applied to any
Strong PUF that satisfies the avalanche criterion and
has an exponentially large space of challenge responses.
Another example of a Strong PUF is introduced in [21]
which uses CMOS transistor leakage currents instead
of delays and a sense amplifier instead of arbiter to
implement a linear Strong PUF structure.

III. RELATED WORK

PUFs have been subject to modeling attacks that
breach their security and break any protocols built upon
them. The basis for contemporary PUF modeling attacks
is collecting a set of CRPs by an adversary, and then
building a numerical or an algorithmic model from
the collected data. For the attack to be successful, the
models should be able to correctly predict the PUF
response to any new challenge with a high probability.
Previous work on PUF modeling (reverse-engineering)
used various machine learning techniques to attack both
implementation and simulations of a number of different
PUF families, including the realizations and simulations
of linear arbiter PUFs and feed-forward arbiter PUFs [6],
[10]–[13].
The use of XORs for mixing the responses from

the arbiter PUFs to safeguard them against attacks was
pursued in [14]. More comprehensive analysis and de-
scription of PUF security requirements to ensure their
protection against modeling attacks were presented in
[15], [16]. The latest reported attacks on PUFs with k
levels of XORs at their output were able to model up
to k = 5 (after a year of running their algorithms on
supercomputers) [6]. This was assuming that the full
string of CRPs was known to the attacker. At the time
of this publication, to the best of our knowledge, no
stronger attacks on k-level XOR arbiter PUFs have been
reported. We also note that, the results for k = 5 in [6]
are for “synthetic” PUFs, not for a silicon realization of
a PUF.
In this paper, we use 4-XOR arbiter PUFs in our

design. Note that a drawback of XOR’ing is the increase
in response noise (error); this needs to be carefully
considered.
Extracting secret keys from PUF responses has been

explored in previous work, including [2], [12], [17]–
[19]. Since cryptographic keys need to be stable, error
correction is used for stabilizing inherently noisy PUF
response bits. The classic method for stabilizing noisy

PUF bits (and noisy biometrics) is error correction which
is done by using helper bits or syndrome [20].
Since error correction needs to be robust, secure, and

efficient, it is important to consider limiting the amount
of secret bit leakage through the disclosed syndrome
bits. A generic secure key extraction framework based
on biometric data and error correction was devised in
[20]. A newer information-theoretically secure Index-
Based Syndrome (IBS) error correction coding for PUFs
was introduced and realized in [19]. All the aforemen-
tioned methods incur a rather high overhead of error
correction logic, e.g., BCH, which prohibits their usage
in lightweight systems. An alternative efficient error
correction method by pattern matching of responses was
very recently proposed [7]. We use this pattern matching
idea in our work. In [7], a 4-XOR arbiter has been
used which for real PUFs has not yet been broken.
Their architecture also works with a higher than 4 XOR
mixing. However the error correction performance would
be reduced. Their proposed protocol and application area
was limited to secret key generation.
In the context of challenge-response based authenti-

cation for Strong PUFs, sending the syndrome bits for
correcting the errors before hashing was investigated [2];
the necessity for error correction was due to hashing
the responses before sending them to avoid reverse
engineering. Naturally, the inputs to the hash have to
be stable to have a predictable response. The proposed
error correction methods in this context are classic error
correction and fuzzy extraction techniques. Aside from
sensitivity to PUF noise (because it satisfies the strict
avalanche criterion) hashing has the drawback of high
overhead in terms of area, delay, and power.
This paper introduces Slender PUF protocol, the first

lightweight PUF authentication scheme based on string
pattern matching and covert indices. We demonstrate that
the Slender PUF protocol is secure against the model
building attacks. Modeling is thwarted by leaking very
limited information about the index bit from a response
string. The random index is inherently independent of
the response string content.

IV. SLENDER PUF PROTOCOL
In this section, the proposed protocol is introduced and

explained in detail. The protocol is based on a Strong
PUF with acceptable statistical properties, like the one
shown in Fig. 3. The protocol enables a prover with
physical access to the PUF to authenticate itself to a
verifier. It is assumed that an honest verifier has access
to a compact secret model of the relationship between
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Strong PUF challenge-response pairs (CRPs). Such a
model can be built by training a compact parametric
model of the PUF on a set of direct challenge responses
pairs. As long as the PUF challenge response pairs are
obtained from the linear PUF, right after the arbiter,
building and training such a compact model is possible
with a relatively small set of CRPs as demonstrated in
the previous literature [6], [10]–[13]. The physical access
to the measurement points should be then permanently
disabled before deployment, e.g., by burning irreversible
fuses, so other entities cannot build the same models.
Once this access point is blocked, any physical attack
that involves de-packaging the chip will likely alter the
shared secret.
The Slender PUF methodology is different from the

original PUF challenge response pair identification and
authentication methodology. The Slender PUF method-
ology is devised such that both prover and verifier jointly
participate in producing the challenges. The joint chal-
lenge generation provides effective protection against a
number of attacks. Unlike original PUF authentication
methods, an adversary cannot build a database of CRPs
and use an entry in the database for authentication.
In the next step of the protocol, the prover generates a

set of Strong PUF responses corresponding to the jointly
generated challenges. After that, the prover selects a
random substring of responses from the response super-
string, without revealing the location in the response
stream and sends it to the verifier. The verifier, with
access to the secret compact PUF model, can perform
substring matching, within a predefined error threshold,
and validate the responses with a very high probability.
The prover gets authenticated if his submitted response
substring matches at any location in the simulated re-
sponse super-string on the verifier side.

A. Slender PUF protocol steps

Fig. 5 illustrates the steps of the Slender PUF protocol.
Steps 1-4 of the protocol ensure joint generation of the
challenges by the prover and the verifier. In Steps 1-
2 the prover and the verifier each uses its own true
random number generator (TRNG) unit to generate a
nonce. Note that arbiter PUFs can also be used to im-
plement a TRNG [21]. The prover and verifier generated
nonces are denoted by Noncep and Noncev respec-
tively. The nonces are exchanged between the parties,
so both entities have access to Noncep and Noncev.
Step 3 generates a random seed by concatenating the
individual nonces of the prover and the verifier; i.e.,
Seed = {Noncev ‖ Noncep}.

The generated Seed is used by a pseudo-random
number generator (PRNG) in Step 4. Both the prover
and the verifier have a copy of this PRNG module. The
PRNG output using the seed, i.e., C = G(Seed), is
then applied to the PUF as a challenge set (C). Note
that in this way, neither the prover nor the verifier has
full control over the PUF challenge stream. In Step 5,
the prover applies the challenges to its physical PUF to
obtain a response stream (R); i.e., R = PUF(C). An
honest verifier with access to a secret compact model
of the PUF (PUF model) also estimates the PUF output
stream; i.e., R′

= PUF model(C).

Fig. 5. The 7 steps of the SlenderPUF lightweight protocol.

Let us assume that the full response bitstring is of
length L. In Step 6, the prover randomly chooses an
index (ind) of bit-size log2(L) that points to a location in
the full response bitstring. The index is used to generate
a substring W from the PUF output bitstream with a
predefined length, denoted by Lsub. We use the full
response string in a circular manner, so that if the value
(ind + L) > log2(L), the remainder of the substring
values are taken from the beginning of the full response
bitstream.
The prover then sends W to the verifier. In step 7,

an honest verifier, with access to the compact secret
PUF model, finds the secret index by searching and
matching the received substring to its simulated PUF
output sequence (R′). The authentication is successful,
only if the Hamming distance between the received
and the simulated substrings is lower than a predefined
threshold value. In this way, prover does not reveal the
whole response stream and the protocol leaks a minimal
amount of information. This process is illustrated in
Fig. 6.
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Fig. 6. Top: random selection of an index; Middle: extracting a
substring of a predefined length; Bottom: the verifier matches the
received substrings to its estimated PUF response stream.

The SlenderPUF protocol is lightweight and is suitable
for ultra-low power and embedded devices. Besides a
Strong PUF, the prover only needs to implement one
TRNG and one PRNG. The information communicated
between the parties is also minimal. In addition to
exchanging their respective session nonces, the prover
only needs to send a relatively short substring to the
verifier.

B. Secret sharing
So far we assumed that the verifier possesses a model

of the PUF and uses the model to authenticate the prover.
The PUF in fact uses an e-fuse to protect the secret and
prevent modeling attacks. The chip sets are handled by a
trusted party before distributing to end users. The trusted
party performs modeling on the PUF and disables the
fuse before distribution. Anyone with access to the IC
afterwards will not be able to model the PUF since the
fuse is disabled. The trusted party can share the PUF
models with other authorized trusted parties that want to
authenticate the ICs.
The e-fuse mechanism is set up as follows. Before the

e-fuse is disabled, the output of the arbiter prior to any
XORs can be read and accessed from chip IO pins. This
way, the verifier can obtain as many CRPs as needed to
build an accurate model of the PUF. After the model is
successfully trained, the trusted party and/or the verifier
disables the e-fuse so that no one can obtain the “raw”
PUF output.

V. ANALYSIS OF ATTACKS
In this section, we quantify the resistance of the pro-

posed protocol against different attacks by a malicious
party (prover or verifier). First, we quantitatively analyze
the resiliency of the method to machine learning and
modeling attacks. Second, we probabilistically investi-
gate the odds of authentication by random guessing.
Third, we address the attack where a dishonest prover

(verifier) attempts to control the PUF challenge pattern.
Lastly, the effects of non-idealities of PUFs and PRNGs
and their impact on protocol security are discussed.
Throughout our analysis in this section, we investi-

gate the impact of various parameters on security and
reliability of protocol operation. Table I shows the list
of parameters.

TABLE I
LIST OF DESIGN PARAMETERS

Parameter notation Description
L Length of PUF response string
Lsub Length of PUF response substring
Ln Length of the nonce
ind Index value, 0 ≤ ind < L

Nmin Minimum number CRPs needed to train
the PUF model with a misclassification

rate of less than ε

k Number of XORed PUF outputs
N Number of PUF switch stages
th Matching distance threshold
ε PUF modeling misclassification rate
perr Probability of error in PUF responses

A. PUF modeling attack
In order to model a linear PUF with a given level of

accuracy, it is sufficient to obtain a minimum number
(Nmin) of direct challenge response pairs (CRPs) from
the PUF. Based on theoretical considerations (dimension
of the feature space, Vapnik-Chervonenkis dimension),
it is suggested in [6] that the minimal number of CRPs,
Nmin, that is necessary to model a N -stage delay based
linear PUF with a misclassification rate of ε is given by:

Nmin = O(
N

ε
). (4)

For example, a PUF model with 90% accuracy, has
a misclassification rate of ε = 10%. In the proposed
protocol, the direct responses are not revealed and the
attacker needs to correctly guess the secret index to be
able to discover Lsub challenge response pairs. The index
is a number between 0 and L − 1 (L is the length of
the original response string from which the substring is
obtained). Assuming the attacker tries to randomly guess
the index, then he is faced by L choices. For each index
choice, the attacker can build a PUF model (Mindex) by
training it on the set of Lsub challenge response pairs
using machine learning methods.
Now, the attacker could launch L rounds of authentica-

tion with the verifier and each time use one of his trained
models instead of the actual PUF. If he correctly guesses
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the index and his model is accurate enough, one of his
models will pass authentication. To build an accurate
model as mentioned above, the attacker needs to obtain
Nmin correct challenge response pairs. If Lsub > Nmin,
then attacker can break the system with O(L) number of
attempts. However if Lsub < Nmin, then the attackers
needs to launch Nmin/Lsub multiple rounds of authenti-
cation to obtain at least Nmin challenge response pairs.
Under this scenario, the number of hypothetical PUF
models will grow exponentially. Since for each round of
authentication there are L models based on the choice
of index value, for Nmin/Lsub rounds, the number of
models will be of the following order:

O(L
Nmin

Lsub ). (5)

From the above equation, it seems intuitive to choose
small values for Lsub to make the exponent bigger. How-
ever, small Lsub increases the success rate of random
guessing attacks. The implications of small Lsub will be
discussed in more detail in the next section.
The model the attacker is building has to be only

more accurate than the specified threshold during the
matching. For example, if we allow a 10% tolerance
during the substring matching process, then it means that
a PUF model that emulates the actual PUF responses
with more than 90% accuracy will be able to pass
authentication. Based on Equation 4, if we allow higher
misclassification rate ε, then a smaller number of CRPs is
needed to build an accurate enough model which passes
the authentication.
For example, based on the numbers reported in [6],

using 640 CRPs, an arbiter PUF of length 64 can be
modeled with an accuracy of 95%. In this example we
set the threshold to 5%, then to get an exponent equal
to 10 from Equation 5, Lsub must be 64. In other words,
the attacker needs to performs L10 operations to obtain
640 CRPs so that he can build a PUF model of 95%
accuracy to pass the authentication. For L=1024, L10 will
be a huge number. However we are faced with another
problem. What if the PUF error rate (perr) is higher than
the maximum Hamming distance threshold (th)? Then
we will have a lot of false negatives (i.e., the honest
prover with access to the legitimate PUF will not be
able to pass authentication due to noise in responses).
To improve the security while maintaining reliable

performance, Nmin must be increased for a fixed ε and
N . This requires a structural change to delay based PUF.
In this paper, we use the XOR PUF circuit shown in
Figure 3 for two reasons. First, to satisfy the avalanche

criterion for the PUF. Second, to increase Nmin for a
fixed ε. Based on the results reported in [6], Nmin is an
order of magnitude larger for XOR PUF compared to a
simple delay based PUF.

B. Random guessing attack
A legitimate prover should be able to generate a

substring of PUF responses that successfully match a
substring of the verifier’s emulated response sequence.
The legitimate prover must be authenticated by an honest
verifier with a very high probability, even if the response
substring contains some errors. Therefore, the protocol
allows some tolerance during matching by setting a
threshold on the Hamming distance of the source and
target substrings.
Simultaneously, the probability of authenticating a dis-

honest prover should be extremely low. These conditions
can be fulfilled by carefully selecting the Hamming
distance threshold (th), the substring length (Lsub) and
the original response string length (L) by our protocol.
A dishonest prover without access to the original PUF

or its model, may resort to sending a substring of random
bits. In this case, the probability of authenticating a
randomly guessing attacker would be:

Pauth,guessing ≤ L×

Lsub∑
i=Lsub−th

(
Lsub
i

)
1

2

i

·
1

2

Lsub−i

, (6)

where Lsub and th are the length of the substring and
the Hamming distance threshold, respectively. Note that
Eq. 6 is a binomial cumulative distribution function. For
an honest prover, the probability of being authenticated
is:

Pauth,honest �

Lsub∑
i=Lsub−th

(
Lsub
i

)
(1− perr)

i · perr
Lsub−i, (7)

where perr is the probability of an error in a response
bit. If Lsub is chosen to be a sufficiently large number,
Eq. 6 will be close to zero and Eq. 7 will be close to
one. Table II lists the probability of authenticating an
honest prover and a dishonest randomly guessing prover
for various Lsub, perr and th.
As the results in Table II suggest, by setting Lsub

= 512, and th = 154, the protocol guarantees reliable
operation under 20% response error and zero probability
of success for a random attacker. Meanwhile, assuming
that with Nmin = 5120 CRPs, the attacker can train the 4-
XORed PUF model with more than 80% accuracy, then
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TABLE II
THE PROBABILITY OF AUTHENTICATING AN HONEST PROVER AND
AND A DISHONEST GUESSING PROVER FOR VARIOUS LSUB , perr ,

th AND L = 1024.

Substring Hamming pguessing perr perr perr
length, Lsub threshold, th 50% 5% 10% 20%

128 33 6 ∗ 10
−9 1 1 0.9332

256 76 10
−11 1 1 0.9999

512 154 0 1 1 0.9999

for L = 1024 the complexity of a model building attack
will be 1024(5120/512) = 1030. Note that Nmin is chosen
pessimistically and typical values based on the numbers
reported in [6] are an order of magnitude larger.

C. Compromising the random seed
In Slender PUF protocol, the prover and the verifier

jointly generate the random PRNG seed by concatenating
the outputs of their individual nonces (generated by
TRNGs); i.e., seed = {Noncev ‖ Noncep}. The stream
of PRNG outputs after applying the seed is then used
as the PUF challenge set. This way, neither the prover
nor the verifier has full control over generating the PUF
challenge stream.
If one of the parties can fully control the seed and

challenge sequence, then the following attack scenario
can happen. A dishonest verifier can manipulate an
honest prover into revealing the secret information. If the
same seed is used over and over during authentication
rounds, then the generated response sequence (super-
string) will always be the same. The response substrings
now come from the same original response string. By
collecting a large enough number of substrings and
putting the pieces together, the original super-string can
be reconstructed. Reconstruction will reveal L CRPs. By
repeating these steps more CRPs can be revealed and the
PUF can be ultimately modeled.
A dishonest prover (verifier) may intentionally keep

his/her portion of the seed constant to reduce the entropy
of seed. This way, the attacker can exert more control
over the random challenges applied to the PUF. We argue
that if the seed length is long enough this strategy will
not be successful.
This attack leaves only half of the bits in the generated

Seed changing. For a seed of length 2Ln-bits (two
concatenated nonces of length Ln-bits), the chance that
the same nonce appears twice is 1

2Ln ). For example, for
Ln = |Noncev| = |Noncep| = 128, the probability of
being able to fully control the seed will be negligibly
small.

Therefore, one could effectively guard against any
kind of random seed compromise by increasing the
nonce lengths. The only overhead of this approach is
a twofold increase in the runtime of the TRNG.

D. Substring replay attack

A dishonest prover may mount an attack by recording
the substrings associated with each used Seed. In this
attack, a malicious prover records the response substrings
sent by an honest prover to an honest verifier for a
specific Seed. The recording may be performed by
eavesdropping on the communication channel between
the legitimate prover and verifier. A malicious party may
even pre-record a set of response substrings to various
random Seeds by posing as a legitimate verifier and
exchanging nonces with the authentic prover.
After recording a sufficiently large number of Seeds

and their corresponding response substrings, the ma-
licious party could attempt to impersonate an honest
prover. This may done by repeatedly contacting the
legitimate verifier for authentication and then matching
the generated Seeds to its pre-recorded database. This
attack could only happen if the Seeds collide. Selecting
a sufficiently long Seed that cannot be controlled by
one party (Subsection V-B) would hinder this collision
attack.
Passive eavesdropping is performed during the pre-

recording phase, the chances that the whole Seed col-
lides will be 1/2Ln . The worst-case scenario is when an
adversary impersonates a verifier and controls half of the
seed which reduces the collision probability to 1/2Ln/2.

E. Exploiting non-idealities of PRNG and PUF

Thus far, we assumed that the outputs of PRNG and
PUF are ideal and statistically unbiased. If this is not
true, an attacker may resort to exploiting the statistical
bias in a non-ideal PRNG or PUF to attack the system.
Therefore, in this section we emphasize the importance
of the PUF avalanche criterion for securing against this
class of attacks.
If the PUF has poor statistical properties, then the

attacker can predict patterns in the generated responses.
The attacker can use these predicted patterns to more
confidently find/guess a matching location for the sub-
string. In other words, statistical bias in the responses
will leak information about the location index of the
response substring.
Recall that an ideal Strong PUF should have the strict

avalanche property [16]. This property states that if one
bit of the PUF’s input challenges is flipped, the PUF
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output response should flip with a 1
2 probability. If this

property holds, the PUF output for two different chal-
lenges will be uncorrelated. Fig. 4 shows the probability
of output flipping versus the Hamming distance between
two challenge sequences for the Strong PUF proposed
in [16]. It is desirable to make this probability as close
as possible to 1

2 .
The figure shows that this probability is very close to

the ideal number when at least four independent PUF
output bits are mixed by an XOR. As more independent
PUF response bits are mixed, the curve moves closer
to the ideal case; however, this linearly increases the
probability of error in the mixed output bit. For instance,
for a single Strong PUF response bit error of 5%, the
probability of error for 4-XOR mixing is reported to be
19% in [16].
In our implementation of Slender PUF protocol,

Linear feedback shift registers (LFSRs) are used as
a lightweight PRNG. An ideal LFSR must have the
maximum length sequence property [22]. This property
ensures that the autocorrelation function of the LFSR
output stream is “impulsive”, i.e., it is one at lag zero
and is −1

N for all other lags, where N is the LFSR se-
quences length. N should be a sufficiently large number,
which renders the lagged autocorrelations very close to
zero [22]. Therefore, if an LFSR generates a sequence of
challenges to the PUF, the challenges are uncorrelated.
In other words, for an ideal LFSR, it is highly unlikely
that an attacker can find two challenges with a very small
Hamming distance.
Even if the attacker finds two challenges with a small

Hamming distance in the sequence, Fig. 4 shows that the
output of our proposed PUF would be sufficiently uncor-
related to the Hamming distance of the input challenges.
Therefore, a combination of PRNG and PUF with strict
avalanche criteria would make this attack highly unlikely.
It is worth noting that it is not required by any means
the PRNG to be a cryptographically secure generator.
The seed in the protocol is public and the only purpose
of the PRNG is to automatically generate a sequence of
challenge vectors. Simultaneously, it must not allow an
attacker to completely control the challenges and thus
the responses.

VI. HARDWARE IMPLEMENTATION
In this section, we present an FPGA implementation of

the proposed protocol for the prover side on Xilinx Virtex
5 XC5VLX110T FPGAs. Since there is a stricter power
consumption requirement on the lightweight prover, we
focus our evaluation on prover implementation overhead.

The computation on the verifier side can run solely in
software, however, the computation on the verifier may
also be carried out in hardware with negligible overhead.
For the Slender PUF protocol, it is desirable to use

a low overhead PUF implementation, such as the one
introduced in [23]. If an ASIC or analog implementation
of the PUF is required, the ultra-low power architec-
ture in [21] is suitable for this protocol. A very low-
power verifier implemented by a microcontroller such
as MSP430 can easily challenge the PUF and run the
subsequent steps of the protocol.
We use the implementation of the arbiter-based PUF

in [24]. The arbiter-based PUF on FPGA is designed to
have 64 input challenges. In total, 128 LUTs and one
flip-flop are used to generate one bit of response. To
achieve a higher throughput, multiple parallel PUFs can
be implemented on the same FPGA.
There are various existing implementations for

TRNGs on FPGAs [25], [26]. We use the architecture
presented in [23] to implement a true random number
generator. The TRNG architecture is shown in Figure 8.
This TRNG operates by enforcing a metastable state on
the flipflop through a closed loop feedback system. The
TRNG core consumes 128 LUTs that are packed into
16 CLBs on Virtex 5. In fact, the TRNG core is iden-
tical to the arbiter-based PUF except that the switches
act as tunable programmable delay lines. The core is
incorporated inside a closed-loop feedback system. The
core output is attached to a 12-bit counter (using 12
registers) which monitors the arbiter’s metastability. If
the arbiter operates in a purely metastable fashion, the
output bits become equally likely ones and zeros. The
counter basically measures and monitors deviations from
this condition and generates a difference feedback signal
to guide the system to return back to its metastable state.
The counter output drives an encoding table of depth 212
where each row contains a 128-bit word resulting in a
64KByte ROM. A table of size 212 × 8-bits (=4KByte)
implemented by a RAM block is used to gather and
update statistics for online post processing.

Fig. 7. True random number generation architecture based on flipflop
metastability

The nonce size is set to 128 for both the prover and
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verifier. Each 128-bit nonce is fed into a 128-bit LFSR.
The content of the two LFSRs are XORed to form the
challenges to the PUF.
The pattern selection can be achieved by shifting

the intended substring of the PUF responses into a
FIFO. The shifting operation, however, begins only when
needed. In other words, before running the PUF, the
random index is generated by the TRNG. For example, in
our implementation the response sequence has a length
of 1024 which results in a 10-bit index. To generate a
10-bit random index, we have to run the TRNG 8×10
clock cycles according to Table III. Since we do not care
about the response bits that are generated before and after
the substring window, we do not need to even generate
or store those bits. Therefore, the PUF has to only be
challenged for the response bits in the substring. This
significantly reduces the overall run time and the storage
requirement on the FIFO. The FIFO size is accordingly
equal to the length of the substring which is set to 256
in our implementation.
The propagation delay through the PUF and the TRNG

core is equal to 61.06ns. PUF outputs can be generated
at a maximum rate of 16Mbit/sec. Post-processing on
the TRNG output bits can lower the throughput from
16Mbit/sec to 2Mbit/sec. Since the TRNG is only used
to generate the nonce and the index, its throughput does
not affect the overall system performance; the number
of required true random bits is smaller than the PUF
response bits.

TABLE III
IMPLEMENTATION OVERHEAD ON VIRTEX 5 FPGA

No. Type LUT Registers RAM ROM Clock
blocks blocks Cycles

4 PUF 128 1 0 0 1
1 TRNG 128 12 4KB 64KB 8
1 FIFO 0 256 0 0 N/A
2 LFSR 2 128 0 0 N/A
1 Control 12 9 0 0 N/A
Total 652 278 4KB 64KB N/A

Fig. 8. Resource usage on prover and verifier sides

The implementation overhead of our proposed proto-
col is much less than traditional cryptographic modules.
For example, robust hashing implementation of SHA-
2 as listed in Table IV requires at least 5492 LUTs of
a Virtex-II FPGA [27] and it takes 68 clock cycles to
evaluate. This overhead will occur on the top of the clock
cycles required for PUF evaluation.
Finally, note that most of the area overhead for the

protocol implementation is coming from the TRNG.
By using non-volatile memory storage, TRNG can also
be avoided. A Slender PUF implementation without a
TRNG generates log2(L) extra response bits and uses the
extra bits as the index value. Also to generate the nonce,
previously used and revealed substring response bits can
re-write the nonces and be used for the next round of
authentication. This is because for a statistically unbiased
PUF, the responses follow random number properties.
In this case, the contents of the non-volatile memory is
publicly available and there will be no external access
point to change or re-write the values to the memory.
However, this implementation is vulnerable to invasive
attacks that aim to alter the memory content.

TABLE IV
SHA-2 IMPLEMENTATION OVERHEAD AS REPORTED IN [27]

SHA-256 Freq. Clock TP Area
(MHz) Cycles (Mbps) (LUTs)

Basic 133.06 68 1009 5492
2x-unrolled 73.97 28 996.7 8128
4x-unrolled 40.83 23 908.9 11592

VII. CONCLUSIONS AND FUTURE DIRECTION

We presented Slender PUF, a lightweight and secure
protocol to dependably authenticate the responses gener-
ated from a Strong PUF with minimal information leaked
to adversaries. The prover in this protocol reveals only
a random subset of responses for authentication. The
verifier which has access to an approximate model of the
PUF can search and match the received substring with
the estimated PUF response string. The authentication
is successful if a sufficiently close match is found. We
demonstrated that a carefully-designed Slender PUF is
resilient against all known machine learning attacks. The
experimental results on FPGAs showed a significantly
lower area and speed overhead compared to any protocol
that potentially uses conventional cryptographic modules
such as hashing. An even smaller footprint and power
consumption can potentially be achieved by using analog
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leakage based PUFs, analog TRNGs, and low power
micro-controllers.
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