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Abstract—With the advent of free Landsat data stretching back
decades, there has been a surge of interest in utilizing remotely
sensed data in multitemporal analysis for estimation of biophysical
parameters. Such analysis is confounded by cloud cover and other
image-specific problems, which result in missing data at various
aperiodic times of the year. While there is a wealth of information
contained in remotely sensed time series, the analysis of such
time series is severely limited due to the missing data. This paper
illustrates a technique which can greatly expand the possibilities of
such analyses, a Fourier regression algorithm, here on time series
of normalized difference vegetation indices (NDVIs) for Landsat
pixels with 30-m resolution. It compares the results with those
using the spatial and temporal adaptive reflectance fusion model
(STAR-FM), a popular approach that depends on having MODIS
pixels with resolutions of 250 m or coarser. STAR-FM uses changes
in the MODIS pixels as a template for predicting changes in the
Landsat pixels. Fourier regression had an R2 of at least 90% over
three quarters of all pixels, and it had the highest R2

Predicted
values (compared to STAR-FM) on two thirds of the pixels. The
typical root-mean-square error for Fourier regression fitting was
about 0.05 for NDVI, ranging from 0 to 1. This indicates that
Fourier regression may be used to interpolate missing data for
multitemporal analysis at the Landsat scale, especially for annual
or longer studies.

Index Terms—Data fusion, disturbance, harmonic analysis,
interpolation, phenology, time series.

I. INTRODUCTION

THE COLLECTION of Landsat scenes dating from 1972
is one of the largest continuous freely available satellite

records of the Earth’s surface. At 30-m pixel resolution, Landsat
imagery is used in a variety of moderate- and broad-scale
applications, including change detection in land use/land cover
(LU/LC) classes [1] and ecosystem monitoring [2]–[4]. The
continuous record, freely available to the public since 2009,
has paved the way for a new level of time series analysis that
can capitalize on high spatial and temporal sampling. However,
there is a nominal 16-day gap in scenes for each satellite, and
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Fig. 1. Concept of Fourier regression.

many scenes are at least partially obscured by cloud cover
[5]–[7]. Thus, methods are needed to facilitate multitemporal
analysis of Landsat data. These methods would ideally be
robust and easily implemented and would minimize sources of
error in their implementation.

Harmonic analysis using Fourier series appears to be an ideal
way to facilitate multitemporal analyses using Landsat data,
with demonstrated prior efficacy using coarser resolution data
such as MODIS and AVHRR, particularly for phenological
studies [8]–[14]. Fourier regression analysis has also been
applied in areas of health [15] and land development [16].

Fourier series are superimposed sequences, over an interval
of time, of a constant with sines and cosines of increasing
integer multiples of the original frequency based on the time
interval. The constant is called the mean of the series, and
the pairings of sine and cosine at the specified frequencies are
called the harmonics of the series. Fourier series can be tailored
to any period length, baseline, and amplitude. As the number
of harmonics used increases, the Fourier series can converge to
any smooth periodic function. Fig. 1 shows the concept of using
Fourier series to estimate the underlying curve in a periodic
time series.

Fourier series have been shown to be useful in classification
of vegetation types [12] and in the estimation of phenological
markers such as start of season, peak of season, end of season,
and photosynthetic activity over the growing season [8]–[11],
[14]. These methods are largely focused on time series of
the normalized difference vegetation index [17], or NDVI,
and other similar indices, but they have not been applied to
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Landsat-scale data and general spectral bands. A thorough
review of applications of Fourier series can be found in [14] and
[10]. Some of the key results and concerns from the literature
can be summed up as follows.

1) The mean and first two harmonics cover most of the
variation in the data [9], [10].

2) Higher order harmonics are often needed for classifying
vegetation types on a more subtle level [11], [12].

3) Fourier series of too high an order can swing wildly
during times where data are missing, overfitting the re-
maining points (the “spurious oscillations” of [14]).

4) Fourier series coupled with polynomials (nonclassical
harmonic methods) can employ higher order harmonics
by reducing the “roughness” in the fit [14].

5) Multiple years may be employed in nonclassical har-
monic algorithms to improve the accuracy and long-term
trend detection [14].

The aforementioned findings all point to Fourier series as
having great potential for use in multiyear Landsat analysis. In
particular, they imply that, if the object is merely to generate
“fill” images in the Landsat time series, then a basic fit using
only the first two harmonics and mean may suffice. If the object
is the estimation of vegetation time series or other finer scale
applications, more harmonics may be required, although care
must be taken to avoid overfitting the time series if it is sparse.

When fitting a functional curve to yearly data, there are sev-
eral inherent advantages in using Fourier series. These include,
but are not limited to, the following.

1) The fitted curve is periodic, provided that no polynomial
terms are incorporated into the fit.

2) No ancillary data are required, reducing possible error
sources.

3) Fourier terms are orthogonal, so there is a reduced chance
of multicollinearity (defined as statistical linear associ-
ation between assumed orthogonal terms in a regres-
sion model), provided that the data include dates from
throughout the year.

4) Fourier terms are smooth, facilitating differential calculus
approaches to time series analysis.

5) One can store the Fourier regression coefficients in raster
form instead of generating images for each day of the
year.

Another approach to “filling in the gaps” for Landsat cov-
erage is the spatial and temporal adaptive reflectance fusion
model, or STAR-FM [18]. Instead of a periodic approach,
STAR-FM relies on the inclusion of MODIS imagery to sup-
plement the Landsat scenes. As MODIS has a daily temporal
resolution, this can provide sequences of Landsat-scaled scenes.
However, MODIS spatial resolution is at best 250 m. This raises
issues of accuracy in heterogeneous regions where MODIS
pixels are frequently mixed [18], [19], although the enhanced
ESTAR-FM [19] is designed to address this concern. Addi-
tionally, MODIS scenes are just as susceptible to cloud issues
as those of Landsat. Nevertheless, STAR-FM has been shown
to perform well, particularly for short (intraannual) periods of
time in homogeneous areas [18], [19].

The primary aim of this paper is to demonstrate the use of a
Fourier regression algorithm in comparison with STAR-FM. In
particular, the objective is to check that Fourier regression may
be used in lieu of STAR-FM, particularly for annual or interan-
nual analysis of Landsat-scale scenes. One might expect Fourier
series, using only 30-m Landsat pixels, to be less impeded by
use in heterogeneous regions than STAR-FM, which depends
on both 30-m Landsat pixels and 250-m or larger MODIS
pixels. Furthermore, since no additional data are required and
since the Fourier series is characterized by its coefficients,
the computational and storage costs should be far less than
those for using a fusion algorithm like STAR-FM. The primary
objectives of this paper are the following: 1) to compare Fourier
regression accuracy, in terms of fit and prediction, to STAR-
FM in homogeneous regions and 2) to quantify the accuracy
in heterogeneous regions. With a favorable comparison, remote
sensing researchers using Landsat data will have access to
another method for enabling multitemporal analysis, one that is
particularly well suited to multiyear research. To demonstrate
this multiyear aspect of the method, the secondary objective of
this paper is to perform Fourier regression on the study area
using scenes from several years. The results of this secondary
analysis are compared to those of the single-year version.

II. DATA

For this paper, the objective is to compare the algorithm
shown in Part III with STAR-FM. To further compare the
accuracies of the algorithms in different landscape types, two
study areas were chosen, shown in Fig. 2. The areas are both in
central North Carolina. One of them, Greensboro, is primarily
urban and suburban and is sharply heterogeneous. This area is
9.4 mi by 8.8 mi (15.1 km by 14.2 km), with an area of 82.3 mi2

(213.3 km2). The other, the eastern area of Chatham County
including east of Pittsboro, consists primarily of forested and
agricultural land with a couple of lakes. This region is smaller
than the Greensboro one, with dimensions of 6.9 mi by 6.6 mi
(11.1 km by 10.6 km), with an area of 45.4 mi2 (117.6 km2).
The areas of the land cover classes in this Pittsboro area are
large and continuous enough to make this area fairly homoge-
neous. Between them, the areas include a variety of land cover
classes and basic vegetation types typically found in the eastern
U.S., with varying degrees of heterogeneity. This makes them
suitable for testing the Fourier series, especially for forestry and
classification applications.

Both study areas are from path/row 16/35 in Landsat and H/V
11/5 in MODIS. The areas are relatively proximate to control
for the effects of weather and external conditions across the
two areas. In all, 17 Landsat scenes were downloaded. Both
MODIS Terra daily data (MOD09GQ, 346 scenes) and MODIS
Terra 8-day composite images (MOD09Q1, 43 scenes) were
downloaded. These scenes had a spatial resolution of 250 m.
The study time for the STAR-FM comparison is the year 2001.
At this time, both Landsat 5 and Landsat 7 were in operation,
jointly providing images at a nominal 8-day interval. Also,
at this time, the scan line corrector for Landsat 7 was still
functioning. For the multiyear application, additional Landsat
scenes were acquired from years 1998 to 2002 over the same
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Fig. 2. Study areas. Colors for both images are Landsat bands 4/3/2 in R/G/B.

study areas. For purposes of profiling and controlling results by
LU/LC classification, the National Land Cover Data (NLCD)
set from 2006 was used to assign each pixel to a class. The
goal of this paper is not to demonstrate an alternative classifi-
cation method, although it would certainly be feasible to use
Fourier regression-derived curves to aid in classification. The
purpose of adding NLCD data was to allow for the possibility
of controlling results by LU/LC class, in the event that one
class fared particularly well or poorly. Because the MODIS
scenes include bands in the red and near infrared (NIR) and are
geared toward vegetation indices, it was appropriate to use the
NDVI in this study. However, the algorithms are designed and
intended for use in any spectral band or index. Accordingly, the
Fourier regression algorithm was also run on six spectral bands
from Landsat. All LU/LC classes were used in the subsequent
analysis.

Preprocessing for Landsat scenes included atmospheric cor-
rection to surface reflectance using LEDAPS [20] as well as
dark object subtraction in an effort to calibrate the images from
the two Landsat satellites. Dark object subtraction using band
minima was chosen because the year-long nature of the data
rendered histogram matching ineffective due to seasonal vege-
tation changes. Preprocessing for MODIS included resampling,
subsetting, and reprojecting the images via the MODIS Repro-

jection Tool [21] into Landsat scale and projection, converting
the 250-m pixels to 30-m pixels.

III. METHOD

A. Review of STAR-FM and ESTAR-FM

Since the primary purpose of this paper is to compare the
results of the Fourier regression approach with the results of
STAR-FM, a review of the latter algorithm may be helpful.
STAR-FM employs a sequence of linear transformations and
regressions across a moving window centered on the pixel in
question in order to predict the pixel’s brightness value (in
whatever band). Specifically, following the lead of [18] and
[19], consider a situation in which we have a “fine” image
at the Landsat scale of 30 m for time t0, denoted F0, and
assume that we have “coarse” images from the MODIS scale
of 250 m for times t0 and t1 > t0, designated C0 and C1.
The inequality may be reversed without losing generality, i.e.,
one can make a prediction using an input pairing after the
predicted date as well. When reprojected to Landsat resolution
and coordinates, we can pick out a specific pixel for each image
at the corresponding location x, y from the fine image. Then,
STAR-FM makes the fundamental assumption that, for any
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given band B, the only real difference between the brightnesses
of the pixels at time t0 can be modeled by a linear bias, i.e.,

F0(x, y, t0, B) = a× C0(x, y, t0, B) + b. (1)

Using linear regression to estimate the coefficients, the al-
gorithm then applies those estimates (designated â and b̂) to
reverse-engineer estimated values for the would-be Landsat
scene at time t1 via

Fpredicted(x, y, t1, B) = â× C1(x, y, t1, B) + b̂. (2)

In actuality, STAR-FM applies a weighted average of such
estimates based on nearby pixels deemed similar to the target
pixel x, y. The weights are based on three measures of the
nearby pixels with respect to the target: the spectral difference
between the brightness values in all the bands, the temporal dis-
tance between the pixel dates, and the spatial distance between
the pixels. The estimation process can be further improved
by adding a second “input pair” of fine and coarse images at
another time (t2 > t1 > t0).

It is easy to see why STAR-FM has reduced accuracy when
the coarse pixels are mixed as the assumption of uniformly
linear bias is called into question. ESTAR-FM [19] addresses
this concern by delving into the two-input-pair model, where
each coarse pixel is a weighted average of the finer pixels
comprising it. ESTAR-FM then estimates pixel-specific ratios
suggested by the linear changes in the two fine pixels around the
prediction date. In the final model, this ratio is added into the
formula for the prediction from STAR-FM, further tailoring
the prediction to specific observed changes in the fine pixels.

One weakness of both STAR-FM and ESTAR-FM that
emerges is that, when modeling year-round changes, partic-
ularly when large blocks of data are missing over seasonal
changes, the assumption of linear change from one date to the
next may not be justified. It is precisely in situations like this,
where a straight line segment seems insufficient to model the
change, that we would prefer to see a smoothly undulating
curve filling the gaps.

B. Basic Algorithm

In the primary objective of this paper, we explore a method
using only harmonic terms for a single year, although variations
and other Fourier regression-based methods in the literature
could ostensibly be used. The motivation for choosing one
year is to facilitate comparison with STAR-FM. The goal here
is to compare accuracy of prediction with STAR-FM, but it
is also desirable to use enough harmonics to demonstrate the
utility in LU/LC classification as well. To address the secondary
objective of this paper, we use five years’ worth of Landsat
data in a standard Fourier regression context. This is done to
compare the results with those of the single-year analysis.

An explanation of the Fourier regression algorithm follows,
akin to that found in [22]. For a pixel p measured at times t =
(t1, t2, . . . , td) to have brightness values across a spectral band
b, given by the time series b = (b1, b2, . . . , bd), we generate
linearly interpolated fill points for gaps larger than a specified
threshold g, producing combined vectors t∗ = (t, tfill) and

b∗ = (b, bfill). The time vector may be assumed to be rescaled
to the interval [0, 2π] without loss of generality. The linear
interpolation prevents the models from producing nonsensical
values in fitting the relatively sparse sections of the time series.
Note that the resulting dates are not necessarily evenly spaced
since the object here is Fourier regression and not a transform.
Further note that the linear interpolation is intended to be used
for gaps considerably larger than the typical interval between
Landsat data points as the goal is to suppress wild oscillations
that result from large gaps in the data. If these gaps cross
seasonal changes or cover major likely features of the time
series, then the Fourier regression algorithm will likely have
reduced accuracy, just as STAR-FM may. The major distinction
to be drawn here is that the linearly interpolated points are used
as supplemental training data for the regression algorithm, as
opposed to being the predicted values in and of themselves.

Once the gaps are filled, we use least squares estimation to
estimate harmonic coefficients; that estimate is denoted here by
a. In particular, we generate a model matrix using n harmonics
as

T = (1 sin(t∗) cos(t∗) · · · sin(nt∗) cos(nt∗)) .
(3)

Then, the coefficient estimates can be obtained using the usual
least squares method of

a = (T ′T )
1
T ′b∗ (4)

where T ′ is the transpose of T . Each pixel and each spectral
band for that pixel have their unique set of coefficients, so the
output of the algorithm is a raster of coefficients. The more
harmonics the user desires, the more layers are in the output
raster. Note that there is a relationship between the choice of g
and the values of n. Smaller values of g result in more fill points
being generated, so small g values support a higher number of
harmonics.

In order to run this paper’s algorithm for Fourier regression,
the user must do the following.

1) Input the Landsat image files (preferably cloud-free) that
are rectified and subsetted to the same size.

2) Specify the number of harmonics desired (more harmon-
ics = more detailed fit → greater chance of overfitting
sparse data and getting “spurious oscillations”).

3) Specify the gap threshold (the smaller the threshold is,
the more the Fourier regression fit will resemble a linear
interpolation).

The algorithm works over each discrete time series of the
entire area at once, outputting multiple rasters of coefficients.

C. Specific Application

Preprocessing of the Landsat scenes was performed in
ERDAS Imagine 2010 and R version 2.11.1 [23]. Imagine was
used to subset and combine the images, and R was used, apply-
ing both the caTools [24] and abind [25] libraries to perform
dark object subtraction and to generate binary files. Prepro-
cessing for the MODIS images included using the MODIS
Reprojection Tool [21] to subset, resample, and reproject the
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Fig. 3. Distribution of image dates for Landsat and MODIS.

images using nearest neighbor resampling. R was then used
to generate binary files. R was used, using custom code, to
perform the Fourier regression algorithm. STAR-FM was im-
plemented using Linux source code obtained from NASA [26].
For STAR-FM, the default values in the input files were used.

The specific dates in 2001 (as days of the year) for each of
the image time series are shown in Fig. 3, as are the dates of the
1998–2002 data, shown as days of the year for compactness’s
sake. These dates apply to both scenes as they are subsets of
the same base image. The most obvious feature of the data is
that Landsat is missing values from May to mid-September.
This has some interesting ramifications for the analysis since
the quality of the Fourier regression depends in some sense
on whether enough representative points are available. In the
multiyear analysis, this problem is resolved by using multiple
years and by achieving a more even spread of points over the
course of the days of the year. In the interest of comparing with
STAR-FM, only one year is used due to the considerable pro-
cessing requirements of running STAR-FM on daily MODIS
images over the course of multiple years. Because the primary
object of comparison is NDVI time series, for the type of land
cover considered here, the missing summer months can ideally
be represented as long as data are available for the peak of the
greening in late spring and the start of senescence in autumn for
the classes of land cover considered in this paper.

Due, in part, to the large gap in the Landsat time series,
the gap threshold for the single year analysis was chosen to
be g = 32 days. As a result, six fill points were generated for
the summer values on a line interpolating the endpoints of
the gap. If the gap was smaller, a smaller value of g might
have been chosen, but to do so in this case would invite
excessive fitting to interpolated data. A larger value would
invite nonsensical undulations in the fit. It would be possible
to develop an automated rule based on the distribution of dates
across the year and a desired number of harmonics to determine
a value for g, but this was beyond the scope of this paper in
applying Fourier regression to the particular study areas. For
the multiyear analysis, g was set at 365 days, guaranteeing that
there would be no linear interpolation at all in the multiyear
analysis.

The number of harmonics n was chosen to reflect the nature
of NDVI (vegetative index) and the object of this paper (com-

Fig. 4. Intraannual trends that may be captured by different harmonics in
Fourier regression.

Fig. 5. Effects of increasing the number of harmonics at a sample pixel.

parison of fit and predictive robustness with STAR-FM). With
12 months in a year, the first four harmonics were chosen to
allow for variation on a month scale. This concept is shown in
Fig. 4, where the basic harmonics are shown as a constant mean
and increasing pairs of sines and cosines with unit amplitude.
The months are delineated by dashed lines, and by observing
the harmonics’ behavior between each pair of lines, one can see
that each month has its own unique “harmonic address.” There
are biannual trends represented in the first harmonics, triannual
trends in the second harmonics, etc. The fourth harmonics
allow changes on a monthly scale, although using the fourth
harmonics alone would force such changes to recur every other
month. By using all of the harmonics together, a detailed curve
for the year can thus be obtained. In more sparse data sets,
there is a need to choose fewer harmonics to avoid generating
misleading undulations as use of four harmonics will compel
the curve to detail monthly changes, even if there are not
enough data to support them.

As a more concrete example, Fig. 5 shows the effects of
increasing harmonics on a sample time series. With only the
first harmonic, the rough shape of the time series is outlined,
but little else is fitted well. Increasing the harmonics shifts the
peak of the curve toward the last known point before the gap
in April. By the time six or seven harmonics are used, minor
details in the raw time series are fitted more closely. The effect
of the linear constraints in the gap can be seen in the higher
harmonics as well. For comparison, the typical deciduous for-
est NDVI time series can be thought of as “mesa-like” [27],
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with rapid rises and drops during the spring greening and fall
senescence, respectively. The curve in Fig. 5 certainly fits that
description.

IV. ANALYSIS

A. Comparison to STAR-FM

Since the primary objective is to compare the accuracy of
Fourier regression with STAR-FM, some sort of validation
data are needed. In this case, only cloud-free Landsat scenes
were selected, and all algorithms were run with the assumption
that every scene truly reflected conditions on the ground. The
Fourier regression was performed on the NDVI values derived
from the Landsat scenes (augmented with the six interpolated
missing values for the summer), as well as on each of the six
spectral bands independently. STAR-FM was run on both the
daily and 8-day MODIS images, using two input pairs where
possible. STAR-FM accepts inputs on a band-by-band basis, so
it was run for both the red and NIR bands (MODIS bands 1
and 2, respectively) separately before combining the outputs to
compute the NDVI.

Fourier regression was run only on the Landsat data, and
STAR-FM was run using both the Landsat and MODIS re-
projected data. Because the objective was to produce a good
fit on vegetation index data over the course of 12 months, the
Fourier regression was run, using the six interpolated fill values
over the summer months, with four harmonics (potentially al-
lowing month-by-month variations in the basic curve). Fourier
regression was applied to the Landsat NDVI and to each of the
six Landsat bands independently. Fourier regression was not
used on any of the MODIS data. STAR-FM was applied using
both the daily MODIS imagery and the 8-day composites in
conjunction with the Landsat scenes, effectively allowing for a
three-way comparison between Fourier regression and the two
shades of STAR-FM.

In all cases, only algorithm outputs corresponding to the
known Landsat dates were considered for the checking of fitting
and predictive accuracy. The interpolated values were used
in stabilizing the curve throughout the summer months, but
those values were not checked for accuracy as there were no
Landsat data available to check them against. In order to check
the predictive accuracy, deleted residuals were calculated. In
the general regression context where y is the response vector,
for any point i, let ŷ(i) be the predicted value for the ith
point from the model generated by all points except the ith

point. Then, the deleted residual is defined as ê(i) = yi − ŷ(i).
Deleted residuals are desirable here because the interest is in
the algorithms’ abilities to predict values for missing dates, in
addition to accuracy of overall fit. For the Fourier regression,
this was achieved by removing each point one at a time and
then by implementing the fill interpolation each time before
estimating coefficients and calculating the deleted residual. For
STAR-FM, input pairs were used around the target date, using
only the MODIS scene at the missing date to make the deleted
prediction.

For accuracy of fit, the standard measures of root-mean-
square error (RMSE) and R2 may be used. For prediction,

summing the squares of the deleted residuals gives the predic-
tion sum of squares (PRESS) statistic

∑d
t=1 ê

2
(i). These PRESS

statistics can then be compared (lower values imply greater
overall accuracy), or alternately, their corresponding predicted
R2, denoted by R2

Predicted, can be compared instead via the
formula

R2
predicted = 1− PRESS

Sum of Squares Total
. (5)

Due to the large number of pixels analyzed, violin plots [28] are
a useful way to describe the results without resorting to single-
number summary statistics. A violin plot may be thought of as
the hybrid child of a boxplot and a continuous histogram. While
the median, quartiles, and trimmed extremes are preserved as in
a boxplot, a density estimation method is applied to the data to
generate a continuous curve. This curve is rotated and given
symmetry, producing a “double” effect. The thickest parts of
the plot correspond to the parts of the distribution which are
most densely populated. These plots were used in summarizing
the resulting statistics for the scenes.

B. Multiyear Analysis

In the case of the second objective, for simplicity, only the
Landsat NDVI time series were considered. As in the single-
year analysis, only cloud-free dates were chosen. The extra
years did fill in the summer values missing from the 2001 data,
as was shown in Fig. 3. In order to perform Fourier regression,
the dates for the scenes were converted into days of the year
for the combined meta-year made from superimposing all the
days of the year from the data. Additionally, the dates were also
recorded as days counted from the beginning of 1998, allowing
for the possibility of including polynomial terms in addition to
the Fourier regression terms in the event a researcher wishes to
use nonclassical harmonic analysis. Such a method would be
well suited to looking for interannual growth or decline trends
over time.

As mentioned earlier, the multiyear analysis was performed
using no linear interpolation whatsoever as the gaps between
points in the meta-year were much smaller. This analysis is
pure harmonic regression. As before, R2 values were calculated
from the resulting fits. These values were compared to the R2

values obtained from applying Fourier regression to the single-
year data.

V. RESULTS

A point worth noting is that the results which follow repre-
sent all of the LU/LC classes grouped together. Stratification
along LU/LC lines was performed, but generally, the results
were so similar that the additional separation was not repre-
sented here. This is true for both the fitted and predictive results,
as well as for the interannual analysis. The major exception to
this rule was water pixels, which had wildly diverging NDVI
patterns depending on the dates.
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Fig. 6. Distributions for fitting statistics.

A. Fitting

The main results of fitting accuracy, the fitted R2 and the
RMSE, are shown in Fig. 6. The units for the RMSE are in

NDVI × 1000, so an RMSE of 50, for example, implies that
the standard deviation of observed values about the fitted values
is about 0.05. It must be stressed that, in the calculation of
the resulting statistics, only points corresponding to the known

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2020 at 12:48:36 UTC from IEEE Xplore.  Restrictions apply. 



BROOKS et al.: FITTING THE MULTITEMPORAL CURVE 3347

Fig. 7. Example time series and algorithm fits.

Landsat dates were considered. The interpolated fill points
generated by the algorithm served to stabilize the curve but
were not used directly to calculate R2 or RMSE.

Fig. 7(a) shows a sample pixel’s time series and the results of
all three algorithms fitted to it. The cloud of STAR-FM points
from the daily MODIS images illustrates the issue of cloud
cover on MODIS pixels. A good number of pixels (about 46%
of them) fall well outside the trend depicted by the raw data
and the other algorithms. These dates are unsuitable for use in
any sort of interpolation. Even the 8-day composite images are
susceptible to this issue, as shown by the outlier point in late
June. This is not a failing of STAR-FM, and these points were
not used in calculating the fit and predictive statistics due to
the fact that the Landsat scenes were chosen to be cloud-free,
but it does illustrate the issue of cloud cover and how fusion
methods must contend with it. On the other hand, the STAR-
FM fits rise beyond the Fourier regression fits over the summer

months, indicating that the last known Landsat point was before
the greening for that year had been completed. The Fourier
regression curve faithfully follows the linearly interpolated
Landsat data, owing largely to the constraints placed on it by
the choice of the gap threshold. In terms of comparison to the
Landsat points, Fourier regression has the highest R2 value, but
it could have benefitted from at least one date in summer.

Fig. 7(b) shows a deciduous forest pixel, one in which the
NDVI appears to remain fairly linear over the course of sum-
mer. The time series details a vegetative curve over the course
of a year without disturbance. The trend appears smooth and
undulating with a yearly period, precisely the sort of situation
for which Fourier regression is suited. As in the previous
figure, Fourier regression fits the known Landsat data tightly
without any outlier issues, and it does so despite the fact that
four months’ worth of data are missing. The accuracy of the
summer months—in which the fit is based primarily on the
linear interpolation—cannot be determined, but the agreement
of the curve with STAR-FM’s output for the 8-day composites,
particularly the early summer, is heartening.

Fig. 7(c) shows another pixel in which the raw Landsat series
contains some problematic points. While both images were
restricted to dates that were as cloud-free as possible, there
were some pixels that suffered from haze or shading. This one,
near a water body, also mixed land reflectance with that of the
water’s surface, which had a deleterious effect on the flow of
the series (i.e., one of the assumptions in the Fourier regression
algorithm was violated). As a result, all three algorithms suffer
in accuracy, but the STAR-FM points are better able to cope
with the rapid swings of the time series.

From the violin plots of Fig. 6, all three algorithms fit
the Landsat data quite nicely most of the time. Note that, in
the Greensboro area, the Fourier regression algorithm, while
having a slightly lower median R2 at 93.9%, also has thinner
tails than the STAR-FM values and thus has a higher mean R2

at 87.6%. The median values in the Pittsboro area are all above
99.8%, but note that Fourier regression again has the smallest
“poor fit” tail of the three algorithms. The conclusion to be
drawn from Fig. 6 is that all three algorithms actually fit the
known data quite well.

B. Prediction

The results of the predictive comparison are shown in Fig. 8.
Again, only the known Landsat dates were used in calculating
both R2

Predicted and the predictive RMSE. Since there are
hundreds of thousands of pixels in each area, any statistical
comparison of means and medians will produce uninforma-
tively significant results, but a visual inspection of the plots
indicates the important features of the comparison. Clearly, all
three algorithms can be perturbed by missing data, but Fourier
regression seems the least perturbed of the three. In particular,
in the Greensboro area, the STAR-FM algorithms suffer from
higher predictive RMSEs than Fourier regression, including
some truly extreme values. Generally, the algorithms did much
better in the Pittsboro area, although upon checking this was not
due to a difference in land cover class distribution according to
the land cover assignments made by the NLCD 2006 data set.
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Fig. 8. Distributions for predictive statistics.

The chief conclusion to be drawn from Fig. 8 is that
Fourier regression is more robust to missing data than STAR-
FM, particularly in the relatively heterogeneous Greensboro
area. This is somewhat surprising since STAR-FM had the

benefit of ancillary data to compensate for missing val-
ues, but it speaks well for the assumption that the NDVI
follows a curve that a Fourier series can appropriately
model.
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Fig. 9. Distributions of fit and predictive statistics across Landsat bands.

C. Basic Landsat Bands

In addition to comparing the Fourier regression method to
STAR-FM, Fourier regression was run on six Landsat bands:
blue, green, red, NIR, and two mid-infrared bands. The ob-
jective of this was to check the fitting accuracy and predictive

robustness of Fourier regression when dealing with a nonindex
data set, primarily for purposes of image generation or missing
value imputation. The results of the analysis are shown in Fig. 9.

It is immediately clear from Fig. 9 that Fourier regression is
more accurate in the infrared bands, both in terms of fit and
in terms of prediction. In particular, the blue and green bands
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Fig. 10. Distributions for fitted comparing single-year and multiyear approaches.

suffer dramatically in R2 to the point that the median values
are below 70%. This is, in part, an artifact of the inherent band
variability, as the variation in the visible bands tends to be much
lower than that of the infrared bands, resulting in smaller total
variation and thus lower R2 values.

Despite the difficulties with the visible bands, it does appear
that Fourier regression produces reasonably accurate facsimiles
of the time series of basic Landsat bands, although those pre-
dictions are somewhat less robust than originally anticipated.

D. Multiyear Analysis and Comparison

The main results of the comparison between the 2001-only
data and the data from 1998–2002 are shown in Fig. 10.
The chief interpretation is that using extra years greatly im-
proved the fitting accuracy of the method for pixels in the
urban/suburban Greensboro area, while the extra years actually
reduced the lower end of the fitting accuracy in the forested
Pittsboro–Seaforth area. This reduction is not severe as the 20th
percentile of the multiyear data is still at 99.2%, compared to
the 20th percentile value of 99.7% for the 2001-only data. The
vast majority of the data are well above an R2 of 99%.

To further demonstrate the potential of multiyear analysis, in-
formation regarding a nicely fitted pixel is shown in Fig. 11. The
pixel in question comes from the forested Pittsboro–Seaforth
area. It is classified by the 2006 NLCD data set as deciduous
forest. Fig. 11(a) shows the meta-year generated by superim-
posing days of the year from 1998 to 2002. It is easy to see
that gaps from the 2001-only analysis are filled by values in

the other years, eliminating the need to use a linearly interpo-
lated fill algorithm before performing Fourier regression. The
regression curve balances out the years’ data well, resulting in
a fitted R2 of 99.8% on the known data points. In Fig. 11(b),
the curve is redrawn over the course of the years, showing the
way in which the yearly periodicity of the NDVI is captured
by the curve. In particular, when comparing Fig. 11(b) and (c),
there is a slight increasing trend in the NDVI series off the
curve suggested over the years 2000–2002. This could be tested
by a simple linear regression model to determine whether the
coefficient is statistically significant. The residuals in Fig. 11(c)
are the key to applying Fourier regression in hopes of detecting
disturbances and trends over time using multiyear Landsat data.

With dates available throughout the year, there was an op-
portunity to see whether particular parts of the year, such
as summer or winter, were better predicted by Fourier re-
gression than other parts of the year. This was checked by
calculating the residual values left over from subtracting the
Fourier regression’s fitted values from the known Landsat
values and then summarizing the residuals across the forested
Pittsboro–Seaforth study area by day of the year. It was as-
sumed that the urban/suburban Greensboro area would have
been of less interest from a phenological point of view. Fig. 12
shows the resulting interquartile ranges by day of the year.

It is very interesting to note that the one season in which
both the accuracy and range around the median were minimized
was summer. This could be due to a number of factors. First,
the presence of snow in the winter months could have effects
similar to cloud cover in calculating NDVI values, causing
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Fig. 11. Multiyear analysis of a specific pixel, with residual time series.

more error and wider variability around the expected values.
Although the data had been screened to remove cloudy dates,
they had not been screened to exclude all dates with snow on
the ground. Second, the NDVI time series tend to peak in early
summer and to remain high until fall. Any curves exhibiting
this basic trend, especially where the NDVI values are near to 1
anyway, would be likely to be close to the real values by virtue
of the curves’ construction. That being noted, it is informative
to note that the curves had higher error in the transition seasons
of spring and fall than in summer. It is also worth noting that
this higher error is usually not in itself great, on the order of
0.05 to 0.10 in NDVI.

Fig. 12. Summary statistics of fitted residuals, by day of year, for the forested
Pittsboro–Seaforth area.

Fig. 13. Storage requirements for interpolating Landsat data throughout a
desired number of dates.

VI. CONCLUSION

The results pertaining to the primary objective of this paper
show that, for the types of land cover studied here, Fourier
regression and STAR-FM are indeed comparable in the “middle
ground” of a single-year analysis. In some sense, Fourier re-
gression was put at a disadvantage in this analysis by using only
a single year to train the data. In the results pertaining to the
second objective, Fourier regression was performed using five
years’ worth of Landsat data, having the effect of improving
Fourier regression’s accuracy overall. The residual values left
over after the interannual analysis are of considerable interest in
their own right, opening avenues for change detection methods
and trend observations over time for each pixel. There is po-
tential for an “on-the-fly” disturbance detection, using previous
years’ data to check whether an incoming scene matches the
expectation via a statistical method.

A key advantage of Fourier regression that emerged in the
study was its ability to reduce storage and processing require-
ments. Suppose, for example, that one wished to generate data
to cover a full 365-day year at daily temporal resolution for
a scene comprising 1 GB of data. Instead of generating 365
individual images (and requiring 365 GB to save them), one
can instead save the Fourier harmonic coefficients and use them
to generate the data as needed (e.g., pixel by pixel). Even with
six harmonics plus a constant, this would result in only storing
13 rasters instead of 365. If the coefficients are converted to
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TABLE I
COMPARISON BETWEEN FOURIER REGRESSION AND STAR-FM

an integer format through multiplying and truncating, then the
entire interpolation can be saved in only 13 GB of space. If a
multiyear study was desired, one could save a couple of polyno-
mial coefficients to account for interannual trends in land cover
at the cost of only 1 or 2 GB, as opposed to another full 365 GB,
further compounding the savings. Fig. 13 shows this idea. In
the multiyear analysis done in this paper, no polynomial terms
were added, so the storage costs for the five-year model were
equal to the costs for the single-year model. From this example
and the results of that analysis, one can intuit that adding more
dates into Fourier regression can only improve the quality of the
estimated coefficients for the model at the same storage cost.

STAR-FM is not as well suited to interannual analysis,
owing to the need to generate images for each desired point
in each year using multiple images to make each predicted
image. Although the input images may be reused for different
prediction dates, STAR-FM still requires nontrivial processing
and space. Considering that Fourier regression has been shown
to be comparably accurate, it does not seem efficient to use
STAR-FM for this sort of analysis. On the other hand, if the
time of interest is well within a single year, STAR-FM is not
bound by the constraints of periodicity and does not require a
full year of Landsat images to run. In such cases, STAR-FM is
clearly a better choice than Fourier regression. Table I details
some of the advantages and disadvantages of both methods.

The ability to use smooth curves to represent yearly Land-
sat data makes many different forms of analysis possible.

As examples of possible applications, one may use various
curve features such as integral area, maximum/minimum, and
Fourier regression coefficient values as explanatory variables in
regression models. These variables may then be tied to ground
observations of biophysical parameters such as biomass, and
from the resulting model, one may estimate biomass for a given
scene from the Landsat data. If a regression model requires
the minimum or maximum value of a pixel over the year, the
Fourier regression curves may be used to gain estimates.

The possibilities for application of a smooth periodic curve
to represent changes in brightness values over time are legion.
Only a few have been touched in this paper as the goal was
to demonstrate a method for making such a curve and in
comparing it to STAR-FM. However, any context in which at
least one year’s worth of Landsat data is available may make use
of Fourier regression to fill in the missing values. The ultimate
conclusion of this paper is that, for the purposes of annual and
interannual time series analysis of Landsat scenes, particularly
in regions similar to the eastern U.S., Fourier regression is a
good choice for fitting the multitemporal curve.
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