
Visual Odometry
Part I: The First 30 Years and Fundamentals

By Davide Scaramuzza and Friedrich Fraundorfer

V
isual odometry (VO) is the process of estimating

the egomotion of an agent (e.g., vehicle, human,
and robot) using only the input of a single or

multiple cameras attached to it. Application domains
include robotics, wearable computing, augmented reality,
and automotive. The term VO was coined in 2004 by Nis-
ter in his landmark paper [1]. The term was chosen for its
similarity to wheel odometry, which incrementally esti-
mates the motion of a vehicle by integrating the number
of turns of its wheels over time. Likewise, VO operates by
incrementally estimating the pose of the vehicle through
examination of the changes that motion induces on the
images of its onboard cameras. For VO to work effec-
tively, there should be sufficient illumination in the envi-
ronment and a static scene with enough texture to allow
apparent motion to be extracted. Furthermore, consecu-
tive frames should be captured by ensuring that they have
sufficient scene overlap.

The advantage of VO with respect to wheel odometry is
that VO is not affected by wheel slip in uneven terrain or
other adverse conditions. It has been demonstrated that
compared to wheel odometry, VO provides more accurate
trajectory estimates, with relative position error ranging
from 0.1 to 2%. This capability makes VO an interesting
supplement to wheel odometry and, additionally, to other
navigation systems such as global positioning system
(GPS), inertial measurement units (IMUs), and laser
odometry (similar to VO, laser odometry estimates the
egomotion of a vehicle by scan-matching of consecutive
laser scans). In GPS-denied environments, such as under-
water and aerial, VO has utmost importance.

This two-part tutorial and survey provides a broad
introduction to VO and the research that has been under-
taken from 1980 to 2011. Although the first two decades
witnessed many offline implementations, only in the third
decade did real-time working systems flourish, which has
led VO to be used on another planet by two Mars-explora-
tion rovers for the first time. Part I (this tutorial) presents a
historical review of the first 30 years of research in this field
and its fundamentals. After a brief discussion on camera
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modeling and calibration, it describes the main motion-
estimation pipelines for both monocular and binocular
scheme, outlining pros and cons of each implementation.
Part II will deal with feature matching, robustness, and
applications. It will review the main point-feature detectors
used in VO and the different outlier-rejection schemes. Par-
ticular emphasis will be given to the random sample consen-
sus (RANSAC), and the distinct tricks devised to speed it up
will be discussed. Other topics covered will be error model-
ing, location recognition (or loop-closure detection), and
bundle adjustment.

This tutorial provides both the experienced and non-
expert user with guidelines and references to algorithms
to build a complete VO system. Since an ideal and unique
VO solution for every possible working environment
does not exist, the optimal solution should be chosen
carefully according to the specific navigation environ-
ment and the given computational resources.

History of Visual Odometry
The problem of recovering relative camera poses and
three-dimensional (3-D) structure from a set of camera
images (calibrated or noncalibrated) is known in the
computer vision community as structure from motion
(SFM). Its origins can be dated back to works such as [2]
and [3]. VO is a particular case of SFM. SFM is more gen-
eral and tackles the problem of 3-D reconstruction of
both the structure and camera poses from sequentially
ordered or unordered image sets. The final structure and
camera poses are typically refined with an offline optimi-
zation (i.e., bundle adjustment), whose computation time
grows with the number of images [4]. Conversely, VO
focuses on estimating the 3-D motion of the camera
sequentially—as a new frame arrives—and in real time.
Bundle adjustment can be used to refine the local estimate
of the trajectory.

The problem of estimating a vehicle’s egomotion from
visual input alone started in the early 1980s and was
described by Moravec [5]. It is interesting to observe that
most of the early research in VO [5]–[9] was done for
planetary rovers and was motivated by the NASA Mars
exploration program in the endeavor to provide all-terrain
rovers with the capability to measure their 6-degree-of-
freedom (DoF) motion in the presence of wheel slippage in
uneven and rough terrains.

The work of Moravec stands out not only for present-
ing the first motion-estimation pipeline—whose main
functioning blocks are still used today—but also for
describing one of the earliest corner detectors (after the
first one proposed in 1974 by Hannah [10]) which is
known today as the Moravec corner detector [11], a prede-
cessor of the one proposed by Forstner [12] and Harris
and Stephens [3], [82].

Moravec tested his work on a planetary rover equipped
with what he termed a slider stereo: a single camera sliding
on a rail. The robot moved in a stop-and-go fashion,

digitizing and analyzing images at every location. At each
stop, the camera slid horizontally taking nine pictures at
equidistant intervals. Corners were detected in an image
using his operator and matched along the epipolar lines of
the other eight frames using normalized cross correlation.
Potential matches at the next robot
locations were found again by correla-
tion using a coarse-to-fine strategy to
account for large-scale changes. Out-
liers were subsequently removed by
checking for depth inconsistencies in
the eight stereo pairs. Finally, motion
was computed as the rigid body
transformation to align the triangu-
lated 3-D points seen at two consecu-
tive robot positions. The system of
equation was solved via a weighted
least square, where the weights were
inversely proportional to the dis-
tance from the 3-D point.

Although Moravec used a single sliding camera, his
work belongs to the class of stereo VO algorithms. This
terminology accounts for the fact that the relative 3-D
position of the features is directly measured by triangula-
tion at every robot location and used to derive the relative
motion. Trinocular methods belong to the same class of
algorithms. The alternative to stereo vision is to use a
single camera. In this case, only bearing information is
available. The disadvantage is that motion can only be
recovered up to a scale factor. The absolute scale can then
be determined from direct measurements (e.g., measuring
the size of an element in the scene), motion constraints, or
from the integration with other sensors, such as IMU, air-
pressure, and range sensors. The interest in monocular
methods is due to the observation that stereo VO can
degenerate to the monocular case when the distance to the
scene is much larger than the stereo baseline (i.e., the dis-
tance between the two cameras). In this case, stereo vision
becomes ineffective and monocular methods must be used.
Over the years, monocular and stereo VOs have almost
progressed as two independent lines of research. In the
remainder of this section, we have surveyed the related
work in these fields.

Stereo VO
Most of the research done in VO has been produced using
stereo cameras. Building upon Moravec’s work, Matthies
and Shafer [6], [7] used a binocular system and Moravec’s
procedure for detecting and tracking corners. Instead of
using a scalar representation of the uncertainty as Moravec
did, they took advantage of the error covariance matrix of
the triangulated features and incorporated it into the
motion estimation step. Compared to Moravec, they dem-
onstrated superior results in trajectory recovery for a
planetary rover, with 2% relative error on a 5.5-m path.
Olson et al. [9], [13] later extended that work by
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introducing an absolute orientation sensor (e.g., compass
or omnidirectional camera) and using the Forstner corner
detector, which is significantly faster to compute than

Moravec’s operator. They showed that
the use of camera egomotion estimates
alone results in accumulation errors
with superlinear growth in the distance
traveled, leading to increased orienta-
tion errors. Conversely, when an abso-
lute orientation sensor is incorporated,
the error growth can be reduced to a
linear function of the distance traveled.
This led them to a relative position
error of 1:2% on a 20-m path.

Lacroix et al. [8] implemented a
stereo VO approach for planetary rovers similar to those
explained earlier. The difference lies in the selection of
key points. Instead of using the Forstner detector, they
used dense stereo and, then, selected the candidate key
points by analyzing the correlation function around its
peaks—an approach that was later exploited in [14], [15],
and other works. This choice was based on the observa-
tion that there is a strong correlation between the shape
of the correlation curve and the standard deviation of the
feature depth. This observation was later used by Cheng
et al. [16], [17] in their final VO implementation onboard
the Mars rovers. They improved on the earlier implemen-
tation by Olson et al. [9], [13] in two areas. First, after
using the Harris corner detector, they utilized the curva-
ture of the correlation function around the feature—as
proposed by Lacroix et al.—to define the error covariance
matrix of the image point. Second, as proposed by Nister
et al. [1], they used the random sample consensus (RAN-
SAC) RANSAC [18] in the least-squares motion estima-
tion step for outlier rejection.

A different approach to motion estimation and outlier
removal for an all-terrain rover was proposed by Milella
and Siegwart [14]. They used the Shi-Tomasi approach
[19] for corner detection, and similar to Lacroix, they
retained those points with high confidence in the stereo
disparity map. Motion estimation was then solved by first
using least squares, as in the methods earlier, and then the
iterative closest point (ICP) algorithm [20]—an algorithm
popular for 3-D registration of laser scans—for pose
refinement. For robustness, an outlier removal stage was
incorporated into the ICP.

The works mentioned so far have in common that the
3-D points are triangulated for every stereo pair, and the
relative motion is solved as a 3-D-to-3-D point registration
(alignment) problem. A completely different approach was
proposed in 2004 by Nister et al. [1]. Their paper is known
not only for coining the term VO but also for providing
the first real-time long-run implementation with a robust
outlier rejection scheme. Nister et al. improved the earlier
implementations in several areas. First, contrary to all
previous works, they did not track features among frames

but detected features (Harris corners) independently in all
frames and only allowed matches between features. This
has the benefit of avoiding feature drift during cross-corre-
lation-based tracking. Second, they did not compute the
relative motion as a 3-D-to-3-D point registration problem
but as a 3-D-to-two-dimensional (2-D) camera-pose estima-
tion problem (these methods are described in the “Motion
Estimation” section). Finally, they incorporated RANSAC
outlier rejection into the motion estimation step.

A different motion estimation scheme was introduced
by Comport et al. [21]. Instead of using 3-D-to-3-D point
registration or 3-D-to-2-D camera-pose estimation tech-
niques, they relied on the quadrifocal tensor, which
allows motion to be computed from 2-D-to-2-D image
matches without having to triangulate 3-D points in any of
the stereo pairs. The benefit of using directly raw 2-D points
in lieu of triangulated 3-D points lays in a more accurate
motion computation.

Monocular VO
The difference from the stereo scheme is that in the
monocular VO, both the relative motion and 3-D structure
must be computed from 2-D bearing data. Since the abso-
lute scale is unknown, the distance between the first two
camera poses is usually set to one. As a new image arrives,
the relative scale and camera pose with respect to the first
two frames are determined using either the knowledge of
3-D structure or the trifocal tensor [22].

Successful results with a single camera over long distan-
ces (up to several kilometers) have been obtained in the
last decade using both perspective and omnidirectional
cameras [23]–[29]. Related works can be divided into three
categories: feature-based methods, appearance-based meth-
ods, and hybrid methods. Feature-based methods are based
on salient and repeatable features that are tracked over the
frames; appearance-based methods use the intensity infor-
mation of all the pixels in the image or subregions of it; and
hybrid methods use a combination of the previous two.

In the first category are the works by the authors in [1],
[24], [25], [27], and [30]–[32]. The first real-time, large-
scale VO with a single camera was presented by Nister et
al. [1]. They used RANSAC for outlier rejection and 3-D-
to-2-D camera-pose estimation to compute the new
upcoming camera pose. The novelty of their paper is the
use of a five-point minimal solver [33] to calculate the
motion hypotheses in RANSAC. After that paper, five-
point RANSAC became very popular in VO and was used
in several other works [23], [25], [27]. Corke et al. [24]
provided an approach for monocular VO based on omni-
directional imagery from a catadioptric camera and optical
flow. Lhuillier [25] and Mouragnon et al. [30] presented an
approach based on local windowed-bundle adjustment to
recover both the motion and the 3-D map (this means that
bundle adjustment is performed over a window of the last
m frames). Again, they used the five-point RANSAC in
[33] to remove the outliers. Tardif et al. [27] presented an
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approach for VO on a car over a very long run (2.5 km)
without bundle adjustment. Contrary to the previous work,
they decoupled the rotation and translation estimation. The
rotation was estimated by using points at infinity and the
translation from the recovered 3-D map. Erroneous corre-
spondences were removed with five-point RANSAC.

Among the appearance-based or hybrid approaches are
the works by the authors in [26], [28], and [29]. Goecke et
al. [26] used the Fourier–Mellin transform for registering
perspective images of the ground plane taken from a car.
Milford and Wyeth [28] presented a method to extract
approximate rotational and translational velocity informa-
tion from a single perspective camera mounted on a car,
which was then used in a RatSLAM scheme [34]. They used
template tracking on the center of the scene. A major draw-
back with appearance-based approaches is that they are not
robust to occlusions. For this reason, Scaramuzza and Sieg-
wart [29] used image appearance to estimate the rotation
of the car and features from the ground plane to estimate
the translation and the absolute scale. The feature-based
approach was also used to detect failures of the appearance-
based method.

All the approaches mentioned earlier are designed for
unconstrained motion in 6 DoF. However, several VO
works have been specifically designed for vehicles with
motion constraints. The advantage is decreased computa-
tion time and improved motion accuracy. For instance,
Liang and Pears [35], Ke and Kanade [36], Wang et al.
[37], and Guerrero et al. [38] took advantage of homogra-
phies for estimating the egomotion on a dominant ground
plane. Scaramuzza et al. [31], [39] introduced a one-point
RANSAC outlier rejection based on the vehicle nonholo-
nomic constraints to speed up egomotion estimation to
400 Hz. In the follow-up work, they showed that nonholo-
nomic constraints allow the absolute scale to be recovered
from a single camera whenever the vehicle makes a turn
[40]. Following that work, vehicle nonholonomic con-
straints have also been used by Pretto et al. [32] for improv-
ing feature tracking and by Fraundorfer et al. [41] for
windowed bundle adjustment (see the following section).

Reducing the Drift
Since VO works by computing the camera path incre-
mentally (pose after pose), the errors introduced by each
new frame-to-frame motion accumulate over time. This
generates a drift of the estimated trajectory from the real
path. For some applications, it is of utmost importance
to keep drift as small as possible, which can be done
through local optimization over the last m camera poses.
This approach—called sliding window bundle adjust-
ment or windowed bundle adjustment—has been used in
several works, such as [41]–[44]. In particular, on a
10-km VO experiment, Konolige et al. [43] demonstrated
that windowed-bundle adjustment can decrease the final
position error by a factor of 2–5. Obviously, the VO drift
can also be reduced through combination with other

sensors, such as GPS and laser, or even with only an IMU
[43], [45], [46].

V-SLAM
Although this tutorial focuses on VO, it is worth mention-
ing the parallel line of research undertaken by visual simul-
taneous localization and mapping (V-SLAM). For an in-
depth study of the SLAM problem, the reader is referred to
two tutorials on this topic by Durrant-Whyte and Bailey
[47], [48]. Two methodologies have
become predominant in V-SLAM: 1)
filtering methods fuse the information
from all the images with a probability
distribution [49] and 2) nonfiltering
methods (also called keyframe meth-
ods) retain the optimization of global
bundle adjustment to selected key-
frames [50]. The main advantages of
either approach have been evaluated
and summarized in [51].

In the last few years, successful
results have been obtained using both
single and stereo cameras [49], [52]–
[62]. Most of these works have been limited to small,
indoor workspaces and only a few of them have recently
been designed for large-scale areas [54], [60], [62]. Some of
the early works in real-time V-SLAM were presented by
Chiuso et al. [52], Deans [53], and Davison [49] using a
full-covariance Kalman approach. The advantage of Davi-
son’s work was to account for repeatable localization after
an arbitrary amount of time. Later, Handa et al. [59]
improved on that work using an active matching technique
based on a probabilistic framework. Civera et al. [60] built
upon that work by proposing a combination of one-point
RANSAC within the Kalman filter that uses the available
prior probabilistic information from the filter in the RAN-
SAC model-hypothesis stage. Finally, Strasdat et al. [61]
presented a new framework for large-scale V-SLAM that
takes advantage of the keyframe optimization approach [50]
while taking into account the special character of SLAM.

VO Versus V-SLAM
In this section, the relationship of VO with V-SLAM is
analyzed. The goal of SLAM in general (and V-SLAM in
particular) is to obtain a global, consistent estimate of the
robot path. This implies keeping a track of a map of the
environment (even in the case where the map is not
needed per se) because it is needed to realize when the
robot returns to a previously visited area. (This is called
loop closure. When a loop closure is detected, this informa-
tion is used to reduce the drift in both the map and camera
path. Understanding when a loop closure occurs and effi-
ciently integrating this new constraint into the current
map are two of the main issues in SLAM.) Conversely, VO
aims at recovering the path incrementally, pose after pose,
and potentially optimizing only over the last n poses of the
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path (this is also called windowed bundle adjustment). This
sliding window optimization can be considered equivalent
to building a local map in SLAM; however, the philosophy
is different: in VO, we only care about local consistency of
the trajectory and the local map is used to obtain a more
accurate estimate of the local trajectory (for example, in
bundle adjustment), whereas SLAM is concerned with the
global map consistency.

VO can be used as a building block for a complete SLAM
algorithm to recover the incremental
motion of the camera; however, to
make a complete SLAM method, one
must also add some way to detect loop
closing and possibly a global optimiza-
tion step to obtain a metrically consist-
ent map (without this step, the map is
still topologically consistent).

If the user is only interested in the
camera path and not in the environ-
ment map, there is still the possibility
of using a complete V-SLAM method
instead of one of the VO techniques

described in this tutorial. A V-SLAM method is potentially
much more precise, because it enforces many more con-
straints on the path, but not necessarily more robust (e.g.,
outliers in loop closing can severely affect the map consis-
tency). In addition, it is more complex and computation-
ally expensive.

In the end, the choice between VO and V-SLAM
depends on the tradeoff between performance and con-
sistency, and simplicity in implementation. Although the
global consistency of the camera path is sometimes desir-
able, VO trades off consistency for real-time perform-
ance, without the need to keep track of all the previous
history of the camera.

Formulation of the VO Problem
An agent is moving through an environment and taking
images with a rigidly attached camera system at discrete
time instants k. In case of a monocular system, the set of
images taken at times k is denoted by I0:n ¼ fI0, . . . , Ing.
In case of a stereo system, there are a left and a right image
at every time instant, denoted by Il, 0:n ¼ fIl, 0, . . . , Il, ng
and Ir, 0:n ¼ fIr, 0, . . . , Ir, ng. Figure 1 shows an illustration
of this setting.

For simplicity, the camera coordinate frame is assumed
to be also the agent’s coordinate frame. In case of a stereo
system, without loss of generality, the coordinate system of
the left camera can be used as the origin.

Two camera positions at adjacent time instants k� 1
and k are related by the rigid body transformation
Tk, k�1 2 R4 3 4 of the following form:

Tk, k�1 ¼
Rk, k�1 tk, k�1

0 1

� �
, (1)

where Rk, k�1 2 SO(3) is the rotation matrix, and
tk, k�1 2 R3 3 1 the translation vector. The set T1:n ¼
fT1, 0, . . . , Tn, n�1g contains all subsequent motions. To
simplify the notation, from now on, Tk will be used
instead of Tk, k�1. Finally, the set of camera poses C0:n ¼
fC0, . . . , Cng contains the transformations of the camera
with respect to the initial coordinate frame at k ¼ 0. The
current pose Cn can be computed by concatenating all the
transformations Tk (k ¼ 1 . . . n), and, therefore, Cn ¼
Cn�1Tn, with C0 being the camera pose at the instant
k ¼ 0, which can be set arbitrarily by the user.

The main task in VO is to compute the relative transfor-
mations Tk from the images Ik and Ik�1 and then to concate-
nate the transformations to recover the full trajectory C0:n of
the camera. This means that VO recovers the path incremen-
tally, pose after pose. An iterative refinement over the last m
poses can be performed after this step to obtain a more accu-
rate estimate of the local trajectory. This iterative refinement
works by minimizing the sum of the squared reprojection
errors of the reconstructed 3-D points (i.e., the 3-D map) over
the last m images (this is called windowed-bundle adjustment,
because it is performed on a window of m frames. Bundle
adjustment will be described in Part II of this tutorial). The
3-D points are obtained by triangulation of the image points
(see the “Triangulation and Keyframe Selection” section).

As mentioned in the “Monocular VO” section, there are
two main approaches to compute the relative motion Tk:
appearance-based (or global) methods, which use the
intensity information of all the pixels in the two input
images, and feature-based methods, which only use salient
and repeatable features extracted (or tracked) across the
images. Global methods are less accurate than feature-
based methods and are computationally more expensive.
(As observed in the “History of VO” section, most appear-
ance-based methods have been applied to monocular VO.
This is due to ease of implementation compared with the

Ck+1

Ck–1Tk,k–1

Tk+1,k
Ck 

Figure 1. An illustration of the visual odometry problem. The
relative poses Tk;k�1 of adjacent camera positions (or positions
of a camera system) are computed from visual features and
concatenated to get the absolute poses Ck with respect to the
initial coordinate frame at k ¼ 0.
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stereo camera case.) Feature-based methods require the
ability to robustly match (or track) features across frames
but are faster and more accurate than global methods.
Therefore, most VO implementations are feature based.

The VO pipeline is summarized in Figure 2. For every
new image Ik (or image pair in the case of a stereo camera),
the first two steps consist of detecting and matching 2-D
features with those from the previous frames. Two-dimen-
sional features that are the reprojection of the same 3-D
feature across different frames are called image correspond-
ences. (As will be explained in Part II of this tutorial, we
distinguish between feature matching and feature tracking.
The first one consists of detecting features independently
in all the images and then matching them based on some
similarity metrics; the second one consists of finding fea-
tures in one image and then tracking them in the next
images using a local search technique, such as correlation.)
The third step consists of computing the relative motion
Tk between the time instants k� 1 and k. Depending on
whether the correspondences are specified in three or two
dimensions, there are three distinct approaches to tackle
this problem (see the “Motion Estimation” section). The
camera pose Ck is then computed by concatenation of Tk

with the previous pose. Finally, an iterative refinement
(bundle adjustment) can be done over the last m frames to
obtain a more accurate estimate of the local trajectory.

Motion estimation is explained in this tutorial (see
“Motion Estimation” section). Feature detection and
matching and bundle adjustment will be described in Part
II. Also, notice that for an accurate motion computation,
feature correspondences should not contain outliers (i.e.,
wrong data associations). Ensuring accurate motion esti-
mation in the presence of outliers is the task of robust esti-
mation, which will be described in Part II of this tutorial.
Most VO implementations assume that the camera is cali-
brated. To this end, the next section reviews the standard
models and calibration procedures for perspective and
omnidirectional cameras.

Camera Modeling and Calibration
VO can be done using both perspective and omnidirec-
tional cameras. In this section, we review the main models.

Perspective Camera Model
The most used model for perspective camera assumes a pin-
hole projection system: the image is formed by the intersec-
tion of the light rays from the objects through the center of
the lens (projection center), with the focal plane [Figure
3(a)]. Let X ¼ ½x, y, z�> be a scene point in the camera refer-
ence frame and p ¼ ½u, v�> its projection on the image plane
measured in pixels. The mapping from the 3-D world to the
2-D image is given by the perspective projection equation:

k
u
v
1

2
4
3
5 ¼ KX ¼

au 0 u0

0 av v0

0 0 1

2
4

3
5 x

y
z

2
4
3
5, (2)

where k is the depth factor, au and av the focal lengths, and
u0, v0 the image coordinates of the projection center. These
parameters are called intrinsic parameters. When the field
of view of the camera is larger than 45�, the effects of the
radial distortion may become visible and can be modeled
using a second- (or higher)-order polynomial. The deriva-
tion of the complete model can be found in computer
vision textbooks, such as [22] and [63]. Let ~p ¼ ½~u, ~v, 1�> ¼
K�1½u, v, 1�> be the normalized image coordinates. Nor-
malized coordinates will be used throughout in the follow-
ing sections.

(u0, v0) u

pv

X

x

y

C

C

z
y

X
x

v

u

X

y

z

C

x

(a) (b)

(c)

z

Figure 3. (a) Perspective projection, (b) catadioptric projection,
and (c) a spherical model for perspective and omnidirectional
cameras. Image points are represented as directions to the
viewed points normalized on the unit sphere.

Image Sequence

Feature Detection

Feature Matching (or Tracking)

Local Optimization (Bundle Adjustment)

Motion Estimation

2-D-to-2-D 3-D-to-3-D 3-D-to-2-D

Figure 2. A block diagram showing the main components of a
VO system.
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Omnidirectional Camera Model
Omnidirectional cameras are cameras with wide field of
view (even more than 180�) and can be built using fish-eye

lenses or by combining standard
cameras with mirrors [the latter are
called catadioptric cameras, Figure 3(b)].
Typical mirror shapes in catadioptric
cameras are quadratic surfaces of
revolution (e.g., paraboloid or hyper-
boloid), because they guarantee a sin-
gle projection center, which makes
it possible to use the motion estima-
tion theory presented in the “Motion

Estimation” section.
Currently, there are two accepted models for omnidir-

ectional cameras. The first one proposed by Geyer and
Daniilidis [64] is for general catadioptric cameras (para-
bolic or hyperbolic), while the second one proposed by
Scaramuzza et al. [65] is a unified model for both fish-eye
and catadioptric cameras. A survey of these two models
can be found in [66] and [67]. The projection equation of
the unified model is as follows:

k
u
v

a0 þ a1qþ � � � þ an�1qn�1

2
4

3
5 ¼

x
y
z

2
4
3
5, (3)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

and a0, a1, . . . , an are intrinsic
parameters that depend on the type of mirror or fish-eye
lens. As shown in [65], n ¼ 4 is a reasonable choice for a
large variety of mirrors and fish-eye lenses. Finally, this
model assumes that the image plane satisfies the ideal
property that the axes of symmetry of the camera and mir-
ror are aligned. Although this assumption holds for most
catadioptric and fish-eye cameras, misalignments can be
modeled by introducing a perspective projection between
the ideal and real-image plane [66].

Spherical Model
As mentioned earlier, it is desirable that the camera
possesses a single projection center (also called single effec-
tive viewpoint). In a catadioptric camera, this happens
when the rays reflected by the mirror intersect all in a sin-
gle point (namely C). The existence of this point allows us
to model any omnidirectional projection as a mapping
from the single viewpoint to a sphere. For convenience, a
unit sphere is usually adopted.

It is important to notice that the spherical model applies
not only to omnidirectional cameras but also to perspec-
tive cameras. If the camera is calibrated, any point in the
perspective or omnidirectional image can be mapped into
a vector on the unit sphere. As can be observed in Figure
3(c), these unit vectors represent the directions to the
viewed scene points. These vectors are called normalized
image points on the unit sphere.

Camera Calibration
The goal of calibration is to accurately measure the
intrinsic and extrinsic parameters of the camera system.
In a multicamera system (e.g., stereo and trinocular), the
extrinsic parameters describe the mutual position and
orientation between each camera pair. The most popular
method uses a planar checkerboard-like pattern. The
position of the squares on the board is known. To com-
pute the calibration parameters accurately, the user must
take several pictures of the board shown at different posi-
tions and orientations by ensuring that the field of view of
the camera is filled as much as possible. The intrinsic and
extrinsic parameters are then found through a least-square
minimization method. The input data are the 2-D positions
of the corners of the squares of the board and their corre-
sponding pixel coordinates in each image.

Many camera calibration toolboxes have been devised
for MATLAB and C. An up-to-date list can be found in
[68]. Among these, the most popular ones for MATLAB
are given in [69] and [70]–[72]—for perspective and omni-
directional cameras, respectively. A C implementation of
camera calibration for perspective cameras can be found in
OpenCV [73], the open-source computer vision library.

Motion Estimation
Motion estimation is the core computation step per-
formed for every image in a VO system. More precisely,
in the motion estimation step, the camera motion
between the current image and the previous image is
computed. By concatenation of all these single move-
ments, the full trajectory of the camera and the agent
(assuming that the camera is rigidly mounted) can be
recovered. This section explains how the transformation
Tk between two images Ik�1 and Ik can be computed from
two sets of corresponding features fk�1, fk at time instants
k� 1 and k, respectively. Depending on whether the fea-
ture correspondences are specified in two or three
dimensions, there are three different methods.
l 2-D-to-2-D: In this case, both fk�1 and fk are specified in

2-D image coordinates.
l 3-D-to-3-D: In this case, both fk�1 and fk are specified in

3-D. To do this, it is necessary to triangulate 3-D points
at each time instant; for instance, by using a stereo
camera system.

l 3-D-to-2-D: In this case, fk�1 are specified in 3-D and fk

are their corresponding 2-D reprojections on the image
Ik. In the monocular case, the 3-D structure needs to be
triangulated from two adjacent camera views (e.g., Ik�2

and Ik�1) and then matched to 2-D image features in a
third view (e.g., Ik). In the monocular scheme, matches
over at least three views are necessary.
Notice that features can be points or lines. In general, due

to the lack of lines in unstructured scenes, point features are
used in VO. An in-depth review of these three approaches for
both point and line features can be found in [74]. The formu-
lation given in this tutorial is for point features only.

•
In GPS-denied

environments, VO

becomes of utmost

importance.

•
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2-D to 2-D: Motion from Image
Feature Correspondences

Estimating the Essential Matrix
The geometric relations between two images Ik and Ik�1 of
a calibrated camera are described by the so-called essential
matrix E. E contains the camera motion parameters up to
an unknown scale factor for the translation in the follow-
ing form:

Ek ’ t̂kRk, (4)

where tk ¼ ½tx, ty, tz�> and

t̂k ¼
0 �tz ty

tz 0 �tx

�ty tx 0

2
4

3
5: (5)

The symbol ’ is used to denote that the equivalence is
valid up to a multiplicative scalar.

The essential matrix can be computed from 2-D-to-2-D
feature correspondences, and rotation and translation can
directly be extracted from E. The main property of 2-D-to-
2-D-based motion estimation is the epipolar constraint,
which determines the line on which the corresponding fea-
ture point ~p0 of ~p lies in the other image (Figure 4). This con-
straint can be formulated by ~p0>E~p ¼ 0, where ~p0 is a feature
location in one image (e.g., Ik) and ~p is the location of its
corresponding feature in another image (e.g., Ik�1). ~p and ~p0

are normalized image coordinates. For the sake of simplic-
ity, throughout the following sections, normalized coordi-
nates in the form ~p ¼ ½~u, ~v, 1�> will be used (see the
Perspective Camera Model” section). However, very similar
equations can also be derived for normalized coordinates on
the unit sphere (see the “Spherical Model” section).

The essential matrix can be computed from 2-D-to-2-
D feature correspondences using the epipolar constraint.
The minimal case solution involves five 2-D-to-2-D cor-
respondences [75] and an efficient implementation pro-
posed by Nister in [76]. Nister’s five-point algorithm has
become the standard for 2-D-to-2-D motion estimation
in the presence of outliers (the problem of robust estima-
tion will be tackled in Part II of this tutorial). A simple
and straightforward solution for n � 8 noncoplanar
points is the Longuet-Higgins’ eight-point algorithm [2],
which is summarized here. Each feature match gives a con-
straint of the following form:

~u~u0 ~u0~v ~u0 ~u~v0 ~v~v0 ~v0 ~u ~v 1½ �E ¼ 0, (6)

where E ¼ ½e1 e2 e3 e4 e5 e6 e7 e8 e9�>:
Stacking the constraints from eight points gives the lin-

ear equation system AE ¼ 0, and by solving the system,
the parameters of E can be computed. This homogeneous
equation system can easily be solved using singular value
decomposition (SVD) [2]. Having more than eight points
leads to an overdetermined system to solve in the least-

squares sense and provides a degree of robustness to noise.
The SVD of A has the form A ¼ USV>, and the least-
squares estimate of E with jjEjj ¼ 1 can be found as the
last column of V . However, this linear estimation of E does
not fulfill the inner constraints of an essential matrix,
which come from the multiplication of the rotation matrix
R and the skew-symmetric translation matrix t̂. These con-
straints are visible in the singular values of the essential
matrix. A valid essential matrix after SVD is E ¼ USV>

and has diag(S) ¼ fs, s, 0g, which means that the first and
second singular values are equal and the third one is zero.
To get a valid E that fulfills the constraints, the solution
needs to be projected onto the space of valid essential matri-
ces. The projected essential matrix is �E ¼ Udiagf1, 1, 0gV>.

Observe that the solution of the eight-point algorithm is
degenerate when the 3-D points are coplanar. Conversely,
the five-point algorithm works also for coplanar points.
Finally, observe that the eight-point algorithm works for
both calibrated (perspective or omnidirectional) and unca-
librated (only perspective) cameras, whereas the five-point
algorithm assumes that the camera (perspective or omni-
directional) is calibrated.

Extracting R and t from E
From the estimate of �E, the rotation and translation parts
can be extracted. In general, there are four different solu-
tions for R, t for one essential matrix; however, by triangu-
lation of a single point, the correct R, t pair can be
identified. The four solutions are

R ¼ U(�W>)V>,

t̂ ¼ U(�W)SU>,

where

W> ¼
0 �1 0
�1 0 0
0 0 1

2
4

3
5: (7)

An efficient decomposition of E into R and t is described
in [76].

p̃

X

Epipolar Plane
p̃′

Ck–1

Ck 

Tk,k–1

Epipolar Line Epipolar Line

Figure 4. An illustration of the epipolar constraint.
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After selecting the correct solution by triangulation of a
point and choosing the solution where the point is in front
of both cameras, a nonlinear optimization of the rotation
and translation parameters should be performed using the
estimate R, t as initial values. The function to minimize is
the reprojection error defined in (10).

Computing the Relative Scale
To recover the trajectory of an image sequence, the differ-
ent transformations T0:n have to be concatenated. To do

this, the proper relative scales need to
be computed as the absolute scale of
the translation cannot be computed
from two images. However, it is possi-
ble to compute relative scales for the
subsequent transformations. One way
of doing this is to triangulate 3-D
points Xk�1 and Xk from two subse-
quent image pairs. From the corre-
sponding 3-D points, the relative

distances between any combination of two 3-D points can be
computed. The proper scale can then be determined from the
distance ratio r between a point pair in Xk�1 and a pair in Xk.

r ¼
jjXk�1, i � Xk�1, jjj
jjXk, i � Xk, jjj

: (8)

For robustness, the scale ratios for many point pairs are com-
puted and the mean (or in presence of outliers, the median) is
used. The translation vector t is then scaled with this distance
ratio. Observe that the relative-scale computation requires fea-
tures to be matched (or tracked) over multiple frames (at least
three). Instead of performing explicit triangulation of the 3-D
points, the scale can also be recovered by exploiting the trifocal
constraint between three-view matches of 2-D features [22].

The VO algorithm with the 2-D-to-2-D correspond-
ences is summarized in Algorithm 1.

3D-to-3D: Motion from 3-D Structure
Correspondences
For the case of corresponding 3-D-to-3-D features, the
camera motion Tk can be computed by determining the
aligning transformation of the two 3-D feature sets.

Corresponding 3-D-to-3-D features are available in the
stereo vision case.

The general solution consists of finding the Tk that min-
imizes the L2 distance between the two 3-D feature sets

arg min
Tk

X
i

jj~Xi
k � Tk ~Xi

k�1jj, (9)

where the superscript i denotes the i th feature, and ~Xk,
~Xk�1 are the homogeneous coordinates of the 3-D points,
i.e., ~X ¼ ½x, y, z, 1�>.

As shown in [77], the minimal case solution involves
three 3-D-to-3-D noncollinear correspondences, which
can be used for robust estimation in the presence of out-
liers (Part II of this tutorial). For the case of n � 3 corre-
spondences, one possible solution (according to Arun et al.
[78]) is to compute the translation part as the difference of
the centroids of the 3-D feature sets and the rotation part
using SVD. The translation is given by

tk ¼ Xk � RXk�1,

where �� stands for the arithmetic mean value.
The rotation can be efficiently computed using SVD as

Rk ¼ VU>,

where USV> ¼ svd((Xk�1 � Xk�1)(Xk � Xk)>) and Xk�1

and Xk are sets of corresponding 3-D points.
If the measurement uncertainties of the 3-D points are

known, they can be added as weights into the estimation as
described by Maimone et al. [17]. The computed transfor-
mations have absolute scale, and thus, the trajectory of a
sequence can be computed by directly concatenating the
transformations.

The VO algorithm with the 3-D-to-3-D correspond-
ences is summarized in Algorithm 2.

To compute the transformation, it is also possible to
avoid the triangulation of the 3-D points in the stereo camera
and use quadrifocal constraints instead. This method was
pointed out by Comport et al. [21]. The quadrifocal tensor
allows computing the transformation directly from 2-D-
to-2-D stereo correspondences.

•
Algorithm 1. VO from 2-D-to-2-D
correspondences.

1) Capture new frame Ik

2) Extract and match features between Ik�1 and Ik

3) Compute essential matrix for image pair Ik�1, Ik

4) Decompose essential matrix into Rk and tk , and form Tk

5) Compute relative scale and rescale tk accordingly

6) Concatenate transformation by computing Ck ¼ Ck�1Tk

7) Repeat from 1).

•
Algorithm 2. VO from 3-D-to-3-D
correspondences.

1) Capture two stereo image pairs Il;k�1, Ir;k�1 and Il;k , Ir;k

2) Extract and match features between Il;k�1 and Il;k

3) Triangulate matched features for each stereo pair

4) Compute Tk from 3-D features Xk�1 and Xk

5) Concatenate transformation by computing
Ck ¼ Ck�1Tk

6) Repeat from 1).

•
Bundle adjustment

can be used to refine

the local estimate of

the trajectory.

•
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3-D-to-2-D: Motion from 3-D Structure and
Image Feature Correspondences
As pointed out by Nister et al. [1], motion estimation from
3-D-to-2-D correspondences is more accurate than from
3-D-to-3-D correspondences because it minimizes the
image reprojection error (10) instead of the 3-D-to-3-D
feature position error (9). The transformation Tk is com-
puted from the 3-D-to-2-D correspondences Xk�1 and pk:
Xk�1 can be estimated from stereo data or, in the monocu-
lar case, from triangulation of the image measurements
pk�1 and pk�2. The latter, however, requires image corre-
spondences across three views.

The general formulation in this case is to find Tk that
minimizes the image reprojection error

arg min
Tk

X
i

k pi
k � p̂i

k�1k2, (10)

where p̂i
k�1 is the reprojection of the 3-D point Xi

k�1 into
image Ik according to the transformation Tk. This problem
is known as perspective from n points (PnP) (or resection),
and there are many different solutions to it in the literature
[79]. As shown in [18], the minimal case involves three 3-
D-to-2-D correspondences. This is called perspective from
three points (P3P) and returns four solutions that can be
disambiguated using one or more additional points. (A fast
implementation of P3P is described in [80], and C code
can be freely downloaded from the authors’ Web page.) In
the 3-D-to-2-D case, P3P is the standard method for robust
motion estimation in the presence of outliers [18]. Robust
estimation will be described in Part II of this tutorial.

A simple and straightforward solution to the PnP prob-
lem for n � 6 points is the direct linear transformation
algorithm [22]. One 3-D-to-2-D point correspondence
provides two constraints of the following form for the
entries of Pk ¼ ½Rjt�.

0 0 0 0 �x �y �z �1 x~v y~v z~v ~v
x y z 1 0 0 0 0 �x~u �y~u �z~u �~u

� � P1

P2

P3

2
4

3
5¼0,

(11)

where each Pj> is a four vector (the jth row of Pk) and x, y,
z are the coordinates of the 3-D points Xk�1.

Stacking the constraints of six-point correspondences
gives a linear system of equations of the form AP ¼ 0. The
entries of P can be computed from the nullvector of A, e.g.,
by using SVD. The rotation and translation parts can easily
be extracted from Pk ¼ ½Rjt�. The resulting rotation R is
not necessarily orthonormal. However, this is not a prob-
lem since both R and t can be refined by nonlinear optimi-
zation of the reprojection error as defined in (10).

The 3-D-to-2-D motion estimation assumes that the 2-
D image points only come from one camera. This means
that for the case of a stereo camera, the 2-D image points
are those of either the left or the right camera. Obviously, it
is desirable to make use of the image points of both

cameras at the same time. A generalized version of the 3-
D-to-2-D motion estimation algorithm for nonconcurrent
rays (i.e., 2-D image points from multiple cameras) was
proposed by Nister in [81] for extrinsically calibrated cam-
eras (i.e., the mutual position and orientation between the
cameras is known).

For the monocular case, it is necessary to triangulate 3-
D points and estimate the pose from 3-D-to-2-D matches
in an alternating fashion. This alternating scheme is often
referred to as SFM. Starting from two
views, the initial set of 3-D points and
the first transformation are computed
from 2-D-to-2-D feature matches.
Subsequent transformations are then
computed from 3-D-to-2-D feature
matches. To do this, features need to
be matched (or tracked) over multiple
frames (at least three). New 3-D fea-
tures are again triangulated when a
new transformation is computed and
added to the set of 3-D features. The main challenge of this
method is to maintain a consistent and accurate set of tri-
angulated 3-D features and to create 3-D-to-2-D feature
matches for at least three adjacent frames.

The VO algorithm with 3-D-to-2-D correspondences is
summarized in Algorithm 3.

Triangulation and Keyframe Selection
Some of the previous motion estimation methods require
triangulation of 3-D points (structure) from 2-D image
correspondences. Structure computation is also needed by
bundle adjustment (Part II of this tutorial) to compute a
more accurate estimate of the local trajectory.

Triangulated 3-D points are determined by intersecting
back-projected rays from 2-D image correspondences of at
least two image frames. In perfect conditions, these rays
would intersect in a single 3-D point. However, because of
image noise, camera model and calibration errors, and

•
Algorithm 3. VO from 3-D-to-2-D
Correspondences.

1) Do only once:

1.1) Capture two frames Ik�2, Ik�1

1.2) Extract and match features between them

1.3) Triangulate features from Ik�2, Ik�1

2) Do at each iteration:

2.1) Capture new frame Ik

2.2) Extract features and match with previous frame Ik�1

2.3) Compute camera pose (PnP) from 3-D-to-2-D matches

2.4) Triangulate all new feature matches between Ik and Ik�1

2.5) Iterate from 2.1).

•
2-D-to-2-D and

3-D-to-2-D methods

are more accurate

than 3-D-to-3-D

methods.

•
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feature matching uncertainty, they never intersect. There-
fore, the point at a minimal distance, in the least-squares

sense, from all intersecting rays can be
taken as an estimate of the 3-D point
position. Notice that the standard de-
viation of the distances of the triangu-
lated 3-D point from all rays gives an
idea of the quality of the 3-D point.
Three-dimensional points with large
uncertainty will be thrown out. This
happens especially when frames are
taken at very nearby intervals com-

pared with the distance to the scene points. When this
occurs, 3-D points exhibit very large uncertainty. One way
to avoid this consists of skipping frames until the average
uncertainty of the 3-D points decreases below a certain
threshold. The selected frames are called keyframes. Key-
frame selection is a very important step in VO and should
always be done before updating the motion.

Discussion
According to Nister et al. [1], there is an advantage in using
the 2-D-to-2-D and 3-D-to-2-D methods compared to the
3-D-to-3-D method for motion computation. Nister com-
pared the VO performance of the 3-D-to-3-D case to that
of the 3-D-to-2-D case for a stereo camera system and
found the latter being greatly superior to the former. The
reason is due to the triangulated 3-D points being much
more uncertain in the depth direction. When 3-D-to-3-D
feature correspondences are used in motion computation,
their uncertainty may have a devastating effect on the
motion estimate. In fact, in the 3-D-to-3-D case, the 3-D
position error, (9), is minimized whereas in the 3-D-to-2-
D case the image reprojection error, (10).

In the monocular scheme, the 2-D-to-2-D method is
preferable compared to the 3-D-to-2-D case since it
avoids point triangulation. However, in practice, the 3-D-
to-2-D method is used more often than the 2-D-to-2-D
method. The reason lies in its faster data association. As
will be described in Part II of this tutorial, for accurate
motion computation, it is of utmost importance that the
input data do not contain outliers. Outlier rejection is a
very delicate step, and the computation time of this oper-
ation is strictly linked to the minimum number of points
necessary to estimate the motion. As mentioned previ-
ously, the 2-D-to-2-D case requires a minimum of five-
point correspondences (see the five-point algorithm);
however, only three correspondences are necessary in the
3-D-to-2-D motion case (see P3P). As will be shown in
Part II of this tutorial, this lower number of points results
in a much faster motion estimation.

An advantage of the stereo camera scheme compared to
the monocular one, besides the property that 3-D features
are computed directly in the absolute scale, is that matches
need to be computed only between two views instead of
three views as in the monocular scheme. Additionally, since

the 3-D structure is computed directly from a single stereo
pair rather than from adjacent frames as in the monocular
case, the stereo scheme exhibits less drift than the monocu-
lar one in case of small motions. Monocular methods are
interesting because stereo VO degenerates into the monocu-
lar case when the distance to the scene is much larger than
the stereo baseline (i.e., the distance between the two cam-
eras). In this case, stereo vision becomes ineffective and
monocular methods must be used.

Regardless of the chosen motion computation
method, local bundle adjustment (over the last m frames)
should always be performed to compute a more accu-
rate estimate of the trajectory. After bundle adjustment,
the effects of the motion estimation method are much
more alleviated.

Conclusions
This tutorial has described the history of VO, the problem
formulation, and the distinct approaches to motion com-
putation. VO is a well-understood and established part of
robotics. Part II of this tutorial will summarize the
remaining building blocks of the VO pipeline: how to
detect and match salient and repeatable features across
frames, robust estimation in the presence of outliers, and
bundle adjustment. In addition, error propagation, appli-
cations, and links to free-to-download code will be
included.
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