
Motion Planning
Part II: Wild Frontiers

By Steven M. LaValle

H
ere, we give the Part II of the two-part tutorial.
Part I emphasized the basic problem formulation,
mathematical concepts, and the most common
solutions. The goal of Part II is to help you

understand current robotics challenges from a motion-
planning perspective.

Limitations of Path Planning
The basic problem of computing a collision-free path for a
robot among known obstacles is well understood and rea-
sonably well solved; however, deficiencies in the problem
formulation itself and the demand of engineering chal-
lenges in the design of autonomous systems raise impor-
tant questions and topics for future research.

The shortcomings of basic path planning are clearly
visible when considering how the computed path is typi-
cally used in a robotic system. It has been known for deca-
des that effective autonomous systems must iteratively
sense new data and act accordingly; recall the decades-old

sense–plan–act (SPA) paradigm. Figure 1 shows how a
computed collision-free path s : ½0, 1� ! Cfree is usually
brought into alignment with this view by producing a
feedback control law. Step 1 produces s using a path-plan-
ning algorithm. Step 2 then smoothens s to produce
r : ½0, 1� ! Cfree, a path that the robot can actually follow.
For example, if the path is piecewise linear, then a carlike
mobile robot would not be able to turn sharp corners. Step
3 reparameterizes r to make a trajectory ~q : ½0, tf � ! Cfree
that nominally satisfies the robot dynamics (for example,
acceleration bounds). In Step 4, a state-feedback control
law that tracks ~q as closely as possible during execution is
designed. This results in a policy or plan, p : X ! U . The
domain X is a state space (or phase space), and U is an
action space (or input space). These sets appear in the defi-
nition of the control system that models the robot:
_x ¼ f (x, u) in which x 2 X and u 2 U .

One clear problem in this general framework is that a
later step might not succeed due to an unfortunate, fixed
choice in an earlier step. Even if it does succeed, the produced
solution may be horribly inefficient. This motivates planning
under differential constraints, which essentially performs

108 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011

Digital Object Identifier 10.1109/MRA.2011.941635

Date of publication: 14 June 2011

©
D

IG
IT

A
L

V
IS

IO
N

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

steps 1 and 2 or steps 1–3 in one shot; see the “Differential
Constraints” section. The eventual need for feedback in Step 4
motivates the direct computation of a feedback plan, which is
covered in the “FeedbackMotion Planning” section.

Another issue with the framework in Figure 1, which is
perhaps more subtle, is that this fixed decomposition of the
overall problem of getting a robot to navigate has artificially
inflated the information requirements. The framework
requires that powerful sensors, combined with strong prior
knowledge, must be providing accurate state estimates at all
times, including the robot configuration, velocity components,
and obstacle models. This unfortunately overlooks a tremen-
dous opportunity to reduce the overall system complexity by
sensing just enough information to complete the task. In this
case, a plan is p : I ! U instead of p : X ! U , in which I
is a specific information space that can be derived from sensor
measurements and from which a complete reconstruction of
the state x(t) 2 X is either impossible or undesirable. The
“Sensing Uncertainty” section introduces sensing, filtering,
and planning from this perspective: The state cannot be fully
estimated, but tasks are nevertheless achieved.

Differential Constraints
In this section, it may help to imagine that the C-space C is
Rn to avoid the manifold technicalities from Part I. In the
models and methods of Part I, it was assumed that a path
can be easily determined between any two configurations
in the absence of obstacles. For example, vertices in the
trapezoidal decomposition approach are connected by a
straight line segment in the collision-free region, Cfree. This
section complicates the problem by introducing differen-
tial constraints, which restrict the allowable velocities at
each point in Cfree. These are local constraints in contrast
to the global constraints that arise due to obstacles.

Differential constraints naturally arise from the kinemat-
ics and dynamics of robots. Rather than treating them as an
afterthought, this section discusses how to directly model
and incorporate them into the planning process. In this
way, a path is produced that already satisfies the constraints.

Modeling the Constraints
For simplicity, suppose C ¼ R2. Let _q ¼ (_x, _y) denote a
velocity vector in which _x ¼ dx=dt and _y ¼ dy=dt. Starting
from any point in R2, say (0, 0), consider what paths can
possibly be produced by integrating the velocity:
~q(t) ¼

R t
0 _q(s)ds. Here, _q is interpreted as a function of

time. If no constraints are imposed on _q (other than require-
ments for integrability), then the trajectory ~q is virtually
unrestricted. If, however, we require _x > 0, then the only
trajectories for which xmonotonically increases are allowed.
If we further constrain it so that 0 < _x � 1, then the rate at
which x increases is bounded. If time was measured in sec-
onds and R2 in meters, then ~q must cause travel in the x
direction with a rate of no more than 1 m/s.

More generally, we want to express a set of allowable
velocity vectors _q ¼ (_x, _y) for every q ¼ (x, y) 2 R2. Rather

than write a set-valued function with domain R2, a more
compact, convenient method is to define a function f that
yields _q as a function of q and a new parameter u:

_q ¼ f (q, u): (1)

This results in a velocity-valued function called the
configuration-transition equation, which indicates the
required velocity vector, given q and u. The parameter u is
called an action (or input) and is chosen from a predeter-
mined action space U . Since f is a function of two variables,
there are two convenient interpretations by holding each
variable fixed: 1) if q is held fixed, then each u 2 U produces
a possible velocity _q at q; in other words, u parameterizes
the set of possible velocities; 2) if u is fixed, then f specifies a
velocity at every q; this results in a vector field over C.

For a common example of the configuration-transition
equation, Figure 2 shows a carlike robot that has the C-
space of a rigid body in the plane: C ¼ R2

3 S1. The config-
uration vector is q ¼ (x, y, h). Imagine that the car drives
around slowly (so that dynamics are ignored) in an infinite
parking lot. Let / be the steering angle of the front tires, as
shown in Figure 2. If driven forward, the car will roll along
a circle of radius q. Note that it is impossible to move the
center of the rear axle laterally because the rear wheels
would skid instead of roll. This induces the constraint
_y= _x ¼ tan h. This constraint, along with another due to the
steering angle, can be converted into the following form
(see [12, section 13.1.2.1]):

_x ¼ us cos h

_y ¼ us sin h

_h ¼ us
L
tan u/, (2)

Compute a Collision-Free Path
t : [0, 1] S Cfree

Smooth t to Satisfy Differential Constraints
σ : [0, 1] S Cfree

Execute π on the Robot

Complete Geometric Model of the World

Step 1

Step 2

Step 3

Step 4

Design a Trajectory That Follows σ
q : [0, t] S Cfree
~

Design a Feedback Controller to Track q
π : X S U

~

Figure 1. The long road to using a computed collision-free path.
Note that complete, perfect knowledge of the robot and obstacles
enters in, and sensors are utilized only during the final execution.

JUNE 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 109

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

in which u ¼ (us, u/) 2 U is the action; us is the forward
speed, and u/ is the steering angle. Now U must be
defined. Usually, the steering angle is bounded by some
/max < p=2 so that ju/j � /max. For the possible speed
value us, a simple bound is often made. For example
jusj � 1 or equivalently, U ¼ ½�1, 1�, produces a car that
can travel no faster than unit speed. A finite set of values is
often used for planning problems that are taking into
account only the kinematic constraints due to rolling
wheels. Setting U ¼ f�1, 0, 1g produces what is called the
Reeds-Shepp car, which can travel forward at unit speed,
reverse at unit speed, or stop. By further restricting so that
U ¼ f0, 1g, the Dubins car is obtained, which can only
travel forward or stop (this car cannot be parallel parked).

Numerous other models are widely used. Equations
similar to (2) arise for common differential drive robots
(for example, Roombas). Other examples include a car
pulling one or more trailers, three-dimensional (3-D) ball
rolling in the plane, and simple aircraft models.

Now consider how the planning problem has changed.
The transition equation f becomes the interface through
which solution paths must be constructed. We must com-
pute some function ~u : ½0, t� ! U that indicates how to
apply actions, so that upon integration, the resulting trajec-
tory ~q : ½0, t� ! C will satisfy: ~q(0) ¼ qI , ~q(t) ¼ qG, and
~q(t0) 2 Cfree for all t0 2 ½0, t�. Intuitively, we now have to
steer the configuration into the goal, thereby losing the
freedom of moving in any direction.

Moving to the State Space
The previous section considered what are called kinematic
differential constraints because they arise from the geometry
of rigid body interactions in world. More broadly, we must
consider the differential constraints that account for both
kinematics and dynamics of the robot. This allows velocity
and acceleration constraints to be appropriately modeled,
usually resulting in a transition equation of the form
€q ¼ h(q, _q, u) in which €q ¼ d _q=dt. Differential equations
that involve higher-order derivatives are usually more diffi-
cult to handle; therefore, we employ a simple trick that con-
verts them into a form involving first derivatives only but at
the expense of introducing more variables and equations.

The simplest and most common case is called the
double integrator. Let C ¼ R and let €q ¼ h(q, _q, u) be the
special case €q ¼ u. This corresponds, for example, to a
Newtonian point mass accelerating due to an applied force
(recall Newton’s second law, F ¼ ma; here, €q ¼ a and
u ¼ F=m). We now convert h into two first-order equa-
tions. Let X ¼ R2 denote a state space, with coordinates
(x1, x2) 2 X. Let x1 ¼ q and x2 ¼ _q. Note that _x1 ¼ x2 and,
using €q ¼ u, we have _x2 ¼ u. Using vector notation
_x ¼ (_x1, _x2) and x ¼ ðx1, x2Þ, we can interpret _x1 ¼ x2 and
_x2 ¼ u as a state-transition equation of the form

_x ¼ f (x, u), (3)

which works the same way as (1) but applies to the new
state space X as opposed to C.

To see the structure more clearly, consider the example
shown in Figure 3. Here, C ¼ R2 to account for the posi-
tions of the nonrotatable spacecraft. Three thrusters may
be turned on or off, each applying forces fl , fr , and fu. We
make three binary action variables ul , uf , and uu; each may
take on a value of zero or one to turn off or on the corre-
sponding thruster. Finally, lunar gravity applies a down-
ward force of mg. The following state-transition equation
corresponds to independent double integrators in the hori-
zontal and vertical directions:

_x1 ¼ x3 _x3 ¼
fs
m
(ulfl � urfr),

_x2 ¼ x4 _x4 ¼
uufu
m
� g , (4)

which is in the desired form, _x ¼ f (x, u). Here, we have
that x1 ¼ q1 and x2 ¼ q2 to account for the position in C.
The components x3 and x4 are the time derivatives of x1
and x2, respectively.

For much more complicated robot systems, the basic
structure remains the same. For an n-dimensional C-space,
C, the state space X becomes 2n-dimensional. For a state
x 2 X, the first n components are precisely the configuration
parameters and the next n components are their correspond-
ing time derivatives. We can hence imagine that x ¼ (q, _q).
Other state-space formulations are possible, including the

L

ρ

φ

θ

(x, y)

Figure 2. A simple car has three degrees of freedom, but the
velocity space at any configuration is only two dimensional.

mg

fu

flfr

Figure 3. Attempt to land a lunar spacecraft with three
orthogonal thrusters that can be switched on or off. The 2-D
C-space leads to a four-dimensional state space.

110 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

ones that can force even higher-order differential equations
into first-order form, but these are avoided in this tutorial.

Aside from doubling the dimension, there are concep-
tually no difficulties with planning in X under differential
constraints in comparison to C. Note that obstacles in C
become lifted into X to obtain Xfree, as shown in Figure 4.
If the first n components of x correspond to q and if
q 2 Cobs (the obstacle region in C-space), then x 2 Xobs

regardless of which values are chosen for the remaining
components (which correspond to _q).

Sampling-Based Planning
Now consider the problem of planning under differential
constraints. Let X be a state space with a given state-transi-
tion equation _x ¼ f (x, u) and action space U . This model
includes the case X ¼ C. Given an initial state xI 2 X and
goal region XG � X, the task is to compute a function
~u : ½0, t� ! U that has corresponding trajectory
~q : ½0, t� ! Xfree with ~q(0) ¼ xI and ~q(t) 2 XG.

This unifies several problems considered for decades in
robotics: 1) nonholonomic planning, which mostly arises
from underactuated systems, meaning that the number of
action variables is less than the dimension of C; 2) kinody-
namic planning, which implies that the original differential
constraints on C are second order, as in the case of Figure 3;
these problems include drift, which means that the state
may keep changing regardless of the action (for example,
you cannot stop a speeding car instantaneously; it must
drift); 3) trajectory planning, which has mostly been devel-
oped around robot manipulators with dynamics and typi-
cally assumes that a collision-free path is given and needs to
be transformed into one that satisfies the state-transition
equation.

Because of the great difficulty of planning under differ-
ential constraints, nearly all planning algorithms are sam-
pling based, as opposed to combinatorial. To develop
sampling-based planning algorithms in this context,
several discretizations are needed. For ordinary motion
planning, only C needed to be discretized; with differential
constraints, the time interval and possibly U require dis-
cretization in addition to C (or X).

One of the simplest ways to discretize the differential
constraints is to construct a discrete-time model, which is
characterized by three aspects:
1) Time is partitioned into intervals of length Dt. This

enables stages to be assigned in which stage k indicates
that (k� 1)Dt time has elapsed.

2) A finite subset Ud of the action space U is chosen. If U
is already finite, then this selection may be Ud ¼ U .

3) The action ~uðtÞ must remain constant over each
time interval.
From an initial state, x, a reachability tree can be formed

by applying all sequences of discretized actions. Figure 5
shows part of this tree for the Dubins car from the “Modeling
the Constraints” section with Ud ¼ f�/max, 0,/maxg. The
edges of the tree are circular arcs or line segments. For general

systems, each trajectory segment in the tree is determined by
numerical integration of _x ¼ f ð~xðtÞ; ~uðtÞÞ for a given ~u. In
general, this can be viewed as an incremental simulator that
takes an input function ~u and produces a trajectory segment
~x that satisfies _x ¼ f ð~xðtÞ; ~uðtÞÞ for all times.

Sampling-based planning algorithms proceed by ex-
ploring one or more reachability trees that are derived
from discretization. In some cases, it is possible to trap the
trees onto a regular lattice structure. In this case, planning
becomes similar to grid search. Figure 6 shows an example
of such a lattice for the double-integrator €q ¼ u [6]. For a
constant action u 6¼ 0, the trajectory is parabolic and easily
obtained by integration. If u ¼ 0, then the trajectory is

(a) (b)

Figure 5. A reachability tree for the Dubins car with three
actions. The kth stage produces 3k new vertices. (a) Two and (b)
four stages.

Cobs

Xobs
X

C

Figure 4. An obstacle region Cobs � C generates a cylindrical
obstacle region Xobs � X with respect to the state variables.

⋅q

q

Figure 6. The reachability graph from the origin is shown after
three stages (the true state trajectories are actually parabolic
arcs when acceleration or deceleration occurs). Note that a
lattice is obtained, but the distance traveled in one stage
increases as j _qj increases.

JUNE 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 111

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

linear. Consider applying constant actions u ¼ �amax,
u ¼ 0, and u ¼ amax for some constant amax > 0 over
some fixed interval Dt. The reachability tree becomes a
directed acyclic graph, rooted at the origin. Every vertex,
except the origin, has an out-degree three, which corre-
sponds to three possible actions. For planning purposes, a
solution trajectory can be found by applying standard
graph search algorithms to the lattice. If a solution is not
found, then the resolution may need to be increased.

Generalizations of this method exist for fully actuated
systems. It is also possible to form an approximate lattice,
even for underactuated systems, by partitioning the C-space
into small cells and ensuring that not more than one reach-
ability tree vertex is expanded per cell [1]; see Figure 7. Each
cell is initially marked as being in collision or being collision
free but was not yet visited. As cells are visited during the
search, they become marked as such. If a potential new ver-
tex lands in a visited cell, it is not saved. This has the effect
of pruning the reachability tree.

The planning problem under differential constraints
can be solved by incremental sampling and searching, just
as the original planning problem in Part I. The

discretizations do not necessarily have to be increased as a
multiresolution grid. The search trees are constructed by
iteratively selecting vertices and applying the incremental
simulator to generate trajectory segments. If these are colli-
sion free, then they are added to the search trees, and a test
for a solution trajectory occurs. One issue commonly con-
fronted is the two-point boundary-value problem (BVP)
illustrated in Figure 8. Under differential constraints, it is
assumed to be nontrivial to exactly connect a pair of states.
Difficult computations may be necessary (a miniplanning
problem in itself) to make the connection. Therefore, it is
important to minimize the amount of BVP computations
if possible.

Challenges
Although significant progress has been made and many
issues are well understood, numerous unresolved issues
remain, before planning under differential constraints
becomes as well solved as the original planning problem:
l It has been shown in several works (e.g., [9], [10], and

[15]) that a wise choice of motion primitives dramati-
cally improves planning performance. Each is an action
history ~u : ½0,Dt� ! U , and when composed, the state
space is efficiently explored. There is no general under-
standing of how primitives should be designed to opti-
mize planning performance.

l Many sampling-based methods critically depend on the
metric over X. Ideally, this metric should be close to the
optimal cost-to-go between points; however, calculating
these values is as hard as the planning problem itself.
What approximations are efficient to compute and use-
ful to planning?

l The region of inevitable collision Xric is the set of all
states from which, no matter what action history is
applied, entry into Xobs is unavoidable. Note that
Xobs � Xric � X. As a robot moves faster, the portion of
the C-space that is essentially forbidden grows due to
drift. There has been an interest in calculating estimates
of Xric and evidence shows that avoiding it early on in
searches improves performance (e.g., [8]); however,
more powerful and efficient methods of calculating and
incorporating Xric are needed.

l Is it advantageous to trap the system onto a lattice and then
perform search, or is it most effective to incrementally
explore the reachability tree via special searchmethods?

Feedback Motion Planning
Recall from Figure 1 that, at the last step, feedback is
usually employed to track the path. This becomes neces-
sary because of the imperfections in the transition equa-
tion. If the goal is to reach some part of the C-space, then
why worry about the artificial problem of tracking a path
produced by an imperfect model? This observation calls
for a different notion of solution to the planning problem.
Rather than computing a path s : ½0, 1� ! C or trajectory
~q : ½0, t� ! C, we need representations that indicate what

(a) (b)

Figure 7. (a) The first four stages of a dense reachability graph
for the Dubins car. (b) One possible search graph is obtained by
allowing at most one vertex per cell. Many branches are pruned
away. In this simple example, there are no cell divisions along
the h axis.

XG

XG

XG

XG

xI

xI

xI

xI

BVP

BVP

(a) (b)

(c) (d)

BVP

Figure 8. (a) Forward, unidirectional search for which the BVP
is avoided. (b) Reaching the goal precisely causes a BVP. (c)
Backward, unidirectional search also causes a BVP. (d) For a
bidirectional search, the BVP arises when connecting the trees.

112 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

action to apply when the robot is at various places in the
C-space. If dynamics are a concern, then we should even
know what action to apply from places in the state space X.
In these cases, we must feed the current-estimated configu-
ration or state back into the plan to determine which
action to apply.

Feasible Feedback Planning
Keep in mind that the issue of differential constraints (the
“Differential Constraints” section) is independent of the
need for feedback. Both are treated together in control
theory and neither is treated in classical path planning;
however, the “Differential Constraints” section treated
differential constraints without feedback. It is just as sensi-
ble to consider feedback without differential constraints as
a possible representation on which to build systems.

In the case of having differential constraints, we used
the state-transition equation _x ¼ f (x, u) over the state
space X (which includes the case X ¼ C). In the case of no
differential constraints, we should directly specify the
velocity. In this case, f specializes to _x ¼ u with U ¼ Rn

(assuming X is n-dimensional). In practice, the speed may
be bounded, such as requiring juj � 1. This is a very weak
differential constraint because it does not constrain the
possible directions of motion.

To understand feedback plan representation issues, it is
helpful to consider the discrete grid example in Figure 9. A
robot moves on a grid, and the possible actions are up ("),
down (#), left (), right (!), and terminate (uT); some
directions are not available from some states. In each time
step, the robot moves one tile. This corresponds to a
discrete-time state-transition equation x0 ¼ f (x, u). A solu-
tion feedback plan of the form p : X ! U is depicted in
Figure 9. From any state, simply follow the arrows to travel
to the goal xG. Each next state is obtained from p and f as
x0 ¼ f (x, p(x)). The shown plan is even optimal in the
sense that the number of steps to get to xG is optimal from
any starting state.

Another way to represent a feedback plan is through an
intermediate potential function / : X ! ½0,1�. Given f
and /, a plan p is derived by selecting u according to:

u� ¼ argmin
u2U(x)

f/(f (x, u))g, (5)

which means that u� 2 U(x) is chosen to reduce / as
much as possible (u� may not be unique).

When is a potential function useful? Let x0 ¼ f (x, u�),
which is the state reached after applying the action
u� 2 U(x) that was selected by (5). A potential function, /,
is called a navigation function if
1)/(x) ¼ 0 for all x 2 XG

2)/(x) ¼ 1 if and only if no point in XG is reachable
from x

3) for every reachable state, x 2 XnXG, applying u�

produces a state x0 for which /(x0) < /(x).

In this case, the produced plan is guaranteed to lead to
the goal. Figure 10 shows a navigation function for our
example. Now consider moving to a continuous C-space.
The ideas presented so far nicely extend. The plan
p : X ! U applies over whichever space arises, for exam-
ple, suppose X ¼ C � R2 and there are polygonal
obstacles. Furthermore, there is only a weak differential
constraint that _x ¼ u and juj ¼ 1. A feedback plan must
then specify at every point in Cfree a direction to move at
unit speed. Figure 11 shows a simple example that converts
a triangular decomposition (recall such decompositions
from the Part I) into a feedback plan by indicating a

xG uT

(a) (b)

Figure 9. (a) A 2-D grid-planning problem. (b) A solution
feedback plan.

1

1

1
1

2 2

22
2 2

3 3

3 3 4 5 6 7
7 8

8

8

9

9

9

10
10

10

11
11

11

0

12
12

12
12
13

13
13

1314
14

14
14

15
15

15

15 16
16

16
1617
17

17 17

18
18

18

19
19

19

20

20
2021
21 212222

Figure 10. The cost-to-go values serve as a navigation function.

xG

Figure 11. Triangulation is used to define a vector field over X .
All solution trajectories lead to the goal.

JUNE 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 113

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

constant direction inside of each triangle. The task in
each triangle is to induce a flow that carries the robot into a
triangle that is a step closer to the goal. A navigation func-
tion can likewise be constructed on continuous spaces.
Figure 12 shows the level sets of a navigation function that
sends the robot on the shortest path to the goal.

These examples produce piecewise linear trajectories
that are usually inappropriate for execution because the
velocity is discontinuous. One weak form of differential
constraint is that the resulting plan is smooth along all tra-
jectories to the goal. The method shown in Figure 11 can
be adapted to produce smooth vector fields by using bump
functions to smoothly blend neighboring field patches
[Lin13]. Smooth versions of navigation functions can also
be designed for most environments if the obstacles in X are
given [16].

Optimal Feedback Planning
In many contexts, we may demand an optimal feedback
plan. In the discrete-time case, the goal is to design a plan
that optimizes a cost functional,

L(x1, . . . , xKþ1, u1, . . . , uK) ¼
XK
k¼1

l(xk, uk)þ lKþ1(xKþ1),

(6)

from every possible start state x1. Each l(xk, uk) > 0 is the
cost-per-stage and lKþ1(xKþ1) is the final cost, which is
zero if xKþ1 2 XG, or 1 otherwise. In the special case of
l(xk, uk) ¼ 1 for all xk and uk, (6) simply counts the num-
ber of steps to reach the goal.

The continuous-time counterpart to (6) is

L(~x, ~u) ¼
Z tF

0
l(~x(t), ~u(t))dt þ lF(~x(tF)), (7)

in which tF is the termination (or final) time.
Consider a function G� : X ! ½0,1� called the optimal

cost-to-go, which gives the lowest possible cost G�(x) to
get from any x to XG. If x 2 XG, then G�(x) ¼ 0, and if XG

is not reachable from x, then G�(x) ¼ 1. Note that G� is a
special form of a navigation function / as defined in the
“Feasible Feedback Planning” section. In this case, the
optimal plan is executed by applying

u� ¼ argmin
u2U(x)

fl(x, u)þ G�(f (x, u))g: (8)

If the term l(x, u) does not depend on the particular u
chosen, then (8) actually reduces to (5) with G� ¼ /.

The key challenge is to construct the cost-to-go G�. For-
tunately, because of the dynamic programming principle,
the cost can be written as (see [12]):

G�k(xk) ¼ min
uk2U(xk)

fl(xk, uk)þ G�kþ1(xkþ1)g: (9)

The equation expresses the cost-to-go from stage k, G�k ,
in terms of the cost-to-go from stage kþ 1, G�kþ1. The clas-
sical method of value iteration [2] can be used to iteratively
compute cost-to-go functions until the values stabilize as a
stationary G�. There are also Dijkstra-like [12] and policy
iteration methods [2].

When moving to a continuous state space X, the main
difficulty is that G�k(xk) cannot be stored for every
xk 2 X. There are two general approaches. One is to
approximate G�k using a parametric family of surfaces,
such as polynomials or nonlinear basis functions derived
from neural networks [3]. The other is to store G�k over a
finite set of sample points and use interpolation to
obtain its value at all other points [11] (see Figure 13).
As an example for the one-dimensional case, the value of
G�kþ1 in (9) at any x 2 ½0, 1� can be obtained via linear
interpolation as

G�kþ1(x) � aG�kþ1(si)þ (1� a)G�kþ1(siþ1), (10)

in which the coefficient a 2 ½0, 1�.
Computing such approximate, optimal feedback plans

seems to require high-resolution sampling of the state
space, which limits their application to lower dimensions
(less than five in most applications). Although the plan-
ning algorithms are limited to lower-dimensional prob-
lems, extensions to otherwise difficult cases are straight
forward. For example, consider the stochastic optimal
planning problem in which the state-transition equation
is expressed as P(xkþ1jxk, uk). In this case, the expected
cost-to-go satisfies

xG

(a) (b)

Figure 12. (a) A point goal in a simple polygon. (b) The level
sets of the optimal navigation function (Euclidean cost-to-go
function).

xk

Stage k + 1

Stage k

Possible Next States

Figure 13. Even though xk is a sample point, the next state,
xkþ1, may land between sample points. For each uk 2 U,
interpolation may be needed for the resulting next state,
xkþ1 ¼ fðxk, ukÞ.

114 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

G�k(xk) ¼ min
uk2U(xk)

�
l(xk, uk)

þ
X

xkþ12X
G�kþ1(xkþ1)P(xkþ1jxk, uk)

�
, (11)

which again provides value-iteration methods and in some
cases Dijkstra-like algorithms. There are also variations
for optimizing worst-case performance, computing game-
theoretic equilibria, and reinforcement learning, in which
the transition equation must be learned in the process of
determining the optimal plan.

Challenges
Feedback motion planning appears to be significantly
more challenging than path planning. Some current chal-
lenges are
l The curse of dimensionality seems worse. Methods are

limited to a few dimensions in practice. Cell decomposition
methods do not scale well with dimension and optimal
planning methods require high-resolution sampling. Can
implicit volumetric representations be constructed and uti-
lized efficiently via sampling?

l Merging with the “Differential Constraints” section
leads to both complicated differential constraints and
feedback. Hybrid systems models sometimes help by
switching controllers over cells during a decomposition
[5]. Another possibility is to track space-filling trees,
grown backwards from the goal, as opposed to single
paths [17]. If optimality is not required, there are great
opportunities to improve planning efficiency.

l If a fast-enough path-planning algorithm exists for a
problem, then the feedback plan could be a dynamic
replanner that recomputes the path as the robot ends up
in unexpected states or obstacle change. When is this
kind of solution advantageous and how does it relate to
explicitly computing p : X ! U?

l Perhaps the plan as a mapping p : X ! U is too con-
straining. Would it be preferable to compute a plan that
indicates for every state a set of possible actions that are
all guaranteed to make progress toward the goal? This
would leave more flexibility during execution to account
for unexpected events.

Sensing Uncertainty
Recall from the “Limitations of Path Planning” section
that, after following the classical steps in Figure 1, the
information requirements are driven artificially high:
complete state information, including the models of the
obstacles, is needed at all times. On the other hand, we
see numerous examples in robotics and nature of simple
systems that cannot possibly build complete maps of
their environment while nevertheless accomplishing
interesting tasks. A simple Roomba vacuum cleaner can
obtain a reasonable level of coverage with poor sensors
and no prior obstacle knowledge. Ants are able to

construct complex living spaces and transport food and
materials. Since maintaining the entire state seems futile
for most problems, it makes sense to start with the
desired task and determine what information is required
to solve it. This could lead to a minimalist approach in
which a cheap combination of simple sensors, actuators,
and computation is sufficient.

The goal in this section is to give you a basic idea of
how planning appears from this perspective. There are
many open challenges and directions for future research.
The presentation here gives representative examples rather
than complete modeling alternatives; for more details, see
[12] and [13].

Let X be a state space that is typically much larger than C.
A state x 2 X may contain robot configuration parameters,
configuration velocities, and even a complete representation
of the obstacles O � W. A change in x could correspond to
a moving robot or a change in obstacles. In this case, X is not
even assumed to be a manifold (it is just a large set). Suppose
x0 ¼ f (x, u) for u 2 U is a discrete-time state-transition
equation that indicates how the entire world changes.

In this section, the state x is hidden from the robot. The
only information it receives from the external world is from
sensor mappings of the form h : X ! Y , in which Y is a set
of sensor outputs, called the observation space. Consider h
as a many-to-one mapping. A weaker sensor causes more
states to produce the same output. In other words, the pre-
image h�1(y) ¼ fx 2 X j y ¼ h(x)g is larger.

At any time during execution, the complete set of infor-
mation available to the robot consists of all sensor observa-
tions and all actions that were applied (and any given
initial conditions). This is called the history information
state (or I-state); if an observation and action occur at each
stage, then it appears at stage k as

gk ¼ (u1, . . . , uk�1, y1, . . . , yk): (12)

Imagine placing a set of all possible gk for all k 	 1 in a
large set Ihist called the history I-space. Although Ihist is
enormous, the state gk 2 Ihist is at least not hidden from
the robot. We can therefore define an information feed-
back plan p : Ihist ! U .

Of course, Ihist is so large that it is impractical to work
directly with it. Therefore, we design a filter that compresses
each gk to retain only some task-critical pieces of information.
The result is an implied information mapping j : Ihist ! I
into some new filter I-space I . As new information, uk�1 and
yk, becomes available, the filter I-state ik 2 I becomes
updated through a filter transition equation

ik ¼ /(ik�1, uk�1, yk): (13)

Now let I be any I-space. Generally, the planning prob-
lem is to choose each uk so that some predetermined goal
is achieved. LetG � I be called a goal region in the I-space.
Starting from an initial I-state i0 2 I , what sequence of

JUNE 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 115

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

actions u1, u2, . . ., will lead to some future I-state ik 2 G?
Since future observations are usually unpredictable, it may
be impossible to specify the appropriate action sequence in
advance. Therefore, a better way to define the action selec-
tions is to define a plan p : I ! U , which specifies an
action pðiÞ from every filter I-state i 2 I .

During execution of the plan, the filter (13) is exe-
cuted, filter I-states i 2 I are generated, and actions get
automatically applied using u ¼ p(i). The state-transition
equation x0 ¼ f (x, u) produces the next state, which
remains hidden.

Using a filter /, the execution of a plan can be
expressed as

ik ¼ /(ik�1, yk, p(ik�1)), (14)

whichmakes the filter no longer appear to depend on actions.
The filter runs autonomously as the observations appear.

Generic Examples
To help understand the concepts so far, we describe some
well-known approaches in terms of filters over I-spaces I

and information feedback plans
p : I ! U .

State Feedback
Suppose we have a filter that
produces a reliable estimate of xk
using gk and fits the incremental
form (13), in which the I-space is
I ¼ X and ik is the estimate of xk.
In this case, a plan as expressed in
(14) becomes p : X ! U . This

method was implicitly used throughout the “FeedbackMotion
Planning” section.

This choice of the filter is convenient because there is no
need to worry in the planning and execution stages about its
uncertainty with regard to the current state. All sensing
uncertainty is the problem of the filter. This is a standard
approach throughout control theory and robotics; however,
as mentioned in the “Limitations of Path Planning” section,
the information requirement may be artificially high.

Open Loop
This example uses (13) to count the number of stages by
incrementing a counter in each step. The I-space is I ¼ N.

A plan is expressed as p : N! U . This can be interpreted
as specifying a sequence of actions:

p ¼ (u1, u2, u3, . . .): (15)

The result is just a sequence of actions to apply. Such
plans are often called open loop because no significant sen-
sor observations are being utilized during execution. How-
ever, it is important to be careful, because implicit time
information is being used. It is known that u3 is being
applied later than u2 for example.

Sensor Feedback
At one extreme, we can make the system memoryless or
reactive, causing actions to depend only on the current
observation yk. In this case, I ¼ Y and (13) returns yk in
each iteration. A plan becomes p : Y ! X. If a useful task
can be solved in this way, then it is almost always advanta-
geous to do so. Most tasks, however, require some memory
of the sensing and action histories.

Full History Feedback
Sensor feedback was at one end of the spectrum by dis-
carding all history. At the other end, we can retain all
history. The filter (13) simply concatenates uk�1 and yk
onto the history. The filter I-space is just I ¼ Ihist. As
mentioned before, however, this becomes unmanageable
at the planning stage.

Designing Task-Specific I-Spaces
It is best to design the I-space around the task. A discrete
exploration task is presented first. A robot is placed into a
discrete environment in which coordinates are described by
a pair (i, j) of integers, and there are only four possible orien-
tations (such as north, east, west, south). The state space is

X ¼ Z 3 Z 3D3 E, (16)

in which Z 3 Z is the set of all (i, j) positions, D is the set of
four possible directions, and E is a set of environments.
Every E 2 E is a connected, bounded set of “white” tiles,
and all such possibilities are included in E; an example
appears in Figure 14(a). All other tiles are “black.” Note that
Z 3 Z 3D can be imagined as a discrete version ofR2 3S1.

The robot is initially placed on a white tile in an
unknown environment and unknown orientation. The
task is to move the robot so that every tile in E is visited.
This strategy could be used to find a lost treasure that
has been placed on an unknown tile. Only two actions
are needed: 1) move forward in the direction the robot is
facing and 2) rotate the robot 90� counterclockwise. If
the robot is facing a black tile and forward is applied,
then a sensor reports that it is blocked and the robot
does not move.

Consider what kind of filters can be used for solving this
task. The most straightforward one is for the robot to

(a) (b)

Figure 14. (a) A discrete grid problem is made in which a robot
is placed into a bounded, unknown environment. (b) An
encoding of a partial map obtained after some exploration. The
hatched lines represent unknown tiles (neither white nor black).

•
Most tasks require

some memory of the

sensing and action

histories.

•

116 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

construct a partial map of E and maintain its position and
orientation with respect to its map. A naive way to attempt
this is to enumerate all possible E 2 E that are consistent
with the history I-state, and for each one, enumerate all pos-
sible (i, j) 2 Z 3 Z and orientations inD. Such a filter would
live in an I-space I ¼ pow(Z 3 Z 3D3E), with each I-
state being a subset of I . An immediate problem is that
every I-state describes a complicated, infinite set of
possibilities.

A slightly more clever way to handle this is to compress
the information into a single map, as shown in Figure 14(b).
Rather than be forced to label every (i, j) 2 Z 3 Z as “black”
or “white,” we can assign a third label, “unknown.” Initially,
the tile that contains the robot is “white” and all others are
“unknown.” As the robot is blocked by walls, some tiles
become labeled as “black.” The result is a partial map that
has a finite number of “white” and “black” tiles, with all
other tiles being labeled “unknown.” An I-state can be
described as two finite sets W (white tiles) and B (black
tiles), which are disjoint subsets of Z 3 Z. Any tile not
included inW or B is assumed to be “unknown.”

Now consider a successful search plan that uses this fil-
ter. For any “unknown” tile that is adjacent to a “white”
tile, we attempt to move the robot onto it to determine
how to label it. This process repeats until no more
“unknown” tiles are reachable, which implies that the envi-
ronment has been completely explored.

A far more interesting filter and plan are given in [4].
Their filter maintains I-states that use only logarithmic
memory in terms of the number of tiles, whereas recording
the entire map would use linear memory. They show that
with very little space, not nearly enough to build a map, the
environment can nevertheless be systematically searched.
For this case, the I-state keeps track of only one coordinate
(for example, in the north–south direction) and the orienta-
tion, expressed with 2 b. A plan is defined in [4] that is guar-
anteed to visit all white tiles using only this information.

Moving to continuous spaces leads to the familiar
simultaneous robot localization and mapping (SLAM)
problem [7], [18]. For the localization problem alone, a
Kalman filter is used. In this case, the filter I-state is
i ¼ (l,R) in which l is the robot configuration estimate
and R is the covariance. The Kalman filter computes tran-
sitions that follow the form (13). When mapping is com-
bined, each filter I-state encodes a probability distribution
over possible maps and configurations. The I-space I
becomes so large that sampling-based particle filters are
developed to approximately compute (13).

A full geometric map is useful for many tasks; how-
ever, the I-space can be dramatically reduced by focusing
on a particular task. An example from [19] is briefly
described here. Consider a simple gap sensor placed on a
mobile robot in a polygonal environment, as shown in
Figure 15. Suppose the task is to optimally navigate the
robot in terms of the shortest possible Euclidean distance.
The robot is not given a map of the environment. Instead,

it uses gap observations and records an association
between gaps when two gaps merge into one. It is shown
in [19] that this precisely corresponds to the discovery of
a bitangent edge, which is a key part of the shortest path
graph (alternatively called reduced visibility graph), a data
structure that encodes the common edges of optimal
paths from all initial-goal pairs of positions. The filter I-
state records a tree, shown in Figure 16, that indicates how
the gaps merged. The tree itself is combinatorial (no geo-
metric data) and precisely encodes the structure needed for
optimal robot navigation from the robot’s current location.
The robot is equipped with an action that allows it to chase
any gap until that gap disappears or splits into other gaps.
Using the tree, it can optimally navigate to any place that
it has previously seen. The set of all trees forms the filter
I-space I from which distance-optimal navigation can
be entirely solved in an unknown environment without
measuring distances.

Challenges
Because of the wide variety of tasks and possible combina-
tions of sensors and control models, many challenges
remain to design planning algorithms by reducing the

φ φ
g2

g1

g3 g4

g5

(a) (b)

Figure 15. Consider a robot placed in a simple polygon. (a) A
strong sensor could omnidirectionally seem to provide a
distance measurement along every direction from 0 to 2p. (b) A
gap sensor can only indicate that there are discontinuities in
depth. A cyclic list of gaps fg1, g2, g3, g4, g5g is obtained, with no
angle or distance measurements.

1

2 3

4

1

2

3

4 5

5

(a) (b)

Figure 16. (a) The gap navigation tree captures the structure of
the shortest paths to the current robot location (the white circle
on the left). (b) The tree precisely characterizes how the
shortest paths to the robot location are structured.

JUNE 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 117

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

complexity of the I-space. The overall framework involves
the following steps:
1) formulate the task and the type of system, which

includes the environment obstacles, moving bodies,
and possible sensors

2) define the models, which provide the state space X, sen-
sor mappings h, and the state-transition function f

3) determine an I-space I for which a filter / can be prac-
tically computed

4) take the desired goal, expressed over X, and convert it
into an expression over I

5) compute a plan p over I that achieves the goal in terms of I .
Ideally, all these steps should be taken into account

together; otherwise, a poor choice in an earlier step could
lead to an artificially high complexity in later steps. Worse
yet, a feasible solution might not even exist. Consider how
steps 4 and 5 may fail. Suppose that in Step 3, a simple I-
space is designed so that each I-state is straightforward and
efficient to compute. If we are not careful, then Step 4 could
fail because it might be impossible to determine whether
particular I-states achieve the goal. For example, the open-
loop filter from the “Generic Examples” section simply keeps
track of the current stage number. In most settings, this pro-
vides no relevant information about what has been achieved
in the state space. Suppose that Step 4 is successful, consider
what could happen in Step 5. A nice filter could be designed
with an easily expressed goal in I ; however, there might not
exist plans that could achieve it. In the light of these difficul-
ties, one open challenge may be to design a decomposition,
better than the one in Figure 1, of the overall problem so that
information requirements are reduced along the way.

Conclusions
Note the sharp contrast between Parts I and II of this tuto-
rial. From the perspective of Part I, it is tempting to think
that motion planning is dead as a research field. Most of
the issues have been well studied for decades, and powerful
methods have been developed that are in widespread use
throughout various industries. However, differential con-
straints, feedback, optimality, sensing uncertainty, and
numerous other issues continue to bring exciting new chal-
lenges. In some sense, combining the components in Fig-
ure 1 leads to merging planning and control theory. Thus,
the subject of planning at this level might just as well be
considered as algorithmic control theory in which control
approaches are enhanced to take advantage of geometric
data structures, sampling-based searching methods, colli-
sion-detection algorithms, and other tools familiar to
motion planning. The wild frontiers are open, and there
are plenty of interesting places to explore.

Acknowledgments
The author is grateful for the following support: NSF grant
0904501 (IIS Robotics), NSF grant 1035345 (CNS Cyber-
physical Systems), DARPA SToMP grant HR0011-05-1-
0008, and MURI/ONR grant N00014-09-1-1052.

References

[1] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile

robots: Controllability and motion planning in the presence of obstacles,”

Algorithmica, vol. 10, pp. 121–155, 1993.

[2] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming,

Princeton, NJ: Princeton Univ. Press, 1962.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,

Belmont, MA: Athena Scientific1996.

[4] M. Blum and D. Kozen, “On the power of the compass (or, why mazes

are easier to search than graphs),” in Proc. Annu. Symp. Foundations of

Computer Science, 1978, pp. 132–142.

[5] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework

for hybrid control: Model and optimal control theory,” IEEE Trans. Auto-

mat. Contr., vol. 43, no. 1, pp. 31–45, 1998.

[6] B. R. Donald, P. G. Xavier, J. Canny, and J. Reif, “Kinodynamic

planning,” J. ACM, vol. 40, pp. 1048–1066, Nov. 1993.

[7] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and

mapping: Part I,” IEEE Robot. Automat. Mag., vol. 13, no. 2, pp. 99–110,

2006.

[8] Th. Fraichard and H. Asama, “Inevitable collision states—A step

towards safer robots?” Adv. Robot., pp. 1001–1024, 2004.

[9] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion

planning for nonlinear systems with symmetries,” IEEE Trans. Robot.,

vol. 21, no. 6, pp. 1077–1091, Dec. 2005.

[10] J. Go, T. Vu, and J. J. Kuffner, “Autonomous behaviors for interac-

tive vehicle animations,” Proc. SIGGRAPH Symp. Computer Animation,

2004.

[11] R. E. Larson and J. L. Casti, Principles of Dynamic Programming,

part II. New York: Dekker, 1982.

[12] S. M. LaValle. (2006). Planning Algorithms, Cambridge, U.K., Cam-

bridge Univ. Press [Online]. Available: http://planning.cs.uiuc.edu/

[13] S. M. LaValle. (2009, Oct.). Filtering and planning in information

spaces. Dept. Comput. Sci., Univ. Illinois, Tech. Rep. [Online]. Available:

http://msl.cs.uiuc.edu/~lavalle/iros09/paper.pdf

[14] S. R. Lindemann and S. M. LaValle, “Simple and efficient algorithms

for computing smooth, collision-free feedback laws over given cell

decompositions,” Int. J. Robot. Res., vol. 28, no. 5, pp. 600–621, 2009.

[15] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning

control sets for constrained motion planning in discrete state spaces,” in

Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2005.

[16] E. Rimon and D. E. Koditschek, “Exact robot navigation using artifi-

cial potential fields,” IEEE Trans. Robot. Automat., vol. 8, no. 5, pp. 501–

518, Oct. 1992.

[17] R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. W. Roberts,

“Time optimal trajectories for bounded velocity differential drive vehi-

cles,” Int. J. Robot. Res., vol. 29, pp. 1038–1052, July 2010.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cam-

bridge, MA, MIT Press, 2005.

[19] B. Tovar, R Murrieta, and S. M. LaValle, “Distance-optimal naviga-

tion in an unknown environment without sensing distances,” IEEE Trans.

Robot., vol. 23, no. 3, pp. 506–518, June 2007.

Steven M. LaValle, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL.
E-mail: lavalle@uiuc.edu.

118 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011

•

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

