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Motion Planning

Part II: Wild Frontiers

By Steven M. LaValle

ere, we give the Part IT of the two-part tutorial.

Part I emphasized the basic problem formulation,

mathematical concepts, and the most common

solutions. The goal of Part II is to help you
understand current robotics challenges from a motion-
planning perspective.

The basic problem of computing a collision-free path for a
robot among known obstacles is well understood and rea-
sonably well solved; however, deficiencies in the problem
formulation itself and the demand of engineering chal-
lenges in the design of autonomous systems raise impor-
tant questions and topics for future research.

The shortcomings of basic path planning are clearly
visible when considering how the computed path is typi-
cally used in a robotic system. It has been known for deca-
des that effective autonomous systems must iteratively
sense new data and act accordingly; recall the decades-old
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sense—plan—act (SPA) paradigm. Figure 1 shows how a
computed collision-free path 7:[0,1] — Cpee is usually
brought into alignment with this view by producing a
feedback control law. Step 1 produces 7 using a path-plan-
ning algorithm. Step 2 then smoothens 7 to produce
0 : [0,1] — Cpree, a path that the robot can actually follow.
For example, if the path is piecewise linear, then a carlike
mobile robot would not be able to turn sharp corners. Step
3 reparameterizes o to make a trajectory q : [0, 7] — Cree
that nominally satisfies the robot dynamics (for example,
acceleration bounds). In Step 4, a state-feedback control
law that tracks g as closely as possible during execution is
designed. This results in a policy or plan, 7 : X — U. The
domain X is a state space (or phase space), and U is an
action space (or input space). These sets appear in the defi-
nition of the control system that models the robot:
X = f(x,u) inwhichx € Xandu € U.

One clear problem in this general framework is that a
later step might not succeed due to an unfortunate, fixed
choice in an earlier step. Even if it does succeed, the produced
solution may be horribly inefficient. This motivates planning
under differential constraints, which essentially performs
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steps 1 and 2 or steps 1-3 in one shot; see the “Differential
Constraints” section. The eventual need for feedback in Step 4
motivates the direct computation of a feedback plan, which is
covered in the “Feedback Motion Planning” section.

Another issue with the framework in Figure 1, which is
perhaps more subtle, is that this fixed decomposition of the
overall problem of getting a robot to navigate has artificially
inflated the information requirements. The framework
requires that powerful sensors, combined with strong prior
knowledge, must be providing accurate state estimates at all
times, including the robot configuration, velocity components,
and obstacle models. This unfortunately overlooks a tremen-
dous opportunity to reduce the overall system complexity by
sensing just enough information to complete the task. In this
case,a planis 7 : Z — U instead of 7 : X — U, in which Z
is a specific information space that can be derived from sensor
measurements and from which a complete reconstruction of
the state x(t) € X is either impossible or undesirable. The
“Sensing Uncertainty” section introduces sensing, filtering,
and planning from this perspective: The state cannot be fully
estimated, but tasks are nevertheless achieved.

In this section, it may help to imagine that the C-space C is
R" to avoid the manifold technicalities from Part I. In the
models and methods of Part I, it was assumed that a path
can be easily determined between any two configurations
in the absence of obstacles. For example, vertices in the
trapezoidal decomposition approach are connected by a
straight line segment in the collision-free region, Ce. This
section complicates the problem by introducing differen-
tial constraints, which restrict the allowable velocities at
each point in Cgee. These are local constraints in contrast
to the global constraints that arise due to obstacles.
Differential constraints naturally arise from the kinemat-
ics and dynamics of robots. Rather than treating them as an
afterthought, this section discusses how to directly model
and incorporate them into the planning process. In this
way, a path is produced that already satisfies the constraints.

Modeling the Constraints
For simplicity, suppose C = R*. Let g = (%,7) denote a
velocity vector in which x = dx/dt and y = dy/dt. Starting
from any point in R?, say (0, 0), consider what paths can
possibly be produced by integrating the velocity:
q(t) = f(f q(s)ds. Here, q is interpreted as a function of
time. If no constraints are imposed on g (other than require-
ments for integrability), then the trajectory q is virtually
unrestricted. If, however, we require x > 0, then the only
trajectories for which x monotonically increases are allowed.
If we further constrain it so that 0 < x < 1, then the rate at
which x increases is bounded. If time was measured in sec-
onds and R? in meters, then q must cause travel in the x
direction with a rate of no more than 1 m/s.

More generally, we want to express a set of allowable
velocity vectors g = (, y) for every g = (x,y) € R?. Rather
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than write a set-valued function with domain R?, a more
compact, convenient method is to define a function f that
yields g as a function of g and a new parameter u:

q=f(qu). 1)

This results in a velocity-valued function called the
configuration-transition equation, which indicates the
required velocity vector, given q and u. The parameter u is
called an action (or input) and is chosen from a predeter-
mined action space U. Since f is a function of two variables,
there are two convenient interpretations by holding each
variable fixed: 1) if q is held fixed, then each u € U produces
a possible velocity g at g; in other words, u parameterizes
the set of possible velocities; 2) if u is fixed, then f specifies a
velocity at every g; this results in a vector field over C.

For a common example of the configuration-transition
equation, Figure 2 shows a carlike robot that has the C-
space of a rigid body in the plane: C = R? x S'. The config-
uration vector is g = (x, y, 0). Imagine that the car drives
around slowly (so that dynamics are ignored) in an infinite
parking lot. Let ¢ be the steering angle of the front tires, as
shown in Figure 2. If driven forward, the car will roll along
a circle of radius p. Note that it is impossible to move the
center of the rear axle laterally because the rear wheels
would skid instead of roll. This induces the constraint
7/x = tan 0. This constraint, along with another due to the
steering angle, can be converted into the following form
(see [12, section 13.1.2.1]):

X = u, cos b
¥ = ussin0
0= % @)
= —tan uy,
I ¢

Complete Geometric Model of the World

Compute a Collision-Free Path
7:[0, 11— Cree

A4

Smooth 7 to Satisfy Differential Constraints
0:[0, 1] = Cyree Step 2

A4

Design a Trajectory That Follows o
q:[0, t] = Ciree

A4

Design a Feedback Controller to Track g
m: X—>U Step 4

Step 1

Step 3

Execute 7 on the Robot

The long road to using a computed collision-free path.
Note that complete, perfect knowledge of the robot and obstacles
enters in, and sensors are utilized only during the final execution.



A simple car has three degrees of freedom, but the
velocity space at any configuration is only two dimensional.

mg

Attempt to land a lunar spacecraft with three
orthogonal thrusters that can be switched on or off. The 2-D
C-space leads to a four-dimensional state space.

in which u = (uy, uy) € U is the action; u; is the forward
speed, and ug is the steering angle. Now U must be
defined. Usually, the steering angle is bounded by some
Drnax < /2 so that |ug| < ¢,.,. For the possible speed
value u;, a simple bound is often made. For example
|us| <1 or equivalently, U = [—1,1], produces a car that
can travel no faster than unit speed. A finite set of values is
often used for planning problems that are taking into
account only the kinematic constraints due to rolling
wheels. Setting U = {—1,0, 1} produces what is called the
Reeds-Shepp car, which can travel forward at unit speed,
reverse at unit speed, or stop. By further restricting so that
U = {0,1}, the Dubins car is obtained, which can only
travel forward or stop (this car cannot be parallel parked).

Numerous other models are widely used. Equations
similar to (2) arise for common differential drive robots
(for example, Roombas). Other examples include a car
pulling one or more trailers, three-dimensional (3-D) ball
rolling in the plane, and simple aircraft models.

Now consider how the planning problem has changed.
The transition equation f becomes the interface through
which solution paths must be constructed. We must com-
pute some function # : [0,¢] — U that indicates how to
apply actions, so that upon integration, the resulting trajec-
tory q:[0,¢t] — C will satisfy: g(0) = qr, q(t) = g5, and
q(t') € Cpee for all ¢’ € [0,t]. Intuitively, we now have to
steer the configuration into the goal, thereby losing the
freedom of moving in any direction.

Moving to the State Space
The previous section considered what are called kinematic
differential constraints because they arise from the geometry
of rigid body interactions in world. More broadly, we must
consider the differential constraints that account for both
kinematics and dynamics of the robot. This allows velocity
and acceleration constraints to be appropriately modeled,
usually resulting in a transition equation of the form
q = h(g,q,u) in which § = dg/dt. Differential equations
that involve higher-order derivatives are usually more diffi-
cult to handle; therefore, we employ a simple trick that con-
verts them into a form involving first derivatives only but at
the expense of introducing more variables and equations.
The simplest and most common case is called the
double integrator. Let C = R and let § = h(q, g, u) be the
special case q = u. This corresponds, for example, to a
Newtonian point mass accelerating due to an applied force
(recall Newton’s second law, F = ma; here, § = a and
u = F/m). We now convert h into two first-order equa-
tions. Let X = R* denote a state space, with coordinates
(x1,%2) € X. Letx; = gand x, = g. Note that x; = x, and,
using g = u, we have X, = u. Using vector notation
X = (%1, %) and x = (x1,x,), we can interpret X; = x, and
X, = u as a state-transition equation of the form

x = fxu), 3)

which works the same way as (1) but applies to the new
state space X as opposed to C.

To see the structure more clearly, consider the example
shown in Figure 3. Here, C = R? to account for the posi-
tions of the nonrotatable spacecraft. Three thrusters may
be turned on or off, each applying forces f, f, and f,. We
make three binary action variables u, us, and u,; each may
take on a value of zero or one to turn off or on the corre-
sponding thruster. Finally, lunar gravity applies a down-
ward force of mg. The following state-transition equation
corresponds to independent double integrators in the hori-
zontal and vertical directions:

f

X| = X3 X3 = i(ulfl - urfr))
u
Xy = X4 Xy = U _ 9 (4)
m

which is in the desired form, x = f(x, u). Here, we have
that x; = ¢q; and x, = ¢, to account for the position in C.
The components x3 and x4 are the time derivatives of x;
and x;, respectively.

For much more complicated robot systems, the basic
structure remains the same. For an n-dimensional C-space,
C, the state space X becomes 2n-dimensional. For a state
x € X, the first n components are precisely the configuration
parameters and the next n components are their correspond-
ing time derivatives. We can hence imagine that x = (g, ¢).
Other state-space formulations are possible, including the
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ones that can force even higher-order differential equations
into first-order form, but these are avoided in this tutorial.

Aside from doubling the dimension, there are concep-
tually no difficulties with planning in X under differential
constraints in comparison to C. Note that obstacles in C
become lifted into X to obtain Xjee, as shown in Figure 4.
If the first n components of x correspond to g and if
q € Cobs (the obstacle region in C-space), then x € X
regardless of which values are chosen for the remaining
components (which correspond to g).

Sampling-Based Planning

Now consider the problem of planning under differential
constraints. Let X be a state space with a given state-transi-
tion equation x = f(x, u) and action space U. This model
includes the case X = C. Given an initial state x; € X and
goal region X C X, the task is to compute a function
#:[0,¢] = U that has corresponding trajectory
q : [0,t] — Xree with q(0) = x; and g(t) € X.

This unifies several problems considered for decades in
robotics: 1) nonholonomic planning, which mostly arises
from underactuated systems, meaning that the number of
action variables is less than the dimension of C; 2) kinody-
namic planning, which implies that the original differential
constraints on C are second order, as in the case of Figure 3;
these problems include drift, which means that the state
may keep changing regardless of the action (for example,
you cannot stop a speeding car instantaneously; it must
drift); 3) trajectory planning, which has mostly been devel-
oped around robot manipulators with dynamics and typi-
cally assumes that a collision-free path is given and needs to
be transformed into one that satisfies the state-transition
equation.

Because of the great difficulty of planning under differ-
ential constraints, nearly all planning algorithms are sam-
pling based, as opposed to combinatorial. To develop
sampling-based planning algorithms in this context,
several discretizations are needed. For ordinary motion
planning, only C needed to be discretized; with differential
constraints, the time interval and possibly U require dis-
cretization in addition to C (or X).

One of the simplest ways to discretize the differential
constraints is to construct a discrete-time model, which is
characterized by three aspects:

1) Time is partitioned into intervals of length At. This
enables stages to be assigned in which stage k indicates
that (k — 1)At time has elapsed.

2) A finite subset U, of the action space U is chosen. If U
is already finite, then this selection may be Uy = U.

3) The action #(t) must remain constant over each
time interval.

From an initial state, x, a reachability tree can be formed
by applying all sequences of discretized actions. Figure 5
shows part of this tree for the Dubins car from the “Modeling
the Constraints” section with Uy = {—¢ .00 0> e - The
edges of the tree are circular arcs or line segments. For general
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An obstacle region C,ps C C generates a cylindrical
obstacle region X,ps C X with respect to the state variables.

(a)

A reachability tree for the Dubins car with three
actions. The kth stage produces 3% new vertices. (a) Two and (b)
four stages.

The reachability graph from the origin is shown after
three stages (the true state trajectories are actually parabolic
arcs when acceleration or deceleration occurs). Note that a
lattice is obtained, but the distance traveled in one stage
increases as |g| increases.

systems, each trajectory segment in the tree is determined by
numerical integration of x = f(x(¢), u(t)) for a given i. In
general, this can be viewed as an incremental simulator that
takes an input function & and produces a trajectory segment
X that satisfies x = f(x(t), 21(t)) for all times.
Sampling-based planning algorithms proceed by ex-
ploring one or more reachability trees that are derived
from discretization. In some cases, it is possible to trap the
trees onto a regular lattice structure. In this case, planning
becomes similar to grid search. Figure 6 shows an example
of such a lattice for the double-integrator § = u [6]. For a
constant action u # 0, the trajectory is parabolic and easily
obtained by integration. If u# = 0, then the trajectory is



linear. Consider applying constant actions # = —amax,
u=0, and u = an, for some constant dy,x > 0 over
some fixed interval At. The reachability tree becomes a
directed acyclic graph, rooted at the origin. Every vertex,
except the origin, has an out-degree three, which corre-
sponds to three possible actions. For planning purposes, a
solution trajectory can be found by applying standard
graph search algorithms to the lattice. If a solution is not
found, then the resolution may need to be increased.

Generalizations of this method exist for fully actuated
systems. It is also possible to form an approximate lattice,
even for underactuated systems, by partitioning the C-space
into small cells and ensuring that not more than one reach-
ability tree vertex is expanded per cell [1]; see Figure 7. Each
cell is initially marked as being in collision or being collision
free but was not yet visited. As cells are visited during the
search, they become marked as such. If a potential new ver-
tex lands in a visited cell, it is not saved. This has the effect
of pruning the reachability tree.

The planning problem under differential constraints
can be solved by incremental sampling and searching, just
as the original planning problem in Part I The

1 /‘
s X1 1 l/: {
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a4 |
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(a) (b)

(a) The first four stages of a dense reachability graph
for the Dubins car. (b) One possible search graph is obtained by
allowing at most one vertex per cell. Many branches are pruned
away. In this simple example, there are no cell divisions along
the 0 axis.

(©) (d)

(a) Forward, unidirectional search for which the BVP
is avoided. (b) Reaching the goal precisely causes a BVP. (c)
Backward, unidirectional search also causes a BVP. (d) For a
bidirectional search, the BVP arises when connecting the trees.

discretizations do not necessarily have to be increased as a
multiresolution grid. The search trees are constructed by
iteratively selecting vertices and applying the incremental
simulator to generate trajectory segments. If these are colli-
sion free, then they are added to the search trees, and a test
for a solution trajectory occurs. One issue commonly con-
fronted is the two-point boundary-value problem (BVP)
illustrated in Figure 8. Under differential constraints, it is
assumed to be nontrivial to exactly connect a pair of states.
Difficult computations may be necessary (a miniplanning
problem in itself) to make the connection. Therefore, it is
important to minimize the amount of BVP computations
if possible.

Challenges

Although significant progress has been made and many

issues are well understood, numerous unresolved issues

remain, before planning under differential constraints
becomes as well solved as the original planning problem:

e It has been shown in several works (e.g., [9], [10], and
[15]) that a wise choice of motion primitives dramati-
cally improves planning performance. Each is an action
history i : [0, At] — U, and when composed, the state
space is efficiently explored. There is no general under-
standing of how primitives should be designed to opti-
mize planning performance.

e Many sampling-based methods critically depend on the
metric over X. Ideally, this metric should be close to the
optimal cost-to-go between points; however, calculating
these values is as hard as the planning problem itself.
What approximations are efficient to compute and use-
ful to planning?

e The region of inevitable collision X is the set of all
states from which, no matter what action history is
applied, entry into X, is unavoidable. Note that
Xobs € Xric € X. As a robot moves faster, the portion of
the C-space that is essentially forbidden grows due to
drift. There has been an interest in calculating estimates
of Xyic and evidence shows that avoiding it early on in
searches improves performance (e.g., [8]); however,
more powerful and efficient methods of calculating and
incorporating X;;. are needed.

e Isitadvantageous to trap the system onto a lattice and then
perform search, or is it most effective to incrementally
explore the reachability tree via special search methods?

Recall from Figure 1 that, at the last step, feedback is
usually employed to track the path. This becomes neces-
sary because of the imperfections in the transition equa-
tion. If the goal is to reach some part of the C-space, then
why worry about the artificial problem of tracking a path
produced by an imperfect model? This observation calls
for a different notion of solution to the planning problem.
Rather than computing a path 7 : [0,1] — C or trajectory
q:[0,t] — C, we need representations that indicate what

112 IEEE RABIABSAUUICASEON SEAMVINE t8: IENE2Ibre. Downloaded on May 19,2024 at 17:00:02 UTC from IEEE Xplore. Restrictions apply.



action to apply when the robot is at various places in the
C-space. If dynamics are a concern, then we should even
know what action to apply from places in the state space X.
In these cases, we must feed the current-estimated configu-
ration or state back into the plan to determine which
action to apply.

Feasible Feedback Planning

Keep in mind that the issue of differential constraints (the
“Differential Constraints” section) is independent of the
need for feedback. Both are treated together in control
theory and neither is treated in classical path planning;
however, the “Differential Constraints” section treated
differential constraints without feedback. It is just as sensi-
ble to consider feedback without differential constraints as
a possible representation on which to build systems.

In the case of having differential constraints, we used
the state-transition equation X = f(x,u) over the state
space X (which includes the case X = C). In the case of no
differential constraints, we should directly specify the
velocity. In this case, f specializes to x = u with U = R"
(assuming X is n-dimensional). In practice, the speed may
be bounded, such as requiring |u| < 1. This is a very weak
differential constraint because it does not constrain the
possible directions of motion.

To understand feedback plan representation issues, it is
helpful to consider the discrete grid example in Figure 9. A
robot moves on a grid, and the possible actions are up (),
down (), left («), right (—), and terminate (u7); some
directions are not available from some states. In each time
step, the robot moves one tile. This corresponds to a
discrete-time state-transition equation x’ = f(x, u). A solu-
tion feedback plan of the form 7 : X — U is depicted in
Figure 9. From any state, simply follow the arrows to travel
to the goal x¢. Each next state is obtained from 7 and f as
x' = f(x,m(x)). The shown plan is even optimal in the
sense that the number of steps to get to xg is optimal from
any starting state.

Another way to represent a feedback plan is through an
intermediate potential function ¢ : X — [0,00]. Given f
and ¢, a plan 7 is derived by selecting u according to:

ut = alfgrrjlg)n{qb(f(x, u)}, (5)

which means that u* € U(x) is chosen to reduce ¢ as
much as possible (4" may not be unique).

When is a potential function useful? Let x' = f(x, u*),
which is the state reached after applying the action
u* € U(x) that was selected by (5). A potential function, ¢,
is called a navigation function if

1) ¢p(x) = 0forallx € Xg

2) ¢(x) = oo if and only if no point in X is reachable
from x

3)for every reachable state, x € X\X;, applying u*
produces a state x’ for which ¢(x') < ¢(x).
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In this case, the produced plan is guaranteed to lead to
the goal. Figure 10 shows a navigation function for our
example. Now consider moving to a continuous C-space.
The ideas presented so far nicely extend. The plan
7 : X — U applies over whichever space arises, for exam-
ple, suppose X =C C R* and there are polygonal
obstacles. Furthermore, there is only a weak differential
constraint that x = u and |u| = 1. A feedback plan must
then specify at every point in Cgee a direction to move at
unit speed. Figure 11 shows a simple example that converts
a triangular decomposition (recall such decompositions
from the Part I) into a feedback plan by indicating a

-

(a) A 2-D grid-planning problem. (b) A solution
feedback plan.

(@)

Triangulation is used to define a vector field over X.
All solution trajectories lead to the goal.



constant direction inside of each triangle. The task in
each triangle is to induce a flow that carries the robot into a
triangle that is a step closer to the goal. A navigation func-
tion can likewise be constructed on continuous spaces.
Figure 12 shows the level sets of a navigation function that
sends the robot on the shortest path to the goal.

These examples produce piecewise linear trajectories
that are usually inappropriate for execution because the
velocity is discontinuous. One weak form of differential
constraint is that the resulting plan is smooth along all tra-
jectories to the goal. The method shown in Figure 11 can
be adapted to produce smooth vector fields by using bump
functions to smoothly blend neighboring field patches
[Lin13]. Smooth versions of navigation functions can also
be designed for most environments if the obstacles in X are
given [16].

Optimal Feedback Planning

In many contexts, we may demand an optimal feedback
plan. In the discrete-time case, the goal is to design a plan
that optimizes a cost functional,

K
L(xls ces XK1 UL oe s uK) = Z Z(Xk, Mk) + lK+1(xK+l))
k=1

(6)

from every possible start state x;. Each I(x, ux) > 0 is the
cost-per-stage and Ix;1(xk41) is the final cost, which is
zero if xgy1 € Xg, or oo otherwise. In the special case of
I(xg, ux) = 1 for all x; and uy, (6) simply counts the num-
ber of steps to reach the goal.

(a)

(a) A point goal in a simple polygon. (b) The level
sets of the optimal navigation function (Euclidean cost-to-go
function).

Stage k + 1

WPossible Next States

Xk

Stage k

Even though x; is a sample point, the next state,
Xk.1, may land between sample points. For each uy € U,
interpolation may be needed for the resulting next state,

X1 = F(Xpo Ug)-

The continuous-time counterpart to (6) is

tp
LG i) = / G, WD)+ b G, ()
0

in which fr is the termination (or final) time.

Consider a function G* : X — [0, 00| called the optimal
cost-to-go, which gives the lowest possible cost G*(x) to
get from any x to Xg. If x € X, then G*(x) = 0, and if X
is not reachable from x, then G*(x) = oo. Note that G* is a
special form of a navigation function ¢ as defined in the
“Feasible Feedback Planning” section. In this case, the
optimal plan is executed by applying

ut = argn(li)n {I(x,u) + G*(f(x,u)) }. (8)

ucU(x

If the term [(x, u) does not depend on the particular u
chosen, then (8) actually reduces to (5) with G* = ¢.

The key challenge is to construct the cost-to-go G*. For-
tunately, because of the dynamic programming principle,
the cost can be written as (see [12]):

Grlxx) = min {10, ux) + Gp, (Xk1) - ©)
ur€U(xr)

The equation expresses the cost-to-go from stage k, Gj,
in terms of the cost-to-go from stage k + 1, Gy, ;. The clas-
sical method of value iteration [2] can be used to iteratively
compute cost-to-go functions until the values stabilize as a
stationary G*. There are also Dijkstra-like [12] and policy
iteration methods [2].

When moving to a continuous state space X, the main
difficulty is that Gj(xx) cannot be stored for every
xx € X. There are two general approaches. One is to
approximate Gj using a parametric family of surfaces,
such as polynomials or nonlinear basis functions derived
from neural networks [3]. The other is to store G} over a
finite set of sample points and use interpolation to
obtain its value at all other points [11] (see Figure 13).
As an example for the one-dimensional case, the value of

441 in (9) at any x € [0,1] can be obtained via linear
interpolation as
G]ﬁ.;,.](x) ~ OCG;_H(Si) + (1 - a)G]>:+1(Si+l)! (10)
in which the coefficient o € [0, 1].

Computing such approximate, optimal feedback plans
seems to require high-resolution sampling of the state
space, which limits their application to lower dimensions
(less than five in most applications). Although the plan-
ning algorithms are limited to lower-dimensional prob-
lems, extensions to otherwise difficult cases are straight
forward. For example, consider the stochastic optimal
planning problem in which the state-transition equation
is expressed as P(xgi1|xk, ux). In this case, the expected
cost-to-go satisfies
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Gi(xx) = min {l(xka”k)
ueU(xg)

+ Z G]t+1(xk+1)P(xk+l |Xk,uk)}, (11)

X1 €X

which again provides value-iteration methods and in some
cases Dijkstra-like algorithms. There are also variations
for optimizing worst-case performance, computing game-
theoretic equilibria, and reinforcement learning, in which
the transition equation must be learned in the process of
determining the optimal plan.

Challenges

Feedback motion planning appears to be significantly

more challenging than path planning. Some current chal-

lenges are

e The curse of dimensionality seems worse. Methods are
limited to a few dimensions in practice. Cell decomposition
methods do not scale well with dimension and optimal
planning methods require high-resolution sampling. Can
implicit volumetric representations be constructed and uti-
lized efficiently via sampling?

e Merging with the “Differential Constraints” section
leads to both complicated differential constraints and
feedback. Hybrid systems models sometimes help by
switching controllers over cells during a decomposition
[5]. Another possibility is to track space-filling trees,
grown backwards from the goal, as opposed to single
paths [17]. If optimality is not required, there are great
opportunities to improve planning efficiency.

e If a fast-enough path-planning algorithm exists for a
problem, then the feedback plan could be a dynamic
replanner that recomputes the path as the robot ends up
in unexpected states or obstacle change. When is this
kind of solution advantageous and how does it relate to
explicitly computing 7 : X — U?

e Perhaps the plan as a mapping 7 : X — U is too con-
straining. Would it be preferable to compute a plan that
indicates for every state a set of possible actions that are
all guaranteed to make progress toward the goal? This
would leave more flexibility during execution to account
for unexpected events.

Recall from the “Limitations of Path Planning” section
that, after following the classical steps in Figure 1, the
information requirements are driven artificially high:
complete state information, including the models of the
obstacles, is needed at all times. On the other hand, we
see numerous examples in robotics and nature of simple
systems that cannot possibly build complete maps of
their environment while nevertheless accomplishing
interesting tasks. A simple Roomba vacuum cleaner can
obtain a reasonable level of coverage with poor sensors
and no prior obstacle knowledge. Ants are able to
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construct complex living spaces and transport food and
materials. Since maintaining the entire state seems futile
for most problems, it makes sense to start with the
desired task and determine what information is required
to solve it. This could lead to a minimalist approach in
which a cheap combination of simple sensors, actuators,
and computation is sufficient.

The goal in this section is to give you a basic idea of
how planning appears from this perspective. There are
many open challenges and directions for future research.
The presentation here gives representative examples rather
than complete modeling alternatives; for more details, see
[12] and [13].

Let X be a state space that is typically much larger than C.
A state x € X may contain robot configuration parameters,
configuration velocities, and even a complete representation
of the obstacles O C W. A change in x could correspond to
a moving robot or a change in obstacles. In this case, X is not
even assumed to be a manifold (it is just a large set). Suppose
x' =f(x,u) for u€ U is a discrete-time state-transition
equation that indicates how the entire world changes.

In this section, the state x is hidden from the robot. The
only information it receives from the external world is from
sensor mappings of the form /1 : X — Y, in which Y is a set
of sensor outputs, called the observation space. Consider h
as a many-to-one mapping. A weaker sensor causes more
states to produce the same output. In other words, the pre-
image h™'(y) = {x € X |y = h(x)} is larger.

At any time during execution, the complete set of infor-
mation available to the robot consists of all sensor observa-
tions and all actions that were applied (and any given
initial conditions). This is called the history information
state (or I-state); if an observation and action occur at each
stage, then it appears at stage k as

Me = (U1, - U= V15 -5 VE)- (12)

Imagine placing a set of all possible 7, forallk > 1 in a
large set Ty called the history I-space. Although Ty is
enormous, the state 1, € Zpig is at least not hidden from
the robot. We can therefore define an information feed-
back plan 7 : Zy;¢ — U.

Of course, T is so large that it is impractical to work
directly with it. Therefore, we design a filter that compresses
each 17, to retain only some task-critical pieces of information.
The result is an implied information mapping « : Ty — Z
into some new filter [-space Z. As new information, uy_; and
Yk, becomes available, the filter I-state 1, € Z becomes
updated through a filter transition equation

e = (k-1 Ui—15 Yk)- (13)

Now let 7 be any I-space. Generally, the planning prob-
lem is to choose each uy so that some predetermined goal
is achieved. Let G C Z be called a goal region in the I-space.
Starting from an initial I-state 10 € 7, what sequence of



actions uj, u, ..., will lead to some future I-state 1, € G?
Since future observations are usually unpredictable, it may
be impossible to specify the appropriate action sequence in
advance. Therefore, a better way to define the action selec-
tions is to define a plan 7 :I — U, which specifies an
action 7(1) from every filter I-state 1 € 7.

During execution of the plan, the filter (13) is exe-
cuted, filter I-states 1 € 7 are generated, and actions get
automatically applied using u = 7(1). The state-transition
equation x’ = f(x,u) produces the next state, which
remains hidden.

Using a filter ¢, the execution of a plan can be
expressed as

1k = PQk—1, Yo T(1k-1)), (14)
which makes the filter no longer appear to depend on actions.
The filter runs autonomously as the observations appear.

Generic Examples

To help understand the concepts so far, we describe some

well-known approaches in terms of filters over I-spaces Z
and information feedback plans

n:Z — U.
Most tasks require State Feedback
some memory of the Suppose we have a filter that
. . produces a reliable estimate of xi
sensing and action using 7, and fits the incremental
histories. form (13), in which the I-space is

o Z = X and 1, is the estimate of xy.

In this case, a plan as expressed in

(14) becomes m:X — U. This
method was implicitly used throughout the “Feedback Motion
Planning” section.

This choice of the filter is convenient because there is no
need to worry in the planning and execution stages about its
uncertainty with regard to the current state. All sensing
uncertainty is the problem of the filter. This is a standard
approach throughout control theory and robotics; however,
as mentioned in the “Limitations of Path Planning” section,
the information requirement may be artificially high.

Open Loop
This example uses (13) to count the number of stages by
incrementing a counter in each step. The I-spaceis Z = N.

(b)

(a) A discrete grid problem is made in which a robot
is placed into a bounded, unknown environment. (b) An
encoding of a partial map obtained after some exploration. The
hatched lines represent unknown tiles (neither white nor black).

A plan is expressed as w : N — U. This can be interpreted
as specifying a sequence of actions:
n:(ulauZau3) ) (15)
The result is just a sequence of actions to apply. Such
plans are often called open loop because no significant sen-
sor observations are being utilized during execution. How-
ever, it is important to be careful, because implicit time
information is being used. It is known that u3 is being
applied later than u, for example.

Sensor Feedback

At one extreme, we can make the system memoryless or
reactive, causing actions to depend only on the current
observation yj. In this case, Z = Y and (13) returns yx in
each iteration. A plan becomes 7 : Y — X. If a useful task
can be solved in this way, then it is almost always advanta-
geous to do so. Most tasks, however, require some memory
of the sensing and action histories.

Full History Feedback

Sensor feedback was at one end of the spectrum by dis-
carding all history. At the other end, we can retain all
history. The filter (13) simply concatenates ux_; and y
onto the history. The filter I-space is just Z = Zyy. As
mentioned before, however, this becomes unmanageable
at the planning stage.

Designing Task-Specific I-Spaces
It is best to design the I-space around the task. A discrete
exploration task is presented first. A robot is placed into a
discrete environment in which coordinates are described by
a pair (i, ) of integers, and there are only four possible orien-
tations (such as north, east, west, south). The state space is
X=7ZXZXDXE, (16)

in which Z X Z is the set of all (i, j) positions, D is the set of
four possible directions, and £ is a set of environments.
Every E € £ is a connected, bounded set of “white” tiles,
and all such possibilities are included in &; an example
appears in Figure 14(a). All other tiles are “black.” Note that
7 X Z X D can be imagined as a discrete version of R* X S'.

The robot is initially placed on a white tile in an
unknown environment and unknown orientation. The
task is to move the robot so that every tile in E is visited.
This strategy could be used to find a lost treasure that
has been placed on an unknown tile. Only two actions
are needed: 1) move forward in the direction the robot is
facing and 2) rotate the robot 90° counterclockwise. If
the robot is facing a black tile and forward is applied,
then a sensor reports that it is blocked and the robot
does not move.

Consider what kind of filters can be used for solving this
task. The most straightforward one is for the robot to
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construct a partial map of E and maintain its position and
orientation with respect to its map. A naive way to attempt
this is to enumerate all possible E € £ that are consistent
with the history I-state, and for each one, enumerate all pos-
sible (i,j) € Z X Z and orientations in D. Such a filter would
live in an I-space I = pow(Z X Z X D X E), with each I-
state being a subset of Z. An immediate problem is that
every I-state describes a complicated, infinite set of
possibilities.

A slightly more clever way to handle this is to compress
the information into a single map, as shown in Figure 14(b).
Rather than be forced to label every (i, ) € Z X Z as “black”
or “white,” we can assign a third label, “unknown.” Initially,
the tile that contains the robot is “white” and all others are
“unknown.” As the robot is blocked by walls, some tiles
become labeled as “black.” The result is a partial map that
has a finite number of “white” and “black” tiles, with all
other tiles being labeled “unknown.” An I-state can be
described as two finite sets W (white tiles) and B (black
tiles), which are disjoint subsets of Z X Z. Any tile not
included in W or B is assumed to be “unknown.”

Now consider a successful search plan that uses this fil-
ter. For any “unknown” tile that is adjacent to a “white”
tile, we attempt to move the robot onto it to determine
how to label it. This process repeats until no more
“unknown” tiles are reachable, which implies that the envi-
ronment has been completely explored.

A far more interesting filter and plan are given in [4].
Their filter maintains I-states that use only logarithmic
memory in terms of the number of tiles, whereas recording
the entire map would use linear memory. They show that
with very little space, not nearly enough to build a map, the
environment can nevertheless be systematically searched.
For this case, the I-state keeps track of only one coordinate
(for example, in the north—south direction) and the orienta-
tion, expressed with 2 b. A plan is defined in [4] that is guar-
anteed to visit all white tiles using only this information.

Moving to continuous spaces leads to the familiar
simultaneous robot localization and mapping (SLAM)
problem [7], [18]. For the localization problem alone, a
Kalman filter is used. In this case, the filter I-state is
1 = (i, X) in which pu is the robot configuration estimate
and X is the covariance. The Kalman filter computes tran-
sitions that follow the form (13). When mapping is com-
bined, each filter I-state encodes a probability distribution
over possible maps and configurations. The I-space Z
becomes so large that sampling-based particle filters are
developed to approximately compute (13).

A full geometric map is useful for many tasks; how-
ever, the I-space can be dramatically reduced by focusing
on a particular task. An example from [19] is briefly
described here. Consider a simple gap sensor placed on a
mobile robot in a polygonal environment, as shown in
Figure 15. Suppose the task is to optimally navigate the
robot in terms of the shortest possible Euclidean distance.
The robot is not given a map of the environment. Instead,
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it uses gap observations and records an association
between gaps when two gaps merge into one. It is shown
in [19] that this precisely corresponds to the discovery of
a bitangent edge, which is a key part of the shortest path
graph (alternatively called reduced visibility graph), a data
structure that encodes the common edges of optimal
paths from all initial-goal pairs of positions. The filter I-
state records a tree, shown in Figure 16, that indicates how
the gaps merged. The tree itself is combinatorial (no geo-
metric data) and precisely encodes the structure needed for
optimal robot navigation from the robot’s current location.
The robot is equipped with an action that allows it to chase
any gap until that gap disappears or splits into other gaps.
Using the tree, it can optimally navigate to any place that
it has previously seen. The set of all trees forms the filter
I-space Z from which distance-optimal navigation can
be entirely solved in an unknown environment without
measuring distances.

Challenges

Because of the wide variety of tasks and possible combina-
tions of sensors and control models, many challenges
remain to design planning algorithms by reducing the

Consider a robot placed in a simple polygon. (a) A
strong sensor could omnidirectionally seem to provide a
distance measurement along every direction from 0 to 2x. (b) A
gap sensor can only indicate that there are discontinuities in
depth. A cyclic list of gaps {g1,g2,93,94,gs} is obtained, with no
angle or distance measurements.

(b)

(a) The gap navigation tree captures the structure of
the shortest paths to the current robot location (the white circle
on the left). (b) The tree precisely characterizes how the
shortest paths to the robot location are structured.



complexity of the I-space. The overall framework involves
the following steps:

1) formulate the task and the type of system, which
includes the environment obstacles, moving bodies,
and possible sensors

2) define the models, which provide the state space X, sen-
sor mappings /i, and the state-transition function f

3) determine an I-space Z for which a filter ¢ can be prac-
tically computed

4) take the desired goal, expressed over X, and convert it
into an expression over 7

5) compute a plan 7 over 7 that achieves the goal in terms of Z.
Ideally, all these steps should be taken into account

together; otherwise, a poor choice in an earlier step could
lead to an artificially high complexity in later steps. Worse
yet, a feasible solution might not even exist. Consider how
steps 4 and 5 may fail. Suppose that in Step 3, a simple I-
space is designed so that each I-state is straightforward and
efficient to compute. If we are not careful, then Step 4 could
fail because it might be impossible to determine whether
particular I-states achieve the goal. For example, the open-
loop filter from the “Generic Examples” section simply keeps
track of the current stage number. In most settings, this pro-
vides no relevant information about what has been achieved
in the state space. Suppose that Step 4 is successful, consider
what could happen in Step 5. A nice filter could be designed
with an easily expressed goal in Z; however, there might not
exist plans that could achieve it. In the light of these difficul-
ties, one open challenge may be to design a decomposition,
better than the one in Figure 1, of the overall problem so that
information requirements are reduced along the way.

Note the sharp contrast between Parts I and II of this tuto-
rial. From the perspective of Part I, it is tempting to think
that motion planning is dead as a research field. Most of
the issues have been well studied for decades, and powerful
methods have been developed that are in widespread use
throughout various industries. However, differential con-
straints, feedback, optimality, sensing uncertainty, and
numerous other issues continue to bring exciting new chal-
lenges. In some sense, combining the components in Fig-
ure 1 leads to merging planning and control theory. Thus,
the subject of planning at this level might just as well be
considered as algorithmic control theory in which control
approaches are enhanced to take advantage of geometric
data structures, sampling-based searching methods, colli-
sion-detection algorithms, and other tools familiar to
motion planning. The wild frontiers are open, and there
are plenty of interesting places to explore.
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