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Abstract 

Recent outbreaks of highly pathogenic avian in-
fluenza A virus infections in poultry and humans 
have caused considerable concerns about a future 
influenza pandemic in humans. In order to prepare 
such an unavoidable pandemic incident, effective 
methods for detecting and identifying dangerous vi-
rus strains that are lethal to human life must be de-
veloped. For this purpose, we developed a Web tool 
called FluGenome for genotyping Influenza A vi-
ruses with genome sequences. This tool can effec-
tively detect known virus strains and identify new 
ones. However, it does not provide any other bio-
logical meanings to the genotypes. To annotate in-
fluenza genotypes effectively, we developed a geno-
type-centered database that stores various informa-
tion, including sequences, genotypes, outbreak in-
formation, as well as scientific literature, and ap-
plied information retrieval and text mining tech-
niques at the term, sentence, and abstract levels. 
Here we report a genotype-centered database in its 
design and implementation, and describe the pre-
liminary text-mining result of influenza genotype 
annotation. The preliminary result demonstrated 
that the information retrieval and text mining tech-
niques are valuable for the discovery of the knowl-
edge related to influenza genotypes. 

1. Introduction

Influenza is one of the most important emerging
and reemerging infectious diseases, causing high 
morbidity and mortality in communities (epidemic) 
and worldwide (pandemic) [1]. The influenza virus 
is an RNA virus and comprises three types: A, B, 
and C. The type A viruses are the most virulent hu-
man pathogens among the three influenza types and 

cause the most severe disease. The highly patho-
genic avian influenza A viruses are now causing 
worldwide concerns due to their recent transmission 
from poultry to humans, resulting in ~200 deaths 
from human infections [2-4]. 

Influenza A viruses are classified on the basis of 
antigenic properties of hemagglutinin (HA) and 
neuraminidase (NA) glycoproteins expressed on the 
surface of viral particles. This antigenic technique, 
however, has several disadvantages, including (1) 
the development of antisera and antigens is very 
time-consuming; (2) the outcome is heavily de-
pendent on the quality of the reagents used, and (3) 
the assay provides qualitative rather than quantita-
tive information [5]. Alternatively, sequence analy-
sis, a standard technique in most laboratories, is be-
coming a preferred method for classification [6, 7]. 
A vast number of genome sequences have been 
generated and stored in different resources (e.g., 
NCBI Influenza Virus Resource) [8]. What is miss-
ing in these resources is the lack of genotype infor-
mation, although such information is critical for 
classification and identification of new viruses [9]. 
This is mainly due to the complexity of the influ-
enza A virus genome which is constituted with eight 
separated gene segments.   

Recently, we proposed a nomenclature for nam-
ing influenza A viral genotypes [10]. This allows 
researchers to unequivocally describe influenza A 
viral genotypes to analyze, compare and communi-
cate the molecular epidemiology of the virus. With 
this nomenclature, we developed a bioinformatic 
tool called FluGenome for influenza A viral geno-
typing analysis. FluGenome identifies genotypes 
that arose by either genetic divergence within the 
same host or reassortments between different circu-
lation hosts. However, it does not provide any other 
biological meanings rather than “yes” or “no” an-
swers to the predicted genotypes. Such knowledge 
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is largely hidden in various types of data sets, par-
ticularly in scientific literature.  

As a functional description of a gene, annotation 
provides a useful combination of citations, com-
ments, notations, and references that together de-
scribe all the experimental and inferred information 
about a gene or protein. Annotations may also be 
applied to the description of other biological sys-
tems. Automated, batch annotation of bulk biologi-
cal sequences is one of the primary uses of bioin-
formatics tools. Information retrieval and text min-
ing provide effective ways to achieve such biologi-
cal annotation.  

This paper continues our previous work with an 
emphasis of using information retrieval and text 
mining techniques for annotation. The remaining 
part of this paper is organized as follows. In Section 
2 we describe the consolidated database developed 
by our research group. In Section 3 we describe the 
research methodology and in Section 4 we present 
the genotype annotation result. We discuss the fu-
ture work of this research in Section 5, with a focus 
on text mining for better annotation.  

2. A Genotype-centered Database for In-
fluenza Viruses

2.1. Database design and implementation 

The genotype-centered database was designed to 
integrate genotype data generated by our group and 
other existing data such as virus strains, vaccine 
data, outbreak data and literature information, cur-
rently scattered at several different sources into a 
single relational repository. Major genetic sequence 
databases related to influenza virus are summarized 
in Table 1. With respect to the genotype data, al-
though most resources listed in Table 1 provide fa-
cilities to create phylogenetic trees, none of them at-
tempts to store phylogenetic information, i.e., the 
lineages and genotypes designated for different in-
fluenza virus strains. The FluGenome database re-
cently created by our group complements this lack 
[10].   

Table 1. Major genetic sequence databases re-
lated to influenza A virus.  

Resource  Host Features 

Influenza 
Virus Re-

National Center for 
Biotechnology In-
formation (NCBI): 

Primary flu sequence database 
with some basic bioinformatic 

source http://www.ncbi.nl
m.nih.gov

tools.  

Influenza 
Sequence 
Database 
(ISD) 

Los Alamos 
National Laboratory 
(LANL) 

http://flu.lanl.gov/ 

Curated sequences for all users 
but tools for subscribed users 
only.  

Influenza 
Virus Data-
base 
(IVDB) 

Beijing Institute of 
Genomics (BGI) 

http://influenza.geno
mics.org.cn 

Annotated sequences with a 
variety of unique tools, e.g., 
sequence distribution and 
structure view.   

Bio-
HealthBase 

http://www.biohealt
hbase.org/GSearch/ 

An integrated resource for 
influenza virus. Incorporating 
with ISD, Reactome, Immune 
Epitope Database, and Analy-
sis Resource (IEDB). 

To make sense of our database design, we 
worked with CDC virologists and devised a ques-
tionnaire and distributed it to a number of virolo-
gists. Based on the feedbacks from experts in influ-
enza virus and our research on influenza literature, 
we designed a conceptual database model in such a 
way that facilitates not only information retrieval 
but also data mining and knowledge discovery. The 
entities (i.e., database tables) and their relationships 
are shown in Figure 1. The entities include Vi-
rus_Strain, Genotype, Outbreak, Vaccine, Genome, 
Segment, Nucleotide_sequence, Protein_Sequence, 
Location, Host, and Literature.  

Figure 1. ER diagram shows the structure of our 
genotype-centered database. Primary keys high-
lighted and the relationships denoted with solid 
lines.  

The database was created with the MySQL data-
base management system, and is currently hosted on 
a Linux server in Dr G. Lu’s lab at the University of 
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Nebraska at Omaha (Web address: http://bioinfo-
srv1.awha.unomaha.edu) [11].   

2.2. The genotype-centered database  

The sequence data was downloaded from the 
NCBI Influenza Virus Resource 
(http://www.ncbi.nlm.nih.gov/genomes/FLU/), 
whereas vaccine data was collected from LANL 
ISD (http://flu.lanl.gov/).  Literature data and out-
break data were collected respectively from Pub-
Med database, and WHO website. Genome and 
genotype data were from our FluGenome database 
(http://www.flugenome.org). Currently there are 
tens of thousands of records stored in the database. 
Note that there is a lack of vaccine and outbreak 
data in the database. We are currently working on 
this issue.      

Table 2. Number of records stored in major ta-
bles in the genotype-centered database. 

Table name # of records 
Virus strain 80289 
Nucleotide sequences 35839 
Protein sequences 44450 
Genome 2775
Genotypes 206
Vaccines 48
Outbreaks 82
Literature  1025* 

*flat files, to be integrated into the database

2.3. Web interfaces to accessing genotype 
data and other information 

Several Web pages are available for retrieving 
various types of information, including genome, 
genotype, sequence, vaccine, outbreaks, literature, 
database statistics, and glossary. In addition to the 
features described in [10], our current website sup-
ports basic queries, e.g., search by keywords, sero-
type, and/or country. In addition, the basic statistics 
of data stored in the database can be queried. In 
general, such statistics can be computed on the fly, 
but for the convenience of the use of our database, 
some frequently used queries have been pre-
computed and are readily accessed in the “Web que-
ries” section. Figure 2 shows an example of such 
pre-made query.  

Figure 2. An example Web query shows the 
number of amino acid sequences available for 
each continent.  

3. Method

We have applied information retrieval and basic
text mining techniques for annotating influenza 
genotypes. Our method contains the collection and 
management of text documents as well as the anno-
tation process itself.  

3.1. Managing text documents 

At the term level: 
(1) Collecting documents to establish the influ-
enza virus text base: We collected 1025 docu-
ments published in the journal Emerging Infectious 
Diseases (http://www.cdc.gov/ncidod/EID/) with 
the keywords search function in PubMed.  
(2) Entity extraction: This subtask involves extrac-
tion of names of biological objects related to geno-
types, such as virus, strains, etc. Porter’s stemming
algorithm [12] and a list of stop words are used to
obtain the controlled vocabulary.
(3) Calculating TF/IDF: The key idea behind
TF/IDF is that terms occurring frequently in the
document (which is reflected in term frequency, or
TF) but rarely in the rest of the collection (which is
reflected in inverse document frequency, or IDF)
are given high weights. A matrix of term TF/IDF
weights has been constructed from 1,025 research
articles related to influenza A virus using the similar
methods as described in [13].

At the sentence and abstract levels: Sentences and 
abstracts provide information of interest at two dif-
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ferent levels. We have developed algorithms to 
compute weights for each sentence (containing mul-
tiple terms) or even the entire abstract. For example, 
a simple way would be taking the average weight of 
terms appearing in one sentence or the entire ab-
stract. Let wim denote the TF/IDF weight for the mth 

term in document i, and kj the number of terms ap-
pear in sentence j of this document, then the weight 
of the jth sentence in this document Wij is calculated 
as  

Wij = (Σm=1
kj  wim)/kj.  

Similarly, if the total number of terms in document i 
is k, then the weight of this document Wi is calcu-
lated as 

  Wi = (Σm=1
k  wim)/k.  

The exact formula may be revised in the future.

3.2. General operations for retrieval and 
analysis 

 Although our main objective is annotation of in-
dividual genotypes, it is important to develop sev-
eral operations to provide a general picture of what 
these documents are about as detailed below. 

(1) Retrieval of the documents: We have devel-
oped functionality for Boolean retrieval against the 
stored documents. Given an AND/OR query, the 
module constructs inverted file indices based on the 
keywords involved in the query and produces a 
ranked list as the result.  

(2) Basic analysis of the documents: The follow-
ing are two examples: 

• Document clustering using Cluto (free soft-
ware developed at University of Minnesota 
http://glaros.dtc.umn.edu/gkhome/views/cluto); 

• Specific aspects learned from database/text
base, such as using basic data mining techniques to 
find associations between subtypes and the host in-
formation. 

3.3 Annotating genotypes 

The text mining techniques have been proven of 
great value in the discovery of knowledge hidden in 
literature [14, 15]. An effective way for the biologi-
cal annotation is through text mining (which is 
closely related to information retrieval, for storage 
and retrieval of unstructured data), or a combination 
of data mining and text mining techniques. Text 
mining can be used to improve the comprehensive-

ness and relevance of information retrieved from 
databases. Text mining can also be used to identify 
the elements of the infrastructure (including meta-
data) of a technical discipline such as influenza bio-
informatics. These infrastructure elements are the 
authors, journals, organizations and other group or 
facilities that contribute to the advancement and 
maintenance of the discipline. Additionally, text 
mining can provide their specific relationships to 
the total technical discipline or to sub-discipline ar-
eas. Text mining can also be used to identify techni-
cal themes, their inter-relationships, their relation-
ships with the infrastructure and technical taxono-
mies through computational linguistics. Based on 
the extracted information, it is possible to further 
conduct discovery from literature. There are differ-
ent kinds of literature-based discovery: examining 
relationship between linked, overlapping literatures, 
and discovering relationships or promising opportu-
nities that will not be found when read separately.  

Obtaining a good annotation for genotype-
centered database is a tremendous job, since it re-
quires a wide range of machine learning and natural 
language processing techniques. In order to effec-
tively handle this task, we consulted experts and 
conducted a thorough analysis of the overall annota-
tion process, which results in the pipeline for anno-
tation as shown in Figure 3. 

Figure 3. The pipeline of influenza genotype an-
notation.  

The genotype entry in the FluGenome database 
(http://www.flugenome.org) has information on 
Genome ID, strain name, genotype, and GenBank 
accession numbers for each gene segment, host, lo-
cation, serotype, and year, which provides a rich re-
source for text mining (Figure 3). The accession 
number links to the NCBI GenBank file for each 
genomic sequence. Within this file, there is a sec-
tion called Reference, which has citations of all 
published journal papers describing the sequence. 
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We use our text mining tools to abstract reasonable 
meanings for each genotype. This annotation will be 
added to each genotype.    

4. Annotation results

4.1. Documents collected for annotation  

We have obtained preliminary results for a num-
ber of genotypes and will use four genotypes as an 
example to demonstrate results obtained at each an-
notation step. Information of the genotypes and as-
sociated documents is summarized in Table 3. The 
number of documents, i.e., journal papers, available 
for analyses varies from genotype to genotype, 
peaked at 19 for [K,G,D,5J,F,1J,F,1E]. It was re-
vealed that this genotype is associated with avian 
flu, causing considerable concerns for future pan-
demic influenza in humans (see Table 6).   

Table 3. Document information of each geno-
type.  

  Genotype #* PubMed ID

[A,D,B,3A,A,2A,B,1A] 8 1093066, 1538036, 1620831, 
1731092, 6164798, 8774693,  
9725667, 9733841 

[K,G,D,5J,F,1J,F,1E] 19 12077307, 12610156, 
15148370, 15235128, 
15241415, 15659762, 
15663858, 15681421, 
15717120, 15731263, 
16007072, 16306617, 
16371632, 16473931, 
16525739, 16532371, 
16760384, 16935377, 
17251574 

[A,E,B,2A,A,2A,B,1A] 15 1275390, 1538036, 1643962, 
1733114, 1895397, 2041090, 
2398532, 2701939, 2795713, 
2800339, 2974219, 520584, 
6203216, 7483295, 7684877 

[G,G,E,5J,F,1G,F,1E] 11 10074191, 10769072, 
10920197, 11112478, 
11748666, 16532371, 
9430591, 9482438, 9658115, 
9882316, 9927579 

* number of documents.

4.2. Term-level text mining 

The Venn diagram shown in Figure 4 summa-
rizes the numbers of key terms extracted from the 
documents mentioned in Section 4.1 for the four 

example genotypes. A total of 113, 191, 166 and 
163 key terms were extracted respectively for the 
genotypes [K,G,D,5J,F,1J,F,1E],
[A,D,B,3A,A,2A,B,1A], [G,G,E,5J,F,1G,F,1E], and 
[A,E,B,2A,A,2A,B,1A]. On average approximately 
47 terms were found in each pair of genotypes, and 
19 terms found in any three genotypes. Eight terms 
appeared in all the four genotype. Interestingly, 
there are four terms “segments”, “genetic”, “ge-
nome”, and “molecular” more biologically mean-
ingful whereas the other four terms “analyses”, 
“distinct”, “similar”, and “occurred” are relatively 
less meaningful. This indicates that there is still 
room for the improvement of our mining algorithm.  

Figure 4. Venn diagram shows the number of 
key terms extracted from and shared between 
documents found to be associated with each 
genotype.  

4.3. Sentence-level text mining 

Our preliminary testing showed that a combina-
tion of two terms is more significant than other 
combinations, since only a few sentences were 
found with three or more terms combinations 
whereas too many sentences were found with only 
one term. The sentence-level mining revealed a total 
of 69 sentences of interest (Table 4). Interestingly, 
the pairwise terms employed for the mining are all 
biologically meaningful, which indicates these sen-
tences are valuable for the annotation of genotypes. 
The weights of sentences vary from 0.09 in the 
paired terms “phylogenetic” and “segments” to 3.81 
in “Swine” and “virus”. Twenty sentences were 
found containing “Swine” and “virus,” indicating 
swine is of certain significance related to influenza 
virus.     
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Table 4. Summary of sentence-level text mining.  

Genotype Terms # sen-
tences 

Weight 

[A,D,B,3A, 
A,2A,B,1A] 

Genetic, evidence 3 0.46 

Phylogenetic, segments 1 0.09

Nucleoprotein, poly-
merase 

2 0.24

Ancestral, virus 2 0.29

Amino acid, serotypes 2 0.20

[K,G,D,5J, 
F,1J,F,1E] 

Neurovirulence, geno-
types 

1 0.25

Goose, virus 4 0.86

Pandemic, influenza 4 1.27

Phylogenetic, avian 3 0.41

 Respiratory, chicken 1 0.11

 Antigenic,virus 4 0.66

[A,E,B,2A, 
A, 2A,B,1A] 

Isolate, influenza 3 0.81 

Mutations, gene 2 0.25

neuraminidase, se-
quences 

2 0.37

Swine, virus 20 3.81

[G,G,E,5J, 
F,1G,F,1E] 

Evolution, virus 6 1.01 

Glycoproteins, influ-
enza 

2 0.32

Neuraminidase, hemag-
glutinin 

3 0.33

Tracheal, isolate 2 0.42

Glycosylation, se-
quences 

2 0.22

4.4 Abstract-level text mining 

A total of 32 abstracts were found containing 
two or more key terms described in 4.2 (Table 5). 
This translates approximately 60% (32/53) of the 
original documents are valuable for genotype anno-
tation. The number of terms contained varies from 
abstract to abstract, with a maximum value of 6. All 
abstracts revealed at this step are useful for the 
genotype annotation. However, the abstracts with 
more terms and with higher weights are most im-
portant; and they require more attention.    

Table 5. Summary of abstract-level text mining. 

Genotype Term PubMed 
ID 

Weight 

[A,D,B,3A, 

A,2A,B,1A] 
Genetic, evidence, ances-
tral, virus 

15380362 0.36 

Genetic, evidence, phy-
logenetic, segments, 
nucleoprotein, poly-
merase 

9733841 0.29 

Nucleoprotein, poly-
merase 

10930664 0.10 

Amino acid, serotypes, 
nucleoprotein, poly-
merase 

1731092 0.12 

Amino acid, serotypes, 8774693 0.12

[K,G,D,5J, 

F,1J,F,1E] 
Neurovirulence, geno-
types, goose, virus 

12077307 0.20 

Neurovirulence, geno-
types 

12610156 0.31 

goose, virus 16532371 0.30

Goose, virus, antigenic,  
virus 

16760384 0.33 

Pandemic, influenza 15148370 0.11

Pandemic, influenza 15241415 0.18

Pandemic, influenza, 
antigenic,  virus 

16473931 0.25 

Phylogenetic, avian, 
antigenic,  virus 

15235128 0.14 

Phylogenetic, avian, 
respiratory,  chicken 

15731263 0.10 

Phylogenetic, avian 17251574 0.10

[A,E,B,2A, 

A,2A,B,1A] 

Isolate, influenza 12753908 0.15 

Isolate, influenza, muta-
tions, gene 

16439620 0.37 

Isolate, influenza 2701939 0.82

Isolate, influenza, swine, 
virus 

2800339 0.22 

Mutations, gene 2974219 0.37

Neuraminidase, se-
quences 

1733114 0.35 

Neuraminidase, se-
quences 

7483295 0.62 

Swine, virus 1895397 0.18

Swine, virus 2041090 0.09

Swine, virus 2398532 0.07

[G,G,E,5J, 

F,1G,F,1E] 
Evolution, virus, glyco-
proteins, influenza 

10074191 0.19 

Evolution, virus 10769072 0.16

Evolution, virus, neura-
minidase, hemagglutinin, 

9927579 0.45 
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glycosylation, sequences 

Glycoproteins, influenza, 
neuraminidase, hemag-
glutinin, glycosylation, 
sequences 

9882316 0.17 

Neuraminidase, hemag-
glutinin 

10920197 0.05 

Tracheal, isolate 9430591 0.16

Tracheal, isolate 9482438 0.13

4.5 Making sense of genotypes 

Combining automatically extracted sentences 
and abstracts with our manual editorial work, we 
obtain annotations for these genotypes. The annota-
tion of the four example genotypes is shown in Ta-
ble 6. These genotypes are associated with different 
subtypes and hosts. Another finding is that these 
genotypes arose through reassortment events and 
have caused either human influenza pandemics or 
avian influenza outbreaks (Table 6). With the text 
mining techniques, we are able to annotate influ-
enza virus genotypes by assigning them the biologi-
cal meanings.     

Table 6. Annotation of four genotypes exampled 
in this report.    

Genotype Annotation 
[A,D,B,3A, 
A,2A,B,1A] 

Subtypes: H3N2. 
Hosts: Human and Swine. 
Evolution: Multiple reassortment events in-
volved. 
Outbreaks: human pandemics, 1967 - 1968 
Hong Kong Flu. 
Representative virus strain: A/Hong 
Kong/1/68. 
References (PubMed ID): 15380362, 
9733841, 10930664, 1731092.    

[K,G,D,5J, 
F,1J,F,1E] 

Subtype: H5N1. 
Hosts: Avian, Human, Swine, Canine and 
Feline. 
Evolution: Reassortment events involved  
Outbreaks: Poultry in 2003-2004. Newly 
emerging highly pathogenic H5N1 viruses 
provide cause for human pandemic concern.  
Representative virus strains: A/Hong 
Kong/212/03 
References (PubMed ID): 12610156, 
16760384, 16760384, 15148370, 1647393, 
15235128, 16473931 

[A,E,B,2A, 
A,2A,B,1A] 

Subtype: H2N2. 
Hosts: Human. 
Evolution: Arose through reassortment with 
the previous human genotype and new lineages 
from an unknown, but likely avian, source. 
Outbreaks: human pandemics, 1957 - 1958 
Asian Flu.  
Representative virus strains: A/Chile/13/57. 
References: 2701939, 2974219, 1733114, 
7483295. 

[G,G,E,5J, 
F,1G,F,1E] 

Subtypes: H5N1 
Hosts: Avian and Human 
Evolution: Reassortment events involved. HA 
gene seems to be well adapted to domestic 
poultry while the rest of the genome arises from 
a different source. The consensus amino acid 
sequences of "internal" virion proteins reveal 
amino acids previously found in human strains, 
indicating these human-specific amino acids 
may be important factors in zoonotic transmis-
sion. 
Outbreaks: Associated with the "bird flu" 
incident in Hong Kong in 1997. 
Representative virus strains: A/Hong 
Kong/156/97. 
References: 10074191, 10769072, 9927579, 
9430591, 12077307, 9482438. 

5. Discussion

Although we have done substantial work, due to
the complexity and the large scope of overall task, a 
lot of work remains to be done. There are some ba-
sic aspects related to information retrieval, such as 
those related to evaluation, including measurement 
and improvement of precision and recall. 

As a particular important note, here we show 
evidence that the text mining techniques are valu-
able for biological knowledge discovery. There are 
a couple of issues that need to be considered for the 
improvement of mining results, which are: (1) how 
to come up with highly qualified term lists for anno-
tation, (2) how to score the text mining results, and 
(3) how to abstract and produce “artificially intelli-
gent” (AI) summary for each genotype. The first is-
sue is essentially a sub-problem related to how to
define ontology and refinement of ontologies, this is
a more advanced problem of mapping/alignment of
multiple ontologies for better annotation. For the
second issue, currently we used pairwise terms for
searching and assign a weight for each query result
at the sentence level, and used two or more terms
for the abstract level mining. As for the third issue,
some AI techniques might be useful, which is an
area worth exploring. This includes incorporation of
natural language processing techniques, as well as
various text mining methods such as inference of re-
lations for genes, genotypes or other biological ob-
jects which are not in the same file.

The research reported in this paper is an ongoing 
long-term project. As for future directions of this 
research work, we would like to pursue the follow-
ing tasks: (1) annotating all genotypes achieved in 
the FluGenome database semi-automatically (i.e., in 
silico mining plus manual validation); (2) develop-
ing algorithms that will reduce manual efforts in 
reading abstracts and sentences for the annotation of 
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a given genotype; and (3) disseminating the annota-
tion results through the FluGenome website.  

6. Conclusion

In this paper we described our ongoing work of
developing a genotype-centered database and anno-
tating genotypes through text mining techniques. 
The preliminary results demonstrated that the in-
formation retrieval and text mining techniques are 
valuable for the discovery of the knowledge rele-
vant to influenza genotypes. Other related subtasks, 
such as development of flu ontology and document 
clustering, will be reported in companion papers. 
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