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Immunology and Disease 

Control: A Systems Approach 
Alexander L. Asachenkov, Gurij I. Marchuk, Ronald R. Mohler, Fellow, IEEE, and Sergei M. Zuev 

Abstract-The application of system theory (or more precisely, 
differential equations) to immunology and disease, in general, is 
presented here. Particular results from U.S.-Russian research col­
laboration depict the potential role of such systematic analysis for 
more effective health care and disease control. In particular, some 
emphasis is given to control of influenza. After a brief systematic 
overview of immunology, a simple infectious disease model is 
developed to explain four basic forms of disease: subclinical, 
acute, lethal and chronic. Then, disease treatment is studied. 

NOMENCLATURE 
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Concentration of virus-infected cells. 
Concentration of all cells sensitive to the virus. 
Concentration of generalized antibodies. 
Cv growth rate coefficient. 
V growth rate coefficient from Cv . 
Effecter-cell concentrations. 
Lymphocyte concentration. 
Relative degree of damage to organ eliciting im­
munity. 
Concentration of generalized germs or viruses. 
Combined coefficient of rate of stimulation and fis­
sion of plasma cells. 
i = 1, ... , 12, convenient parameters in trans­
formed equation. 
Germ rate of growth coefficient. 
Germ rate of binding coefficient. 
Cv-Le binding coefficient. 
Viral V-F binding coefficient. 
Antibody rate of binding coefficients. 
Plasma cell death rate coefficient. 
Natural Cv death rate. 
Natural antibody death rate. 
Natural aging coefficient of organ. 
Natural viral death rate. 
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Damage coefficient of generalized plasma cell pro­
duction. 
Generalized antibody production rate coefficient. 
Disease damage coefficient to organ health state. 
Generalized antibody damage to organ health state. 
Delay time in sufficient cell stimulation. 
Designates normal equilibrium. 
Designates initial values. 

l. INTRODUCTION

T
HE OBJECT of this paper is a tutorial overview of
recent results on disease dynamics and control. It is 

suggested that systems analysis and control theory may play 
an increasing role in more effective patient health care. In 
particular, ordinary differential equations and their dependence 
on certain parameters form a building-block, mathematical 
synthesis of the immune system which is amenable to the 
study of health state maintenance. Then, an antiviral immune­
response model is derived, and analyses made of influenza. 
Statistical estimation of influenza model parameter and state 
is obtained from patient data. 

A good base for this paper is given by a tutorial paper 
on immunological systems [l], which studied the dynamics 
of cellular fission and chemical reactions. Some emphasis was 
given to the humoral process and the subsequent generation of 
antibodies which, in turn, can lead to certain alien destruction. 
The disease dynamics, however, were not studied in this 
former paper. 

Details of basic immunology and its systematic analysis 
are presented in [l]-[15]. While our detailed knowledge of 
immunology is constantly improving, the basic principles of 
biochemistry, upon which immunology is based, rarely change. 
This allows us to form a reasonable model structure upon 
which to add complexity according to questions addressed 
and data available. 

The immune system is the set of lymphoid organs and 
cells that contains the thymus, spleen, liver, lymphatic nodes, 
Peyer's patches, lymphocytes of bone-marrow derivation and 
peripheral blood. All these represent the connected "diffuse" 
organ with mass about 1.5-2 kg. The total number of lymphoid 
cells is approximately equal to 1012 . 

The main aim of the immune system is the defense of 
the organism from agents with properties of genetically alien 
information ( such as bacteria, viruses, proteins, tissue and 
transfonned own cells, such as tumor cells). The immune 
system generates cells and molecules to bind and destroy 
the alien. These defenders are circulated throughout the body 
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organs by the bloodstream to virtually all tissue; they are 
appropriately processed in their migration and recirculated 
back through the lymphatic vessels. The generation of these 
defender cells and molecules is termed the immune response. 
Any alien substance which is able to induce such a response 
is a form of antigen. Antigen can occur free as well as bound, 
such as to immune system molecules which may be free or on 
the surface of cells. It should be noted here that every living 
cell presents antigens on its surface membrane and in its core. 

A class of white blood cells called lymphocytes is dedicated 
to immunity. These cells of the immune system circulate in the 
body and are present in high concentration in certain lymphoid 
organs, such as spleen and lymph nodes. Since about IO1' 
lymphocytes circulate in the blood with a correspondingly 
broad diversity of antigen recognition receptors, the immune 
system can recognize and respond to virtually any antigen 
that may penetrate the organism. Any such antigen has some 
finite probability of meeting in the blood a lymphocyte that 
recognizes it automatically. With a series of stimulations of 
differentiations and generation of antibody molecules, such 
recognition leads to the development of an immune response. 

During the immune response, the molecules and the cells 
of the immune system interact with each other as well as 
with other cells and molecules of the organism. Therefore, 
to model this process, we can use the principles of cellular 
and molecular kinetics. 

As discussed above, cellular and molecular kinetics are 
the basis of the entire immune process. These processes are 
quite well defined from conservation equations and chemical 
mass-action principles. In general, the cellular population (or 
concentration), x;, of the ith class may be described by 

dz; - source rate - death rate + division rate 
d t  + rate differentiation to - rate differentiation from. 

( 1 )  
An mth class of molecular concentrations, ym, may be de- 
scribed by 

- - 

molecular rate - net death rate 
- = + dissociation rate of appropriate complexes 

- association rate of appropriate complexes. 
(2) 

dym 
dt 

11. A SIMPLE MODEL OF INFECTIOUS DISEASE 

In this section, we study a mathematical model of a disease, 
which was proposed by Marchuk [16]-[19], and studied by 
Asachenkov [20] and Belykh [21], [ 2 2 ] .  This model is only a 
crude approximation and generally requires further refinement. 
However, even in this form, it enables us to bring various 
factors essential to understand the dynamics of an infectious 
disease. It is also possible that separate results of the theory 
can be used for finding effective methods of treatment. 

A. Model Development 

The model is constructed on the basis of equilibrium re- 
lations for each component of the immune system. For this 
simplest model, we follow the general conservation equations 
((1) and (2) ) ,  and assume a basic humoral response [ 2 ] .  
However, the so-called cellular response is similar with both 
involving lymphocytes and secreted molecules. Consequently, 

we call these molecules antibodies. This is reasonable since 
appropriate T cells and macrophages secrete active molecules 
similar to the secretion of antibodies by B cells of the 
humoral component [2]. We assume the presence of sufficient 
activation by cellular components, and confine ourselves to 
considering three components: antigen, antibody, and plasma 
cells for generated antibodies. We refer to the stimulators 
of an infectious disease (antigens) as germs (a popular form 
including viruses, bacteria, etc.), placing no precise biological 
meaning to this term. Therefore, in the model, the germ is 
a multiplying pathogenic antigen. It should also be noted 
that during illness the degree of organ damage subject to the 
disease (antigens) is of great significance, since it leads, in 
the final analysis, to lower activity of the immune system. 
This phenomenon should be accounted for in the mathematical 
models. 

Note that the simplest mathematical model in this inter- 
pretation permits distinct variations which can help us to 
find probable explanations of some important features of the 
operation of the immune system: formation of subclinical, 
acute and chronic disease processes and their possible therapy. 

The essence of the immune response to an invasion of 
genetically different substances (antigen), including the disease 
stimulants, is production of specific material substances (anti- 
body molecules, cell-killers) which are capable of neutralizing 
or destroying this antigen. In these terms, an infectious disease 
can be interpreted as a confrontation between the population 
of disease stimulants and the body's immune system. In this 
connection, as a first step, we distinguish the following main 
characteristics of disease: 

1 )  Concentration V ( t )  of generalized germs. By germs we 
mean multiplying pathogenic antigens. 

2) Concentration F ( t )  of generalized antibodies. By an- 
tibodies we mean substrates of the immune system, 
neutralizing germs (immunoglobulins, cell receptors, in- 
terleukins, etc). 

3) Concentration C ( t )  of generalized plasma cells. This 
is the population of carriers and producers of antibod- 
ies (here including plasma cells, all immuno-effective 
molecular producers). C* designates the normal constant 
concentration. 

4) Relative characteristic of a damaged organ m(t). 
The nonlinear models which are presented here are not only 

valid for small deviations from equilibria. As for any model, 
on the other hand, they are only as valid as the underlying 
immunological assumptions presented. 

It is a simple matter to derive the disease dynamics from 
the conservation of matter equations ((1) and (2)) in Section 
I. Consequently, the model is a system of nonlinear ordinary 
differential equations 

(3) 

(4) 
dC 
- dt = I(m)c-rV(t - T)F( t  - 7) - pc(C - C*),  

Q ,  p, y, 71, p ,  p,, p f ,  C*, and r are constants defined below. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 07,2024 at 22:25:50 UTC from IEEE Xplore.  Restrictions apply. 



ASACHENKOV et al.: IMMUNOLOGY AND DISEASE CONTROL 945 

Delay time, 7 ,  is introduced in (4) to approximate missing 

ulation. Here, immunocompetent and memory cell dynamics 
are neglected, and T is used to account for this delay in the 
generation of antibody-producing plasma cells. Usually, for 
equations with delay, the initial conditions are given on an 
interval [to - 7,t0] .  However, in the biological sense of the 
described processes, until the moment of infection t = t", 
there were no germs in the organism: V ( t )  0 for t < to; 
and therefore, the initial conditions can be given at the point 
to. In what follows, when we speak of initial conditions for 

4 
dynamic components such as resulting in plasma cell stim- gm) 

c 
m* m 

equations of this kind, we mean v( j )  E 0 for t < t o .  We have Fig. 1. 
relative damage to organ; i 7 i *  is its critical value. 

Decrease of antibody production for severely damaged organs. m is 

V ( t )  = 0 for t E [-7.O] 
V ( P )  = vo > 0, C(t0) = CO > 0: 

F ( t o )  = F o  > 0. (6) 

Equation (3) describes the change in the number of germs 
in the organism. We assume the exponential growth of viruses 
with coefficient ,f3. The term yFV in (3) and ( 5 )  designates 
the number of antigens neutralized by the antibodies F ;  y is 
the coefficient connected with the probability of neutralization 
of the germs by the antibodies upon an encounter. No delay is 
introduced in (3) and ( 5 )  since it is negligible in these cases 
due to more direct reactions. 

Equation (4) describes the growth of plasma cells. To this 
end, we take advantage of the simplest hypothesis on the 
formation of a cascaded population of plasma cells. The 
immunocompetent B lymphocyte is stimulated by an antigen 
coupled with receptors of the 7' cell, and initiates the cascade 
process of forming cells which synthesize the antibodies 
neutralizing antigens of this kind. Since, in our model, by 
antibodies we mean the substrates capable of binding with 
germs (including possibly T cell receptors), the number of 
lymphocytes stimulated in this way are assumed proportional 
to V F .  Therefore, we arrive at the relation describing the 
increment of plasma cells over a normal level C* which is 
the constant level of plasma cells in a normal organism. The 
first term on the right side of (4) describes the generation 
of plasma cells; T denotes the time during which a cascade 
of plasma cells is formed; (Y denotes the coefficient allowing 
for: the probability of an encounter of "antigen-antibody," the 
stimulation of the cascade reaction, and the number of newly 
generated cells. The second term describes the decline in the 
number of plasma cells due to aging; pc is the coefficient equal 
to the inverse of the plasma cell's lifetime. 

To obtain (3, let us calculate the balance of the number of 
antibodies reacting with antigens. The first term, p C ,  on the 
right describes the generation of antibodies by plasma cells; p 
denotes the rate of production of antibodies by one plasma 
cell. The second term, p f F ,  describes the decrease in the 
antibody population due to aging, where i L f  is the coefficient 
inversely proportional to the time of decay of an antibody. The 
third term, q-yFV, describes the decrease in the number of 
antibodies due to binding with antigens: r/ denotes the number 
of antibodies needed to neutralize a single antigen. 

Equations (1)-(5) do not account for the weakening of 
the vital activity of the organism during illness, which is 

caused by the fall in the activity of organs responsible for 
providing immunologic material: leukocytes, lymphocytes, 
antibodies, etc., needed for the struggle with the multiplying 
viruses. Let us adopt the hypothesis that the productivity of 
such organs depends on the amount of damage to the target 
organ. To this end, we consider an equation for the relative 
characteristic of damage to the target organ. Let M be the 
characteristic of a normal organ (mass or volume), and let 
MO be the corresponding characteristic of a normal part of 
the damaged organ. Then m = 1 - (M/Mo)  designates the 
relative characteristic of damage to the target organ. For the 
intact organ m is zero, and for the completely damaged organ 
m is one. For this characteristic, we consider the conservation 
equation 

(7) 

where m(to) = 0, and the first and last terms on the 
right represent the degree of damage to the organ from the 
germs and the antibodies, respectively. The latter is caused 
by antibody's nonspecific attack on organ tissue. rs and of 
are special constants for each particular disease. A decrease, 
in this characteristic, is due to the recuperative capacity of 
the organism. This term depends on m with a proportionality 
coefficient pm, characterizing the inverse of the recuperation 
period of the organ by e times (i.e., the organ-damage time 
constant). It is clear that for severely damaged vital organs, 
the productivity of antibody production drops. This drop can 
be fatal for the organism. In many cases, fatality is caused 
exactly by this factor. In our model, the damage factor of vital 
organs can be accounted by product cu[(m). A typical graph 
for the function [(m) is presented in Fig. 1, where [(m) on 
the interval 0 5 m 5 m* is equal to one. This means that the 
efficiency of the immunologic organs in this interval does not 
depend on the severity of the illness. But for m* 5 m 5 1, 
their productivity sharply falls, which corresponds to the linear 
segment of the curve in this interval. The slope of this segment 
of the curve as well as the quantity m* will be different for 
different diseases. The qualitative nature of this damage factor 
agrees with observed patient response in a crude sense. 

We bear in mind that, in our model, we have a joint 
population of immunocompetent and antibody-producing cells 
C( t ) .  In the absence of viruses in the organism, C ( t )  = C* > 
0; i.e., G* is, in fact, the normal level of immunocompetent 
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cells in a normal organism. If such cells are absent, i.e., 
C* = 0, the organism is tolerant to a given antigen. However, 
it may turn out that the organism has no receptor specific for 
a given antigen, and consequently has no immunocompetent 
cells to oppose it. In such cases, it still is possible that the 
reaction involves immunocompetent cells with specifically 
similar receptors capable of awakening some immune response 
to this antigen. We assume that the organism has a nonzero 
level of cells C* with their own receptors of population F* 
capable of causing immune reaction. We shall identify this 
case with the one mentioned above. More refined trigger 
mechanisms of immune reaction can be traced only on more 
complex mathematical models. 

So, according to the model, the disease process is described 
as follows. At the moment of infection to = 0, a small 
population of germs V o  penetrate into the body and begin to 
multiply and injure cells of the target organ. Some portion of 
the germs bind with the receptors of the immunocompetent 
cells (with antibodies), and this leads to immune system 
stimulation resulting in the formation of a large population 
of plasma cells during the period of time T .  These plasma 
cells begin to produce antibodies which neutralize the germ 
population. An outcome of the disease is determined by the 
outcome of this competition. If the germs can damage the 
organ severely during the formation of the immune response, 
the general condition of the organism deteriorates and, as 
a result, the immune response becomes less efficient. The 
antibody production declines, and so does the probability of 
recovery. 

Since germs are composed of competing species, V from 
one species actually destroys that of another and does indeed 
improve the organ's health state. Such cross-linking of germ 
species is neglected here. Also, it is assumed that the effect of 
antibody damage is included in that of the virus (i.e., af = 0). 

The following conclusions, which are mathematically and 
biologically significant, have been rigorously proven from the 
above assumptions [6], [22 ] .  

1) For all t 2 0, there exists the unique non-negative 

2 )  The stationary solution, healthy state 
solution of (3)-(5) and (7) with initial conditions (6). 

vi = 0, F1 = p C * / p f  = F * ,  C1 = C, ml = 0. (8) 

is asymptotically stable if 0 < r F * ;  in this case, at 
Fo = F * ,  CO = C*,mO = m* if the inequality 
(infected zone of attraction to healthy state) 

P)f(YF* - PI o<vo<v*= 
P77Y 

is valid, then V ( t )  < V0epat  where a = YpC*/(pf - 

This estimate V* has been called the immunological 
barrier against given types of germs. If germs cannot 
get over it (Vo < V*) ,  no disease occurs since the 
germ population is removed from the body in the course 
of time. The model (6) has another stationary solution 
which may be interpreted as a chronic form of disease. 

qyV0) - p > 0. 

Fig. 2. The possible form of disease: 1-subclinical; 2-acute; 3-lethal; 
4-chronic. V is germ concentration. 

3) The stationary solution (chronic disease state) 

is asymptotically stable if 

where 

a: = P c  + Pf + rlYVZ, 
b = Pc(rlYv2 + P f )  - rlYPV2, 
d = PcWPV2, 

9 = WV2, 
f = PWV2. 

In the case cr -+ CO, the second condition from (10) can 
be reduced to the inequality 

r 1 1-1 

It is proven that, even in the case of a highly sensitive 
immune response cr + CQ, a stable chronic form of 
disease is possible. Therefore, from the mathematical 
model, we can establish the conditions for the develop- 
ment of the different forms of disease course. This can 
be useful for disease treatment. 

B. Diseuse Simulations 

The infection of the healthy body by a small dose of 
germs is simulated with appropriate initial conditions: V(0)  = 
V o  > 0, F ( 0 )  = F * ,  C(0) = C*, m(0) = 0. This simulation 
shows that there exist four qualitatively different types of 
solutions, which were interpreted as disease forms: subclinical, 
acute with recovery, chronic, and lethal outcome. They are 
diagrammed in Fig. 2. 

A subclinical form of disease develops under the conditions 
of Statement 2 above; it is characterized by a stable removal 
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t 

Fig. 3. Subclinical form of disease: (a) normal immune system a p  > pc7)-,: 
(b) immunodeficiency ap < p c q l .  V* is an immunological barrier for germ 
concentration. 

of the germs from the body (curve 1). The characteristic of 
the acute form with recovery is a particular dynamic behavior 
of germs: first, a fast proliferation of germs or viruses during 
several days and then, a drastic contraction, practically to zero, 
due to a powerful immune response (curve 2). The chronic 
form of the disease is characterized by a persistent presence 
of germs in the body (curve 4); it arises especially under the 
conditions of Statement 3 above. The unlimited growth of 
germs in the body and the entire damage of the organ are 
characteristic of lethal outcome (curves 3). 

We now go on to a more detailed description of numerical 
experiments simulated for a particular form of the disease and 
also discuss their biological implications. 

Subclinical Form of Disease: The simulation results for the 
case when p < yF* are represented in Fig. 3. Here, two 
situations are distinguished: 

a) cup > pcqy that corresponds to normal functioning of 
immune response, and 

b) a p  < pcqy that corresponds to immunodeficiency state. 
For infection doses smaller than the immunological barrier 
(Vo 5 V*),  the character of germ or virus removal from the 
body depends neither on the infection nor the power of the 
immune response (Fig. 3, curves 1 and 2) .  This elimination of 
germs is possible due to the constant level of antibodies F*.  
This situation seems to correspond to daily contact of the body 

with small doses of antigen which penetrate into the body by 
respiration or with food. 

With an essentially higher dose of infection relative to the 
immunological barrier, the power of the immune response 
begins to play a major role. The efficient (normal) immune 
response is able to prevent an infectious disease (Fig. 3(a), 
curve 4). With a weak immune response, the germs penetrate 
through the immunological barrier (Vo > V*) ,  which leads 
to death (Fig. 3(b), curve 3). Thus, the immune resistance of 
persons with normal immune system (cup > p,qy) is much 
higher than in immunodeficient patients, who, naturally, are 
more susceptible to infection. 

The case, p < y F * ,  can be interpreted as a vaccination of 
a healthy body by weakened living antigens. The vaccination 
is meant to provoke a powerful immune response with the 
purpose of an essential accumulation of memory cells. Ac- 
cording to our model, it is equivalent to an increasing level of 
immunocompetent cells C* constantly present in the healthy 
body (as memory cells), and thereby to a rising immunological 
barrier V*.  The effect of vaccination is determined by the 
injected doses of antigen, as well as by the condition of the 
immune system. The simulation shows that injections of doses 
smaller than the immunological barrier have only negligible 
effect because, in this case, the antigen is removed from the 
body stimulating no immune response at all, or only a weak 
response. In neither situation is there an essential accumulation 
of memory cells. On the other hand, injections of larger doses 
(Vo > V*) into the organism with normal immune system 
( u p  > pcq-y) stimulate a strong immune response and lead 
to desirable results in treatment, whereas the vaccination of 
immunodeficient patients by high doses can cause a serious 
form of the disease (Fig. 3(b), curve 3). 

Acute Form of Disease: Simulation results of an acute 
form of disease with recovery in the case of a normal immune 
system (ap  < pcqy) are presented in Fig. 4(a). This form 
of disease occurs when 0 > r F * ,  and hence there is no 
immunological barrier to the stimulant of disease. As we 
noted earlier, the characteristics of this course of illness are: 
rapid (during several days) growth of germs and viruses in 
the body until their number substantially exceeds the value 
of the infective dose, and rapid elimination of antigens from 
the body. The reason is twofold: 1)  a high rate of germ 
multiplication leading to fast accumulation of them in the 
body, and 2)  the effective immune response caused by the 
accumulated antigenic mass. 

Fig. 4(a) illustrates the course of an acute form of disease 
depending on the rate of germ multiplication p and infective 
dose V o .  The higher the multiplication rate at a given infective 
dose, the higher the maximum quantity of germs, the faster 
they reach it and the faster the process terminates. This is 
explained by the fact that high infective dose or high rate of 
multiplication enable the germs to reach the amounts which 
effectively stimulate the immune system in a short period of 
time, and as a result, the powerful immune system becomes 
capable of resisting the infection. 

It appears that under other circumstances, the maximum 
level of germs depends very little (practically independent) 
on infective dose (see Fig. 4(b)). We obtained the estimate of 
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O t  - 
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t 

(C) 

Fig. 4. Acute form of disease: (a) dependent on I-" and reproduction rate 
3; (b) independent of maximal infection dose; (c) dependent on the organ 
damage 0.  is infective germ dose with levels \io and 

this maximum VmaX, which is independent of Vo 

where 

f E ( F * , P / r ) ,  a! = P - rf; 9 = q fe -a ' (Pc  + 4-1 
In Fig. 4(b), we choose f = (F*  + P/y)/2. Hence, in the 

case of acute form of disease, the value of the "peak of the 
disease" is independent of infective dose but determined by the 
immune characteristics of the organism, with respect to germs 
of a given type (the set of model parameters). The infective 
dose influences the moment of reaching the peak: the smaller 
the Vo, the later the peak is reached. 

Fig. 4(c) demonstrates possible changes in the acute form 
with increasing coefficient of organ damage 0. As a result of 
the organ damage, Fig. 4 demonstrates that the acute form can 
tum into a chronic one (curve 2) ,  into a chronic form with 
unpredictable outcome (curve 3), or chronic form with lethal 
outcome (curve 4). The possibility of such transition is due to 
the fact that, because of damage, the general condition of the 
body deteriorates, which makes the efficiency of the immune 
response decrease and the antibody production fall. Therefore, 
to prevent transition of the acute form into the more serious 

(b) 

Fig. 5. 
dependence on virus reproduction rate /3:01 < 0 2  < $3. 
represent different infection doses. 

Chronic form of disease: (a) dependence on infection dose V o ;  (b) 
V,,  z = 1 , .  . . ,4, 

form, the treatment is to be aimed at either lowering the germ 
pathogenicity or to protecting the organ against damage. 

Chronic Form of Disease: We have already noted the pos- 
sibility of the occurrence of chronic form from acute infection, 
with serious organ damage (Fig. 4(c), curve 2). Now, we deal 
with other kinds of stable chronic forms occurring especially 
under the conditions of Statement 3 above. Characteristic of 
such typical chronic form is the flaccid dynamics of germs 
relative to the acute form. In this case, the passive germ 
dynamics lead in time to equilibrium between amounts of 
newbom germs and those neutralized by disease stimulants. 
Their concentration tends to a stationary level V2. With an 
increase of infective dose above V2, the dynamics of disease 
stimulants are more pronounced and the transition into the 
acute form with recovery becomes possible (Fig. 5(a), curve 
3 ) .  The efficiency of the immune response can be enhanced by 
injecting higher infective doses. An analysis of the dependence 
between the course of the chronic form of disease and the 
infective dose of weakly pathogenic germs has brought us to 
the following conclusions: 1)  It is possible to treat a chronic 
form of disease by exacerbation (essentially increasing the 
number of germs in the body). 2 )  It is not reasonable for the 
immune system to react to small doses of germs in order to 
prevent a chronic form of disease. A study of dependence of 
the course of chronic form on a germ multiplication rate (see 
Fig. 5(b)) proves the existence of a stable periodic solution 
(curve 2)  and establishes that the treatment of the acute form 
using drugs, to decrease the multiplication rate, promotes 
chronicity of the disease process. 

The Origin of Chronic Forms and Their Possible Treatment: 
A hypothesis on the immunological origin of forms has been 
proposed by Marchuk and Belykh [19]: chronic forms of 
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vt 
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t 

I * 
4 rz 12 t 

Fig. 6. The rise of chronic form from acute. Dynamics of infectious process 
are depicted by a solid line. Biostimulators have been injected during 23 
days at an interval At = 1 day. V is germ concentration and F is antibody 
concentration. 

disease are due to weak stimulation of the immune response. 
This hypothesis is based on the following premises. In the 
framework of the model, the disease outcome (chronization or 
recovery) depends on the width of an interval ( t l ,  t z )  at which 
the concentration of viruses is decreasing, and consequently 
d V / d t  < 0. If this interval is sufficiently wide (see Fig. 6, 
solid line), then the number of germs decreases until the values 
close to zero are taken as the recovery. Otherwise, i.e., in 
a sufficiently narrow interval ( t l ,  t 2 ) ,  the amount of germs 
fails to approach zero, but for t = t 2  it reaches the minimum 
and begins to grow again for t > t z .  Then, the process is 
repeated. This is the way the chronic form develops. Since 
d V / d t  < 0 means F ( t )  > @/r, the width of the interval 
( t l ,  t z )  is determined by how long the latter inequality holds. 
Apparently, the more antibodies produced and the higher their 
maximum, the wider the interval ( t l ,  tz). If we allow for the 
fact that antibody production is essentially determined by the 
efficiency of immune system stimulation, then the competence 
of the suggested hypothesis is obvious. 

This hypothesis explains the simulation results obtained, 
namely the transition of the acute form to the chronic one 
with serious organ damage, and transition of chronic form to 
acute with high infective dose. In the first case, organ damage 
reduces the efficiency of immune system stimulation that leads 
to a narrower interval ( t l ,  tz ) ,  and thus to a chronic process. 
In the second case, there is an inverse effect: high dose of 
infection enhances the stimulation, thus leading to a wider 
interval ( t l ,  tz). 

It becomes obvious that theoretically the treatment of 
chronic form should promote a widening of the interval (tl , t z ) .  
In practice, the stimulation of antibody production (SAP) and 
disease exacerbation (biostimulation) can be demonstrated. 

The action of SAP factor is demonstrated by an approxi- 
mately threefold increase in the quantity of antibodies when 
the SAP factor has been injected at the peak of immune 
response. This apparently makes the interval (tl , t 2 )  wider. The 

simulation of SAP-factor action shows its possible successful 
application to treating chronic forms of disease in Fig. 6. In 
the case of exacerbation, so-called biostimulation theory was 
studied for (6) with several additional state equations. The 
basic notion of this theory is the following. In the body subject 
to a stable chronic form of disease, a new nonpathogenic, 
nonmultiplying antigen (biostimulator) is injected, beginning 
from some instant of time. The injections are repeated over 
some discrete interval of time, and the dose of injection 
grows with time. This leads to the situation that, due to 
the concurrence of macrophages between the two antigens 
(biostimulators and disease stimulants), the immune response 
to germs is blocked. So, the immune system “forgets” the 
disease stimulants and this enables the germs to increase their 
antigenic mass. Some time later, the biostimulator injections 
are terminated and then removed quickly from the body. The 
organism is again face-to-face with the disease stimulants. 
But the situation has essentially changed. During the interval 
when biostimulators were in the body, the amount of germs 
in the body reached the values which stimulate effectively the 
immune system. As a result, a powerful immune response is 
formed and this leads to elimination of germs from the body 
and recovery follows. 

The above basic results are presented to explain the immune 
response to infectious disease in a qualitative rather than 
precise quantitative form. However, typical responses here are 
normalized to a germ level of 10l6, T = 0.5 day, and for 
a subclinical form of disease p = 8, Q = lo4, pf = 0.17, 
/ r ,  = 0.5, and p m  = 8 with more detailed parameter values 
given in [6]. The next section provides more precise model 
parameter estimates based on a particular influenza model. 

111. AN EXPERIMENTAL INFLUENZA INVESTIGATION 

The increasing study of realistic mathematical models in 
medicine is a reflection of their use in helping to understand a 
disease and practical health service. One of the main problems 
in this area is drug action. It is very important to have 
clear ideas about strategy and tactics of drug use. Here, we 
consider a mathematical model for the analysis of drug action 
on influenza. A short discussion about the mechanisms of 
antiviral effects of chemical preparations and its prophylactic 
or therapeutic effects are presented. 

The first step in this problem is the construction of a 
mathematical model for a subsequent investigation of the 
possibility of a directed action in the viral process (using an 
influenza virus as an example). The model consists of a system 
of ordinary differential equations. Its state variables describe 
the dynamics of the virus and of the cell populations of an 
animal, while the coefficients are interpreted as parameters of 
the corresponding interactions. Therefore, by determining the 
coefficients of the model from the results of experiments using 
chemical preparations possessing antiviral action, it appears 
possible to judge how a drug affects the parameters of the 
process under study. 

Of course, the construction of a mathematical model repre- 
sents an idealization of the real scheme of the interaction of 
a virus with the host organism. However, the following main 
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characteristics of the system must be considered: the number of 
viruses in the infected organism, the influence of the interferon 
system on the process and the cellular and humoral aspects of 
immunity [23], [24]. 

All interactions between cellular and humoral components 
are considered as homogeneous reactions. Such factors as 
interferon (a ,  P, y), and immunoglobulin ( M ,  G, A ) ,  specific 
lymphocyte-effectors are represented in a generalized sense. 
The variable “interferon” is used as a factor under action 
of which a cell acquires an insensitivity to viral infection. 
“Antibodies” supply the specific neutralization of free viruses. 
“Specific lymphocyte-effectors” are understood to be the pop- 
ulation of lymphocyte-effectors (again, without division into 
T and B and subpopulations) with which the processes of an- 
tibody production and elimination of cells infected by viruses 
are connected. Let C,(t) be the concentration of cells in- 
fected by viruses of particle concentration V ( t ) t  days after 
infection; F i t )  is the concentration of antibodies; C ( t )  is the 
concentration of plasma cells (including, in general, B,  T and 
killer equivalents) and L p ( t )  is concentration of lymphocytes 
having corresponding specificity towards the viral antigen 
proliferating and differentiating under antigenic stimulus. 

Suppose that a common number of sensitive cells in the 
lungs is approximately constant and Cr = QC,, where CI 
is the concentration of cells that have become insensitive 
to infection under the action of interferon, and a z 0.1 is 
typical of an acute, sublethal lung infection. The conservation 
equations for C, and V have a form 

d 
-4, = kcvV(Co - CI - CV) - YC, L,C& - P c ,  
dt  I I1 111 

where (I) corresponds to the appearance of new infected cells 
as the result of the interaction of the infected particles V 
and intact susceptible cells CO - CI - CV, CO is a value 
characterizing all cells potentially sensitive to the virus (e.g., 
pulmonary epithelium); (11) is the decrease in the C, due 
to specific effector-lymphocytes of concentation Le (integral 
effect); (111) corresponds to the destruction of Cw cells due 
to the effect of the breakdown by the virus of the cell in 
which it is being synthesized, a “background’ cytotoxic effect 
not connected with specific effector lymphocytes, etc.; (IV) 
describes the synthesis of new viral particles solely from 
infected cells; (V) represents the neutralization of extracellular 
infective particles by immunoglobulins; and (VI) represents 
the process of elimination of viral particles from the intracellu- 
lar space not caused by specific humoral factors; this includes 
the absorption and penetration of the virus into the cells, the 
loss of infectiveness by the virus under the action of various 
types of “background” factors (temperature, inhibitors, acidity, 
etc.). It should be noted that infective virus is, in fact, an 
effective stimulator of the immune system. 

In processes described above, one can clearly distinguish 
both space and time hierarchy. Viral particle size of an animal 
cell is about lop5 m [25] and of immunoglobulin about 30-40 
A. One viral particle is capable of infecting a cell [26] after 
which it can produce about lo3 viral particles during the 

generation cycle of about eight hours (after this cell dies) [27]. 
The time of absorption and penetration of virus into the cell 
is about 10-20 min. The free virus disappears very fast. 

The molecular reaction in study (binding of virus by im- 
munoglobulin, absorption and penetration of viruses into new 
cells) has the characteristic time of the order of several 
minutes, while the complex of cellular reactions leading to 
the destruction of the infected cells is characterized by longer 
times. So, neglecting the fast events with small characteristic 
times of the order of ten minutes to one hour and using the 
chemical equilibrium law, we can write the approximation 

After this, (12) acquires the form 

At this point, we determine C,(O) = C: as an initial condition. 
Here, C: is some effective number of infected cells from 
which infection begins (after 1-2 h the transition processes 
cease and the dynamical equilibrium (14) becomes valid). For 
the description of the dynamics of immune system cells, we 
adopt the following model scheme. The resting precursor-cells 
(cellular phase Go) specific for a given virus are activated by 
antigenic stimulus and transformed to proliferating cells L, 
which, in turn, differentiate into terminal effector cells C. 

We distinguish these variables because there exists the hy- 
pothesis that the specific lymphocyte system plays a key role in 
organism recovery. A number of various mechanisms of virus 
neutralization and infected cell destruction are either directly 
determined by the lymphocyte effectors (specific cytotoxins, 
immunoglobulins) or controlled and induced by them ( N K  
cells, macrophages, K cells) [28]. In the model, variables L, 
and C are the main ones that reflect in the whole the defensive 
mechanism. We write the following conservation relation for 
L,, c 

In explanation of these equations, L,,S(t - t*) corresponds 
to resting precursors’ activation; L, is their common number, 
and t* is the activation time. Here, S ( t )  is the unit delta- 
function. It is supposed that proliferation and differentiation 
processes have a threshold character to account for neglected 
fast dynamics. They have the maximal rate at C, >> q but 
cease when C, << q. 

Expression - p ~ ,  Le in (15) reflects the processes of activity 
loss and/or natural death of effectors cells. The corresponding 
term in the first expression of (15) is absent since variable 
L, must correspond to forming a clone of memory cells the 
lifetime of which is 1-2 years. This is a very long time 
interval in comparison with one needed for the acute process 
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hv[[+ + . + , -  development. For antibodies F ,  similar to (6) 

d 
dt 
-F = pL, - ~ F v F V  - ~ F F .  

4 

2 

0 

But considering (12) 

(16) .2 
d Y F v  kFCv -F = pLe - 
dt h~ + Y v F F  

- P F F ,  
0 5 t 10 15 

it is seen that approximately 

v = -cv. 
P V  

Here, dependence on F is presented in the right-hand sides 
of (14) and (16). 

For practical convenience in using experimental data for 
parameter estimation, rewrite the model equations in the 
following form 

d -L, = L,oG(t - t * )  + allL,[1- exp(-al2V)] 
dt 
d ZL, = a&,[l- exp(-alzV] - a5Le 

V(0)  = V o ,  Lp(0) = L,(O) = 0,  F (0 )  = 0. 

(18) 

The acute, uncomplicated viral infection, which is studied 
here, clearly demonstates immune defense. Simulation shows 
the structure of the model solutions corresponding to the 
process in study is such that the interferon system (a2V2) and 
generalized cytotoxic action of effectors are the mechanisms 
that supply saturation in virus dynamics (during 4-5 days), 
which is followed by a sharp decrease in the number of virus 
infections in the lungs (5-8 days). The influence of antibody F 
on the solution is practically absent. It begins to manifest itself 
later (8-14 days) when F reaches large values. Until this mo- 
ment, the number of viruses is quite small in comparison with 
the maximum. So the term azVZ is negligibly small for this 
interval. It is likely that such structure of solution reflects the 
real picture of the defense mechanism over time. The model 
derived matches the experimental data quite well, as shown in 
Fig. 7, and next it is used to study treatment. Here, Fl mice 
were infected intranasally with influenza virus A/PR8/34 at the 
Institute of Experimental Medicine, St. Petersburg, Russia. 

In Fig. 7, the model (15) solutions are shown by solid lines. 
The solution corresponds to coefficients calculated from data 
for an animal group that had not been given the drug. The 
observed results are shown by pluses. In Fig. 8(a) and (b), the 
analogous results are presented. These were derived from ex- 
perimental data with animals that were treated by ionol and t- 
aminocaproic acid, respectively. From these data, conventional 
maximum likelihood estimates of coefficients are computed 
and used for the model simulation as given in Table I. The 
application of a verification criterion of statistical hypothesis 
shows that changes in the coefficient vector under treatment 
action are significant with high levels of statistical validity. 

4t 
/ 4 

15 10 0 5 
f 

2 1 
0 5 10 15 1 

hF 12t + 

0 5 10 15 1 

Fig. 7. Control animals group (sublethal influenza without treatment). Solu- 
tion of model (solid line), + experimental data, virus-log of 50% embryonal 
infections doses for animal lungs, Ab-log (IgM + IgG) in serum. L, is 
lymphocyte concentrations and Le is effector cell concentration. 

The conclusions below are, to some extent, hypotheses and 
serve for illustrations of the methodology for such solutions. 

It is interesting that for the third group (with E-aminocaproic 
acid), a& which characterizes the rate of antibody production, 
is one order smaller in comparison with the control group. 
For the same group, we derived = a 9  = 0. We can 
conclude from here that the influence of immunoglobulin on 
the studied process is weak in comparison with other defense 
mechanisms. In the case of the third group, a2 # 0, while in 
the cases of the second and the first groups a2 = 0. This can 
be interpreted as the fact that, in the case of the first and second 
groups, the maximum of the virus curve and its decrease 
is mainly explained by the cytotoxic mechanism mediated 
by lymphocyte-effectors. In the third group, added to this is 
the saturating mechanism which is due to interferon action. 
Except for this, the initial value Vo is decreased for those 
groups which were treated. In the model, the value V, is the 
number of viruses which reach the lung cells after intranasal 
infection. This fact allows us to formulate a hypothesis about 
the prophylactic effect of these drugs. 

As we can see from Table I, in the three groups of animals, 
the coefficients ( al , a3, a5) are practically unchanged. It can 
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Fig. 8. (a) The group of sublethally infected animals which were treated by 
ionol. (b) The group of sublethally infected animals which were treated by 
E-aminocaproic acid. Denotations are the same as Fig. 7. 

be seen that such process parameters as generalized cytotoxic 
effect of effectors, rate of virus multiplication, the rate of 
removal (and inactivation) of cells-effectors were not changed. 
For animal groups treated by preparations, a12 is several 
times smaller than in the control group. This might reflect the 
increase of threshold for the virus population beginning from 
which the proliferation and differentiation process possess the 
maximal rate. The studies show that these changes are very 
essential. Except for this, the coefficient all is 1.5 times 
increased for more intensive processes of proliferation and of 
immune memory. 

The results suggest the effectiveness of the application of 

TABLE I 
MAXIMUM-LIKELIHOOD ESTIMATES OF COEFFICIENTS 

4 . 3 1 6 ~ 1 0 ‘ ~  

0.958 0.972 0.950 

II a: I 1.8 ~ 1 -  -lT -r 1 . 8  
II I 

11 I 0.891 I 1.51 I 1.0 

0.0 1 a: 1 7.0 1 7.0 1 7.0 

3.870 x 10” 1.1 15 x 7.664 x 

a1 1 0.201 0.331 0.294 

a12 

3 days 3 days 3 days 

In @ 5.037X10-2 -1.139 -1.394 

naturally in the immune system when operating as required, 
and indeed the tumor control problem demonstrates this nicely. 
For example, interleukin 2 and interferon are generated quite 
naturally to stimulate an appropriate immune response to 
control tumor size in some cases [29]. A promising approach 
in the very early stage at the National Cancer Institute is to 
affect the basic cell cycle kinetics by altering the cellular DNA 
to increase interleukin 2 production if it is necessary [30]. 
Undoubtedly, the interface of genetics and control theory holds 
great promise for future interdisciplinary research. 
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