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T U T O R I A L

Simultaneous Localization
and Mapping: Part I 

BY HUGH DURRANT-WHYTE AND TIM BAILEY

The simultaneous localization and mapping (SLAM)
problem asks if it is possible for a mobile robot to be
placed at an unknown location in an unknown envi-

ronment and for the robot to incrementally build a consistent
map of this environment while simultaneously determining its
location within this map. A solution to the SLAM problem
has been seen as a “holy grail” for the mobile robotics com-
munity as it would provide the means to make a robot truly
autonomous.

The “solution” of the SLAM problem has been one of the
notable successes of the robotics community over the past
decade. SLAM has been formulated and solved as a theoretical
problem in a number of different forms. SLAM has also been
implemented in a number of different domains from indoor
robots to outdoor, underwater, and airborne systems. At a
theoretical and conceptual level, SLAM can now be consid-
ered a solved problem. However, substantial issues remain in
practically realizing more general SLAM solutions and notably
in building and using perceptually rich maps as part of a
SLAM algorithm.

This two-part tutorial and survey of SLAM aims to provide
a broad introduction to this rapidly growing field. Part I (this
article) begins by providing a brief history of early develop-
ments in SLAM. The formulation section introduces the struc-
ture the SLAM problem in now standard Bayesian form, and
explains the evolution of the SLAM process. The solution sec-
tion describes the two key computational solutions to the
SLAM problem through the use of the extended Kalman filter
(EKF-SLAM) and through the use of Rao-Blackwellized par-
ticle filters (FastSLAM). Other recent solutions to the SLAM
problem are discussed in Part II of this tutorial. The application
section describes a number of important real-world implemen-
tations of SLAM and also highlights implementations where
the sensor data and software are freely down-loadable for other
researchers to study. Part II of this tutorial describes major
issues in computation, convergence, and data association in
SLAM. These are subjects that have been the main focus of
the SLAM research community over the past five years.

History of the SLAM Problem
The genesis of the probabilistic SLAM problem occurred at
the 1986 IEEE Robotics and Automation Conference held in
San Francisco, California. This was a time when probabilistic

methods were only just beginning to be introduced into both
robotics and artificial intelligence (AI). A number of
researchers had been looking at applying estimation-theoretic
methods to mapping and localization problems; these includ-
ed Peter Cheeseman, Jim Crowley, and Hugh Durrant-
Whyte. Over the course of the conference, many paper table
cloths and napkins were filled with long discussions about
consistent mapping. Along the way, Raja Chatila, Oliver
Faugeras, Randal Smith, and others also made useful contri-
butions to the conversation.

The result of this conversation was a recognition that
consistent probabilistic mapping was a fundamental problem
in robotics with major conceptual and computational issues
that needed to be addressed. Over the next few years a
number of key papers were produced. Work by Smith and
Cheesman [39] and Durrant-Whyte [17] established a statis-
tical basis for describing relationships between landmarks and
manipulating geometric uncertainty. A key element of this
work was to show that there must be a high degree of cor-
relation between estimates of the location of different land-
marks in a map and that, indeed, these correlations would
grow with successive observations.

At the same time Ayache and Faugeras [1] were under-
taking early work in visual navigation, Crowley [9] and
Chatila and Laumond [6] were working in sonar-based navi-
gation of mobile robots using Kalman filter-type algorithms.
These two strands of research had much in common and
resulted soon after in the landmark paper by Smith et al.
[40]. This paper showed that as a mobile robot moves
through an unknown environment taking relative observa-
tions of landmarks, the estimates of these landmarks are all
necessarily correlated with each other because of the com-
mon error in estimated vehicle location [27]. The implica-
tion of this was profound: A consistent full solution to the
combined localization and mapping problem would require
a joint state composed of the vehicle pose and every land-
mark position, to be updated following each landmark
observation. In turn, this would require the estimator to
employ a huge state vector (on the order of the number of
landmarks maintained in the map) with computation scaling
as the square of the number of landmarks.

Crucially, this work did not look at the convergence
properties of the map or its steady-state behavior. Indeed, it
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was widely assumed at the time that the estimated map
errors would not converge and would instead exhibit a ran-
dom-walk behavior with unbounded error growth. Thus,
given the computational complexity of the mapping prob-
lem and without knowledge of the convergence behavior of
the map, researchers instead focused on a series of approxi-
mations to the consistent mapping problem, which assumed
or even forced the correlations between landmarks to be
minimized or eliminated, so reducing the full filter to a
series of decoupled landmark to vehicle filters ([28] and [38]
for example). Also for these reasons, theoretical work on the
combined localization and mapping problem came to a tem-
porary halt, with work often focused on either mapping or
localization as separate problems.

The conceptual breakthrough came with the realization
that the combined mapping and localization problem, once
formulated as a single estimation problem, was actually con-
vergent. Most importantly, it was recognized that the corre-
lations between landmarks, which most researchers had tried
to minimize, were actually the critical part of the problem
and that, on the contrary, the more these correlations grew,
the better the solution. The structure of the SLAM problem,
the convergence result and the coining of the acronym
SLAM was first presented in a mobile robotics survey paper
presented at the 1995 International Symposium on Robotics
Research [16]. The essential theory on convergence and
many of the initial results were developed by Csorba [10],

[11]. Several groups already working on mapping and local-
ization, notably at the Massachusetts Institute of Technology
[29], Zaragoza [4], [5], the ACFR at Sydney [20], [45], and
others [7], [13], began working in earnest on SLAM—also
called concurrent mapping and localization (CML) at this time—
in indoor, outdoor, and subsea environments.

At this time, work focused on improving computational
efficiency and addressing issues in data association, or loop
closure. The 1999 International Symposium on Robotics
Research (ISRR’99) [23] was an important meeting point
where the first SLAM session was held and where a degree
of convergence between the Kalman-filter-based SLAM
methods and the probabilistic localisation and mapping
methods introduced by Thrun [42] was achieved. The
2000 IEEE International Conference on Robotics and
Automation (ICRA) Workshop on SLAM attracted 15
researchers and focused on issues such as algorithmic com-
plexity, data association, and implementation challenges.
The following SLAM workshop at the 2002 ICRA attract-
ed 150 researchers with a broad range of interests and
applications. The 2002 SLAM summer school hosted by
Henrik Christiansen at KTH in Stockholm attracted all the
key researchers together with some 50 Ph.D. students from
around the world and was a tremendous success in building
the field. Interest in SLAM has grown exponentially in
recent years, and workshops continue to be held at both
ICRA and IROS. The SLAM summer school ran in 2004

in Toulouse and will run at Oxford,
England, in 2006.

Formulation and Structure
of the SLAM Problem
SLAM is a process by which a mobile
robot can build a map of an environ-
ment and at the same time use this map
to deduce its location. In SLAM, both
the trajectory of the platform and the
location of all landmarks are estimated
online without the need for any a priori
knowledge of location.

Preliminaries
Consider a mobile robot moving through
an environment taking relative observa-
tions of a number of unknown landmarks
using a sensor located on the robot as
shown in Figure 1. At a time instant k,
the following quantities are defined:

◆ xk : the state vector describing the
location and orientation of the
vehicle

◆ uk : the control vector, applied at
time k − 1 to drive the vehicle to
a state xk at time k

Figure 1. The essential SLAM problem. A simultaneous estimate of both robot and
landmark locations is required. The true locations are never known or measured
directly. Observations are made between true robot and landmark locations. 
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◆ m i : a vector describing the location of the ith landmark
whose true location is assumed time invariant

◆ z ik : an observation taken from the vehicle of the
location of the ith landmark at time k. When there
are multiple landmark observations at any one time or
when the specific landmark is not relevant to the dis-
cussion, the observation will be written simply as zk .

In addition, the following sets are also defined:
◆ X0:k = {x0, x1, · · · , xk} = {X0:k−1, xk}: the history of

vehicle locations
◆ U0:k = {u1,u2, · · · ,uk} = {U0:k−1,uk}: the history of

control inputs
◆ m = {m1,m2, · · · ,mn} the set of all landmarks
◆ Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk} : the set of all

landmark observations.

Probabilistic SLAM
In probabilistic form, the simultaneous localization and map
building (SLAM) problem requires that the probability dis-
tribution

P(xk,m|Z0:k,U0:k, x0) (1)

be computed for all times k. This probability distribution
describes the joint posterior density of the landmark locations
and vehicle state (at time k) given the recorded observations
and control inputs up to and including time k together with
the initial state of the vehicle. In general, a recursive solution
to the SLAM problem is desirable. Starting with an estimate
for the distribution P(xk−1,m|Z0:k−1,U0:k−1) at time
k − 1, the joint posterior, following a control uk and obser-
vation zk , is computed using Bayes theorem. This computa-
tion requires that a state transition model and an observation
model are defined describing the effect of the control input
and observation respectively.

The observation model describes the probability of making an
observation zk when the vehicle location and landmark loca-
tions are known and is generally described in the form

P(zk|xk,m). (2)

It is reasonable to assume that once the vehicle location and
map are defined, observations are conditionally independent
given the map and the current vehicle state.

The motion model for the vehicle can be described in
terms of a probability distribution on state transitions in
the form

P(xk|xk−1,uk). (3)

That is, the state transition is assumed to be a Markov process
in which the next state xk depends only on the immediately
preceding state xk−1 and the applied control uk and is inde-
pendent of both the observations and the map.

The SLAM algorithm is now implemented in a standard
two-step recursive (sequential) prediction (time-update) cor-
rection (measurement-update) form:
Time-update

P(xk,m|Z0:k−1,U0:k, x0) =
∫

P(xk|xk−1,uk)

× P(xk−1,m|Z0:k−1,U0:k−1, x0)dxk−1 (4)

Measurement Update

P(xk,m|Z0:k,U0:k, x0)

= P(zk|xk,m)P(xk,m|Z0:k−1,U0:k, x0)

P(zk|Z0:k−1,U0:k)
(5)

Equations (4) and (5) provide a recursive procedure for calcu-
lating the joint posterior P(xk,m|Z0:k,U0:k, x0) for the
robot state xk and map m at a time k based on all observa-
tions Z0:k and all control inputs U0:k up to and including time
k . The recursion is a function of a vehicle model
P(xk|xk−1,uk) and an observation model P(zk|xk,m).

It is worth noting that the map building problem may be
formulated as computing the conditional density
P(m|X0:k,Z0:k,U0:k). This assumes that the location of the
vehicle xk is known (or at least deterministic) at all times, sub-
ject to knowledge of initial location. A map m is then con-
structed by fusing observations from different locations.
Conversely, the localization problem may be formulated as
computing the probability distribution P(xk|Z0:k,U0:k,m).
This assumes that the landmark locations are known with cer-
tainty, and the objective is to compute an estimate of vehicle
location with respect to these landmarks.

Structure of Probabilistic SLAM
To simplify the discussion in this section, we will drop the
conditioning on historical variables in (1) and write the
required joint posterior on map and vehicle location as
P(xk,m|zk) and even P(xk,m) as the context permits.

The observation model P(zk|xk,m) makes explicit the
dependence of observations on both the vehicle and landmark
locations. It follows that the joint posterior cannot be parti-
tioned in the obvious manner

P(xk,m|zk) �= P(xk|zk)P(m|zk),

and indeed it is well known from the early papers on
consistent mapping [17], [39] that a partition such as this
leads to inconsistent estimates. However, the SLAM
problem has more structure than is immediately obvious
from these equations.

Referring again to Figure 1, it can be seen that much of
the error between estimated and true landmark locations is
common between landmarks and is in fact due to a single

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2024 at 10:05:08 UTC from IEEE Xplore.  Restrictions apply. 



source; errors in knowledge of where the robot is when land-
mark observations are made. In turn, this implies that the
errors in landmark location estimates are highly correlated.
Practically, this means that the relative location between any
two landmarks, m i − m j, may be known with high accuracy,
even when the absolute location of a landmark m i is quite
uncertain. In probabilistic form, this means that the joint
probability density for the pair of landmarks P(m i,m j) is
highly peaked even when the marginal densities P(m i) may
be quite dispersed.

The most important insight in SLAM was to realize that
the correlations between landmark estimates increase monoton-
ically as more and more observations are made. (These results
have only been proved for the linear Gaussian case [14]. For-
mal proof for the more general probabilistic case remains an
open problem.) Practically, this means that knowledge of the
relative location of landmarks always improves and never
diverges, regardless of robot motion. In probabilistic terms,
this means that the joint probability density on all landmarks
P(m) becomes monotonically more peaked as more observa-
tions are made.

This convergence occurs because the observations made by
the robot can be considered as “nearly independent” mea-
surements of the relative location between landmarks. Refer-
ring again to Figure 1, consider the robot at location xk

observing the two landmarks m i and m j. The relative loca-
tion of observed landmarks is clearly independent of the coor-
dinate frame of the vehicle, and successive observations from
this fixed location would yield further independent measure-
ments of the relative relationship between landmarks. Now, as

the robot moves to location xk+1, it again observes landmark
m j this allows the estimated location of the robot and land-
mark to be updated relative to the previous location xk . In
turn, this propagates back to update landmark m i—even
though this landmark is not seen from the new location. This
occurs because the two landmarks are highly correlated (their
relative location is well known) from previous measurements.
Further, the fact that the same measurement data is used to
update these two landmarks makes them more correlated. The
term nearly independent measurement is appropriate because the
observation errors will be correlated through successive vehi-
cle motions. Also note that in Figure 1 at location xk+1, the
robot observes two new landmarks relative to m j. These new
landmarks are thus immediately linked or correlated to the
rest of the map. Later updates to these landmarks will also
update landmark m j and through this landmark m i and so
on. That is, all landmarks end up forming a network linked by
relative location or correlations whose precision or value
increases whenever an observation is made.

This process can be visualized (Figure 2) as a network of
springs connecting all landmarks together or as a rubber sheet
in which all landmarks are embedded. An observation in a
neighborhood acts like a displacement to a spring system or
rubber sheet such that its effect is great in the neighborhood
and, dependent on local stiffness (correlation) properties,
diminishes with distance to other landmarks. As the robot
moves through this environment and takes observations of
the landmarks, the springs become increasingly (and monoto-
nically) stiffer. In the limit, a rigid map of landmarks or an
accurate relative map of the environment is obtained. As the
map is built, the location accuracy of the robot measured rel-
ative to the map is bounded only by the quality of the map
and relative measurement sensor. In the theoretical limit,
robot relative location accuracy becomes equal to the local-
ization accuracy achievable with a given map.

Solutions to the SLAM Problem
Solutions to the probabilistic SLAM problem involve find-
ing an appropriate representation for both the observation
model (2) and motion model (3) that allows efficient and
consistent computation of the prior and posterior distribu-
tions in (4) and (5). By far, the most common representa-
tion is in the form of a state-space model with additive
Gaussian noise, leading to the use of the extended Kalman
filter (EKF) to solve the SLAM problem. One important
alternative representation is to describe the vehicle motion
model in (3) as a set of samples of a more general non-
Gaussian probability distribution. This leads to the use of
the Rao-Blackwellized particle filter, or FastSLAM algo-
rithm, to solve the SLAM problem. While EKF-SLAM and
FastSLAM are the two most important solution methods,
newer alternatives, which offer much potential, have been
proposed, including the use of the information-state form
[43]. These are discussed further in Part II of this tutorial.

Figure 2. Spring network analogy. The landmarks are connected
by springs describing correlations between landmarks. As the
vehicle moves back and forth through the environment, spring
stiffness or correlations increase (red links become thicker). As
landmarks are observed and estimated locations are corrected,
these changes are propagated through the spring network.
Note, the robot itself is correlated to the map.
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EKF-SLAM
The basis for the EKF-SLAM method is to describe the vehi-
cle motion in the form

P(xk|xk−1,uk) ⇐⇒ xk = f(xk−1,uk) + wk, (6)

where f(·) models vehicle kinematics and where wk are addi-
tive, zero mean uncorrelated Gaussian motion disturbances
with covariance Qk . The observation model is described in
the form

P(zk|xk,m) ⇐⇒ zk = h(xk,m) + vk, (7)

where h(·) describes the geometry of the observation and
where vk are additive, zero mean uncorrelated Gaussian
observation errors with covariance Rk .

With these definitions, the standard EKF method [14], [31]
can be applied to compute the mean

[
x̂k|k
m̂k

]
= E

[
xk

m
|Z0:k

]
,

and covariance

Pk|k =
[

Pxx Pxm

PT
xm Pmm

]
k|k

= E

[(
xk − x̂k

m − m̂k

)(
xk − x̂k

m − m̂k

)T

| Z0:k

]

of the joint posterior distribution P(xk,m|Z0:k,U0:k, x0)

from:
Time-update

x̂k|k−1 = f(x̂k−1|k−1,uk) (8)

Pxx,k|k−1 = ∇f Pxx,k−1|k−1∇fT + Qk, (9)

where ∇f is the Jacobian of f evaluated at the estimate
x̂k−1|k−1 . There is generally no need to perform a time-
update for stationary landmarks. (A time-update, however, is
necessary for landmarks that may move [44].)
Observation-update

[
x̂k|k
m̂k

]
= [ x̂k|k−1m̂k−1 ] + Wk[zk − h(x̂k|k−1, m̂k−1)]

(10)

Pk|k = Pk|k−1 − WkSkW
T
k , (11)

where

Sk = ∇hPk|k−1∇hT + Rk

Wk = Pk|k−1∇hTS−1
k

and where ∇h is the Jacobian of h evaluated at x̂k|k−1

and m̂k−1.
This EKF-SLAM solution is very well known and inherits

many of the same benefits and problems as the standard EKF
solutions to navigation or tracking problems. Four of the key
issues are briefly discussed next.

Convergence
In the EKF-SLAM problem, convergence of the map is
manifest in the monotonic convergence of the determinant
of the map covariance matrix Pmm,k and all landmark pair
submatrices, toward zero. The individual landmark variances
converge toward a lower bound determined by initial uncer-
tainties in robot position and observations. The typical con-
vergence behavior of landmark location variances is shown in
Figure 3 (from [14]).

Computational Effort
The observation update step requires that all landmarks and
the joint covariance matrix be updated every time an observa-
tion is made. Naively, this means computation grows quadrat-
ically with the number of landmarks. There has been a great
deal of work undertaken in developing efficient variants of
the EKF-SLAM solution and real-time implementations with
many thousands of landmarks have been demonstrated [21],
[29]. Efficient variants of the EKF-SLAM algorithm are dis-
cussed in Part II of this tutorial.

Figure 3. The convergence in landmark uncertainty. The 
plot shows a time history of standard deviations of a set of
landmark locations. A landmark is initially observed with
uncertainty inherited from the robot location and observation.
Over time, the standard deviations reduce monotonically to a
lower bound. New landmarks are acquired during motion
(from [14]).
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Data Association
The standard formulation of the EKF-SLAM solution is espe-
cially fragile to incorrect association of observations to land-
marks [35]. The loop-closure problem, when a robot returns
to reobserve landmarks after a large traverse, is especially diffi-
cult. The association problem is compounded in environ-
ments where landmarks are not simple points and indeed look
different from different viewpoints. Current work in this area
will be described in Part II of this tutorial.

Nonlinearity
EKF-SLAM employs linearized models of nonlinear motion
and observation models and so inherits many caveats. Non-
linearity can be a significant problem in EKF-SLAM and
leads to inevitable, and sometimes dramatic, inconsistency in
solutions [24]. Convergence and consistency can only be
guaranteed in the linear case.

Rao-Blackwellized Filter
The FastSLAM algorithm, introduced by Montemerlo et al.
[32], marked a fundamental conceptual shift in the design of
recursive probabilistic SLAM. Previous efforts focused on
improving the performance of EKF-SLAM, while retaining
its essential linear Gaussian assumptions. FastSLAM, with its
basis in recursive Monte Carlo sampling, or particle filtering,
was the first to directly represent the nonlinear process
model and non-Gaussian pose distribution. (FastSLAM still
linearizes the observation model, but this is typically a rea-
sonable approximation for range-bearing measurements
when the vehicle pose is known.) This approach was influ-
enced by earlier probabilistic mapping experiments of Mur-
phy [34] and Thrun [41].

The high dimensional state-space of the SLAM problem
makes direct application of particle filters computationally
infeasible. However, it is possible to reduce the sample-

space by applying Rao-Blackwellization (R-B), whereby a
joint state is partitioned according to the product rule
P(x1, x2) = P(x2|x1)P(x1) and, if P(x2|x1) can be repre-
sented analytically, only P(x1) need be sampled x( i)

1 ∼ P(x1).
The joint distribution, therefore, is represented by the set
{x( i)

1 , P(x2|x( i)
1 }N

i and statistics such as the marginal

P(x2) ≈ 1
N

N∑
i

P
(
x2|x( i)

1

)

can be obtained with greater accuracy than is possible by sam-
pling over the joint space.

The joint SLAM state may be factored into a vehicle com-
ponent and a conditional map component:

P(X0:k,m|Z0:k,U0:k, x0)

= P(m|X0:k,Z0:k)P(X0:k|Z0:k,U0:k, x0). (12)

Here the probability distribution is on the trajectory X0:k

rather than the single pose xk because, when conditioned on
the trajectory, the map landmarks become independent (see
Figure 4). This is a key property of FastSLAM and the reason
for its speed; the map is represented as a set of independent
Gaussians, with linear complexity, rather than a joint map
covariance with quadratic complexity.

The essential structure of FastSLAM, then, is a Rao-
Blackwellized state, where the trajectory is represented by
weighted samples and the map is computed analytically.
Thus, the joint distribution, at time k, is represented by the
set {w( i)

k ,X( i)
0:k, P(m|X( i)

0:k,Z0:k)}N
i , where the map accompa-

nying each particle is composed of independent Gaussian 
distributions

P
(
m|X( i)

0:k,Z0:k

)
=

M∏
j

P
(
m j|X( i)

0:k,Z0:k

)
.

Recursive estimation is performed by particle filtering for the
pose states and the EKF for the map states.

Updating the map, for a given trajectory particle X( i)
0:k , is triv-

ial. Each observed landmark is processed individually as an EKF
measurement update from a known pose (see Figure 5). Unob-
served landmarks are unchanged. Propagating the pose particles,
on the other hand, is more complex, as we discuss below.

We forego giving the background on particle filters, except
to say that the theory is derived from a recursive form of sam-
pling known as sequential important sampling (SIS) [15], which
actually samples from a joint state history but “telescopes’’ the
joint into a recursion via the product rule.

P(x0, x1, . . . , xT |Z0:T)

= P(x0|Z0:T)P(x1|x0,Z0:T) . . . P(xT |X0:T−1,Z0:T).

At each time-step k, particles are drawn from a proposal dis-
tribution π(xk|X0:k−1,Z0:k), which approximates the true

Figure 4. A graphical model of the SLAM algorithm. If the his-
tory of pose states are known exactly then, since the observa-
tions are conditionally independent, the map states are also
independent. For FastSLAM, each particle defines a different
vehicle trajectory hypothesis.
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distribution P(xk|X0:k−1,Z0:T), and the samples are given
importance weights to compensate for any discrepancy. The
approximation error grows with time (and inherent joint
state space), increasing the variation in sample weights,
degrading statistical accuracy. A resampling step reinstates
uniform weighting, but causes loss of historical particle
information. This leads to a crucial property: SIS with
resampling can produce reasonable statistics only for systems
that “exponentially forget’’ their past [8] (i.e., systems
whose process noise cause the state at time k to become
increasingly independent of preceding states).

The general form of a R-B particle filter for SLAM is as
follows. We assume that, at time k − 1, the joint state is rep-
resented by {w( i)

k−1,X
( i)
0:k−1, P(m|X( i)

0:k−1,Z0:k−1)}N
i .

1) For each particle, compute a proposal distribution, con-
ditioned on the specific particle history, and draw a
sample from it

x( i)
k ∼ π

(
xk|X( i)

0:k−1,Z0:k,uk

)
. (13)

This new sample is (implicitly) joined to the particle
history X( i)

0:k
�= {X( i)

0:k−1, x
( i)
k }.

2) Weight samples according to the importance function

w( i )
k = w( i )

k−1

P
(
zk|X( i )

0:k,Z0:k−1

)
P

(
x( i )

k |x( i
k−1,uk

)

π
(
x( i )

k |X( i )
0:k−1,Z0:k,uk

) . (14)

The numerator terms of this equation are the observa-
tion model and the motion model, respectively. The
former differs from (2) because R-B requires dependen-
cy on the map be marginalized away.

P(zk|X0:k,Z0:k−1)

=
∫

P(zk|xk,m)P(m|X0:k−1,Z0:k−1)dm (15)

3) If necessary, perform resampling. (When best to insti-
gate resampling is an open problem. Some implementa-
tions resample every time-step, others after a fixed
number of time-steps, and others once the weight vari-
ance exceeds a threshold.) Resampling is accomplished
by selecting particles, with replacement, from the set
{X( i )

0:k}N
i , including their associated maps, with proba-

bility of selection proportional to w( i )
k . Selected particles

are given uniform weight, w( i )
k = 1/N .

4) For each particle, perform an EKF update on the
observed landmarks as a simple mapping operation with
known vehicle pose.

The two versions of FastSLAM in the literature, Fast-
SLAM 1.0 [32] and FastSLAM 2.0 [33], differ only in terms of
the form of their proposal distribution (Step 1) and, conse-
quently, in their importance weight (Step 2). FastSLAM 2.0 is
by far the more efficient solution.

For FastSLAM 1.0, the proposal distribution is the motion
model

x( i )
k ∼ P

(
xk|x( i )

k−1,uk

)
. (16)

Therefore, from (14), the samples are weighted according to
the marginalized observation model.

w( i )
k = w( i )

k−1 P
(
zk|X( i )

0:k,Z0:k−1

)
(17)

For FastSLAM 2.0, the proposal distribution includes the cur-
rent observation

x( i )
k ∼ P

(
xk|X( i )

0:k−1,Z0:k,uk

)
, (18)

where

P
(
xk|X( i )

0:k−1,Z0:k,uk

)

= 1
C

P
(
zk|xk,X

( i )
0:k−1,Z0:k−1

)
P

(
xk|x( i )

k−1,uk

)
,

and C is a normalizing constant. The importance weight
according to (14) is w( i )

k = w( i )
k−1C . The advantage of Fast-

SLAM 2.0 is that its proposal distribution is locally optimal
[15]. That is, for each particle, it gives the smallest possible

Figure 5. A single realization of robot trajectory in the Fast-
SLAM algorithm. The ellipsoids show the proposal distribution
for each update stage, from which a robot pose is sampled,
and, assuming this pose is perfect, the observed landmarks
are updated. Thus, the map for a single particle is governed by
the accuracy of the trajectory. Many such trajectories provide
a probabilistic model of robot location.
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variance in importance weight w( i )
k conditioned upon the

available information, X( i )
0:k−1,Z0:k and U0:k .

Statistically, FastSLAM (1.0 and 2.0) suffers degeneration
due to its inability to forget the past. Marginalizing the map in
(15) introduces dependence on the pose and measurement
history, and so, when resampling depletes this history, statisti-
cal accuracy is lost [2]. Nevertheless, empirical results of Fast-
SLAM 2.0 in real outdoor environments [33] show that the
algorithm is capable of generating an accurate map in practice.

Implementation of SLAM
Practical realizations of probabilistic SLAM have become
increasingly impressive in recent years, covering larger areas
in more challenging environments. Here we discuss two
representative implementations and mention other notable
applications.

The “explore and return’’ experiment by Newman et al.
[37] was a moderate-scale indoor implementation that vali-
dated the nondivergence properties of EKF-SLAM by

returning to a precisely marked starting
point. The experiment is remarkable
because its return trip was fully
autonomous. The robot was manually
driven during the exploration phase,
although without visual contact by the
operator, who relied solely on a real-
time rendering of the robot’s map (see
Figure 6). For the return trip, the robot
plans a path and returns without
human intervention.

Guivant and Nebot [21] pioneered
the application of SLAM in very large
outdoor environments (see Figure 7).
They addressed computational issues of
real-time operation, while also dealing
with high-speed vehicle motion, non-
flat terrain, and dynamic clutter. Their
results are particularly interesting
because they are accompanied by
accurate RTK-GPS ground truth,
showing the practical veracity of the
algorithm, which involved closing sev-
eral large loops. The logged data from

their Victoria Park trials is available online and has
become a popular benchmark within the SLAM
research community.

SLAM applications now exist in a wide variety of
domains. They include indoor [3], [4], [7], [12], out-
door [19], [21], aerial [25], and subsea [18], [36],
[45]. There are different sensing modalities such as
bearing only [13] and range only [30].

We also make honorable mention of consistent
pose estimation (CPE) [22], [26], which is an entirely
different SLAM paradigm based on topological map-
ping and data alignment, due to its exemplary results
in large indoor environments.

Various researchers in the SLAM community
have written software demonstrating SLAM,
implemented in MATLAB, C++, and Java and
available online (see Table 1). Collections of
logged data are listed in Table 2. These datasets are
from real sensors in real environments and are a
valuable resource to assess and benchmark the var-
ious SLAM algorithms.Figure 7. Large-scale outdoor SLAM by Guivant and Nebot [21].
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Conclusions
This article has described the SLAM problem and the essen-
tial methods for solving the SLAM problem and has summa-
rized key implementations and demonstrations of the
method. While there are still many practical issues to over-
come, especially in more complex outdoor environments,
the general SLAM method is now a well understood and
established part of robotics. Part II of this tutorial will sum-
marize more recent work in addressing some of the remain-
ing issues in SLAM, including computation, feature
representation, and data association.
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