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Abstract—The fusion-based super-resolution of hyperspectral
images (HSIs) draws more and more attention in order to sur-
pass the hardware constraints intrinsic to hyperspectral imaging
systems in terms of spatial resolution. Low-resolution (LR)-HSI is
combined with a high-resolution multispectral image (HR-MSI) to
achieve HR-HSI. In this article, we propose multiresolution details
enhanced attentive dual-UNet to improve the spatial resolution of
HSI. The entire network contains two branches. The first branch
is the wavelet detail extraction module, which performs discrete
wavelet transform on MSI to extract spatial detail features and
then passes through the encoding–decoding. Its main purpose is to
extract the spatial features of MSI at different scales. The latter
branch is the spatio-spectral fusion module, which aims to inject
the detail features of the wavelet detail extraction network into
the HSI to reconstruct the HSI better. Moreover, this network uses
an asymmetric feature selective attention model to focus on im-
portant features at different scales. Extensive experimental results
on both simulated and real data show that the proposed network
architecture achieves the best performance compared with several
leading HSI super-resolution methods in terms of qualitative and
quantitative aspects.

Index Terms—Attention mechanism, discrete wavelet transform,
hyperspectral image (HSI), multiscale, UNet.

I. INTRODUCTION

THE hyperspectral images (HSIs) are those that provide
dense spectral sampling at each pixel [1]. Compared with

natural images, HSIs contain a wider spectral range, where
the channel division of the spectrum is muchly detailed, and
the number of channels can reach tens to hundreds. HSIs can
discriminate some similar materials and is suitable for remote
sensing applications such as classification [2], [3], object recog-
nition [4], change detection [5], [6], disaster [7], and biodiver-
sity [8]. Nevertheless, due to the limitations of the imaging
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characteristics of the hyperspectral camera itself and the im-
age acquisition environment in practical scenarios, the direct
acquisition of HSIs with high spatial resolution is difficult [9].
As such, there is an increasing interest in fusing low-resolution
(LR)-HSI with high-resolution multispectral images (HR-MSI)
to achieve HR-HSI by enhancing the calculation method of
LR image quality for hyperspectral imaging [10]. The HSI
fusion methods can be categorized into component substitution
(CS), multiresolution analysis (MRA), model-driven, and deep
learning methods.

The CS methods [11], [12] and the MRA methods [13], [14]
inherit from the traditional pan-sharpening methods. The CS
methods decompose the LR-HSI image into spectral and spatial
information, then replace the spatial information with HR-MSI,
and finally invert this process to obtain HR-HSI. The MRA
methods employ multiscale decomposition to obtain HR-MSI
spatial detail information to be injected into the corresponding
band of HSI. In spite of the fact that CS and MRA fusion methods
are effective in injecting the spatial detail of MSI into HSI, they
tend to cause more severe spectral distortion.

Model-driven methods are based on mathematical models for
HSI–MSI fusion, and representative methods include Bayesian-
based, matrix factorization, and tensor representations. Bayesian
distribution-based HSI fusion methods [15], [16], [17] use
a Bayesian dictionary and sparse coding to reconstruct HSI.
Taking advantage of the presence of target images in low-
dimensional subspaces, Wei et al. [15] proposed a variational-
based method to fuse HSI–MSI. Based on matrix decomposition,
the work in [18], [19], [20], [21], and [22] utilized the high
correlation between spectral bands to decompose the HS image
into a coefficient matrix and spectral basis, which turns the
HSI fusion problem into a problem of estimating the coefficient
matrix and spectral basis. The spectral basis was extracted for
LR-HSI in [20]. Sparse coding was extracted for HR-MSI using
G-SOMP+ [20], and finally, the HR-HSI was attained using
sparse coding and spectral basis. Based on tensor representation,
the work in [23], [24], and [25] treat the HSIs as tensors without
destroying the spatial-spectral structure, so tensor decomposi-
tion may be a better solution to the image fusion problem. Dian
et al. [23] proposed a nonlocal sparse tensor decomposition
HSI super-resolution method. This method decomposes HSIs
into estimates of sparse core tensors and dictionaries, where
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dictionaries and core tensors are learned from LR-HSI and
HR-MSI. The model-based approach makes full use of image a
priori factors, such as sparsity, low rank, and global similarity.
Regardless of the good interpretability of the method, the com-
plex correlation and nonlinear features of HSIs are difficult to
depict with these priori factors, and the fusion performance is
limited.

With the vigorous development of deep learning, more and
more researchers pay attention to the direction of deep HSI
fusion. Some researchers [26], [27], [28] utilize deep learning
networks to reconstruct HR-HSI to learn degradation models.
Dian et al. [26] used convolutional neural networks (CNNs) to
learn image priors, and then combined the image priors with
traditional HSI fusion algorithms. In [29], the observation model
and the estimated fusion process were optimized, and a deep
learning blind algorithm for HSI fusion was proposed. The CNN
denoising-based method (CNN-Fus) algorithm using subspace
representation and CNN denoising was proposed in [30]. Some
researchers have proposed deep HSI fusion algorithms using
model-driven methods. An iterative HSI super-resolution algo-
rithm with a deep HSI denoiser was suggested in [31], which is
based on likelihood and deep image prior domain knowledge.
Since deep learning requires a large number of training sam-
ples, but there are not many samples in real scenarios, some
researchers presented an unsupervised deep HSI fusion method.
Wei et al. [32] exploited deep neural networks to capture the
statistics of images and proposed an unsupervised recursive HSI
super-resolution method using pixel-aware refinement. While
the deep learning-based fusion methods have achieved excellent
performance, they have room for improvement in terms of spatial
detail. Embedding a multiscale spatial feature extraction module
in a deep network has been shown to be effective in alleviating
problems such as the easy blurring of boundaries [33]. Second,
the multiscale feature module fuses feature information from
several different scales, which can suppress the noise passed
by shallow features and recover the spatial structure detail
information of the fused image more effectively in the decoding
stage and improve the fusion effect of the model. However, most
current deep learning methods use the connectivity of HSI and
MSI along the spectral channel as the input to the network; this
does not fully take into account the underlying multiscale spatial
information.

Several researchers have proposed the fusion of LR-HSI and
HR-MSI at different scales to obtain HR-HSI. Zhou et al. [34]
proposed a pyramid fully convolutional network to solve the
MSI and HSI fusion problem. This network comprises two
subnetworks; the first is to extract LR-HSI’s spectral infor-
mation by the convolutional kernel and encode them as deep
features; The second subnetwork is intended to combine HR-
MSI pyramids with encoded deep features to acquire HR-HSI.
The method proposed in [35] solved the HR-MSI and LR-HSI
fusion problem. In this network, the deep features of LR-HSI
are gradually enlarged by deconvolution, and then the deep
features of LR-HSI and HR-MSI are fused at different scales.
However, this structure ignores the basic and shallow features of
MSI. Therefore, the work [36] introduced a dual UNet (DUNet)
fusion method, which first used the encoding–decoding network

to extract MSI spatial features at different scales and then
used these scale features to inject them into the UNet network.
Previous work has used pooling, convolution, and upsampling
operations to extract multiscale information from HR-MSIs and
LR-HSIs to fuse HR-HSIs. Such an approach requires a large
number of parameters to learn the detailed information of the
MSIs, and the spatial details learned are not necessarily those
needed in the fused images. In contrast, discrete wavelets have
also been shown to extract the spatial details of images well
in experiments on single HSI super-resolution. Therefore, the
method proposed in this article uses the multiscale wavelet
details extracted by the discrete wavelet transform and com-
bines them with convolution to extract multiscale information
from MSIs.

Inspired by the above problems, this article designs a multires-
olution details enhanced attentive dual-UNet (MDA-DUNet).
As shown in Fig. 1, this network can be divided into four
parts. The first part is the detail extraction network to extract
the spatial detail information of MSI. The second part is the
spatio-spectral encoding module, which integrates the details of
the above network and the detail extraction encoding module.
The third part is the asymmetric feature selective attention
module (AFSAM), which selects the vital information from the
multiscale information of the spatio-spectral encoding module.
Finally, the spatio-spectral decoding module incorporates the
obtained features from the AFSAM with the features from
the detail extraction decoding module and the spatio-spectral
encoding module to produce the ultimate fused image.

The main contributions of this article are listed below:
1) In this article, an MDA-DUNet network is proposed to fuse

LR-HSI and HR-MSI to obtain HR-HSI. The proposed
framework can fully exploit the multiscale information of
MSI and HSI for better spatio-spectral fusion.

2) A wavelet detail extraction module has been designed
to learn wavelet detail features using a deep network
of encoder and decoder structures. The discrete wavelet
transform is used in this module to extract multiscale
detail features from multispectral images, and the decoder
and decoder structures are combined to extract multiscale
detail features. In this way, the extracted wavelet features
are not only involved in the encoding process but also
in the decoding process, thus maximizing the use of the
spatial detail features of the MSI.

3) In addition, an attention module for asymmetric feature
selection is being designed in this article. The asymmetric
features refer to the deep features in the UNet network
where the spatial size and channels output at each scale are
inconsistent. Asymmetric features in UNet are selected by
this module using a spatial-spectral attention mechanism,
which provides a significant performance improvement
compared to the simple use of splicing.

The rest of this article is organized as follows. The dual-branch
network approach with asymmetric attention and wavelet sub-
band injection is described in Section II, followed by simulation
experimental results and analysis in Section III, then real-data
experimental results and analysis in Section IV, and finally,
Section V concludes this article.
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Fig. 1. Overall structure of the proposed network.

II. METHODOLOGY

In this section, our proposed method is described in detail.
The structure of the proposed network is shown in Fig. 1.
Let X ∈ RH×W×b denotes the HR-MSI, where H , W , and
b represent the dimensions of the spatial height, width, and
spectral band number, respectively. Let Y ∈ Rh×w×B denotes
the LR-HSI, where h, w, and B represent the dimensions of
the spatial height, width, and spectral band number, respec-
tively. The method proposed in this article consists of four
parts, namely, wavelet detail extraction module, spatio-spectral
encoding module, asymmetric feature selective module, and
spatio-spectral decoding module. The high-frequency details are
extracted from the wavelet detail extraction network by discrete
wavelet transform, and then high-frequency spatial informa-
tion of different deep and scales is extracted purely from MSI
by an encoding–decoding. The spatio-spectral fusion module
is accountable for incorporating spatial information from all
phases of the high-frequency detail extraction network into the
HSI for detailed enhancement. The asymmetric feature selective
module extracts the asymmetric features of the spatio-spectral
encoding module, then extracts the important features using the
spatio-spectral attention mechanism, and finally integrates the
extracted features into the decoding.

A. Wavelet Detail Extraction Module

Wavelet transforms [37] are effective methods for analyzing
an image’s message since they decompose the image into low-
pass sub-band images and multiscale directed high-frequency
sub-band images. According to [38], wavelet transform in
a CNN was favorable for single-image super-resolution. A
wavelet residual network was proposed in [39] for computed
tomography image reconstruction, which uses wavelet detail to
enhance image quality.

Discrete wavelet transform [40] extracts high-frequency de-
tail features of HR-MSI. In this article, Haar discrete wavelet
transform (filter bank is “DB1”) is used to extract high-frequency
details of multiresolution from MSI, in which low-pass filter and
high-pass filter banks are represented. The image passes through
a low-pass filter for the low-frequency sub-band image, whose
ranks and rows are all at the d-scale, which can be obtained by
the following equation:

Cd = Φ̄(d)Φ̄(d)(Cd−1) (1)

where Cd represents the dth scale of low-frequency sub-band
image.

Images of high-frequency sub-bands in the three directions
are defined as

W 1
d = Φ̄(d)Ψ̄(d)(Cd−1) (2)

W 2
d = Ψ̄(d)Φ̄(d)(Cd−1) (3)

W 3
d = Ψ̄(d)Ψ̄(d)(Cd−1) (4)

where Φ̄Ψ̄(C) represents the convolution ofC with the separable
filter Φ̄Ψ̄, Cd−1 represents the low-pass sub-band image at the
dth scale, and W 1

d , W 2
d , and W 3

d represent high-frequency sub-
band images in horizontal, vertical, and diagonal directions at
the d-scale, respectively. We extract the features from the image
using a wavelet feature fusion module, as shown in Fig. 1. We
concatenate the three high-frequency detail features of wavelets
W 1

i , W 2
i , and W 3

i and further refine the concatenated features
using 3× 3 convolutional layer, which can be written as follows:

W̄i = conv3×3

(
cat

(
W 1

i ,W
2
i ,W

3
i

))
(5)

where conv3×3 represents the convolution operation, and its
kernel size is 3× 3, cat indicates a channel dimension con-
catenate operation. The low-frequency sub-band image C1 and
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high-frequency sub-band imagesW 1
1 ,W 2

1 , andW 3
1 are obtained

from the MSI through discrete wavelet transform. These three
high-frequency sub-band images are concatenated together in
the channel dimension, and the first feature of the encoding is
obtained using the convolution of 3× 3, denoted by W̄1. Since
the low-frequency sub-band image C1 also has high-frequency
information, discrete wavelet transform is used for the MSI low-
frequency sub-band image to obtain the low-frequency sub-band
image C2 and the high-frequency sub-band images W 1

2 , W 2
2 ,

and W 3
2 , and concatenate them in the channel dimension. These

three high-frequency sub-band images result in a high-frequency
image, and then this image undergoes a 3× 3 convolution,
represented by W̄2.

The deep features W̄1 are first subjected to a maximum
pooling operation and concatenated in the high-frequency deep
feature W̄2 in channel dimension, then passed through a con-
volutional layer of size 3× 3 to finally obtain the deep features
of the second output of the encoding module. This process is
represented as

WE = F
(
W̄2,maxp

(
W̄1

))
. (6)

where F (X1, X2) = conv3×3(cat(X1, X2)), X1 and X2 are
deep features, and maxp(·) is the pooling operation for the
maximum channel dimension.

A wavelet detail extraction decoding module is intended to
complement the information from the spatio-spectral encoding
module. This decoding module consists of a deconvolution layer
of stride size 2 and a convolution layer with a kernel size 3× 3.
The deep features of the three outputs of the decoding module
are expressed as

WDn =

⎧⎪⎨
⎪⎩

dec
(
conv3×3

(
W̄3

))
, n = 0

dec (conv3×3 (WDn−1)) , n = 1

conv3×3 (WDn−1) , n = 2

(7)

where dec(·) is deconvolution to up-sample feature, and WDn

represents the outputted deep feature of the decoding module at
the nth stage of detail extraction.

B. Spatio-Spectral Encoding Module

The LR-HSI is preprocessed; that is, the space size of the
LR hyperspectral is sampled at most the same as that of the
spectrum, which can be achieved as follows:

Y = Up (Y) (8)

whereY represents the LR-HSI after upsampling, and Up(·) rep-
resents a spatial upsampling operation. The upsampling method
is bilinear interpolation with a scale factor of 8.

To address the problem of the training error increasing rather
than decreasing after adding too many layers. He et al. [41]
proposed the residual network. Residual blocks are used in this
step to extract deep features; hence, they will be briefly discussed
below. The residual block consists of two convolution layers with
a size of 3× 3 and the ReLU activation function. This process
is formulated as

RB (Xin) = conv3×3 (δ (conv3×3 (Xin))) +Xin (9)

where Xin is the input feature, and δ is the ReLU function.
The up-sampled HSI and MSI are first concatenated in the same
channel dimension as the original input, followed by learning the
concatenated image using a convolutional layer of 3× 3 size and
a residual block, and finally obtaining the first output feature of
the deep feature encoding module. The deep detail features are
concatenated with the maximum pooling features of the (n-1)th
output of the coding module, and the concatenated deep features
are then trained using a convolutional layer of size 3× 3 and a
residual block to obtain the nth output feature of the decoding
module. This process is expressed as

MUen =

⎧⎪⎨
⎪⎩

RB
(
F
(
Y,X

))
, n = 0

RB
(
F
(
maxp (MUen−1) , W̄1

))
, n = 1

RB (F (maxp (MUen−1) ,WE)) , n = 2

(10)

where MUen represents the output feature of the encoding
module at the nth stage.

C. AFSAM

In the encoding–decoding structure [42], the encoding part
performs layer-by-layer downsampling using pooling layers,
and the decoding part performs layer-by-layer upsampling using
deconvolution. The spatial information in the original input
image is gradually recovered along with the details in the image.
The resulting LR image is eventually mapped to a pixel-level,
HR image. To compensate for the information lost in the down-
sampling of the encoding stage, the UNet [43] uses a splicing
operation between the encoding and decoding of the network
to fuse the feature maps at the corresponding positions in the
two processes. The decoding is able to retain more HR detail
information contained in the high-level feature maps during
upsampling, thus better recovering the spatial detail information
of the original image.

An asymmetric feature fusion module (AFFM) was proposed
in [44] to improve the deblurring image performance using
multiscale features. This module turns the multiscale features
of the encoding into the same spatial dimension, then concate-
nates these features again in the channel dimension, afterward
does the convolution of the concatenated features, and finally
concatenates the obtained convolution with the features of the
decoding. Although this method can make good use of mul-
tiscale features, simple splicing cannot be exploited to greater
advantage. Multikernel networks [45] were proposed to extract
scale-important features. This article proposes an asymmetric
selective attention mechanism by combining the multikernel
networks and the asymmetric fusion module.

Fig. 2 shows an example of MUe0 based on the AFSAM.
First of all, deconvolution and convolution are used to change
the space size; and channel number size of input deep features
to the same size as MUe0; and this process can be written as the
following:

Sun =

⎧⎪⎨
⎪⎩

MUen, n = 0

conv3×3 (dec (MUen)) , n = 1

conv3×3 (dec (en)) , n = 2.

(11)
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Fig. 2. AFSAM.

Then, adding the three obtained deep features element by
element to obtain the deep feature, which is expressed as

Su =
2∑

i=0

Sui (12)

where Su denotes the element-by-element sum of the three deep
features.

An extraction process of spatial and channel attention weights
is introduced so as to select the important features using the
spatial and channel attention mechanisms of multiresolution
features.

The global averaging pooling operation is first used to extract
the global perceptual field of Su so that the channel attention
weights of the deep feature Su can be obtained, and each feature
channel is abstracted as a feature point. This process is defined
as

Cs = gp(Su) (13)

where gp(·) represents the space dimension average pooling
operation.

A two-layer multilayer perception network is used to carry
out nonlinear feature transformation to construct the correlation
between feature graphs. This process is formulated as

Cz = fc(Cs) = δ (B(Cs)) (14)

where B represents the batch normalization [46].
In order to obtain the spatial attention weights of the deep

features, two deep features with constant spatial dimension and
one channel dimension are first obtained by average pooling
and maximum pooling for the Su channel dimension. Then,
the two deep features are concatenated together in the channel
dimension, and this process is expressed as

Ss = cat (avgp(Su),maxp(Su)) (15)

where avgp(·) is the pooling operation for the average channel
dimension.

The spatial attention weight is obtained by convolution layer
with a size of 7× 7 calculation for Ss, and the process is
determined as

Sz = conv7×7(Ss) (16)

where Sz is the spatial attention weight.
The obtained spatial and channel attention weights are mul-

tiplied to obtain the spatial-spectral attention weight, which is

defined as

Sc = Cz · Sz. (17)

Three 1× 1 convolutions obtain three spatio-spectral atten-
tion weights, which can be rewritten as

SCi = conv1×1(Sc), i = 0, 1, 2 (18)

where conv1×1 represents a convolution layer with size of 1× 1.
The softmax function is used for the three attention weights

to obtain Sa+ Sb+ Sc = 1, which ends up with the following
equations:

Sa =
eSC0

eSC0 + eSC1 + eSC2
(19)

Sb =
eSC1

eSC0 + eSC1 + eSC2
(20)

Sc =
eSC2

eSC0 + eSC1 + eSC2
(21)

where Sa, Sb, and Sc represent the spatial-spectral attention
weights of Su0, Su1, and Su2, respectively.

The attention module is obtained by multiplying the spatio-
spectral attention weight and deep feature, and the output of
the module is obtained by adding the three attention modules
element-by-element. This process is expressed as

AFSAM1 = Sa · Su0 + Sb · Su1 + Sc · Su2 (22)

where AFSAM1 is based on MUe0, the space size and channel
number of MUe1 and MUe2 are changed to be the same as
MUe0 by deconvolution and convolution operations, and then
Su is obtained by adding. While AFSAM0 is based on MUe1,
the space size and channel number of MUe0 and MUe2 are
changed to be the same as MUe1 by deconvolution or pooling
and convolution operations, and then Su is added.

D. Spatio-Spectral Decoding Module

The AFSAM and detail extraction decoding module are used
to construct the spatial-spectral decoding module, and the fusion
results are obtained by the ReLU activation function. The first
output of the decoding module is obtained by extracting the deep
feature of MUe2 using convolution, residual block, and decon-
volution. Afterward, the output AFSAMn−1 of the AFSAM, the
output MUdn−1 of the spatio-spectral encoding module, and
the output WDn−1 of the detail extraction decoding module are
spliced together. Then, the convolution layer with a size of 3× 3
and residual blocks are purposed. Finally, the nth output of the
spatio-spectral decoding module is obtained by deconvolution,
which can be formulated as follows:

MUdn =

⎧⎪⎨
⎪⎩

dec (RB (conv3×3 (MUe2))) , n = 0

RB(conv3×3(cat(AFSAM

n−1,MUdn−1,WDn−1)))), n = 1, 2

(23)

where MUdn represents the decoding module of the nth stage.
After that, the output MUd2 of the decoding and the decoding
WD2 of detail extraction are spliced on the channel dimension,
and features are extracted by convolution. Then, the up-sampled
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HS image and extracted features are added element-by-element.
Finally, the fusion image is obtained by using the ReLU activa-
tion function. This process is described as

Ẑ = δ
(
F (MUd2,WD2) +Y

)
(24)

where Ẑ denotes the reconstructed image.

E. Loss Function

In our MDA-DUNet network, training is achieved by mini-
mizing the following loss function:

L(Θ) = argmin
Θ

N∑
i=1

‖F (Xi, Yi; Θ)− Zi‖1 (25)

where Xi, Yi, and Zi indicate the ith pair of LR-HSI, HR-MSI,
and the original HR-HSI, respectively. F(·,Θ) denotes the
reconstructed HSI patch by the network with parameters Θ.
During network training, the ADAM [47] optimizer of β1 = 0.9
and β2 = 0.999 is used with the learning rate γ = e−4 and
the number of iterations is 1000 and the batch size is 32. All
experiments are performed on PyTorch in Windows 10 using an
Inter(R) Core(TM) i7-9700 CPU and NVIDIA 2080TI GPU.

III. EXPERIMENTAL RESULTS

A. Comparison Methods

The proposed method is compared with seven current main-
stream HSI image super-resolution methods, including three
traditional methods, namely coupled nonnegative matrix fac-
torization (CNMF) [18],1 the subspace regularized method
(HySure) [48],2 and coupled spectral unmixing (CSU) [19],3

and four deep learning methods, namely deep HSI sharpening
method (DHSIS) [26],4 deep blind iterative fusion network
(DBIN) [29],5 CNN-Fus [30],6 a novel model-guided deep
convolutional network (MoG-DCN) [31],7 and a dual U-Net
(DUNet). For a fair comparison, the same data preprocessing is
used in all methods, and the deep learning-based methods among
the methods compared are trained using the code provided by the
authors with the proposed parameters on the same training data
and the same protocol for evaluating the experimental results of
all methods.

B. Experimental Dataset

Three publicly simulated hyperspectral imaging datasets are
used to verify the performance of the proposed method, i.e.,
Columbia Computer Vision Laboratory (CAVE) dataset,8 Har-
vard dataset,9 the Interdisciplinary Computational VisionLab

1http://naotoyokoya.com/Download.html
2https://github.com/alfaiate/HySure
3https://github.com/lanha/SupResPALM
4https://github.com/renweidian/DHSIS
5https://github.com/wwhappylife/Deep-Blind-Hyperspectral-Image-Fusion
6https://github.com/renweidian/CNN-FUS
7https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-

Super-resolution
8http://www.cs.columbia.edu/CAVE/databases/multispectral/
9http://vision.seas.harvard.edu/hyperspec/

Fig. 3. Examples of the testing images selected from (a) CAVE, (b) Harvard,
(c) ICVL datasets, and (d) Chikusei datasets.

(ICVL) dataset,10 and the Chikusei dataset.11 With a spatial
size of 512× 512, a band range of 400–700 nm, a wavelength
interval of 10 nm, and 31 spectral bands, the CAVE dataset
comprises 32 indoor HSIs. The Harvard dataset consists of
50 indoor and outdoor HSIs, which have a spatial size of
1040× 1392, a band range of 420–720 nm, a wavelength inter-
val of 10 nm, and 31 spectral bands. The ICVL dataset comprises
201 HSIs with a spatial size of 1300× 1392, a band range of
400–700 nm, a wavelength interval of 10 nm, and 31 spectral
bands. For convenience, in the experiments, we crop the top-left
1024× 1024pixels from Harvard and ICVL datasets for training
and testing the proposed method. The Chikusei dataset contains
airborne HSI taken by visible and near-infrared imaging sensors
in agricultural and urban areas of Chikusei, Ibaraki Prefecture,
Japan. This hyperspectral dataset has 128 bands in the spectral
range of 363–1018 nm, and the scene consists of 2517× 2335
pixels. After removing black borders from the spatial domain,
the centered 2048× 2048 pixels were cropped and extracted for
use in our experiments. Partial images of the test set for these
four datasets are shown in Fig. 3.

The LR-HSI for the four datasets is acquired by a Gaussian
filter of r × r (the mean value is 0, the standard deviation is 2)
and down-sampling every r pixels in the vertical and horizontal
directions of each band of the reference image, namely, the
extraction factor is r × r. The HR-MSI of the same scene is
simulated by spectrally downsampling the HR-HSI using the
subspectral sampling matrixR, whereR adopts the Nikon D700
camera response function.12 For the Chikusei dataset, given the
diversity of hyperspectral sensors, the spectral response function
R of IKONOS satellite13 was used to generate HR-MSI. At
the same time, the observed images from these datasets are

10http://icvl.cs.bgu.ac.il/hyperspectral/
11http://naotoyokoya.com/Download.html
12https://www.maxmax.com/spectral_response.htm
13https://www.satimagingcorp.com/satellite-sensors/ikonos/

http://naotoyokoya.com/Download.html
https://github.com/alfaiate/HySure
https://github.com/lanha/SupResPALM
https://github.com/renweidian/DHSIS
https://github.com/wwhappylife/Deep-Blind-Hyperspectral-Image-Fusion
https://github.com/renweidian/CNN-FUS
https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-Super-resolution
https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-Super-resolution
http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://vision.seas.harvard.edu/hyperspec/
http://icvl.cs.bgu.ac.il/hyperspectral/
http://naotoyokoya.com/Download.html
https://www.maxmax.com/spectral_response.htm
https://www.satimagingcorp.com/satellite-sensors/ikonos/
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TABLE I
AVERAGE MPSNR, RMSE, ERGAS, SAM, UIQI, AND MSSIM RESULTS OF THE ABOVE METHODS ON THE CAVE DATASET WITH GAUSSIAN BLUR KERNEL

AND SCALING FACTORS OF 8, 16, AND 32

used as reference images. In experiments, we performed spatial
enhancements of factors 8, 16, and 32.

The first 20 HSIs from the CAVE dataset are used for the
training process, and the last 12 HSIs for testing. For Harvard
dataset, the first 30 HSIs are used for the training process and the
last 20 HSI are used as testing images. For the ICVL dataset, 50
datasets are selected from the 201 datasets for the experiments.
The first 30 HSIs are used as the training dataset, and the next
20 HSIs are used as the testing dataset in the experiments. Since
deep learning needs a large number of data as training sets,
blocks of these training HSI are used as training sets for training
the proposed network. In the case of upscaling factor 8, the size
of the LR-HSI block is 4× 4× 31, the size of the HR-MSI
block is 32× 32× 3, and the HR-HSI block is 32× 32× 31,
respectively; in the case of upscaling factor 16, the size of the LR-
HSI block is 2× 2× 31, the size of the HR-MSI block is 32×
32× 3, and the HR-HSI block is 32× 32× 31, respectively; in
the case of upscaling factor 32, the size of the LR-HSI block is
1× 1× 31, the size of the HR-MSI block is 32× 32× 3, and
the HR-HSI block is 32× 32× 31, respectively.

In the Chikusei dataset, we selected images of 1024× 2048
pixels in size from the top region of the images for training, while
cropping the rest of the images into nine nonoverlapping 512×
512× 128 as the test data. In the case of upscaling factor 8, the
size of the LR-HSI block is 4× 4× 128, the size of the HR-MSI
block is 32× 32× 4, and the HR-HSI block is 32× 32× 128,
respectively; in the case of upscaling factor 16, the size of the
LR-HSI block is 2× 2× 128, the size of the HR-MSI block
is 32× 32× 4, and the HR-HSI block is 32× 32× 128,
respectively; in the case of upscaling factor 32, the size of

the LR-HSI block is 1× 1× 128, the size of the HR-MSI
block is 32× 32× 4, and the HR-HSI block is 32× 32× 128,
respectively.

C. Quantitative Indicators

This article uses six evaluation metrics to quantitatively eval-
uate the difference between the fused images and the reference
images. For example, mean peak signal-to-noise ratio (MPSNR),
spectral angle mapping (SAM) [49], mean structural similarity
indicator (MSSIM) [50], erreur relative global adimensionnelle
synthese (ERGAS) [51], root mean square error (RMSE), and
universal image quality index (UIQI) [52]. In contrast to MP-
SNR, MSSIM, and UIQI (larger is better), RMSE, ERGAS, and
SAM are negatively correlated with image quality (smaller the
better).

D. Experimental Results

Tables I–IV show the evaluation results of the different meth-
ods. For the CAVE, Harvard, ICVL, and Chikusei datasets, dif-
ferent fusion methods are first evaluated on 10, 20, 20, and eight
test datasets, respectively, and then, the mean of the evaluation
metrics is calculated. According to Tables I–IV, the proposed
method achieve the higher MPSNR, UIQI, and MSSIM metrics
and the lower RMSE, ERGAS, and SAM metrics. This means
that the HSI reconstructed by the proposed method has a better
spatial structure and less spectral distortion than the comparison
methods.

Since the fused HR-HSIs shown in Figs. 4, 6, 8, and 10 are
close to each other, the visual heat maps of mean squared error
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TABLE II
AVERAGE MPSNR, RMSE, ERGAS, SAM, UIQI, AND MSSIM RESULTS OF THE ABOVE METHODS ON THE HARVARD DATASET WITH GAUSSIAN BLUR KERNEL

AND SCALING FACTORS OF 8, 16, AND 32

TABLE III
AVERAGE MPSNR, RMSE, ERGAS, SAM, UIQI, AND MSSIM RESULTS OF THE ABOVE METHODS ON THE ICVL DATASET WITH GAUSSIAN BLUR KERNEL AND

SCALING FACTORS OF 8, 16, AND 32

images are depicted in Figs. 5, 7, 9, and 11 to visually highlight
their differences, where the blue color indicates small errors and
the red color indicates significant errors.

1) Results on CAVE Dataset: As can be seen from Fig. 5, the
fusion result of CNMF and HySure has a large area of the recon-
struction error. The fused images of the CSU method have signif-
icant reconstruction errors on apples. DHSIS, DBIN, CNN-Fus,
MoG-DCN, and DUNet methods have partial reconstruction
errors on reconstructed apples. The proposed method has the

least reconstruction error. The per-band MPSNR and MSSIM
of the reference and fused images are shown in Figs. 12(a) and
13(a). As can be seen from these figures, the proposed has the
highest index on each band. Each band SAM of the reference
image and the fused image is shown in Fig. 14(a). As can be
seen from the figure, our method has the lowest index on each
band.

2) Results on Harvard Dataset: As can be seen from Fig. 7,
the fusion results of CNMF, HySure, CSU, MoG-DCN, and
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TABLE IV
AVERAGE MPSNR, RMSE, ERGAS, SAM, UIQI, AND MSSIM RESULTS OF THE ABOVE METHODS ON THE CHIKUSEI DATASET WITH GAUSSIAN BLUR KERNEL

AND SCALING FACTORS OF 8, 16, AND 32

Fig. 4. Fused image of real and fake apples with pseudocolor composite map (bands 30, 20, 10). (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26].
(e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.

DUNet have large area reconstruction errors. DHSIS, DBIN,
and CNN-Fus methods have partial reconstruction errors. The
method in this article has the least reconstruction error. The
per-band MPSNR and MSSIM of the reference and fused images
are shown in Figs. 12(b) and 13(b). As can be seen from these
figures, the proposed method has the highest index on each band.
Each band SAM of the reference image and the fused image is
shown in Fig. 14(b). According to this figure, the proposed
method has the lowest index on each band.

3) Results on ICVL Dataset: As shown in Fig. 9, the fu-
sion results of CNMF, HySure, and CSU have significant area

reconstruction errors. The fused images of DHSIS and CNN-
Fus methods have considerable reconstruction errors on the
trees. DBIN, MoG-DCN, and DUNet methods have partial
reconstruction errors. The proposed MDA-DUNet has the least
reconstruction error. The per-band MPSNR and MSSIM of
the reference and fused images are shown in Figs. 12(c) and
13(c). As can be seen, our proposed method has the high-
est index on each band. Each band SAM of the reference
image and the fused image is shown in Fig. 14(c). Again,
the method proposed in this article has the lowest index on
each band.
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Fig. 5. Comparison method of fused images of real and fake apples with mean square error images. (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26].
(e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.

Fig. 6. Fused image of Img1 with pseudocolor composite map (bands 30, 20, 10). (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26]. (e) DBIN [29].
(f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.

Fig. 7. Corresponding mean error images of the fused image comparison method for Img1. (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26].
(e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.
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Fig. 8. Composite pseudocolor map of the fused image of Sami_0331-1019 (bands 30,20,10). (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26].
(e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.

Fig. 9. Average error image corresponding to the fusion image comparison method of Sami_0331-1019. (a) CNMF [18]. (b) HySure [48]. (c) CSU [19].
(d) DHSIS [26]. (e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.

Fig. 10. Composite pseudocolor map of the fused image of Chikusei (bands 70,100,36). (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26].
(e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.
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Fig. 11. Average error image corresponding to the fusion image comparison method of Chikusei. (a) CNMF [18]. (b) HySure [48]. (c) CSU [19]. (d) DHSIS [26].
(e) DBIN [29]. (f) CNN-Fus [30]. (g) MoG-DCN [31]. (h) DUNet [36]. (i) MDA-DUNet.

Fig. 12. Comparison of MPSNR curves in different bands. (a) Real and fake apples of CAVE datasets. (b) Imgc1 of Harvard datasets. (c) Sami_0331-1019 of
ICVL datasets. (d) Chikusei datasets.

Fig. 13. Comparison of MSSIM curves for each band. (a) Real and fake apples of CAVE datasets. (b) Imgc1 of Harvard datasets. (c) Sami_0331-1019 of ICVL
datasets. (d) Chikusei datasets.

Fig. 14. Corresponding SAM curves of different methods are compared. (a) Real and fake apples of CAVE datasets. (b) Imgc1 of Harvard datasets.
(c) Sami_0331-1019 of ICVL datasets. (d) Chikusei datasets.
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Fig. 15. Ablation study of the wavelet detail extraction module and the AFSAM. (a) UNet-1. (b) UNet-2. (c) UNet-3. (d) UNet-4. (e) UNet-5.

Fig. 16. Pseudocolor images of (a) MSIs (band 3, 2, 1) and (b) HSIs (band
20, 5, 3).

4) Results on Chikusei Dataset: As can be seen from Fig. 11,
the fusion results of CNMF, HySure, and CSU have a large area
of the reconstruction error. The fused images of the CSU method
have a significant reconstruction error on the edge of the field
dam. The DHSIS, DBIN, CNN-Fus, MoG-DCN, and DUNet
methods have a partial reconstruction error on the reconstructed
field dam. The method in this article has the smallest recon-
struction error. The MPSNR and MSSIM for each band of the

reference and fused images are shown in Figs. 12(d) and 13(d).
It can be seen from these plots that the presented ones are mostly
the highest values on each band. The SAM for each band for the
reference and fused images is shown in Fig. 14(d). It can be seen
from the plots that our method has the lowest index on each band.

5) Results on Different Noise Levels: In fusion tasks, MSIs
and HSIs are often affected by noise [53], so noise is added to
the images in this article. When we simulate HSI and MSI from
HR-HSI, Gaussian noise is added to the HSI and MSI and the
signal-to-noise ratio (SNR) varies from 10, 20, and 30 dB. For
each noise level, we calculated the evaluation metrics for the
CAVE dataset and then averaged them, as shown in Table V. As
can be seen from the table, the proposed MDA-DUNet and DBIN
methods show more advantages when the SNR is 10 and 20 dB.
The MoG-DCN method achieves relatively good accuracy in the
low-noise case.

6) Running Time Analysis and FLOPs: Table VI depicts the
results of a quantitative comparison of the average running times
and floating point operations per second (FLOPs) of the different
methods on the CAVE dataset at 8× super-resolution. The table
shows that the method in this article and the DUNet method,
achieve better fusion performance in terms of running time and
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Fig. 17. Fused pseudocolor composite image of Hyperion-sentinel results (bands 20,5,3), size of the image is 600× 600 with 10 m resolution. (a) Orig-
inal LR-HSI. (b) CNMF [18]. (c) HySure [48]. (d) CSU [19]. (e) DHSIS [26]. (f) DBIN [29]. (g) CNN-Fus [30]. (h) MoG-DCN [31]. (i) DUNet [36].
(j) MDA-DUNet.

TABLE V
QUANTITATIVE COMPARISON OF THE DIFFERENT ALGORITHMS WAS CARRIED OUT ON THE CAVE DATASET BY ADDING DIFFERENT NOISES

TABLE VI
COMPARISON OF TEST RUN TIMES AND FLOPS FOR THE DIFFERENT ALGORITHMS WAS CARRIED OUT ON THE CAVE DATASET

FLOPs, with the DUNet method achieving the best performance.
The MDA-DUNet is a lightweight framework with less running
time and the low FLOPs, demonstrating the effectiveness and
efficiency of the proposed method.

The conclusion that can be drawn from the above experimental
results is that the method in this article has good spatial and
spectral reconstruction capabilities on the simulated dataset.

E. Ablation Studies

1) Function of Each Component of the Proposed MDA-
DUNet: The role of the different parts of the MDA-DUNet, i.e.,
different variants, are trained on the same training data, i.e.,
the CAVE dataset. Fig. 15(a) shows UNet-1, Fig. 15(b) shows
UNet-2, Fig. 15(c) shows UNet-3, Fig. 15(d) shows UNet-4,
and Fig. 15(e) shows UNet-5. To verify the effectiveness of
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TABLE VII
PERFORMANCE COMPARISON OF ABLATION EXPERIMENTS WITH THE CAVE

DATASET

TABLE VIII
COMPARISON OF THE PERFORMANCE OF AFFM AND AFSAM ON THE CAVE

DATASET

the proposed attention module for asymmetric feature selective,
the first variant removes AFSAM compared to the original
network, denoted by UNet-4. The second variant cancels the
wavelet detail injection, denoted by UNet-3. The third variant
removes the residual module, denoted by UNet-5, while the
fourth removes wavelet detail injection and AFSAM, namely
UNet-2. Besides, the original UNet is set as a baseline for
comparison with networks of different structures, demonstrating
the effectiveness of each component, mainly because the number
of parameters of the original UNet compared with the proposed
method is relatively small. The structures of the five variants are
shown in Fig. 15. The performances of these methods on the
CAVE dataset are shown in Table VII.

From the ablation experiments, we can see that the wavelet
detail extraction module and AFSAM proposed in this article
are facilitative to the network, and therefore, we consider them
to be effective.

2) Comparison of the Proposed AFSAM With the AFFM:
From Table VIII, it can be seen that the performance of the
AFSAM proposed in this article is improved by 1.6 dB in terms
of MPSNR compared to the AFFM. This demonstrates the
effectiveness of using spatial and spectral attention selection
mechanisms to extract important features from asymmetric
features.

IV. REAL DATA EXPERIMENT

In the following, the real dataset is used to further verify the
proposed method’s effectiveness. We use the LR-HSI acquired
by Hyperion sensors using the Eo-1 satellite and the HR-MSI
acquired using the Sentinel-2 satellite. The Hyperion HSI has a
spectral range of 400–2500 nm, including 242 bands, with a spa-
tial resolution of 30 m. After removing the water vapor and noise
bands from the HSI, 89 bands remain. The MSI S2 has a total of
13 bands, from which four bands of 490, 560, 665, and 842 nm
are selected as the HR-MSI with a spatial resolution of 10 m.

This section aims to fuse 30-m HSI and 10-m MSI data to
obtain 10-m HSI. Since the proposed network is supervised

Fig. 18. Pseudocolor images of (a) RGBs and (b) MSIs (band 5, 3, 2).

learning, 10-m HSI data are required as a reference image, but
there are no 10-m HSI data in the real scene. Therefore, we use
the strategy in [54] and [55] to convert 30-m HSI and 10-m MSI
through downsampling. The original 30-m HSI is used as a ref-
erence image for training, while in the testing phase, the original
30-m HSI and 10-m MSI are used to obtain 10-m HSI data.

The Hyperion HSI contains a spatial size of 2350× 990, and
the size of the S2 MSI is 7050× 2970. For the experiment,
200× 200 pixels from the HSI data and 600× 600 pixels from
the MSI data are cropped as the test set. At the same time, the
rest of these data are used as the training dataset. Furthermore,
the test images are shown in Fig. 16.

The training image is divided into patches with the 4× 4×
89, 12× 12× 4, and 12× 12× 89 for the LR-HSI, HR-MSI,
and HR-HSI, respectively.

From Fig. 17, it can be seen that there is not only much noise
in the fusion image generated by the CNMF method but also a
lot of color distortion in the river part. In the image generated
by the HySure method, not only the green part is distorted, but
most of the white area has disappeared, and other areas also
have distortion. The green part of the fusion image generated
by the CSU method is distorted into gray. The fusion result of
the DHSIS method has not only spectral distortion in the white
area, but also has striped noise in the image. There is more noise
in the image obtained by the DBIN method. CNN-Fus method
fusion image retains only rough outlines and blurred details.
There was a small amount of noise in the images fused by the
MoG-DCN and DUNet methods. Compared with other methods,
the results obtained by the method proposed in this article have
less distortion.

Furthermore, we also validate the performance of the pro-
posed method on the real-world MSI dataset WV2.14 This
dataset consists of pairs of real LR-MSI with eight bands and
HR-RGB images. We reconstruct the HR-MSI from a pair of
LR-MSI and HR-RGB. Since the data only contain a pair of
images, we first take the 100× 100 RGB and 400× 400 MSI
data as the test set, and the remaining data as the training
dataset. The test set data are shown in Fig. 18. Similarly, we
use the block method to prepare the training dataset. The sizes
of LR-MSI, HR-RGB, and HR-MSI image blocks are 3× 3× 8,
12× 12× 3, and 12× 12× 8, respectively.

14https://www.harrisgeospatial.com/Data-Imagery/Satellite-Imagery/High-
Resolution/WorldView-2

https://www.harrisgeospatial.com/Data-Imagery/Satellite-Imagery/High-Resolution/WorldView-2
https://www.harrisgeospatial.com/Data-Imagery/Satellite-Imagery/High-Resolution/WorldView-2
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Fig. 19. Fusion result of Worldview-2’s pseudocolor composite map (bands 5,3,2), size of the image is 400× 400. (a) Original LR-HSI. (b) CNMF [18].
(c) HySure [48]. (d) CSU [19]. (e) DHSIS [26]. (f) DBIN [29]. (g) CNN-Fus [30]. (h) MoG-DCN [31]. (i) DUNet [36]. (j) MDA-DUNet.

As shown in Fig. 19, the fused images generated by CNMF
and HySure methods are blurred and too bright. The spectral
distortion occurs in CSU, with red roofs and gray background.
The colors of the images generated by the DHSIS and CNN-
Fus methods are distorted, while the image generated by the
DBIN and DUNet methods is blurry. The images generated by
the MoG-DCN method has mesh noise, whereas the proposed
method has less spectral distortion and less noise.

From the above analysis, it can be concluded that the MDA-
DUNet has better spatial and spectral reconstruction capabilities
on real datasets.

V. CONCLUSION

In contrast to the present CNN-based approaches, the sug-
gested fusion technique can aid the CNN in sufficiently ex-
ploring the HR-MSI’s spatial information and incorporating the
extracted spatial information into the latent image to rebuild the
HR-HSI in a global-to-local pattern progressively. This article
proposes a dual-ended UNet to improve the spatial resolution of
HSI. The first branch is the detail extraction network, which is an
encoding–decoding whose main purpose is to extract different
spatial features of MSI. The other branch is the spectio-spectral
fusion module, which aims to inject the features of the detail
extraction network into the HSI to better reconstruct the HSI.
Moreover, this network uses an asymmetric attention to focus
on essential features at different scales. The experimental results
on simulated and real data indicate that the proposed models
are qualitatively and quantitatively outperforming the existing
state-of-the-art methods.

Since transformer [56], [57] can effectively mine the nonlocal
correlation of images, it has been widely used in the direction
of image restoration and classification. The literature [58], [59]
also introduces the transformer to HSI fusion. However, this
method does not fully exploit the multiscale information of HSI

and MSI. Therefore, the combination of transformer and UNet
is used, both multiscale and nonlocal information of HSI can be
exploited simultaneously.
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