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Abstract— For practical motor imagery (MI) brain-
computer interface (BCI) applications, generating a reliable
model for a target subject with few MI trials is important
since the data collection process is labour-intensive and
expensive. In this paper, we address this issue by proposing
a few-shot learning method called temporal episode relation
learning (TERL). TERL models MI with only limited trials
from the target subject by the ability to compare MI trials
through episode-based training. It can be directly applied to
a new user without being re-trained, which is vital to improve
user experience and realize real-world MIBCI applications.
We develop a new and effective approach where, unlike the
original episode learning, the temporal pattern between tri-
als in each episode is encoded during the learning to boost
the classification performance. We also perform an online
evaluation simulation, in addition to the offline analysis that
the previous studies only conduct, to better understand the
performance of different approaches in real-world scenario.
Extensive experiments are completed on four publicly avail-
able MIBCI datasets to evaluate the proposed TERL. Results
show that TERL outperforms baseline and recent state-of-
the-art methods, demonstrating competitive performance
for subject-specificMIBCI where few trials are available from
a target subject and a considerable number of trials from
other source subjects.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) enables humans to
interact with the world by only relying on their brain

activities without any muscular movements [1]. One of the
most popular paradigms employed in BCIs is motor imagery
(MI). It is a cognitive process where individuals imagine a
movement of either one or several parts of their body without
performing any actual movement nor activating muscles [2].
MI of different parts of the body elicit different sensorimotor
rhythms (SMRs). These SMRs can be captured by brain
signal collection techniques [3], such as electroencephalog-
raphy (EEG), the most accessible and common one used
in BCIs. The idea of the EEG-based motor imagery brain-
computer interface (MIBCI) is to decode the user’s intention
by analyzing the EEG signals that contain distinct patterns
of SMRs. MIBCI has been successfully deployed in various
applications such as external skeleton [4], speller [5], and
wheelchair [6].

Researchers have established many attractive approaches
and algorithms for MI classification in BCI systems. Conven-
tional methods rely on discriminative hand-crafted features to
classify MI. Common spatial pattern (CSP) is one of the most
well-known methods [7]. It generates spatial filters that maxi-
mize variances between multiple classes in a certain frequency
band. Filter-bank common spatial pattern (FBCSP) [8] based
on CSP is an elegant linear method which aims to find a set of
spatial filters to maximize the differences in variances between
MI classes in multiple frequency bands rather than in only one
single band. This method is the winner in the BCI Competition
IV, achieving 67.75% accuracy in MI classification on dataset
IV-2a [9]. However, pre-processing techniques are required to
be applied to raw data when using these methods. They can
not offer an end-to-end way for the MI classification task.

Alternatively, deep learning (DL) methods provide an end-
to-end framework to deal with the MI classification task
and achieve a promising performance [10]. They reach the
state-of-the-art (SOTA) classification accuracy [10], [11] in
multiple public MI benchmarks such as Physionet [12] and
those in BCI competitions [9], [13]. The convolutional neural
network (CNN) is one of the popular choices in MI signal
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processing [10]. One of the main characteristics of CNN is
weight sharing, making it quite efficient in terms of memory
and complexity. Albeit its low complexity and small memory
usage, CNN still maintains an outstanding ability to extract
discriminative features. Specifically, CNN layers are able to
process patterns at diverse temporal scales with different
kernel sizes. Such layers are likely to take full advantage of
the information available in temporal series (e.g., MI trials)
and generate deep discriminative representations for the MI
classification [10]. Schirrmeister et al. [14]. introduced a deep
CNN architecture that consists of temporal convolution filters,
spatial convolution filters, and convolution pooling blocks.
It is a well-known end-to-end CNN structure for MI clas-
sification which exhibits encouraging performance. Another
popular CNN framework, called EEGNet [15], was proposed
by Lawhern et al. in 2018. It is a light-weighted network
with only thousands of parameters. It significantly saves the
training and calibration time and still delivers competitive per-
formance at the same time. These two architectures are popular
backbone networks in the MI classification task regarding
DL approaches. Many other interesting approaches have been
established on their basis [16], [17], [18].

Most recent SOTA methods usually follow the standard
supervised manner to learn the model. This paradigm is
straightforward by using the MI input data X to learn a
model f (·) to predict probability ŷ that X belongs to a
certain class. The training is guided by a specific type of loss
function, mostly cross-entropy [20], between ŷ and ground
truth y. The network learns how to classify MI and has been
successfully applied to many previous studies based on the
offline evaluation [14], [15], [16], [17], [18], [21]. However,
it may not be suitable for the real-world MIBCI which is
often deployed in an online prediction setting [22], where only
limited data can be collected from the target subject for the
initial setup. We certainly can use this small dataset to train
the model. However, the model will usually suffer from the
over-fitting issue and might exhibit poor performance [23].
To alleviate this problem, several supervised transfer learning
methods are proposed to leverage a large amount of available
data from other subjects in addition to the target data. For
example, Zhang et al. [16] applied the fine-tuning technique
to different parts of the network. They used the MI data from
the target subject to re-train some parameters of the model
that have been pre-trained by the MI data from other source
subjects. Several researchers instead focused on co-training
(i.e., domain adaptation) approaches using data from target and
source subjects to concurrently train the model from scratch.
For instance, one research group subsequently introduced two
different methods [24], [25] to train a model using adversarial
learning [26] for the alignment of the deep features between
source and target subjects. In addition, a few other studies
attempted to add an auxiliary penalization term, e.g., KL diver-
gence [27] or maximum mean discrepancy (MMD) [28] into
the objective function to address the issue of the distribution
shift between source and target deep features. However, these
strategies assume that there are still a reasonable number
(i.e. at least 200 trials) of MI trials from the target subject.
Thus, they may not be optimal choices for the real-world

BCI that usually does not have such a long period of data
collection.

Instead of training in a direct supervision way, we can also
guide a model to learn an easier task - finding relations (i.e.,
comparison) between MI classes. The model compares an
unseen trial with a small pool of labeled trials. The unseen trial
is assigned the class of a labeled trial if they have the closest
relation. This is inspired by the relation network (RN) [19]
in the few-shot classification scenario. This method originally
aims to train a model that can identify the relations between
image objects using a large number of labeled data [19]. After
the training, the model can output reliable relation scores
between objects even if the classes of the testing data are
never exposed in training (i.e., the label space of training data
is disjoint with testing one, see examples in Fig. 1). Again,
the prediction of unseen input is made based on the largest
relation score between itself and one of the few labeled data.
The training guides the model to learn the relation between
input objects rather than detecting their classes. We here utilize
the RN for making predictions on MI data with the same class
space but from a new target subject (Fig. 1). It is clear that
we require a few labeled samples per class available from
the target subject in order to calculate the relation scores
and classify testing trials. This perfectly adapts to the online
prediction setting for real-world BCIs. They usually collect
several data from the target subject at the beginning for the
model re-training.

Notably, RN utilizes well-designed mini-batches of data,
called episodes [23], for training [19]. The episode learning is
to imitate the testing environment of the few-shot classification
during the training in order to improve the model’s general-
ization [23]. To our best knowledge, only limited previous
studies apply episode learning in the EEG-based classifica-
tion [29], [30], [31], [32]. They apply such a technique to
train a few-shot classifier in the tasks of MI classification [29],
emotion detection [30], [31], and autism spectrum disorder
(ASD) diagnosis [32], respectively. However, two existing
gaps in the episode-based training are still to be addressed.
First, the temporal information between the trials sampled
from the data pool within each episode is ignored in the
previous studies. The second gap in the existing literature
is that only offline evaluation was performed. The previous
results may not be generalizable to the requirement of online
prediction in a real-world application. Corresponding to these
gaps, this study makes the following contributions.

1) We propose a temporal episode relation learning
(TERL), a simple but effective way to extract the tempo-
ral information in each training episode and improve the
model performance. In this method, the order of trials
in episodes, network architecture, and sampling methods
to formulate episodes are carefully designed.

2) In addition to the common offline evaluation, we also
extensively test different learning methods in an emu-
lating online setting (i.e., online evaluation simulation)
to fully understand their effectiveness in the MIBCI.

3) The proposed TERL outperforms the recent SOTA
approaches and baselines with 0.5 - 2.9% and 1.2 -
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Fig. 1. Tasks of the relation network. Left: original task in the image
classification [19]; right: MI classification task, hand MI (blue) and foot MI
(orange).

4.0% accuracy improvements in offline evaluation and
online evaluation simulation, respectively, across differ-
ent datasets and MI classification tasks.

The article is organized as follows. Section II explains
the proposed method in detail. Section III describes our
experiments. Section IV presents the results and covers their
corresponding analysis. The conclusion is drawn in Section V.

II. TEMPORAL EPISODE RELATION LEARNING

This section first introduces the problem to be addressed
in the study. Then, we present the learning framework of the
proposed TERL, the network architecture employed in this
study, and different sampling techniques used to formulate the
training episodes. Lastly, we summarize the advantages of our
approach in the few-shot MI classification task against the
original episode training method [23].

A. Problem Formulation

Although the setting in this study is different from the
usual few-shot learning scenario in computer vision [19], [23],
we still can inherit some terminologies and definitions used
in the previous studies. In the present work, it is assumed
that a relatively large pool of MI trials from other source
subjects (training set) are always available at hand. Only
limited labeled MI trials per class are collected from the target
subject for the initial setup (support set). This fits the usual
case encountered in the real-world BCI application. We apply
the idea of episode-based learning in this few-shot scenario.
The few-shot classifier is trained using the data from the
training set. Then, it makes classification predictions to the
unseen trials (testing set) of the target subject based on their
relation scores with the trials in the support set. These three
sets have the same label space with C unique classes. If the
support set (i.e., initial setup) contains K trials per class, the
problem is called C-way K -shot.

The principle idea of the episode-based learning is to imitate
the testing interface during the training [23]. In each training
iteration, K trials per class (i.e, total number of samples
m = K × C) are randomly picked out from the training set
as a sample set (S). A fraction of the remaining samples
in the training set is then selected as a query set (Q). The
sample/query samplings are to stimulate the support/testing
interface. Q and S are used to train the model and are
randomly re-selected in each iteration.

B. Learning Framework

A single trial of EEG MI signal is denoted as (xi , yi ). xi ∈
R

E×T is the input of the model, where E is the number of EEG
electrodes and T is the number of time points. yi ∈ R

C is the
corresponding label of C classes. The proposed TERL consists
of three parts, i.e., a trial embedding module ( fθ ), an episode-
based temporal encoding module (gφ), and a relation module
(hγ ). The overall design is illustrated in Fig. 2. We separately
introduce the training and testing/interface.

1) Training: As mentioned in subsection II. A, a sample set
and a query set need to be generated from the trials of source
subjects in each training iteration/episode (Fig. 2, top), where
samples ({xi}mi ) in S are fed into the embedding function fθ .
The function generates the feature mappings { fθ (xi )}mi , where
m is the number of MI trials in S and is equal to K × C
as stated in subsection II. A. It is noted that {xi }mi in our
method are sorted in temporal order so as { fθ (xi )}mi . Then,
the episode-based temporal encoding module further embeds
each fθ (xi ) depending on itself and ai preceding elements,
i.e. gφ( fθ (xi ), Vi ), where

Vi = {G(r)}, r = i − ai , i + 1− ai , . . . , i − 1. (1)

G(r) =
{

fθ (xr ), r > 0;
0, otherwi se.

(2)

The proposed gφ is inspired by the MI EEG data collection and
online prediction, where brain activity at the present moment
strongly correlates with previous moments [10]. We call this
function as episode-based temporal encoding, because it con-
siders the episode as a sequence and captures its temporal
patterns. The encoding of the current trial utilizes both the
information from its own and proceeding trials. The gφ can
be easily implemented by popular DL architectures, such as
CNNs and recurrent neural networks (RNNs), in an episode-
based way rather than a within-trial-based way in the previous
studies [30], [33]. Then, the feature map (Mc) of each class
in S is represented by the sum of its corresponding temporal
features, defined as

Mc =
m∑
i

δ(yi = c) · gφ( fθ (xi ), Vi ), c = 1, 2, . . . , C. (3)

where δ(condi tion) is the indicator function, and it is equal
to 1 if the condition is satisfied and equal to 0 otherwise.

Each sample of {x j }nj in Q is one-by-one fed into fθ to
get the feature embedding fθ (x j ), where n is the number
of samples in Q. Note that Q is to imitate the testing set,
which is expected to be unknown and may be sorted in any
order during the testing interface. Therefore, samples in Q
are not feedforwarded into gφ . Each feature map Mc of S and
each feature map fθ (x j ) of Q are combined with a simple
concatenation operator, denoted as O(Mc, fθ (x j )). Therefore,
we have C concatenated feature maps for each x j . These
feature maps are the input to the relation module hγ . It outputs
a scalar score (r ) between 0 to 1, representing the similarity
between the representative feature (Mc) of each class in S and
each x j in Q. We always generate C relation scores for each
sample x j in Q.

rc, j = hγ (O(Mc, fθ (x j ))), c = 1, 2, . . . , C. (4)
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Fig. 2. An example of a single training episode (top) and the testing/interface (bottom) of the proposed framework. Annotated MI trials in different
classes are in different colours. One colour, except grey, denotes one class. The trials in grey are required to be classified during the testing/interface.
Rectangles denote the feature embedding vectors. M1, M2, . . . , and Mc (described in subsection II. B) are representative features for C classes,
respectively. Different *sampling techniques are applied in the present study to generate the sample set in the training episode, and they are described
in detail in subsection II.D. The upper part of the figure only shows one training episode. This process is iteratively executed for many times (e.g.,
10000) in training to optimize the fθ , gφ, and hγ . These functions are fixed during the testing/interface. The classification of all testing trials of the
target subject is based on these optimized functions and the annotated support set.

Fig. 3. Network architectures for the trial embedding module (fθ), temporal encoding module (gφ), and relation module (hγ ).

Since we have n samples in Q, n × C relation scores are
generated for each training episode. The mean square error
(MSE) loss is used to train the network. It regresses the relation
score rc, j to ground truth: same-class pair equals 1, different-
class pair equals 0. Details of the optimization of the loss are
as follows.

θ, φ, γ ← arg min
θ,φ,γ

C∑
c

n∑
j

(rc, j − δ(c = yi ))
2 (5)

The above description and the upper part of Fig. 2 are only
for a single training episode/iteration. The number of itera-
tions/episodes depends on our manual setting (e.g., 10000) to
reach the coverage of the training to fθ , gφ, and hγ .

2) Testing/Interface: After the training, fθ , gφ , and hγ

are fixed without any retraining before or during the test-
ing/interface process. As shown in the lower part of Fig. 2, m
(K×C) MI trials with labels are required to be collected as the
support set for the implementation of testing/interface for the
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target subject. These m samples are not used to update or train
the model. They are only feedforwarded into the network to
calculate the representative feature (i.e., Mc) of each class for
the target subject. Each testing sample without a label is first
encoded by fθ and then compared with representative features
by hγ . The hγ outputs a relation score for this testing trial
in each class, e.g., 0.9 for hand MI and 0.1 for foot MI in
the lower part of Fig. 2. The class with the highest score is
assigned as the predicted label for this particular testing trial.

Note that the testing sample is not feedforwarded into gφ,
as mentioned in subsection II-B.1. It is also worth noting that
all the testing trials of the target subject are compared with
the same representative features, given that the support set, fθ ,
and gφ are all fixed during the testing/interface process.

C. Network Architecture

EEGNet [15] is one of the most popular architectures for MI
classification in the BCI community. For the trial embedding
module ( fθ ), we follow the same architecture of the EEGNet
but abandon its dense layers (supervised classification layers).
The embedding function (Fig. 3, top left) contains three blocks
to extract deep features.

For gφ in this work, we utilize a simple 1D CNN with a
kernel size (ks) along the dimension of the sample size (i.e.
m) of S. The stride is (1, 1). The zeros (ks−1, 0) are padded
prior to the feature vector of the first trial, as shown in Fig. 3
(right). Note that the 1D CNN computes the weighted sum
of its input and slides along the feature dimension. Therefore,
it conforms to the setting of the proposed gφ that the encoding
of the current trial utilizes both the information from its own
and proceeding trials. For example, when 1D CNN (assuming
ks = 2) encodes the feature vector of the second trial (i.e., the
third row) in the right part of Fig. 3, it uses the feature vector
of the first trial (the second row) and that of the current trial
(the third row) as the input.

We adopt the same architecture of the relation module
in [19] for hγ but modify hyper-parameters of several layers
to adapt the data dimensionality of MI trials. More concretely,
two CNN layers and two dense layers are used and illustrated
in Fig. 3 (bottom left).

D. Sampling Techniques for Training Episodes

The support and testing sets in the testing phase are both
coming from the target subject. To better emulate this phase,
both S and Q in each episode are sampled from the same
source subject (constraint A). In addition, another important
assumption in the online prediction setting is that the trials of
the testing set always occur after those of the support set. We,
therefore, introduce one more constraint (constraint B) that the
trials in Q are always collected after all of those in S to adapt
to this assumption.

In the offline evaluation, we only apply constraint A to the
episode sampling, as constraint B is only for the assumption
of the online prediction setting. In the online simulation
experiments, we tested two different sampling techniques, i.e.,
(1) Constraint A only and (2) Constraints A and B.

Fig. 4. An illustration of the feature encoding in the support/sample set
using the methods in [23] (top, image classification) and the proposed
TERL (down, MI classification) for two-way two-shot problems. Rectan-
gles in different colours represent feature vectors in different classes.
Both methods contain a single sample feature embedding network and
a sequence encoding function. VGGNet [34] and EEGNet [15] are used
for the single sample embedding of the approach in [23] and our TERL,
respectively, in this illustration. A bidirectional long short-term memory
(BiLSTM) is used for the sequence encoding function in [23], taking
account of the information from all samples within the support/sample set
for the sequence encoding of each sample. The CNN (an implementation
example of gφ) is used for sequence encoding in our method and only
uses the information from the current trial itself and a single (for the sake
of easy illustration; other numbers can also be used depending on the ai
we define) prior trial.

It is unreasonable to apply constraint B only in either offline
or online prediction settings, since the temporal order between
MI trials makes little sense when they come from different
individuals. Therefore, constraint B only is not tested in our
study.

E. Advantages of the Proposed Method

The proposed TERL is specifically designed to train a
few-shot classifier for the MIBCI. It shows distinct advantages
for the MI recognition against the original episode training
in [23], initially proposed for the image classification task.
First, TERL inherits the main superiority of the original
RN [19]. The data-driven nonlinear comparator (i.e., hγ ) is
used in our approach instead of relying on the manually
selected cosine distance metric in [23].

More notably, the designed TERL is more appropriate than
the method proposed in [23] for MIBCI episode training in
terms of two aspects below. An intuitive comparison between
these two methods for two-way two-shot problems is dis-
played in Fig. 4.

1) Permutation in support/sample set: The order of the
samples in support/sample sets is presumably random
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in [23] with no details offered in the study. The depen-
dency of samples between different classes is encoded
during the training where the ordering pattern can not be
obtained. Alternatively, the MI trials in our framework
are sorted in temporal order within each support/sample
set to capture temporal patterns, which have been proven
highly significant in boosting the MIBCI performance in
numerous studies, such as [14], [15], [35], and [36].

2) Embedding scope: The proposed gφ only covers ai

preceding trials in the temporal embedding, i.e., Eq (1),
which fits real-world classification setting. On the con-
trary, the sequence encoding in [23] is based on bidi-
rectional long short-term memory (BiLSTM), where
the embedding of the current sample depends on the
entire support/sample set. This violates the assumption
of temporal pattern that the embedding of the current
trial should only have the information from the previous
ones.

III. EXPERIMENTS

We conduct extensive experiments to verify the effective-
ness of the proposed method. Source codes for experiments
are publicly available.1

A. Databases

We use the following four public well-known MIBCI
datasets in our experiments. The sequence of the MI tasks
is randomized in these datasets.

1) BCI Competition IV-2a (IV-2a) [9]: The dataset was col-
lected from 9 individuals, i.e., A01 to A09, using the device
sampling at 250 Hz with 22 EEG channels. A cue-based visual
paradigm that consists of four MI classes (left hand (LH), right
hand (RH), tongue (TG), and both feet) was deployed in the
data collection. Two sessions were conducted for each subject,
resulting in a total of 576 MI trials with 144 in each class for
each person. These two sessions are treated as a whole set.
The temporal order used in the experiments is that the last
trial of the first session is collected before the first trial of
the second session. The 22-channel EEG signal was epoched
at [0, 4] from the starting point of the visual cue until the
end of MI. Given the 250 Hz sample rate, each MI trial is a
22×1000 matrix. We conduct experiments of 2- (LH/RH), 3-
(LH/RH/TG), and 4-class (all) MI tasks on this dataset. Only
the results of 4-class experiments are presented in main text,
as this task is the most common one in previous studies. The
results of 2- and 3-class tasks are shown in the Supplementary
Materials.

2) BCI Competition IV-2b (IV-2b) [9]: This dataset was also
recorded from 9 different participants (B01-B09). Only three
electrodes, i.e., C3, Cz, and C4, were used to collect the EEG
signals at a sample rate of 250 Hz. The dataset includes two
MI classes, left hand and right hand, using a visual cue-based
paradigm. A total of 720 trials were collected for each subject,
with 360 for each class. We use a 4s temporal interval, between

1https://github.com/XiuyuHuangsmarthealth/Relation-Learning-Using-
Temporal-Episodes-for-Motor-Imagery-Brain-Computer-Interfaces

Fig. 5. An illustrative example of splitting the training set and target
subject using LOSO scheme. Training set contains all the trials from
subjects 1, . . . , t − 1, t + 1, . . . ,N in the dataset, excluding those from
subject t. Subject t is left out as the target subject for model evaluation.
N is the number of subjects in the dataset, and t is one of the integers in
[1,N]. Note that t−1 does not exist when t = 1, neither t+1 when t = N.
si denotes the number of trials collected in subject i in the dataset.

Fig. 6. An illustrative example of 5-fold training and validation on a 2-
class task of P-MI. The S85-S105 (fifth split) are the target subjects in
this example.

the beginning of the visual cue and the end of MI, as a trial
in our experiments. Therefore, the data format of one trial is
a 3× 1000 matrix.

3) BCI Competition III IVa (III-IVa) [13]: This dataset was
recorded from five subjects, denoted as aa, al, av, aw, and
ay. Participants perform MI tasks in either right hand or right
foot. The total number of trials collected for each subject was
280, with half (i.e., 140) for each class. The EEG signal was
collected from 118 channels placed on the scalp according to
the international 10-20 system. There are 1000 Hz and 100 Hz
versions available for this dataset. We use 100 Hz one in our
experiments. According to [37], only 18 channels are selected
for our analyzes. Each trial is epoched at [0.5, 2.5], and its
dimension is in a size of 18× 200.

4) Physionet EEG Motor Movement/Imagery Dataset (P-
MI) [12]: The dataset carries EEG recordings from 109 subjects.
Data from four subjects are discarded due to the variability in
the number of trials, leading to only the signals of 105 subjects
(S1-S105) eventually being included in this study. The EEG
signals are collected using 64 channels with a sample rate
of 160 Hz. Each subject attended three runs for MI of the
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left fist (L) against the right fist (R) and three runs for MI of
both fists (B) against both feet (F). One run contains 14 trials
resulting in 21 trials for each class per subject. A baseline
run was also recorded prior to these MI runs. It provides
the EEG data in a resting state (RS) where the subjects do
not perform any tasks with their eyes open. Referring to the
setting in [35] and [38], we conduct the experiments on 2-
(L/R), 3- (L/R/RS), and 4-class (L/R/RS/F) MI classification
tasks. Consistent with [38], each trial only contains 3 second
interval and in a dimension of 64× 480.

B. Offline Evaluation

The offline evaluation is based on leave-one-subject-out
(LOSO) implementation [39] for IV-2a, IV-2b, and III-IVa.
The training data for a target subject consists of the data
from all subjects, excluding himself/herself. An illustrative
example of splitting the training set and target subject is shown
in Fig. 5. In this example, all trials of subjects 1, . . . , t −
1, t + 1, . . . , N , excluding those of subject t , compose as the
training set for model training. N is the number of subjects
in the dataset, and t is one of the integers in [1, N]. Note that
t − 1 does not exist when t = 1, neither t + 1 when t = N .
Subject t is left out as the target subject for evaluation. Its
trials are divided into a support set and a testing set. It is
worth reminding again that the support set is assumed to be
annotated and used to calculate the representative features (see
subsection II.B). The predictive accuracy of the testing set
denotes the model performance. Certainly, all subjects (i.e.,
from 1 to N) in the dataset are left out once for the evaluation.

The offline evaluation of P-MI inherits the scheme in [35]
and [38] using the 5-fold cross-validation. Specifically,
105 subjects (S1-S105) are divided into five splits: S1-S21,
S22-S42, S43-S63, S64-S84, and S85-S105. The subjects in
each split act as the target ones, while the trials of those in the
remaining four splits are used as the training set. The process
is recursively implemented five times, with each split tested
once. An illustrative example of the 2-class validation for P-MI
is displayed in Fig 6. As shown in the figure, the first four
splits, S1-S21, S22-S42, S43-S63, and S64-S84, are used as
the training set for model training. The fifth split (S85-S105)
is used to evaluate the model. Each subject in this split has
its own support set and testing set, which are validated on the
same model trained by the first four splits. Again, subjects in
the splits S1-S21, S22-S42, S43-S63, and S64-S84 are also
as the target subjects once for the evaluation. The 3-class and
4-class experiments follow the same protocol as 2-class in the
offline evaluation.

In the offline evaluation, it is assumed that all trials are
available for every target subject. Therefore, for each target
subject, we randomly select m trials (i.e., K trials per class)
to formulate the support set. All the remaining trials are used
as the testing set; see a two-way three-shot example in Fig. 7.
The division is repeated five times for each target subject in
order to eliminate the random effect of the support/testing
division. The mean accuracy of the testing sets across these
five times denotes the performance of the model in terms of
this target subject.

Fig. 7. An example of the division of support and testing sets for a target
subject in the offline evaluation for a two-way three-shot problem. Three
MI trials in each class are randomly picked out as the support set (with
labels). All remaining trials combine as the testing set (to be predicted).

Fig. 8. An example of the division of support and testing sets for a
target subject in the online evaluation simulation for a two-way three-
shot problem. Three MI trials in each class are randomly picked out as
the support set (with labels) from the minimum set at the beginning of
data collection. All trials, excluding the minimum set, compose the testing
set (to be predicted).

C. Online Evaluation Simulation

The only difference between offline analysis and online
evaluation simulation is the support/testing division for the
target subject. In the online evaluation simulation, we also
randomly select m trials from the target subject to form
the support set. However, the selection is only made at the
minimum subset at the beginning of the first session to imitate
the initial setup of the real-world online BCI system. The
minimum subset is defined as the smallest subset containing
at least K trials for all classes; see a two-way three-shot
example in Fig. 8. This implementation is because the data
collection is not equally recorded across the entire period.
We want to guarantee that the support set can be sampled
from the beginning of the first recording session and also
contain K trials per class. The remaining trials, excluding the
minimum subset, are used as the testing set. Again, the data
from other subjects are used as the training set, the same as
the offline evaluation. The experiments are repeated five times
to decrease the random effect of support set formulation using
the minimum subset.

All the RS trials of the P-MI dataset are always recorded at
the beginning of the data collection. Therefore, the minimum
set at the beginning of the data collection always contains
all the RS trials, and no such trials can be assigned to the
testing set. In this case, the model performance on 3-class
and 4-class tasks using RS-class trials is not validated in the
online evaluation simulation. In sum, we only conduct online
evaluation simulations on the IV-2a, IV-2b, III-IVa, and 2-class
P-MI.

D. Description of Different Approaches

This work compares five baselines and three recent SOTAs
with the proposed method. They are described as follows.

1) Baselines:
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TABLE I
HYPERPARAMETER SETTING. E AND T ARE THE NUMBERS OF

ELECTRODES AND TIME POINTS, RESPECTIVELY, FOR AN MI TRIAL. sc1
AND sc2 ARE KERNEL SIZES OF CNN IN BLOCKS 1 AND 3,

RESPECTIVELY, IN THE TRIAL EMBEDDING MODULE (fθ ). HD IS THE

OUTPUT SIZE OF THE FIRST DENSE LAYER IN THE

RELATION MODULE (hγ )

a) Few: EEGNet trained in a supervised manner by
only using the support set.

b) Source only (SO): EEGNet trained in a supervised
manner by only using all data from other source
subjects (i.e., training set).

c) Combine: EEGNet trained in a supervised manner
by using the data of both support and training sets.

d) Basic I [29]: The few-shot model only contains
the embedding ( fθ ) and relation (hγ ) modules.
The generations of the sample and query sets for
each episode are completely random from data of
all source subjects without constraints A nor B
mentioned in subsection II.D.

e) Basic II [30]: The few-shot model only contains
embedding ( fθ ) and relation (hγ ) modules. The
sample and query sets are generated with constraint
A only. Basic II is an ablation and baseline to the
proposed method.

2) SOTAs:
f) Fine-tuning (FT) [16]: EEGNet pre-trained in a

supervised manner by using all data from source
subjects. The last fully-connected layer of the
pre-trained model is then fine-tuned by the data
of support set.

g) DDAN [28]: EEGNet jointly trained by a com-
bined loss of the categorical entropy, maximum
mean discrepancy (MMD), and center loss.

h) DRDA [24]: This method uses the
domain-adversarial training to learn
domain-invariant features and the center loss
to increase to discriminative power of the model
in the target subject.

These three SOTAs are representatives of the most com-
mon and effective DL techniques, i.e., fine-tuning, adding an
auxiliary penalization in the objective function, and domain-
adversarial learning, in the MI supervised transfer learning
(TL) and domain adaptation (DA). They were proposed to
effectively leverage both source and target data for model
training and show a competitive performance in previous
studies [16], [24], [28]. In addition, as described in subsection
II.D, our approach with two sampling techniques is also tested
in this article.

3) Our sampling techniques:

i) Model A: The proposed learning framework with
all three modules (i.e., fθ , gφ , and hγ ). The sample
and query sets are generated with constraint A only.

j) Model B: The proposed learning framework
with all three modules (i.e., fθ , gφ , and hγ ).
The sample and query sets are generated with
constraints A and B.

Except for Model B, all these methods are implemented
in both offline evaluation and online evaluation simulation.
Model B is only realized in the online evaluation simulation,
because constraint B is meaningless when applied to the offline
evaluation. There is no guarantee that the trials of the support
set are collected prior to those in the testing set in the offline
evaluation. The splitting of the support set and testing set
shown in Figs. 7 and 8 are for all the methods in offline
evaluation and online evaluation simulation, respectively.

E. Training and Optimization

All experiments are implemented on the Google Colab
platform. The computation is accelerated by a Tesla P100
PCIE 16GB GPU provided by the platform. We use an Adam
optimizer [40] for network update with a learning rate of
0.001. The number of episodes is 15000 for IV-2a and IV-2b,
2000 for III-IVa (given that the training in III-IVa converges
much faster), and 10000, 20000, and 30000 for 2−, 3−,
and 4-class P-MI, respectively. The number of K equals
10 for IV-2a, IV-2b, and III-IVa, meaning that the number
of m equals 40, 20, and 20, respectively. The value of K
is 5 instead for all tasks in P-MI, given that the number
of trials in each class is only 21, and we do not want the
testing set to be too small. Therefore, m equals 10, 15, and
20 in 2−, 3−, and 4-class tasks. The kernel size (ks) of 1D
CNN is set as m/4 for IV-2a, IV-2b, and III-IVa, meaning
that ks = 10, 5, and 5, respectively. ks is set as 5 for all
three tasks in P-MI. Other hyperparameters are displayed in
Table I. We apply the same configuration for all the subjects
within each dataset. The settings described in this subsection
are default throughout the article. Several of them are modified
accordingly in the following sections to verify the effectiveness
of each component of the proposed method.

IV. RESULTS AND ANALYSIS

A. Offline Evaluation

Table II shows the mean classification accuracy and stan-
dard deviation of different methods across repetitions in the
offline evaluation on the datasets IV-2a, IV-2b, and III-IVa.
The last column shows the average classification accuracy and
the standard deviation across subjects. Table III displays the
mean accuracy across subjects for 2-, 3-, and 4-class P-MI.
The best values are highlighted in boldface in both tables.
Non-parametric Friedman test and the post-hoc Nemenyi test
at level of significance α = 0.05 are applied to examinate the
statistical difference in performance between methods.

Results show a similar tendency in all four datasets. The
models trained only using the support set in a supervised
manner have the lowest mean accuracy and large standard
deviations across repetitions among all approaches. This result
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TABLE II
CLASSIFICATION ACCURACIES (%) OBTAINED IN THE OFFLINE EVALUATION FOR IV-2A, IV-2B, AND III-IVA

TABLE III
CLASSIFICATION ACCURACIES (%) OBTAINED IN THE OFFLINE

EVALUATION FOR P-MI

matches the description in the Introduction section that training
a neural network using such a small size of samples can
easily lead to an over-fitting issue and poor performance.
Other supervised learning methods leverage the data from
other subjects for the training, which usually significantly
(all p-values < 0.05, except SO and “Combine” methods
on III-IVa) improves the performance compared to the “Few”
strategy. It is necessary to draw help from a larger available
dataset to increase the model generalization capability when
only very few samples from the target subject are accessible.

According to [41], the prediction risk of a classifier on the
target domain is lower bound by the sum of domain shift
and the prediction risk in the source domain. Theoretically,
TL and DA methods can minimize the domain distance,
thus improving the model performance in the target domain.
However, contradicting our expectation, neither of these meth-
ods (i.e., FT, DDAN, and DRDA) achieves a higher average
classification accuracy than the “Combine” approach on all
four evaluation datasets. In the few-shot setting, there are only
very few MI trials from the target subject. These trials can
not represent the real distribution of the trials from the target
subject. This may be why these methods can not show the
superiority in our experiments as reported in their original
studies.

Few-shot classifiers mostly have competitive performance
with the best supervised learning approaches, except for the
Basic I on IV-2a. Models can obtain high generalization ability
via the few-shot learning method when the target subject only
contains few samples per class. We can also see that Basic II
performs significantly better than Basic I on IV-2a and 4-class
P-MI (p-value < 0.05). This finding suggests the necessity
of sampling each episode from the same source subject,
as individuals usually produce MI signals with different char-
acteristics. The proposed TERL shows at least 3.2% (IV-2a),
2.8% (IV-2b), 1.8% (III-IVa), 0.5% (P-MI 2-class), 0.5%
(P-MI 3-class), and 2.9% (P-MI 4-class) improvements in
the average classification accuracy against other few-shot
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TABLE IV
CLASSIFICATION ACCURACIES (%) OBTAINED IN THE ONLINE EVALUATION SIMULATION FOR IV-2A, IV-2B, AND III-IVA

TABLE V
CLASSIFICATION ACCURACIES (%) OBTAINED IN THE ONLINE

EVALUATION SIMULATION FOR P-MI

learning methods (i.e., Basic I and II) in the experiments
of different evaluated tasks. These results show that the
temporal information of the training episodes is important for
the MI recognition task. There is valuable latent information
between trials of the MI brain activities. It is also worth
mentioning that the proposed method performs better than
other recent SOTA approaches [35], [38], [42] on 3- and
4-class tasks of the P-MI dataset. To our best knowledge,

it achieves new SOTA accuracy for these two tasks. For the
2-class task, our method has a slightly worse (1% in average
classification accuracy) performance than the best approach,
EEGSym, proposed in [11]. EEGSym is based on a large
inception network trained by four large MI datasets. A long-
time calibration, consisting of an over 6-hour pre-training and
a 12-minute fine-tuning, is required to fit a model for the target
user. Alternatively, our method reaches a similar competitive
outcome with significantly less calibration time. It only needs
a 1-minute pre-training and can be directly applied to the target
subject without fine-tuning processes. For the datasets IV-2a,
IV-2b, and III-IVa, we use a different training and testing
data division from the original one in the BCI competition
because of considering the temporal order of the collected
trials. Given using a different experiment protocol, it may not
be fair to directly compare the performance of our method to
other published results [10].

B. Online Evaluation Simulation

Table IV presents the mean classification accuracy of mul-
tiple approaches in the online evaluation simulation on the
datasets IV-2a, IV-2b, and III-IVa. Table V shows the cor-
responding results for 2-class P-MI. The best values are
highlighted in boldface in both tables. Statistical analysis is
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TABLE VI
RETRAINING TIME IN THE INITIAL SETUP FOR TARGET SUBJECT

also performed again using the Friedman test and the post-hoc
Nemenyi test at level of significance α = 0.05.

Our approaches (Models A and B) perform the best on
all four evaluation datasets. Model A has improvements
of over 2.8% (IV-2a), 1.2% (IV-2b), 4.0% (III-IVa), and
1.6% (P-MI 2-class) in the average classification accuracy
compared to other approaches. Our two sampling schemes
do not significantly differ in accuracy (i.e. all p-values
> 0.05), but Model A slightly outperforms Model B in all
four datasets. This result is against our expectation that the
Model B using episodes in which samples in Q are collected
after those in S better micic the testing interface and should
perform better than Model A. The reason may be since the
sampling technique used in Model B significantly reduce the
possible combinations of S and Q from source samples, which
decreases the generalizability of our model. We also observe
that there are accuracy discrepancies in methods (e.g., “Few”,
DRDA, and Model A; p-values < 0.05) between offline
evaluation and online evaluation simulation by comparing
the Tables II and IV. Given these discrepancies, it may not
be sufficient to perform only the offline analysis to truly
understand the effectiveness of an approach on the real-world
BCI. Online analysis should also be necessary as several
subjects may not produce consistent MI during the usage.

The retraining time in the setup stage for the target subject
also has a significant impact on the user experience. The
shorter time means a better user experience. We present the
retraining time of each method when the data from the target
subject is available in Table VI. It is noted that the training
of most supervised learning methods, except the SO baseline,
can be started only until the data from the target subject are
available. The “Few” baseline and FT strategy only utilize a
small data set (i.e., support set) for the model training, so they
both require short retraining time. Alternatively, the “Com-
bine” baseline, DDAN, and DRDA demand the combination of
source and target data to train a model from scratch in the setup
stage for the target subject. They need a much more extended
period. Although this training time is not excessively long,
it will exponentially grow when we adopt a more complex
backbone like Deep ConNet proposed in [14]. On the contrary,
the few-shot learning classifiers are purely trained by the data
from the source subjects without any retraining process after
the target data is collected. It can be applied to the target
subject in a plug-and-play manner, significantly increasing the
user’s experience in the real-world MIBCI. Although the SO

method does not require retraining either, it does not offer a
similar level of accuracy with few-shot classifiers, especially
compared with the proposed approach.

C. K-Way Setting

More data available from the target subject usually means
a better model performance in the target domain. In the
real-world BCI scenario, it is assumed that labeled samples
from the target subject are especially limited. Referring to
setting in [29] and [30], we investigate how the number of
K up to 20 impacts the model performance. The conditions,
K = {5, 10, 15, 20}, are analyzed on the Fine-tuning, DRDA,
and Model A in IV-2a, IV-2b, and III-IVa datasets. We also
include zero-shot (i.e., K = 0) experiments for these three
methods in which no target data are available. For the zero-shot
problem, ten trials per class from one random source subject
are selected as the support set for the implementation of Model
A, and the samples of all other remaining source subjects are
used as the training set. Fine-tuning and DRDA become the
SO method without target data. Non-parametric Friedman test,
followed by the post-hoc Nemenyi test, is applied to test the
statistical difference in the performance between methods. The
significance level is set at α = 0.05. We do not show the results
of K-way experiments for P-MI datasets here, as only 21 trials
per class are collected for each subject. The variation of the
results is large even K = 10 (i.e., only 11 trials per class for
testing) for all methods, which does not offer more insight
into how the K impacts models in the target subject. The
K -way experiment in this subsection is based on the LOSO
evaluation scheme as the offline analysis. To make the analysis
more informative, K -way experiments are implemented using
three different training seeds, including 0, 1, and 2, for
the initialization of weights. All experiments regarding each
training seed are conducted once. The K -way experiments of
TERL using another validation scheme are displayed in the
Supplementary Materials to demonstrate the stability of the
proposed method.

Box plots with strip plots for the classification accuracy of
three approaches across subjects with different K are shown
in Fig. 9. As expected, the performance of both transfer learn-
ing (Fine-tuning) and domain adaptation (DRDA) supervised
methods gradually improves with an increasing value of K .
Our method performs similarly in the few-shot scheme when
K > 0 in all the datasets. Significant outperformance of the
proposed TERL against other approaches is more frequently
found when K is small, while it even has slightly worse
performance than DRDA when K = 15 and 20 in IV-2a,
as well as K = 20 in III-IVa. Our method gradually loses
the advantage in accuracy with a larger value of K compared
to the supervised approaches. It is intuitive to understand the
reason behind these results. Our method classifies the unknown
trials based on their relations with the sum of features of each
class (Mc) in the support set. In the prediction perspective, the
feature representatives with a sum of 5 trials do not have much
difference from a sum of 20 trials, although the sum of a large
number of trials may decrease the negative influence of certain
noisy trials on the prediction. Alternatively, such supervised
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Fig. 9. Box plots with strip plots for the classification accuracy of three approaches with different values of K for IV-2a (a), IV-2b (b), and III-IVa (c).
Red squares are the mean values for boxes. The star (*) denotes significant difference (p-value < 0.05) found between two methods by Nemenyi
post-hoc test. Each dot represents an accuracy per subject per training seed.

Fig. 10. Classification accuracies in IV-2b obtained with different values
of ks in gφ. The condition of ks = � means that 1D CNN (i.e., gφ) is not
used in the episode embedding with only fθ remained in feature encoding.

methods, i.e., either transfer learning or domain adaptation
ones, address the domain shift between source and target
subjects. More target trials available usually mean a better
sampling distribution to represent the actual distribution of MI
trials produced by the target subject. It is more appropriate to
choose these supervised methods for BCI development when
we have enough MI trials from the target user. However,
it is also worthwhile to highlight that our method, as a few-
shot classifier, shows an advantage in the condition of having
limited target trials. In addition, we can still see the merit of
our method when K equals 0. It has a higher mean accuracy
than the other two approaches in all three datasets, although no
significant significance is observed in some tasks. Learning to
compare still outperforms learning to classify when it comes
to the subject-independent classifier.

D. Temporal Kernel Size

The kernel size of 1D CNN controls the number of pre-
ceding trials in the embedding of the current trial in one
episode. We carry out experiments to verify the sensitivity
of this significant hyper-parameter. We vary the kernel size
in a range of {0, 5, 10, 15, 20} to represent different levels
of temporal length, i.e., zero, short, medium, long, and all
preceding trials. The condition of ks = 0 means that 1D
CNN (i.e., gφ) is not used in the episode embedding with

only fθ remained in feature encoding. The experiments were
performed using the offline setting on the IV-2b dataset.

Fig. 10 presents the averaged accuracy across subjects of
our approach with different kernel sizes. It is observed that
only using fθ for feature embedding without considering the
temporal information is not a good option. The model achieves
the lowest accuracy. We can also see that the performance
of our approach remains stable when the kernel size varies
between 5 to 20, showing that our method is insensitive to the
change in the kernel size. The shortest kernel length achieves
the highest accuracy and performs similarly to other levels.
The reason behind this result may be due to the considerable
temporal shift between trials. The “further previous” trials may
not offer extra benefits on the embedding of the current trial
to promote the classification performance.

E. Temporal Kernel Weights

We use a 1D CNN (gφ) to encode the temporal information
of the sample set in each training episode. The embedding of
each trial in one episode is calculated by a weighted sum of
itself and preceding trials when using the 1D CNN. In order
to visualize the temporal patterns captured by the proposed
method, we plot two heat maps (Fig. 11) for the weights of
nine 1D CNNs in the models for B01-B09 subjects in two
different conditions, respectively. As the kernel size of 1D
CNN is 5 for IV-2b, each heat map contains 5 rows. The
first condition is that the trials in the sample set are sorted in
temporal order, which is the implementation of the proposed
method. The second condition is that we do not perform
any sorting of the trials in the sample set. The weights are
normalized by the l2 norm to be within a similar scope.

In the left part of Fig 11, we can clearly see that the weight
of the current trial is always the largest among all weights.
It is natural for this phenomenon to occur, as the embedding
should be encoded with most of its own information. We also
make another interesting observation that the weights close
to the encoding position (i.e., bottom one) tend to be larger.
These 1D CNNs are all randomly initialized and updated
by data. It is evident that MI trials within the episode have
temporal patterns, and the proposed 1D CNN can capture such
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Fig. 11. Heat maps for weights of the 1D CNN (gφ) across B01 to B09 in two different conditions. Left: the sample set sorted in temporal order in
training. Right: the sample set sorted in random order in training. The kernel size of 1D CNN is 5 for IV-2b. Thus, both heat maps contain 5 rows.

valuable latent information. Otherwise, the weights should
have a random permutation as the right part of the Fig 11.
This comparison stresses the necessity of temporal encoding
in the episode training for the MI recognition task.

V. CONCLUSION

This paper introduces a temporal episode learning approach
for developing the MIBCI with only a minor initial setup for
the target subject. It leverages an episode-based function gφ to
encode the temporal information in each episode, significantly
different from previous studies that only focus on encoding the
information within each trial. The proposed learning frame-
work combined with designated trial sampling techniques
can enhance the classification accuracy by 2.9% and 4.0%
accuracy in offline evaluation and online evaluation simulation,
respectively, compared to the basic few-shot and supervised
learning under the same experimental settings. In addition,
it is also worthwhile to highlight that our approach does not
require retraining in the target subject, which can effectively
promote the user’s experience. These findings indicate that the
proposed TERL is a promising method by offering an accurate
prediction and convenient setup for MIBCI development.

We use a simple but effective 1D CNN to encode the
temporal information of the episode. It only contains a few
parameters (i.e. 5 or 10) to be optimized in training. As men-
tioned, the function gφ that we introduce can also adapt
to other more complex architectures, such as the short-term
memory (LSTM) [43] and attention module [44]. They are
also worth exploring in future studies under the framework of
gφ .

In this study, we only focus on a synchronous setting for
the BCI without feedback. In fact, the synchronous BCI [45]
with user’s feedback (i.e. label) immediately after each trial is
also a popular setting in real-world applications. It is mainly
performed in motor rehabilitation programs for patients, e.g.,
post-stroke survivors. It is also meaningful to apply our
method to this synchronous setting by predicting each trial
based on a few of its nearest previous trials. Another interest-
ing application of gφ in future studies is to improve the per-
formance of the asynchronous MIBCI. This type of MIBCI is
the common one applied in a real-world scenario, where users
can choose whenever they perform MI tasks. An asynchronous
MIBCI system usually has intentional control (IC, performing
MI task) and non-control (NC, idle period) states [46]. The gφ

can be designed to encode the information of both the current
point and the preceding signals before the current time point
regardless of whether they are from the same IC or previous
ICs but to ignore signals in NCs. This setting enables gφ to

encode temporal patterns in asynchronous BCI and potentially
boosts its performance.
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