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ABSTRACT Wargame is an important tool that enables training units to develop various strategies by
allowing them to experience unexpected situations. There are three methodologies that determine the
behavior of the Computer Generated Forces(CGF) in wargame—rule-based, agent-based, and learning-
based methodologies. The military determines the behaviors of the CGF mainly based on the rules because
a doctrine and an operation plan are well established. However, the advent of intelligent weapons and the
accompanying changes in tactics will make it difficult to expect an environment and situations of the future
battlefield. Therefore, we studied the automation of CGF through reinforcement learning in order to give
unexpected situations, so that the training unit would be able to establish various strategies and tactics
through the wargame model. Based on the combat functions of the ground forces, we configured multiple
environments that the ground forces CGFs will learn in. First, infantry and artillery CGFs learned in the
close combat environment, which is the basis of ground forces combat. Second, the trainee CGF learned in
the context of military training. Third, the drone CGF learned how to reconnaissance and attack in a multi-
drone environment, and finally, the combat service support CGF learned under the mission of supplying
ammunition. As a result, we confirmed that the reinforcement learning methodology is applicable to CGF
through these experiments.

INDEX TERMS Wargame, CGF, ground forces combat, reinforcement learning, artificial intelligence.

I. INTRODUCTION
Wargame has been proved to be a valuable tool for under-
standing the uncertainty of the battlefield and the chang-
ing paradigm of war, especially in terms of training troops
and verifying operational plans [1]. As a result, the role of
wargame has become more critical in the future battlefield
environment, which is changing rapidly.

A. IMPORTANCE OF AUTOMATING CGF
Computer Generated Forces (CGF) describes the behavior of
combatants or weapons systems in the wargame model [2],
and CGF’s behavior is essential in simulating a realistic
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battlefield environment and combat situation [3], [4], [5].
One of the most critical roles of CGF is to make training
participants perceive CGF to be realistic, and therefore, it is
necessary to automate CGF because of the following reasons.
First, in the current wargame model, CGFs do not work well
in an undefined situation, because they behave under prede-
fined conditions such asmilitary doctrine, operation plan, and
simulation logic of existing models. Second, outcomes of the
wargame may be affected by a difference in the ability of
the gamers controlling CGF, even though only the operation
plan established by the Operation Planning Process(OPP),
the Course Of Action(COA) of the commander, and staff
should be the factors determining the success or failure of the
wargame. Third, the atypical training situation in wargame
caused by the automation of CGF can enhance the wargame’s
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immersion of wargame and increase the combatants’ training
effect [6]. Last, automating CGF (a) reduces the operational
requirements of game operators, (b) increases the efficiency
of troop operations, and (c) reduces administrative require-
ments, such as inputting a scenario [7].

B. CGF AUTOMATION METHODOLOGY AND
REINFORCEMENT LEARNING
There are three representative methods of automating CGF:
rule-based, agent-based, and learning-based.

Rule-based is a methodology in which CGF operates
according to defined rules. This methodology makes the
behavior of CGFs intuitive and easy to implement, since the
military writes manuals or plans. However, it is difficult to
express all situations as a rule, and gamers who understand
the rule of CGF operation can perform actions which are
not possible in the real battlefield to win the wargame. For
example, when troops are trained through actual wargame,
the gamers of the troop can easily understand the rules of the
opposing forces CGF and use tactics to win the game, because
the rules of behavior of CGF implemented in wargame are
relatively simple. For this reason, the effectiveness of training
is sometimes reduced [7].

The agent-based methodology provides minimal rules to
agents and determines behaviors through mutual informa-
tion exchange. Agent-based methods have fewer rules to
be defined than rule-based methodologies, in that they can
express undefined behavior through information exchange
between agents. In Context-Based Reasoning (CxBR) and
Belief-Desire-Intention (BDI), which are two representative
methods of the agent-based wargame model, all goals and
actions of the agent must be defined as scenarios. When cre-
ating a scenario, domain knowledge must be communicated
well for the agent to function properly. However, as the size
of the unit grows, scenario creation becomes more complex,
which makes it difficult to implement the scenario into a
model [8].

Learning-based methodologies use machine learning, such
as supervised, unsupervised, or reinforcement learning. This
method best expresses the cognitive ability of combatants,
in that it can autonomously judge agents’ behavior. Although
there is a study of training two combatants CGF with a
supervised learning [9], supervised and unsupervised learn-
ings are not widely used, as they require a large amount of
data. In addition, it is difficult to judge whether a certain
combat activity is right or wrong by using those learning
methods [10]. On the other hand, reinforcement learning has
the advantage in that it does not require correct answers,
as agents build data by repeating episodes in the environment
and improve behaviors in correct directions through rewards.
As agents can learn various tasks even in a multi-agent
environment, the description of CGF using reinforcement
learning is becoming a reality [11], [12].

So far, we have described three methodologies for CGF
automation. Since the military possesses well established
doctrines and operation plans, it mainly uses the rule-based

methodology in the wargame model and has shown its
effectiveness in combat readiness. Nevertheless, it is neces-
sary to convey CGF research with reinforcement learning,
as expressing every situation as a rule is impossible, and it
is cumbersome to define a rule and input it into the wargame
every time a new weapon system or tactic comes out. The
agent-based method can be thought as an alternative, but this
method requires defining rules as much as the rule-based
method does, along with writing a battle scenario. Therefore,
we studied the automation of CGF by using a reinforcement
learning method that does not require separate rules and
scenarios. By applying this advanced artificial intelligence
technologies, we expect to find improvements in CGF.

Our study aims to create a simulation environment in
consideration of combat situations, and make CGF learn
by reinforcement learning algorithms to confirm the
automation possibility of ground forces CGF. While setting
environments, we considered the general situations of the
military, such as close combat, a reconnaissance operations,
and logistic support missions. The structure of this study is
as follows: in Section II, we described the literature review
of CGF automation by applying the three methodologies
described above. Section III describes the environment estab-
lished to use the reinforcement learning methodology, and
Section IV presents experimental results of this study. Finally,
in Section V, we present conclusions.

II. LITERATURE REVIEW
This section describes CGF automation research by
using rule-based, agent-based, and reinforcement learning
methodologies.

In rule-based methodology, CGF determines the correct
behavior by taking into account the real-time situation of the
model through predefined rules. However, it is difficult for
CGF to decide on the suitable action as military knowledge
and manuals are vast, and a variety of situations can occur on
the actual battlefield. Since the military has well-established
rules such as doctrine and operational plans, it is more
important to study the framework that allows the CGF to
determine the action by efficiently processing the rules rather
than to study the rules themselves. As a framework study,
there are studies the operation of CGF on the framework by
modularizing the battle decision process and the algorithm
that can operate in the framework [13], [14]. In addition, the
rule-based system has a limitation in that it dose not consider
the uncertainty of the battlefield. In [15], the CGF acted by
using a sequential decision-making model that probabilisti-
cally considers uncertain or partially observable situations.

In the agent-based methodology, agents decide their
actions through information exchange with other agents
under minimal rules. Therefore, agent-based studies include
organizing agents as well as communication of agent-to-
agent information well. For example, in the study of an
agent management, a small combat model framework under
a multi-agent environment was established by configur-
ing agents that determine major tasks, and sub-agents that
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perform functions such as maneuver and detection [16].
And in [17], the researcher created a virtual command center
agent to induce cooperation of agents, so as to make CGFs
cooperate under a multi-agent environment. Some countries
in NATO are studying agent based models by applying CxBR
and BDI methods. The idea of CxBR is that humans use only
a fraction of their knowledge when they infer, by classifying
situations faced by agents into context and making a limited
choice over one of the actions that fit the context. BDI is
another methodology that describes human reasoning meth-
ods. Belief represents information about the agent’s situation,
and Desire means the goal that the agent should achieve.
Intention stands for the process of the agent selecting an
action by considering the Belief and the Desire. Huet al. [8]
compared of the performances of the C2(Command and Con-
trol) system in cases when CxBR and BDI were respectively
applied to it. There are other CGF studies done with CxBR
and BDI, such as [18] and [19].

CGF automation using reinforcement learning method-
ology focuses mainly on Air Force fighters as CGF. The
researchers automated the fighter’s behavior in a two-to-
one aerial combat situation through reinforcement learn-
ing [20]. In the works in [21], researchers compared the
performance of trained fighter CGFs and human-manipulated
CGFs. In this study, trained CGF lost to skilled pilots but won
against beginner-level pilots, suggesting the possibility of the
CGF automation using reinforcement learning methodology.
In addition to the combat behavior of the fighter CGF, there
was a study done to learn maneuver. The researchers in [22]
studied themaneuver of fighter CGF in an environment where
anAnti-Aircraft Defense system exists, by using a curriculum
learning of making CGF reach the goal while solving sub-
problems. Also, reinforcement learning research on ground
forces CGF compared algorithms in a simple environment
considering Rendezvous with obstacle avoidance [23].

CGF research using reinforcement learning also operates
under a casual game environment. For example, the agent
learned from the classic game Pong or Breakout from the
Atari2600 game environment [24]. Some studies have been
conducted in 3D environments that aremore complex than 2D
environments. For example, in Doom, a 3D-based FPS (First
Person-Shooting) game, the agent learned how to shoot. As a
result, the trained agent performed better than the rule-based
agent and the human-manipulated agent [25]. Whereas the
previous two studies have only considered a single agent,
and had relatively simple environments, some studies such as
Google DeepMind’s case of StarCraft reinforcement learning
were done under more challenging conditions [26], [27].
Despite a complex environment of StarCraft in which all set-
tings change in real-time and multiple agents have to choose
actions, CGF has succeeded to learn. In addition, individual
units of StarCraft have learned with multi-agent algorithms.
StarCraft research has been continued, and the current level
of learning is to a degree of winning against professional
gamers.

Applying reinforcement learning to CGF for wargame
differentiates from using reinforcement learning on casual
game players, as wargames and casual games have different
purposes and methods. Casual games aim to make play-
ers complete the final mission, but wargames aim to make
them establish various tactics and strategies by providing an
indirect experience of the combat situation of the training
unit. For this reason, there are differences in the way the
casual game and war game progress. Casual games are linear
and game progress step-by-step, in that a player completes
the final mission while solving sub-missions with correct
answers. On the other hand, there is no right answer in
wargames, as the behavior of the CGF can vary depending
on the tactics used even in the same battle situation.

A. THE CONTRIBUTION OF RESEARCH
The main contribution of our research, which applies rein-
forcement learning for the automation of CGF in the wargame
model, is that we experimented with various combat envi-
ronments after creating environments based on the combat
functions of the ground forces. The details are as follows.
• First, we applied reinforcement learning to automati-
cally simulate the CGF of the ground forces wargame
model. Until now, most of the cases of simulating the
wargame’s CGF as reinforcement learning were made
for the Air Force’s fighters. Although there are previous
studies on CGF of ground forces, but most of them were
conducted by (a) explaining the necessity of apply-
ing reinforcement learning methodologies, (b) theoreti-
cally predicting the effects without specific experiments
when applying the reinforcement learning method (c) or
relatively simplifying the composition of objects and
environments.

• Second, our study reflects the various characteristics
of the ground forces. It is difficult to apply the fighter
CGF research to the ground forces because the com-
bat of the ground forces is based on the Combined
Arms Combat (CAC) in which two or more branches
cooperate. In addition, the process of describing ground
combat is more complex than that of describing air
combat. Moreover, combat functions such as maneuver,
intelligence, and logistics are systematically performed
in ground combat, making it necessary to model and
test these combat functions. In order to fulfill this
condition, we have tested the implementation of CAC,
multi-drones, and CSS(Combat Service Support)
environments.

• Finally, we can suggest the applicability of reinforce-
ment learning CGF to wargame models from an expert’s
point of view. To apply reinforcement learning CGF
to the wargame model, the experimental results must
be analyzed from the perspective of the military. Our
study verified whether the ground forces CGF behaves
correctly based on a high level of understanding in the
military field by comparing it with its doctrine.
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III. METHODOLOGY
This section describes the environment for experiments
and defines states, actions, and rewards according to the
environment.

A. EXPERIMENTAL DESIGN
We considered the combat function of the ground forces
to create a wargame environment. Combat function refers
to the military roles and activities that must be performed
to achieve the concept of operational execution in ground
operations. Also, it consists of six functions: command and
control, intelligence, maneuver, protection, firepower, and
logistic support. Ground forces must perform and integrate
these functions when conducting operations to exert combat
power. Therefore, we configured the experimental environ-
ment as follows.

There are four experimental environments for reinforce-
ment learning of ground forces CGF: close combat, mili-
tary training, reconnaissance drones, and logistic support.
Table 1 shows the details of each environment. First of all,
close combat is the situation that is the most frequently
encountered by ground forces on the battlefield. A battle
between infantries and a battle under artillery fire support
are the examples. Therefore, we composed the close combat
environment for the following four cases, while assuming
situations that could take place on the battlefield.
• Case1: Case1 is a 1:1 infantry combat environment
where a single infantry agent is trained. The purpose
of this agent’s learning is to learn how to recognize
the opponent as an enemy and attack them to win
the combat. The experimental environment is shown
in Figure 1(a).

• Case2: Case2 is a 2:2 infantry combat environment
where infantry agents learn to cooperate. Cooperation
between combatants is essential in real combat because
a squad consists of several combatants.

• Case3: Case3 is a 2:2 environment where infantry teams
fight against artillery teams. Both Infantry and artillery
CGF, as agents, are expected to learn to combat differ-
ently reflecting the characteristics of different weapons
they have. To this end, we made the firing range and
firing interval of the artillery CGF to be three and five
times longer than that of the infantry CGF, respectively.

• Case4: Case4 is a 2:2 environment in which one infantry
and one artillery fight as a team, and the team’s CGFs are
expected to learn cooperative combat between agents of
different branches in this environment. This cooperation
is called Combined Arms Combat, and it increases the
power of the team. Figure 1(b) visualized this experi-
mental environment.

While Case1 to Case4 dealt with a maneuver and a fire-
power among the combat functions of the ground forces,
the following three cases consist of environments which are
associated with intelligence, logistics, and military training.
• Case5: Case5 is an environment set to make trainee CGF
learn. Although the combat behavior specified in the

manual does not necessarily guarantee making optimal
choice, it is still necessary to train trainee CGF as spec-
ified in the doctrine. Trainee CGF has to engage the
enemy and reach the goal. The purpose of this learning is
that trainee CGF would do both things—and therefore,
it will not consider reaching the target without engaging
the enemy. The Figure1(c), (d) shows the environment.

• Case6: Case6 is an environment for learning drone
CGFs. Automation research on drone CGF is essential,
because drones are highly valuable as reconnaissance
and attacking weapons. Basically, the leader drone and
the follower drone learn how to find and attack the
enemy within the operational area, while the follower
drones additionally learn to maintain a certain distance
from the leader drone during the fight. Figure 1(e) shows
the environment of Case6, with the drone group con-
sisting of 1 leader drone and 5 follower drones, and the
target group consisting of infantry and tanks.

• Case7: In Case7, we trained two CSS CGFs. Combat
Service Support (CSS) is a battlefield function which is
vital for combat continuity. The CSS CGF’s task is to
deliver ammunition according to the principle of logis-
tics: to deliver the right amount of ammunition, at the
right time, and to the support units that need it the most.
Figure 1(f) shows the environment of Case7, consisting
of two CSS CGFs carrying ammunition, Ammunition
Supply Point (ASP), and five units requiring ammuni-
tion supply. The environment of Case7 is different from
the general delivery service environment, in that the
supply amount and supply location were not planned in
advance.

B. TOOLS AND ALGORITHMS
Configuring the environment is important in reinforcement
learning, as it determines the learning direction of CGF.
There are two main ways of creating the environment in
reinforcement learning. One is to use open-sources that pro-
vide pre-built environments. For example, OpenAI Gym,
Gym Roboschool, Gym Extensions, or PyBullet can be con-
sidered [28], [29]. The other way is for researchers to use
general programming languages such as Python, Matlab,
or Net-Logo [28], [30]. We chose the Unity [31] to con-
struct 7cases of Section III-A. It’s best to use currently used
wargame as an environment, but unfortunately, there is no
wargame model that supports reinforcement learning. In such
an aspect, research using Unity has the following advan-
tages. First, Unity can describe a variety of environments,
including physical laws, so Unity can implement CGF and
resolutions most similar to wargame model. Second, Unity is
a highly reliable simulation tool, as it has been used widely
in various fields. Last, Unity provides the latest reinforcement
learning package that researchers can use with convenience,
thereby reducing administrative requirements for organizing
experiments.

The following is information about the algorithms used
in our study. Research on reinforcement learning can be
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TABLE 1. Experimental design.

FIGURE 1. Experimental environments.

usually divided in two parts; first, the part of improving the
performance of algorithms, and second, the part of applying

algorithms to solve problems under a specific domain. The
purpose of this study is consistent with the second reason.
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Therefore, we use the following representative algorithms
that are proven to be fair. The algorithm we used for each
case is shown in Table 1.
• Proximal Policy Optimization (PPO) is based on an
Actor-Critic algorithm [32], and it shows an excellent
performance as an algorithm that increases learning
speed through importance sampling techniques and data
reuse. More detailed information can be found on [33].

• Multi-Agent Posthumous Credit Assignment
(MAPOCA) is a multi-agent algorithm. As multi-agents
are generally rewarded at a group level, all agents will
be rewarded if an agent team wins the game. To reward
in such a way, centralized critiques, which are a neural
network that serve as a ’coach’ for the entire group of
agents, were trained and improved to even reward agents
who did not directly contribute to the victory. Further
details of the algorithm are provided on [34].

• Self-play is a method that increases the effectiveness of
learning in environments of competing with opponents,
such as chess, tennis, and soccer. It is selectively appli-
cable to PPO andMA-POCA algorithms, which are used
in our study [35], [36].

In our experimental environment, we used the PPO
algorithm when learning a single agent and the MA-POCA
algorithm when learning multiple agents. In addition, in an
environment where agents of the same type battle each other,
a self-play algorithm was additionally applied, and the algo-
rithm used in each case is shown in Table 1.

C. STATE, ACTION, REWARD
State is information observed by the agent, and the agent
determines the action by considering the state. For example,
in an environment where infantry CGF learns, a researcher
can set the location of enemies and terrain as state informa-
tion, and movement and attack as actions. Next, the reward
is the value the agent receives from the environment when
the agent selects an action. Because agents update policy in
the direction of maximizing reward, researchers control the
behavior of CGF through reward. For example, the researcher
gives infantry CGFs a positive reward if they win a battle with
an enemy and a negative reward if they lose. For the experi-
ment, the state, action, and reward for each environment are
set as follows.

1) State
In our study, CGF collects state information using
Unity’s radar function called Raycast. S is the state
space of the environment. O is the observation space
of all radars O:=O1

× . . . × On where Oi denotes the
observation space of radar i(i=1,2,. . . , n). At time t , oit ∈
Oi is the local observation of radar iwhich is correlated
with st ∈ S. Finally, Bj is the binary variable which
indicates whether object j(j=1,2,. . . , m) is detected or
not.

Bj =

{
1, If the object j is detected by radar
0, otherwise

Therefore, the local observation can be defined as
oit=(B1, B2, . . . , Bm, H , D) where H is binary variable
indicating whether any object is hit by radar i. D is
distance between radar i and object hit by radar i. For
instance, if the nth radar’s local observation at time t
is ont =(1,0,0,1,5), then the first object at distance 5 has
been detected by nth radar. The collect information
meaning CGF state information for Cases1 to 7 is
shown in Table 2.

TABLE 2. State description for each case.

2) Action
At time t , we define action vector at = (a1t , a

2
t ,. . . ,

alt ) where akt is the kth action the agent can take
(k=1,2,. . . , l). Also, actions that can be taken are
divided into three types: continuous, discrete, and
binary. If the action is continuous, at has a real value
between 0 to 1; if it is binary, at has a value of 0 or 1.
The defined actions of the agents in our environment
are shown in Table 3. For example, in Case1 of Table 3,
if at = (0.7, 0.9, 0.1, 0) at time t , it signifies that the
agent moves vertically by 0.7, horizontally by 0.9, and
rotates by 0.1 × 360 degrees, while the agent does not
carry out the attack.

TABLE 3. Action description for each case.

3) Reward
We set all values for rewards empirically. Also, two
considerations were taken into account when we
decided under what circumstances to give the rewards
and how much the rewards should be. First, the
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definition of a reward must conform to the doctrine;
and second, the rewards should conform to the reward
policy of other researchers.
Cases1 to 4 are the environments where the episode
ends with a positive reward for winning and a negative
reward for losing. Case1 is a single agent environment
where the agent receives+1 rewards if it wins and−1,
if loses. Cases2 to 4 are multi-agent environments, and
therefore, we configured an additional reward for the
attack behavior, in order to trigger the combat behavior
of the agents on the team. In Cases2 to 4, the reward
function for the reward, which is denoted by r can be
viewed in Equation (1).

r =


1, count(enemy forces) = 0
−1, count(friendly forces) = 0
0.1, agent attack the enemy

(1)

where count(agent) means the number of agents in the
environment.
In Case5, rewards are given according to the impor-
tance of the task that the agent must perform. It gives a
high reward for reaching the goal, which is to accom-
plish an important mission, while giving a relatively
low reward for the mission to attack the enemy. Also,
the reward is determined by calculating the distance
between two objects in the reward function, where the
distance d(a, b) is defined as the Euclidean distance
between a and b. The reward function of Case5 is
defined as Equation (2).

r =


1, d(trainee, goal) = 0
−1, d(trainee, goal) = 0 ∧ count(enemy) = 1
−1, moving outside the environment
0.1, agent attack the enemy

(2)

In Case6, the team rewards received by the leader drone
and the follower drone are the same. The team reward
is given when the drones find or attack a target, and the
rewards differ depending on the type of a target. Addi-
tionally, an additional individual reward will be given
to the follower drone according to its distance from the
leader drone. Through this, each follower drone will be
able to maintain the communication distance with the
leader drone. Equation (3) shows the reward function
of Case6.

r =


10, count(targets) = 0
2, eliminates(or search) a tank
1, eliminates(or search) an infantry
0.001, d(leader, follow) < m

(3)

where m is desired operating distance between leader
and follower drone.
In Case7, we defineUcapacity as a variable indicating the
remaining amount of ammunition of a unit. CSS CGFs

obtain a reward when supplying ammunition to a unit,
and the size of the reward is determined based on
this variable, as shown in Equation (4). According to
the reward structure, CGFs gain a large reward when
Ucapacity is small, so that they would serve ammo with
consideration over the remaining ammunition of each
unit. In other words, CGFs are expected to prioritize the
allocation to units that lack the ammunition.

r =



20, Ucapacity < 20
10, 20 ≤ Ucapacity < 40
1.5, 40 ≤ Ucapacity < 60
0.5, 60 ≤ Ucapacity < 80
0.1, 80 ≤ Ucapacity

−1, out of area

(4)

where a unit’s ammo amount ranges from 0 to 100.

D. HYPER-PARAMETERS
This section describes the hyperparameters shown in Table 4.
Since selecting hyperparameters affects the algorithm per-
formance considerably, it is common to find the optimal
hyperparameters through a sensitivity analysis [37]. How-
ever, since our study aims on applying the algorithm, rather
than improving it, we used the hyperparameters value of other
studies that are similar with ours.

TABLE 4. Hyperparameters description for each case.

Hyperparameters consist of the following five elements.
First, batch_size indicates the number of experiences (size
of data) in each iteration of gradient descent search, while
buffer_size denotes the number of experiences that should be
collected before updating the policy model. Also, beta is a
value for the randomness of the policy and increasing it will
result in an increased number of random actions. Epsilon is a
value that indicates how rapidly policy evolves. For instance,
if epsilon is small, it means that the policy is stable, but the
training process would be slow. Finally, lambda is the value
showing howmuch of the previous rewardwas reflectedwhen
evaluating the future reward, and gamma is the discount rate
for the future reward.

IV. RESULTS
This section describes the experimental results of the 7 cases
presented in Section III. Although we have presented only a
few important graphs in analyzing the results in the main text,

128976 VOLUME 10, 2022



M. Choi et al.: Experimental and Computational Study on the Ground Forces CGF Automation of Wargame Models

all graphs can be viewed in Appendix A. Our experiment was
performed in a computer environment with Apple M1 chip’s
8-core CPU, 7-core GPU, and 8GB of RAM.

A. CASE1 AND CASE2
In Case1 and Case2, we trained infantry CGF—Case1 was
a 1:1 environment, and Case2 was a 2:2 environment. The
detailed results are as follows.
• Case1: CGF was successfully trained in the Case1
environment, where CGF battles against an agent
with CGF’s previous policy, as shown in Figure 1(a).
An interesting observation is that the reward value con-
verges to a certain number, which is 0.3 in this case. It is
able to understand the meaning of the number through
knowing that Case1 is a zero-sum environment. Case1
is the combat situation with a clear winner and loser.
Therefore, if the agent wins all battles, the reward will
converge to 1; however, if the agent keeps losing, reward
will approach to -1. 0.3 is a number derived when the
agent wins 6.5 out of 10 times and loses 3.5 times; in
other words, when the win rate is about 65%. Also, since
the values show the clear convergence, it was concluded
that 65% is the best policy found by the agent in the
current experimental environment.

FIGURE 2. Dynamic of reward for Case1.

• Case2: This experiment, which aimed to make CGFs
learn how to cooperate, was successful; we observed the
CGFs trying to occupy an advantageous position over
the enemy in combat. To evaluate the effectiveness of
the model learning cooperation, 3000 battle simulations
were performed against the CGF trained in Case1. As a
result, the agent in Case2 won 2160 times, which means
that the win rate was 72%. From this number, we were
able to estimate the benefits of the cooperation.

B. CASE3 AND CASE4
In Cases3 and 4, artillery is newly joined as an agent to test the
learning of agents with different classes or weapon systems.
In Case3, we organized infantry CGF and artillery CGF into
different teams, while in Case4 we set infantry CGF and
artillery CGF in the same team. The results of the experiment
are as follows.
• Case3: In Case3, a team of two infantry and a team of
two artillery fought against each other. As the learning

progressed, we could observe the pattern of artillery
with a long weapon range fighting from a distance,
while infantry tried to fight at a close distance. This
is because infantry CGFs learned that it is the most
profitable for them to approach the artillery CGF for a
combat, while the artillery CGFs learned that the optimal
policy for them is to fight while maintaining distances
from the infantry CGFs. Figure 3 shows the dynamics
of rewards during the learning. As Self-Play was applied
in a zero-sum environment, the reward increased when
the CGFs trained, while it decreased when they did
not. For instance, the infantry team could not receive a
reward at the beginning of the learning, because they did
not train. However, after the learning began, the reward
value started to increase. Figure 4 shows how the agents
learn by applying Self-Play.

FIGURE 3. Dynamic of reward for Case3 (Blueline indicates Artillery team,
Redline indicates Infantry team).

In Step1 of Figure 4, the infantry team learns the policy,
and the artillery team performs random actions as part
of the environment. In Step2, the infantry team acts
as part of the environment with policy #1 learned in
Step1, and the artillery team begins learning the policy.
CGF repeats this process until the simulation ends.

FIGURE 4. Self-play operation procedure.

• Case4: In this experiment, which aimed to confirm the
combat behavior of CGFs when infantry and artillery
CGFs are a team, CGFs learn cooperative battle by
adopting the characteristics of weapons. Infantry CGF
carried out close combat under the fire support of
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artillery CGF,which correspondedwith the actual tactics
of infantry on the battlefield. Also, the artillery CGF
learned the behavior of fire support, which corresponds
with the actual artillery’s roles. Although this experi-
ment only reflected the property of weapons in CGF,
it has its meaning in showing that CGFs are able to
implement doctrinal features.

C. CASE5
In Case5, the agent had a main mission to arrive at the
goal. In the process of conducting the mission, an acciden-
tal situation, that is the appearance of an enemy, occurred.
Therefore, the agent learned how to deal with contingencies,
so that it could complete the main mission. Therefore, what
we expected to see from the result was that the agent has
learned these behaviors by exploring under circumstances
without any interference. However, as a result, the agent
ended the episode without reaching the main goal, despite
it successfully eliminated the enemy. We attributed that the
problem was that the agent did not acquire rewards often,
which is called ‘‘the sparse reward problem.’’

The sparse reward problem indicates the condition of
an agent in reinforcement learning receiving only a sparse
reward signal from the environment, so that it will be difficult
for the agent to connect the signals with future rewards. This
problem can reduce the learning speed or rate. In order to
solve the sparse reward problem, the researcher should take
steps that allow the agent to receive the reward better.

Although the representative method for this is Curriculum
Learning, it was difficult for us to solve our problem using
this method, because it makes CGF learn to arrive at the goal
while solving sub-problems. However, if the CGF only learns
to reach the target after the process of eliminating the enemy
(left in Figure 6), it loses the opportunity to learn how to get
to the goal directly without eliminating enemies, that may be
the better move than the former depending on the situation
(As shown on the right in Figure 6).

From the point of view of the military, CGF must be able
to decide whether to eliminate the enemy or not, which is the
process that depends heavily on the distance between the goal
and the enemy. Therefore, we reorganized the environment,
so that CGF can first learn the important things and then learn
additional situations.

In the new environment, Case5 is divided into 3 steps, and
the environment of the next stage is called when when learn-
ing in each steps is completed. Sequentially, the procedure is
as follows: in Step1, CGF learns to get to the goal; in Step2,
it randomizes the position of the goal; and in Step3, it creates
an enemy. Through this step-by-step action of adding or
changing the environment, the agent was able to learn the new
policy while maintaining the existing policy. Figure 5 shows
the experimental results after reconfiguration of the environ-
ment. The red line in Figure 5 shows the reward after the
reconfiguration, and it shows the significant improvement
compared to the previous learning which is shown through
the blue line. Point (B) and (C) on the graph shows when

FIGURE 5. Dynamic of reward for Case5 after customized (Blue indicates
the existing environment, red indicates the reconstructed environment).

FIGURE 6. Differences between Curriculum Learning(Left) and Our
Learning(Right).

Step2 and Step3 started respectively; therefore, it is revealed
the reward decreased significantly at the start points and then
it increases again.

D. CASE6
In this experiment, which aimed to eliminate all enemies
through the collaboration between drones, the drones have
learned the optimal policy. From Case6, we could describe
three interesting observations. First, the follower drones
learned to find the enemy while they maintained the commu-
nication distance with the leader drone. Second, the drones
first identified the tank with the higher reward value. Third,
drones made the decision of what suits the most for the
team’s interests between detecting and attacking actions. For
instance, we could observe that when the number of all drones
was reduced to two, the remaining two drones performed
reconnaissance rather than high-risk attacks, to increase sur-
vivability.

E. CASE7
In Case7, CSS CGF aimed to supply ammunition to the
units by considering the ammunition amount of the units that
change in real time, in order that the amount for each will not
get exhausted. At the beginning of the learning, CGF supplied
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FIGURE 7. Summary of key experimental results.

ammunition only to nearby units. The reason was because
CGF received the same amount of the reward by supplying
ammunition to the units regardless of the distance. Hence,
CGF focused on the behavior of supplying itself, rather than
considering the supply amount of each unit. To solve this
problem, we derived a new reward structure as shown in
Equation (4) described in Section III-C, that made the amount
of ammunition supplied to be more important.

F. OBSERVATIONS
Through the experiment results, we have discovered several
remarkable points that show us the possibility of the intel-
ligence of CGF. Although some parts of the observations
include the above, they were reinterpreted in consideration
of military use in wargames.

1) First, with a multi agent algorithm, CGF learned to
cooperate for the team’s victory. Figure 7(a) shows
CGFs that learned with a multi-agent algorithm (blue
square) driving other CGFs that learned with a single
agent algorithm (red circle) into a corner, so that the
former could prevent the latter from escaping.

2) Second, CGF can learn combat skills without rules.
In the close combat experiment, CGFs learned to
engage in range combat by reflecting the weapon prop-
erties. In Figures 7(b) and (c), CGFs performed a close
combat and a Stand-Off battle by considering the range
of weapons.

3) Third, CGFs learned that the most appropriate action
for the team’s victory is to first remove the opponent’s

high-value target. Figure 7(d) shows team blue’s win-
ning strategy in an environment where infantry and
artillery are on the same team. The infantry and the
artillery increased the chance for winning by attacking
the red team’s artillery first.

4) Fourth, from a military perspective, it is necessary for
CGF to learn under artificially intervened experimental
environments. This is because it is not easy for CGF
to learn in an environment that requires completing
multiple tasks. Therefore, although there are other ways
to solve this issue, it is most appropriate for CGF to be
trained under the environment that changes step by step
as suggested in Case5, when it comes to the military
training of CGF.

5) Fifth, in the multi-drone environment of Case6, the
follower drones searched for the targets while keeping
operation distance from the leader drone, as shown in
Figure 7(e). Although the agents had not provided with
the rule that the leader drone and the follower drones
should maintain a certain distance, they automatically
started to operate in this way, as we set maintaining
distance as the condition of the reward. This is because
the drones learned that this method allows them to
maximize the search range while they could maintain
the proper distance from each other.

6) Last, in the military support environment of Case7,
CSSCGFs determined the priority of supply and started
supplying ammunition first to the prioritized place.
Figure 7(f) is a diagram that shows how the CGF
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FIGURE 8. Dynamic of results for all Cases.

decided which unit should be prioritized by checking
the ammo amount of the units. Although we had not
provided CGF with a rule of how it should set supply
priority, but it made a correct judgement by itself as a
reaction to the reward.

G. FINDINGS
In this section, we described our experimental findings on the
automation potential of CGF and proposed several important
findings.

1) First, the following experimental results suggest the
possibility of applying reinforcement learning CGF to
wargame models. (a) CGFs acted to ’maneuver’ in the

enemy’s direction and project ’firepower’ to the enemy
to win the combat. b) Drone CGFs implemented the
’intelligence’ function and reconnoitered high value
targets first. (c) CSS CGFs implemented the ’combat
support’ function. (d) Infantry CGFs and artillery CGFs
performed cooperative battles with actions that are
suitable to their weapon characteristics, which demon-
strates the possibility of cooperation between various
branches.

2) Second, the CGF implements doctrinal behavior
without rules. In the close combat environment,
CGF performed actions such as close combat, Stand-
Off tactics, and high-value target identification,
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although we have defined only 4 types of actions and
3 types of rewards. This suggests the possibility in the
future that various doctrinal behaviors of CGF can be
implemented inmore complex environments, with only
action and reward definitions and without rules.

3) Third, implementing the cooperative behavior of CGF
by setting a group reward is possible. CGFs in the
experiment performed combat actions that benefit the
group, through the multi-agent algorithm. As CGFs
prioritized actions that benefit the team over ones that
benefited the individuals’ interests, there is a possibil-
ity for ground forces CGFs to engage in cooperative
combat.

4) Fourth, we can expect that reinforcement learning will
enable CGF to behave beyond human thinking. The
combat actions of the ground forces are established as
doctrines and operational plans whichweremade based
on war history and battle simulations; in other words,
they are from the human’s intelligence. Also, in our
study, we considered behaviors of CGF to be correct
if they complied with the doctrine. However, in some
cases, a behavior that differentiates from the doctrine
might not be wrong. CGF is capable of performing
actions that have not occurred in the human thought
process through accumulating numerous experiences
from the learning process. Therefore, we can even
expect that in the future behaviors of CGFs which are
learned through reinforcement learning will improve
the doctrine.

5) Finally, this study has a value as basic research.
Although our experiment was not done with the actual
wargame model, and thus the research results must
be confirmed before they are applied to the exist-
ing wargame model, we suggest the possibility of
applying reinforcement learning for the automation
of the ground force CGF, as we used a verified pro-
gram, and experts in military theory participated in the
experiment.

V. CONCLUSION
In this study, we implemented the doctrinal behavior of CGF
by applying reinforcement learning in various environments
and confirmed the automation potential of CGF. In addition,
we were able to learn CGF in an environment with multi-
ple missions by presenting the learning method that can be
applied when training agents militarily. CGFs implemented
with reinforcement learning can act intelligently because they
can make different decisions based on the behavior of the
training unit. Accordingly, if we apply the learned CGF to
the war game model, the training unit can experience a lot of
unexpected situations, and it is expected that various tactics
and strategies can be developed through this.

.

APPENDIX A ADDITIONAL GRAPH FOR EACH CASES
In this section, we provided additional figures derived from
the experimental results for each case. In analyzing the

experimental results, not only reward but also other elements
of the experiment such as loss or episode length are important
indicators. In Cases1 to 6, the times at which the episode
ended gradually decreased as the reward values increased
during the learnings, and the loss values were measured to be
less than 1, indicating that the learning proceeded normally.
However, in Case7, the episode length, and the loss value
increased as well as the reward value. The reason for the
increase in episode length is that in Case7’s environment, the
episode ends only when the CGF leaves the area or reaches
the set simulation time. In other words, the increase in episode
length means that the CGF has served its mission for a long
time.
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