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ABSTRACT Infrared and visible image fusion aims to generate more informative images of a given scene by
combining multimodal images with complementary information. Although recent learning-based approaches
have shown significant fusion performance, developing an effective fusion algorithm that can preserve
complementary information while preventing bias toward either of the source images remains a significant
challenge. In this work, we propose a multiscale progressive fusion (MPFusion) algorithm that extracts and
progressively fuses multiscale features of infrared and visible images. The proposed algorithm consists of
two networks, IRNet and FusionNet, which extract the intrinsic features of infrared and visible images,
respectively. We transfer the multiscale information of the infrared image from IRNet to FusionNet to
generate an informative fusion result. To this end, we develop the multi-dilated residual block (MDRB) and
the progressive fusion block (PFB), which progressively combines the multiscale features from IRNet with
those from FusionNet to fuse complementary features effectively and adaptively. Furthermore, we exploit
edge-guided attention maps to preserve complementary edge information in the source images during fusion.
Experimental results on several datasets demonstrate that the proposed algorithm outperforms state-of-the-
art infrared and visible image fusion algorithms on both quantitative and qualitative comparisons.
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I. INTRODUCTION

Image fusion is a technique that combines multiple images
captured from different sensors to generate a more informa-
tive image of a given scene that can facilitate subsequent
processing [1], [2], [3], [4], [5]. A pair of infrared and visible
images is the most commonly used combination of modalities
because the images captured in the two wavelengths con-
tain complementary information on a scene from different
aspects, and thereby provide more robust and informative
results together [2]. In particular, whereas visible images
contain scene textures to facilitate human visual perception,
their quality is easily affected by environmental conditions,
such as illumination or weather. In contrast, because infrared
images capture the thermal radiation of objects, they are
robust against environmental conditions but have poor scene

(a) Infrared images

(b) Visible images (c) Fused images

FIGURE 1. An example of object detection performance improvement

using infrared and visible image fusion.

textures [6]. Infrared and visible image fusion techniques
have been applied in various applications because of
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its practical usefulness and importance, including object
tracking [7], [8], salient object detection [9], [10], [11],
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(a) Infrared

e

(c) SEDRFuse [21] (d) DDcGAN [22] (e) Proposed

FIGURE 2. Comparison of infrared and visible image fusion results
obtained by different algorithms. The proposed algorithm can better
preserve complementary information in the source images.

and surveillance [12]. Figure 1 shows an example in which
visible and infrared image fusion improves object detection
performance.

The key challenge in image fusion is the development
of effective feature extraction from each image and appro-
priate fusion rules to integrate them into the fused image.
Various algorithms have recently been proposed to address
this challenge. These algorithms can be broadly classified as
model- and learning-based [2]. Model-based algorithms have
been designed to extract image features based on different
mathematical theories and then determine appropriate fusion
rules on the basis of the extracted features [13], [14], [15],
[16],[17], [18], [19], [20]. However, the extraction of faithful
features using such manually designed models makes design-
ing fusion rules difficult and computationally demanding.

With recent advances in deep learning, deep learning-
based algorithms that employ convolutional neural networks
(CNNs) [21], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32] or generative adversarial networks (GANs) [22],
[33], [34], [35], [36], [37] have been developed most actively.
CNNs can extract high-level features from source images
more effectively than traditional feature engineering, which
is essential to generate informative fused images. Therefore,
CNN-based fusion algorithms have been designed to learn
to extract informative features and fuse them by charac-
terizing the complex relations between source images and
fused images. However, despite the powerful ability of CNN’s
to extract visual features, CNN-based algorithms may fail
to preserve complementary information in either of the
source images, thereby generating biased fusion results [38].
Further, single-scale feature extraction [23], [24], [25] hardly
utilizes both global and local information simultaneously,
which leads to a loss of spatial information in the source
images. GAN-based algorithms generate fused images that
preserve the pixel value distributions of both infrared and vis-
ible images. Although GAN-based algorithms have achieved
improved performance, they have also exhibited limited
ability to highlight discriminative regions in source images
and generated undesirable artifacts and noise [22], [33],
[34], [35]. Figure 2 shows an example of a pair of infrared

126118

and visible images and the fusion results obtained by SEDR-
Fuse [21] and DDcGAN [22], which are representative
CNN- and GAN-based algorithms, respectively. The result
of SEDRFuse in Figure 2(c) is biased toward the infrared
image, whereas that of DDcGAN in Figure 2(d) is biased
toward the visible image. In contrast, the proposed algorithm
achieves a desirable balance between the two source images
by better preserving the dominant infrared objects and rich
visible details.

Recently, several transformer-based fusion algorithms [39],
[40], [41], [42], [43] have been developed to capture inter-
domain long-range dependencies with self-attention mecha-
nism. For example, in [39] and [40], local and global features
respectively extracted by CNNs and transformers were inte-
grated to take advantages of both models. In [41] and [42],
both self-attention and cross-attention were utilized in pure
transformers without CNNs. However, transformer-based
fusion algorithms generally demand considerable computa-
tional resources to capture long-range dependencies, limiting
their applicability to high-resolution images.

In this work, to address the aforementioned limitations
of conventional algorithms and better preserve the comple-
mentary information in source images, we propose a mul-
tiscale progressive fusion algorithm, called MPFusion, for
infrared and visible image pairs. The proposed algorithm
is composed of two networks: IRNet, which extracts multi-
scale features from infrared images, and FusionNet, which
extracts features from visible images and then progressively
fuses the features extracted from both images. To this end,
we develop the multi-dilated residual block (MDRB) and the
progressive fusion block (PFB) to fuse the multiscale features
extracted from IRNet with those from FusionNet. In addition,
we develop edge-guided attention maps to faithfully preserve
the complementary edge information in the source images
during fusion. Experimental results show that the proposed
MPFusion algorithm substantially outperforms state-of-the-
art infrared and visible image fusion algorithms [21], [22],
[29], [30], [311, [32], [33], [38], [44], [45], [46] on several
datasets.

The main contributions of this work are summarized as
follows:

o We propose the MPFusion algorithm for infrared and
visible image fusion to extract and progressively fuse
multiscale features of source images; thus, the MPFu-
sion algorithm can preserve both global and local infor-
mation in source images.

o We develop two new blocks, called MDRB and PFB,
which are designed to improve fusion performance
by effectively exploiting multiscale features. Specifi-
cally, MDRB progressively extracts intrinsic features of
source images, whereas PFB progressively fuses their
complementary information.

o We develop an adaptive channel fusion strategy that
adaptively combines infrared and visible features to bet-
ter exploit information on the statistical characteristics
of the source images.
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FIGURE 3. lllustration of different architectures for infrared and visible
image fusion.

o We experimentally show that the proposed MPFusion
algorithm outperforms state-of-the-art fusion algorithms
on multiple datasets.

The remainder of this paper is organized as follows.
Section II briefly reviews related work. Section III describes
the proposed MPFusion algorithm for infrared and visible
image fusion, and Section IV discusses the experimental
results. Finally, Section V concludes the paper.

Il. RELATED WORK

A. MODEL-BASED FUSION

Model-based algorithms have been developed based on
different mathematical or algorithmic models for feature
extraction and fusion rules [2]. For example, multiscale
transform-based algorithms [13], [14] decompose each
source image into multiscale representations, fuse them in
a transform domain, and then obtain a fused image using
the inverse multiscale transform. Sparse representation-based
algorithms [15], [16], [17], [18] learn to construct over-
complete dictionaries to represent the fused image. Saliency-
based algorithms [47], [48] estimate salient areas of source
images to improve the visual quality of the fused images by
preserving important features in the source images. Finally,
hybrid algorithms [49], [50] combine other model-based
algorithms to improve fusion performance. However, model-
based feature extraction complicates image fusion tasks, and
considerable attention is required to ensure the completeness
of features [30]. For a more detailed survey on model-based
fusion, the reader is referred to [2].

B. LEARNING-BASED FUSION

Inspired by recent successes in deep learning-based computer
vision and image processing tasks, extensive research has
been conducted on learning-based infrared and visible image
fusion. Learning-based fusion algorithms can be broadly
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categorized into three groups based on how they extract
and fuse the features of each image. Figure 3 compares the
three architectures commonly used for learning-based image
fusion. The two architectures in Figures 3(a) and (b) use
CNN s or transformers comprising feature extraction, feature
fusion, and image reconstruction, whereas that in Figure 3(c)
uses GANS.

Figure 3(a) shows an early fusion architecture, which per-
forms feature extraction and feature fusion simultaneously,
followed by image reconstruction in an end-to-end man-
ner. Owing to its effectiveness in removing the correlation
between two source images, many algorithms [25], [26],
[29], [30], [38], [42], [44], [51], [52] using this architecture
have recently been proposed. In particular, several researches
[38], [44] have focused on designing network architectures
for effective extraction of useful features from source images
and their fusion. However, since algorithms in early fusion
extract and fuse features simultaneously using a common
block without considering different modalities, the intrinsic
features and complementary information of source images
may not be fully exploited. Thus, algorithms in this category
may generate biased fused images.

The late fusion architecture in Figure 3(b) extracts the fea-
tures of each source image separately using CNNs dedicated
to each of the two modalities, and then fuses them using a
fusion scheme. As late fusion algorithms fuse the features
extracted using independently trained networks, they can
preserve the intrinsic features of each image. Most researches
have focused on the design of elaborate network architectures
for end-to-end fusion capable of both better feature extraction
and feature fusion [21], [23], [24], [32], [39], [40], [41], [43].
In addition, in [31], an algorithm was developed to generate
weight maps for effective fusion using pretrained networks.
The proposed MPFusion algorithm similarly performs fea-
ture extraction and fusion separately. However, it extracts
and progressively fuses multiscale features [53] to preserve
complementary information in the source images more effec-
tively, thereby being capable of avoiding bias toward either
of the source images.

Finally, several GAN-based algorithms [22], [33], [34],
[35], [36], [37] have recently been proposed, which generate a
fused image by preserving the pixel value distributions in the
source images through an adversarial game between a genera-
tor and a discriminator, as shown in Figure 3(c). In particular,
as using a single discriminator may fail to preserve pixel value
distributions of both images [33], a GAN architecture with
two discriminators was developed to overcome the limitations
of a single discriminator [22]. In addition, based on the
observation that GAN-based algorithms have limited ability
to highlight discriminative regions in source images, attempts
have been made to incorporate an attention mechanism into
GANSs [34], [35]. However, because GAN-based algorithms
also jointly perform feature extraction and fusion implicitly,
they may generate fused images that are biased toward either
of the source images as well.
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FIGURE 4. Overview of the proposed MPFusion algorithm. Given an infrared image 1inf and a visible image 1Vis and their corresponding edge-guided
attention maps Ei"f and EViS, respectively, IRNet extracts the multiscale intrinsic features of /i"f and FusionNet yields a fused image I:“s. IRNet is trained
first, and subsequently FusionNet is trained with PFB, which feeds IRNet information progressively into FusionNet.

ill. PROPOSED ALGORITHM

Figure 4 shows an overview of the proposed MPFusion algo-
rithm, which consists of two networks. IRNet extracts multi-
scale features of an infrared image /™ and FusionNet outputs
the fused result of the infrared and visible images, denoted
by 7" and 1V, respectively. The edge-guided attention maps
E™ and EVIS for '™ and 1V’ respectively, are used to improve
the fusion performance by preserving the edge information
in the source images. Features extracted by IRNet are fed
into FusionNet progressively through the PFB at each level.
Note that IRNet is trained separately to extract the intrinsic
features of the infrared image, and FusionNet is trained with
fixed IRNet. This training strategy improves the fusion per-
formance and ensures the stable training of FusionNet, as will
be discussed in Section I'V-E.

A. EDGE-GUIDED ATTENTION MAPS

As mentioned previously, infrared and visible image fusion
algorithms fuse source images in the feature domain rather
than in the image domain. Thus, fine texture details in the
source images may be lost during fusion due to unfaithful
feature extraction, resulting in a blurry output. Note that
the attention mechanism selectively focuses on important
parts of the input data to improve the performance of CNNss,
and the image details are well represented by the gradient
of the image [54], [55]. Based on this observation, we define
the edge-guided attention map as the relative magnitude of
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the gradient of the infrared and visible images. More specifi-
cally, we obtain the edge-guided attention maps E™™ and EV1s
for infrared and visible images, respectively, as

inf |V1inf|

ET = ey M
. ‘v[vis|

EYS = GEE 2

where V denotes the gradient operator and the division is
element-wise. As shown in Figure 4, the edge-guided atten-
tion maps are concatenated with the corresponding source
images; then, they are downsampled to construct multiscale
inputs. The edge-guided attention maps force the network to
focus more on the complementary edge information in the
source images, thereby improving the fusion performance,
as will be discussed in Section I'V-E.

B. NETWORK ARCHITECTURE

As shown in Figure 4, both IRNet and FusionNet are mul-
tiscale networks that extract image features at multiple lev-
els and successively add the features of the previous level
to generate output images. Note that multiscale features of
source images have been shown to be effective in infrared and
visible image fusion [56], [57]. Each level of the networks
is responsible for a particular aspect of the source images:
a higher-level network for local details while a lower-level
network for global structures. At each level of the networks,
the residual channel attention block (RCAB) [58] is used first

VOLUME 10, 2022
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to force the network to focus on more informative features by
adaptively rescaling channel-wise features. Then, the features
extracted by IRNet are fed into FusionNet through PFB,
which is composed of the identity mapping block (IB) in
IRNet and the fusion block (FB) in FusionNet, to progres-
sively fuse the features of both networks. The architecture of
the proposed PFB will be described in detail in subsequent
sections. Finally, the output images at each level are generated
by applying a 1 x 1 convolutional layer. In this work, the level
of the networks is fixed to N = 3; its effects will be discussed
in Section IV-E.

We feed the IRNet features unidirectionally into FusionNet
for the progressive fusion of infrared and visible images.
To this end, we develop the PFB to combine the information
from both source images. Figure 5 shows the architecture of
the proposed PFB, which consists of IB in IRNet and FB in
FusionNet. IB extracts features to generate the input infrared
image, whereas FB extracts those of the input visible image
and fuses them with the IB features. Both IB and FB have
three MDRBs to preserve both global and local information
in the source images, a bottleneck layer for dimensionality
reduction, and three convolutional layers.

C. ADAPTIVE CHANNEL FUSION

In Figure 5, the infrared features £i" in the IB and the
visible features £¥1* in the FB are fused and then fed into
the next layer of the FB. An addition or concatenation can
be used to fuse these features, as in [59]. However, such
straightforward approaches may fail to fully exploit the dif-
ferent characteristics of the source images, degrading the
fusion performance, as will be discussed in Section IV-E.
Thus, we develop an adaptive channel fusion strategy that
adaptively combines two features by exploiting information
on the statistical characteristics of the source images during
fusion. Specifically, we construct two weight maps '™ and
oV ¢ RIWMDREXNC)XIx1 for the infrared and visible images,
respectively, where Nyiprp and Nc are respectively the num-
bers of MDRB and its output channels. It has been observed
that pixel value distributions of source images are essential
for representing texture details in images for fusion [25].
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Therefore, we use the histograms of the source images to
construct weight maps to consider their pixel value distribu-
tions more effectively. More specifically, we employ a simple
network with two fully connected (FC) layers followed by a
sigmoid activation function to learn a weight map for each
image, which takes the normalized histogram of each image
as input. Figure 6 illustrates the architecture of the adaptive
channel-weight generation network.

Next, after each MDRB, the PFB fuses the features of the
IB with those of the FB and then feeds the fused features
into the next layer of the FB. More specifically, let £ and

1S denote the output features of MDRB in IB and FB,

fus

respectively; then, the input feature of the next layer f,,; in
FB by adaptive channel fusion is obtained by
fus __ ainf Gfollrlltf + avis Qfo\ilis 3)

out — Oli“f-|-OlViS

where © denotes channel-wise multiplication and the divi-
sion is also channel-wise. This strategy enables FusionNet to
fuse the infrared and visible features progressively and stably,
while preserving the intrinsic features of each image.

D. MDRB

It is important to extract features by fully exploiting the char-
acteristics of the input image and to feed them through the
network without loss for high-quality image generation. The
multiscale residual block (MSRB) [60] using convolution
kernels of different sizes has been frequently employed for
feature extraction. However, MSRB requires high compu-
tational and memory complexities to increase the receptive
field. In this work, inspired by MSRB, we develop MDRB to
extract deep features at different scales by employing dilated
convolution [61], which can expand the receptive field using
the same number of parameters. Figure 7 shows the architec-
ture of the proposed MDRB. MDRB adds the input features
fi—1 to the output features of two shared bypass networks
that use kernels with different dilation rates r, generating
the output features f;. MDRB provides better fusion results
than MSRB by faithfully preserving both global and local
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information with fewer parameters using dilated convolu-
tions, as will be discussed in Section IV-E.

E. LOSS FUNCTIONS

To train IRNet and FusionNet, we define the IR loss Lir
and fusion loss Ly, respectively, as will be described sub-
sequently.

1) IRLOSS

To train IRNet, we define the IR loss L1 as the weighted sum
of the data loss Lig and structure loss L¢ between an input
infrared image and its estimated version as

£IR = Eid + )\sﬁs, (4)

where A is a hyper-parameter that balances these two losses.
We employ the £, norm as the infrared data loss as

1 M .
L= S oE =, Q)
k=1

where i,i(“f and I,i(“f represent the estimated image and the
corresponding input image, respectively, at the kth network
level. The structure loss is defined as

Ly =1—SSIM(I™, /"), (6)

where SSIM(-) denotes the structural similarity index [62]
between the two images.

2) FUSION LOSS

We define the fusion loss L to train FusionNet as a
weighted sum of the data loss Lgq, spatial loss Lgp, and
perceptual loss £, as

Liys = Lga + )‘«spﬁsp + )\p/:p, )

where Agp and A, are hyper-parameters that control the rel-
ative impacts of the three losses. The fusion data loss is
defined as

) + Wyis - Hllfus _ ]le

)

|
Ly = —Z Winf - ngus — ot
Nk_1 2

®)
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where winr and wyis denote the weights that control the con-
tributions of the input infrared and visible images, respec-
tively, to the fused image. We employ the spatial consistency
loss [63] to preserve the spatial characteristics of the source
images, which is given by

K
. . 2
ﬁsp — %Z Z (Winf . ( Iifus . ijus _ Iimf _ Ijmf )
i=1jeQ(i)
. .1\ 2
+ Wyis - (Iifus _ ijus _ Iiws _ Ijv1s ) )’ 9)

where K denotes the number of regions and €2(i) denotes
the neighboring regions of i. Finally, to compare the high-
level differences between the source images and fused image,
we employ the perceptual loss [64] as

Lo=Y (w0t = gt

k=2,4,6

!

s | #5U = R0

)

where ¢* denotes the feature map from the kth layer of the
pretrained VGG-16 network [65].

IV. EXPERIMENTAL RESULTS
A. TRAINING
We first train IRNet, which is then fixed to train FusionNet.

IRNet: We use the Adam optimizer [66] with a learning
rate of 10~ and a batch size of 8 for 16 epochs. The hyper-
parameter A in (4) is fixed to 100.

FusionNet: We also use the Adam optimizer with the same
settings as in IRNet with a batch size of 4 for 25 epochs. The
hyper-parameters Agp and A, in (7) are fixed to 0.05 and 0.5,
respectively, and wins and wyis in (8)—(10) are all set to 0.5.

Training dataset: We use only the KAIST dataset [67] for
training, which contains 95,000 well-aligned color-thermal
image pairs with a resolution of 640 x 512. We augment
the dataset by converting the RGB color to grayscale and
randomly cropping 20,000 256 x 256 patches.

B. EXPERIMENTAL SETTINGS

1) DATASETS

Although we strictly use a single training dataset, we eval-
uate the performance of the proposed algorithm on various
datasets to test its effectiveness and generalization ability.

KAIST [67]: The KAIST dataset contains well-aligned
95,000 image pairs captured using special camera devices
with a resolution of 640 x 512. We randomly chose 200 pairs,
which were not used for training.

TNO [68]: The TNO dataset contains multispectral night-
time scene images of various resolutions, ranging from
280 x 280 to 768 x 576, registered with multiband camera
systems. We use the test set constructed by Li and Wu [38],
which contains 20 image pairs.

RoadScene [30]: The RoadScene dataset contains aligned
visible and infrared image pairs chosen by Xu et al. [30] from
the FLIR dataset, which contains image pairs captured using
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TABLE 1. Quantitative comparison of the fusion results on the KAIST, TNO, and RoadScene datasets using eight quality metrics. For each metric, the best
result is shown in boldface, whereas the second-best is underlined. For each algorithm, the average ranking is reported.

En(D)  Q*B/F(1) SCD(1) MS-SSIM(1) FMlge (1) FMIL, (D) NIQE(}) BRISQUE(]) Avg.rank
KAIST dataset
GTF [45] 6.3580 0.7518 0.4234 0.8203 0.3413 0.3641 3.5283 38.2529 6.75
VggML [31] 6.4160 0.4249 1.4121 0.9012 0.3604 0.3686 3.7877 43.3369 7.50
DenseFuse [38] 6.4038 0.3834 1.4087 0.8957 0.3620 0.3709 3.6522 43.9859 7.63
FusionGAN [33] 6.6596 0.1561 1.1354 0.6332 0.1139 0.1564 4.6517 46.9863 11.38
IFCNN [29] 6.8241 0.6364 1.4728 0.9548 0.3454 0.3719 3.4436 38.6872 4.25
SEDRFuse [21] 7.1142 0.5629 1.6481 0.9367 0.3192 0.3643 3.1701 39.0740 4.50
DDcGAN [22] 7.3284 0.5333 1.6090 0.9212 0.3233 0.3743 3.4185 41.6222 4.50
U2Fusion [30] 7.0414 0.5928 1.5590 0.9584 0.3299 0.3484 3.4185 41.6222 6.00
DREF [32] 6.9918 0.5065 1.1592 0.9108 0.3115 0.3495 3.6315 44.1095 8.00
IVFusion [46] 7.0371 0.3581 1.1164 0.8075 0.3023 0.4152 3.6891 42.0342 7.88
RFN-Nest [44] 7.0654 0.6259 1.6361 0.9542 0.2661 0.2972 4.3555 45.4504 7.25
MPFusion (Proposed)  6.9261 0.6410 1.6518 0.9568 0.3699 0.3971 3.1684 38.9736 2.38
TNO dataset
GTF [45] 6.6371 0.4181 1.0154 0.8142 0.4201 0.4339 4.5705 27.8935 5.75
VggML [31] 6.1639 0.3661 1.6352 0.8749 0.4023 0.4143 3.8179 33.1756 6.63
DenseFuse [38] 6.6308 0.3719 1.7605 09113 0.4033 0.4144 3.8186 33.7323 5.75
FusionGAN [33] 6.3922 0.1586 1.4013 0.7418 0.1136 0.1533 4.5843 40.6689 11.38
IFCNN [29] 6.5736 0.4993 1.7114 0.9046 0.3713 0.3995 3.9199 26.7474 4.88
SEDRFuse [21] 6.7008 0.4211 1.7941 0.9016 0.3413 0.3831 4.9258 33.0565 6.63
DDcGAN [22] 7.2892 0.3330 1.6760 0.5996 0.3263 0.3784 3.8332 28.6108 6.88
U2Fusion [30] 6.7655 0.3923 1.7663 0.9217 0.3912 0.4105 3.9285 30.6118 4.88
DREF [32] 6.8607 0.3836 1.5064 0.7674 0.3371 0.3840 3.5330 29.6288 6.38
IVFusion [46] 7.1757 0.2964 1.1457 0.7930 0.2966 0.3341 4.4002 32.1631 8.75
RFN-Nest [44] 6.8648 0.4093 1.8140 0.8984 0.3286 0.3290 4.3229 38.1917 6.75
MPFusion (Proposed)  6.8350 0.5090 1.8011 0.9139 0.3913 0.4285 4.0837 28.8070 3.38
RoadScene dataset
GTF [45] 7.4961 0.3527 1.0201 0.7416 0.3826 0.3807 3.1525 31.6851 7.38
VggML [31] 6.8342 0.4174 1.3685 0.8648 0.3875 0.4260 2.7139 29.4141 4.63
DenseFuse [38] 6.8250 0.3918 1.3633 0.8585 0.3891 0.4272 2.6651 28.6425 5.00
FusionGAN [33] 6.9395 0.1706 0.9707 0.5893 0.1193 0.1762 4.4951 41.4441 11.25
IFCNN [29] 7.1218 0.5446 1.4391 0.8957 0.3467 0.4090 2.9810 25.5031 4.00
SEDRFuse [21] 6.3916 0.4037 1.5853 0.8289 0.2885 0.3477 4.6119 43.2400 8.88
DDcGAN [22] 7.4112 0.3273 1.5660 0.7533 0.2949 0.3312 2.9088 29.5907 7.38
U2Fusion [30] 7.3437 0.4046 1.6051 0.8310 0.3467 0.3854 2.7196 27.3004 4.25
DREF [32] 7.2929 0.4158 1.4021 0.7664 0.3192 0.3810 2.9226 26.9762 6.13
IVFusion [46] 7.5172 0.3254 1.1326 0.7689 0.3264 0.2920 3.4968 30.8065 8.00
RFN-Nest [44] 7.3006 0.3348 1.6849 0.8663 0.3065 0.2900 4.2401 44.6952 7.63
MPFusion (Proposed)  7.2792 0.4982 1.6670 0.8986 0.3377 0.3980 2.7968 26.9476 3.38

real cameras.! We use its test set, which contains 221 image
pairs with resolutions of up to 563 x 459.

2) ALGORITHMS USED FOR COMPARISONS

We compare the fusion performance of the proposed algo-
rithm with those of conventional algorithms: GTF [45],
VggML [31], DenseFuse [38], FusionGAN [33], IFCNN [29],
SEDRFuse [21], DDcGAN [22], U2Fusion [30], DRF [32],
IVFusion [46], and RFN-Nest [44]. We retrained the learning-
based algorithms [21], [22], [30], [32], [33], [38], [44]
with the parameter settings recommended by the respective
authors using the KAIST dataset, except for VggML [31]
and IFCNN [29], which use pretrained networks, and model-
based GTF [45] and IVFusion [46]. The results of the
conventional algorithms were obtained by executing the
codes provided by their respective authors. The source

1 https://www.flir.ca/oem/adas/adas-dataset-form/
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codes and pretrained models are available on our project
website.?

C. QUANTITATIVE ASSESSMENT

We use eight frequently used objective quality metrics to
evaluate the fusion performance: entropy (En) [69], total
edge information (QAB/F ) [70], sum of the correlations
of differences (SCD) [71], multiscale structural similarity
(MS-SSIM) [72], mutual information for discrete cosine
features (FMlIge) [73] as well as wavelet features
(FMI,,) [73], natural image quality evaluator (NIQE) [74],
and blind/referenceless image spatial quality evaluator
(BRISQUE) [75]. The scores for En, QABF SCD, MS-SSIM,
FMly, and FMI,, are computed between the fused image
and the input visible and infrared images, and then averaged.
As the ground-truths are unavailable for infrared and visible
image fusion, we also use two blind objective quality metrics:

2https:// github.com/seonghyun0108/MPFusion
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FIGURE 8. Comparison of box plots for the eight quality metrics in Table 1 on the TNO dataset.

NIQE and BRISQUE. Higher En, Q*BF, SCD, MS-SSIM,
FMly, and FMI,, scores imply better results, whereas lower
NIQE and BRISQUE scores indicate better performance.

Table 1 compares the quantitative performances. The pro-
posed MPFusion algorithm provides the highest or second-
highest QAB/F, SCD, and MS-SSIM scores for each dataset,
implying that the proposed algorithm can better preserve the
structures and details of the input images via multiscale and
progressive feature fusion. DDcGAN yields relatively high
scores in terms of the information theory-based metrics, i.e.,
En, FMIy., and FMI,,, but achieves lower scores on the
fidelity-based metrics Q*B/F and MS-SSIM. This is because
the GAN-based DDcGAN tends to generate noise and arti-
facts in fused images, which increase the amount of infor-
mation conveyed but degrade the visual quality of the result-
ing images. Note that, because the information theory-based
metrics quantify the amount of information in the images,
DDcGAN yields high scores of the information theory-based
metrics. The results of DDcGAN indicate that each quality
metric assesses different aspects of image quality. Thus, one
algorithm may outperform the others in terms of a single
metric; however, it may perform poorly in terms of other
metrics. Therefore, we evaluate the overall performance of
the algorithms by employing a ranking-based assessment.
Specifically, we obtain the ranking of each algorithm in each
metric, and the average rankings are presented in the right-
most column of Table 1. The proposed algorithm consistently
yields the best average rankings for all datasets with large
margins, which confirms its effectiveness. In addition, the
proposed algorithm exhibits similar tendencies across the
quality metrics for all the datasets. This confirms the superior
generalization ability of the proposed algorithm compared
with the algorithms used for comparison.
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Finally, Figure 8 shows the box plots for the eight quality
metrics in Table 1 using all test images in the TNO dataset.
The red lines and crosses denote median values and outliers,
respectively. The proposed MPFusion algorithm achieves the
highest median values for QAB/F , SCD, and MS-SSIM scores
in Figures 8(b), (c), and (d), respectively. In addition, the
proposed algorithm yields the smallest number of outliers.
This indicates that the proposed algorithm is more stable and
robust than the conventional algorithms.

D. QUALITATIVE ASSESSMENT

Figure 9 compares the fusion results obtained by each algo-
rithm on the KAIST dataset. GTF in Figure 9(c) loses the
fine textures in the input images. In Figures 9(d), (e), (g), (h),
and (k), VggML, DenseFuse, IFCNN, SEDRFuse, and
DREF, respectively, yield relatively blurry results losing tex-
ture details, e.g., the license plate in the second row.
The GAN-based algorithms FusionGAN and DDcGAN in
Figures 9(f) and (i), respectively, generate undesirable arti-
facts and noise that alter the image characteristics, e.g.,
around the car in the second row. IVFusion in Figure 9(1)
over-enhances the contrast of the input images. U2Fusion
and RFN-Nest in Figures 9(j) and (m), respectively, preserve
fine details in the visible images, but lose those in infrared
images, e.g., the trees in the third row. In contrast, the pro-
posed algorithm in Figure 9(n) generates a fused image that
preserves the fine textures of both input images faithfully
without noticeable artifacts.

Figure 10 shows the fused images from the TNO dataset.
GTF, IFCNN, SEDRFuse, and DRF in Figures 10(c), (g), (h),
and (k), respectively, fail to effectively retain complementary
information in both input images; the fused images con-
tain more information from the infrared images while losing

VOLUME 10, 2022



S. Park, C. Lee: Multiscale Progressive Fusion of Infrared and Visible Images

IEEE Access

(a) Infrared (b) Visible (c) GTF [45]

kh) SEDRFuse [21] (i) DDcGAN [22] (j) U2Fusion [30]

(d) VggML [31]

(k) DRF [32]

(e) DenseFuse [38] (f) FusionGAN [33]

(g) IFCNN [29]

(m) RFN-Nest [44]

(n) Proposed

FIGURE 9. Comparison of fusion results and their magnified parts on the KAIST dataset. The second and third rows show the magnified parts for the red

and blue rectangles, respectively, in the first row.

visual information from the visible images. In Figures 10(d),
(e), (j), and (m), VggML, DenseFuse, U2Fusion, and RFN-
Nest provide fused images with less artifacts, but the results
are blurred, losing texture information. FusionGAN, DDc-
GAN, and IVFusion in Figures 10(f), (i), and (1), respectively,
generate severe noise components, degrading the image qual-
ity. On the contrary, the proposed algorithm in Figure 10(n)
preserves the fine textures in the source images faithfully, e.g.,
the bushes in the third row.

Finally, Figure 11 shows the fusion results of the Road-
Scene dataset; they exhibit similar tendencies to the results
in Figures 9 and 10. In Figures 11(c), (d), (e), and (g),
GTF, VggML, DenseFuse, and IFCNN provide poor detail.
FusionGAN, SEDRFuse, DDcGAN, DRF, and IVFusion in
Figures 11(f), (h), (), (k), and (1), respectively, provide fusion
results with severe artifacts and noise that degrade the quality
of images. U2Fusion in Figure 11(j) preserves the texture
information in the visible images, but loses the background
information in the infrared images, e.g., the clouds in the sec-
ond row. RFN-Nest in Figure 11(m) loses the object contours
in the fused images, e.g., the car and windows in the third row.
In contrast, the proposed algorithm in Figure 11(n) provides
fused images that preserve fine details in each source image.

VOLUME 10, 2022

TABLE 2. Impacts of edge-guided attention maps on fusion performance.
Average rankings of fusion results are reported.

Edge-guided maps

— —  —  Avg.rank
IRNet  FusionNet
2.50
v 3.00
v 2.75
v v 1.75

E. ABLATION STUDIES

We conduct several ablation studies to analyze the effects
of the key components of the proposed algorithm on fusion
performance. All experiments are performed for the TNO
dataset [68] using all metrics used in the previous section to
compute the average rankings.

1) EDGE-GUIDED ATTENTION MAPS

To analyze the effectiveness of the edge-guided attention
maps, we train the proposed networks using different set-
tings. Table 2 compares the results. The absence of an
edge-guided attention map provides poor results because
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(a) Infrared (b) Visible (c) GTF [45]

(d) VggML [31]

(e) DenseFuse [38] (f) FusionGAN [33] (g) IFCNN [29]

(h) SEDRFuse [21] (i) DDcGAN [22] (j) U2Fusion [30]

(k) DRF [32]

(1) IVFusion [46]

(m) RFN-Nest [44] (n) Proposed

FIGURE 10. Comparison of fusion results and their magnified parts on the TNO dataset. The second and third rows show the magnified parts for the red

and blue rectangles, respectively, in the first row.

the complementary edge information in the source images
cannot be fully exploited. Using an edge-guided attention
map in only one of the two networks worsens the perfor-
mance because only the edge information of a single image
is emphasized, which causes the networks to generate fusion
results biased toward the image with the attention map.
Finally, using edge-guided attention maps in both networks
yields the best performance by selectively focusing on com-
plementary edge information.

Figure 12 visually compares the fusion results. Using an
edge-guided attention map in either of the two networks
generates biased results toward the source images, as shown
in Figures 12(d) and (e). Using edge-guided attention maps in
both networks achieves the best performance, as shown in
Figure 12(f), by forcing the networks to focus on the com-
plementary edge information in the source images.

2) FUSION STRATEGIES

We analyze the effectiveness of the proposed adaptive chan-
nel fusion described in Section III-C by training the pro-
posed networks with different fusion strategies. We choose
five conventional handcrafted fusion strategies, as described
in [59]. Table 3 compares the fusion performances. The pro-
posed fusion strategy outperforms all the handcrafted fusion
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TABLE 3. Impacts of the fusion strategies on the fusion performance.
Average rankings of fusion results are reported.

\Product Concat. Max Mean Addition Proposed
Avg.rank | 425 350 375 375 3.25 2.50

strategies, because it adaptively fuses features by considering
the statistical characteristics of the source images using the
input histograms.

3) LOSS FUNCTIONS

We train IRNet and FusionNet using different combinations
of losses to analyze the effectiveness of each loss func-
tion. Table 4 quantitatively compares the results. First, using
only (Liq, L¢q) provides the worst performance. Second, L
improves the fusion performance. Third, the addition of either
Lsp or L, significantly improves the fusion performance.
Finally, the combination of all the losses yields the best fusion
performance by a large margin.

4) NETWORK LEVEL
To analyze the effectiveness of the levels of the proposed net-
works, we train the proposed networks with different levels.

VOLUME 10, 2022



S. Park, C. Lee: Multiscale Progressive Fusion of Infrared and Visible Images

IEEE Access

(d) VggML [31]

(h) SEDRFuse [21] (i) DDcGAN [22] (j) U2Fusion [30]

(k) DRF [32]

(e) DenseFuse [38] (f) FusionGAN [33] ‘

(1) IVFusion [46] (m) RFN-Nest [44] (n) Proposed

FIGURE 11. Comparison of fusion results and their magnified parts on the RoadScene dataset. The second and third rows show the magnified parts for

the red and blue rectangles, respectively, in the first row.

(e) only EVis

(f) both Einf and Evis

(d) only Einf

FIGURE 12. Comparison of fusion results according to the different
settings of the edge-guided maps.

Table 5 compares the fusion performances. As the net-
work level N increases, performance improves by extract-
ing more meaningful features. However, increasing the level
excessively decreases fusion performance. This is because
less structural features are extracted from excessively small
images, which are then fed to the next level, causing the
propagation less informative features.

5) MDRB
To analyze the effectiveness of the proposed MDRB, we train
the proposed networks using three feature extraction blocks:

VOLUME 10, 2022

TABLE 4. Impacts of the losses on the fusion performance. Average
rankings of fusion results are reported.

Lia,Lea Ls Lsp Lp  Avg.rank
v 3.88
v v 3.75
v v v 2.75
v v v 3.00
v v v v 1.63

TABLE 5. Impacts of the network level N on the fusion performance.
Average rankings of fusion results are reported.

N | 1 23 4 s
Avg.rank | 3.88 3.63 200 275 275

MSRB [60], short skip connection (SSC) [76], and the pro-
posed MDRB. Table 6 compares the fusion performance of
each feature extraction block. The proposed MDRB yields the
best fusion performance because it captures global informa-
tion better with larger receptive fields than MSRB and SSC,
while requiring a slightly larger number of parameters than
SSC.

In addition, Table 7 compares the fusion performance
according to the number of MDRBs. As the number of
MDRBs increases, performance improves, because more
salient features can be extracted. However, increasing the
number of MDRBs excessively saturates the performance,
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(a) (0.4, 0.6)

(b) (0.45, 0.55)

(c) (0.5,0.5)

(d) (0.55, 0.45) (e) (0.6, 0.4)

FIGURE 13. Comparison of fusion results of the proposed MPFusion algorithm for different combinations of (wj¢, wy;s) values.

TABLE 6. Comparison of fusion performance using the three feature
extraction blocks. Average rankings of fusion results and the number of
parameters are reported.

‘ MSRB SSC MDRB

Avg. rank 2.38 2.00 1.63
# Params (M) 3.71 1.69 2.37

TABLE 7. Impact of the number of MDRBs on the fusion performance.
Average rankings of fusion results are reported.

#MDRBs | 1 2 3 4 5
Avg.rank | 3.50 250 213 288 4.00

TABLE 8. Impact of the training strategy on the fusion performance.
Average rankings of fusion results are reported.

Training strategy ‘ Avg. rank

Joint training 1.75
Separate training 1.25

while still increasing the required computational and memory
complexities.

6) TRAINING STRATEGIES

As mentioned in Section III, IRNet is first trained separately,
and then FusionNet is trained with fixed IRNet. To analyze
the effectiveness of this separate training strategy, we train
the proposed networks using different training strategies.
Table 8 compares the fusion performances. The separate
training strategy provides higher fusion performance than
joint training. This is because separate training focuses on
extracting the intrinsic features of each source image, which
better preserves complementary information in the source
images during fusion.

F. EFFECTS OF PARAMETERS wj,s AND w,;s ON

FUSION PERFORMANCE

As discussed in Section III-E, the parameters wins and wyig
in (8)—(10) control the contributions of the infrared and
visible images, respectively, to the fused image. We evaluate
the effects of these parameters on the fusion performance.
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TABLE 9. Comparisons of computational complexity in terms of the
number of network parameters, GFLOPs, and runtime in seconds.

| #Params (M) GFLOPs Runtime
DenseFuse [38] 0.07 57.76 0.0293
FusionGAN [33] 0.93 588.83 0.0854
IFCNN [29] 0.08 4.25 0.0130
SEDRFuse [21] 347 146.86 0.1177
DDcGAN [22] 1.10 1058.03 0.1372
U2Fusion [30] 0.66 432.18 0.0767
DREF [32] 16.05 5158.29 0.1854
RFN-Nest [44] 4.79 82.74 0.0334
Proposed (MPFusion) 2.37 177.61 0.0929

Figure 13 shows the fused images for several combinations
of wipr and wyjs. The fusion performance is considerably
affected by the values of wjyr and wyis. More specifically,
when (Wipf, wyis) = (0.4, 0.6), the fusion results contain
information mainly from visible images. However, as winf
increases and wyis decreases, the infrared images contribute
to the fusion results more aggressively. This indicates that
the selection of wipr and wy;s significantly affects fusion per-
formance. Therefore, to achieve the best fusion performance,
we fixed both winr and wyis to 0.5 in this work.

G. COMPLEXITY ANALYSIS

Table 9 compares the computational complexity in terms
of the average runtime and number of giga floating-point
operations per second (GFLOPs) to synthesize 200 paired
KAIST images with a resolution 640 x 512 on an Nvidia
RTX 2080Ti GPU and the number of network parameters.
Although the proposed MPFusion consists of two networks,
IRNet and FusionNet, it enables a graceful tradeoff between
fusion performance and computational complexity.

H. OBJECT DETECTION PERFORMANCE EVALUATION

To verify the effectiveness of the proposed MPFusion algo-
rithm in improving the performance of computer vision tasks,
we apply an object detection algorithm to the fusion results
obtained by each algorithm. Specifically, we use a YOLOv4
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FIGURE 14. Comparison of object detection results on the RoadScene dataset.

model [78] pretrained using the COCO dataset [79] for the
evaluation. In addition, in this evaluation, we also com-
pare object detection performance on the fusion results of
SeAFusion [77], which is an infrared and visible image fusion
algorithm dedicated to high-level vision tasks.

Figure 14 shows examples of object detection results
on the RoadScene dataset. The fusion results obtained by
the proposed algorithm in Figure 14(o) yield an improved
detection performance compared with either the infrared or
visible images in Figures 14(a) and (b), respectively. For
example, the bicycles, which are not detected in the second
row of Figures 14(a) and (b), are detected in Figure 14(0).
In addition, the fusion results of the proposed algorithm
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yield better detection performance than all the competing
algorithms. For example, the skateboard in the first row of
Figure 14(b) is detected only in Figure 14(0).

Figure 15 compares the precision-recall (PR) curves and
reports the mean average precision (mAP) performance for
the fusion results of each algorithm. A higher mAP value
implies more accurate detection. The results show that the
proposed algorithm achieves the best detection performance,
i.e., the highest mAP score. Further, the proposed algorithm
exhibits 22.45% and 9.20% higher mAP values than the input
infrared and visible images, respectively. Finally, it is worth
noting that the proposed algorithm yields better performance
than the dedicated SeAFusion [77]. These results indicate
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FIGURE 15. Comparison of PR curves and mAP values (%) for different
fusion algorithms on the RoadScene dataset.

(a) Infrared images

(b) Visible images (c) Fused images

FIGURE 16. Fusion results of the proposed algorithm for RGB visible
images. The first and second rows show the results on the KAIST dataset,
whereas the third and fourth rows show those on the RoadScene dataset.

that the fusion results of the proposed MPFusion algorithm
consistently improve object detection performance. Hence,
the proposed algorithm may exhibit positive impacts on
computer vision applications under severe environmental
conditions.

I. FUSION RESULTS FOR RGB IMAGES

We developed the proposed algorithm to fuse single-channel
visible and infrared images for consistency with the TNO
dataset [68]. However, the proposed algorithm can also be
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applied to fuse the visible and infrared images of RGB chan-
nels. To this end, we compute edge-guided attention maps in
Figure 4 for each of the RGB channels for both visible and
infrared images. Figure 16 shows the fusion results for images
in the KAIST and RoadScene datasets. The color information
of the visible images and the edge information of the infrared
images are accurately preserved in the fused images.

V. CONCLUSION

We proposed a multiscale progressive fusion algorithm,
called MPFusion, for infrared and visible image fusion. The
proposed MPFusion algorithm consists of two networks:
IRNet extracts multiscale features of the infrared image,
and FusionNet extracts multiscale features of the visible
image and progressively fuses them with those from IRNet.
Specifically, we developed MDRB and PFB to improve
fusion performance by progressively incorporating the multi-
scale features extracted from IRNet with those from Fusion-
Net. Finally, we further improved the fusion performance
by preserving the complementary edge information in the
source images during fusion based on edge-guided attention
maps. Extensive experiments demonstrated that the proposed
algorithm outperforms state-of-the-art algorithms on several
datasets. An important direction for future work is to develop
more effective and sophisticated fusion schemes that can
facilitate high-level vision tasks, such as segmentation, object
detection, and re-identification.
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