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Emotion Recognition of Subjects With Hearing
Impairment Based on Fusion of Facial
Expression and EEG Topographic Map
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Abstract— Emotion analysis has been employed in many
fields such as human-computer interaction, rehabilitation,
and neuroscience. But most emotion analysis methods
mainly focus on healthy controls or depression patients.
This paper aims to classify the emotional expressions in
individuals with hearing impairment based on EEG signals
and facial expressions. Two kinds of signals were col-
lected simultaneously when the subjects watched affective
video clips, and we labeled the video clips with discrete
emotional states (fear, happiness, calmness, and sadness).
We extracted the differential entropy (DE) features based
on EEG signals and converted DE features into EEG topo-
graphic maps (ETM). Next, the ETM and facial expressions
were fused by the multichannel fusion method. Finally, a
deep learning classifier CBAM_ResNet34 combined Resid-
ual Network (ResNet) and Convolutional Block Attention
Module (CBAM) was used for subject-dependent emotion
classification. The results show that the average classifica-
tion accuracy of four emotions recognition after multimodal
fusion achieves 78.32%, which is higher than 67.90% for
facial expressions and 69.43% for EEG signals. Moreover,
visualization by the Gradient-weighted Class Activation
Mapping (Grad-CAM) of ETM showed that the prefrontal,
temporal and occipital lobes were the brain regions closely
related to emotional changes in individuals with hearing
impairment.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) technology is a
method of recording neural signals such as Electroen-

cephalogram (EEG) from the brain through the external
devices. With the development of non-invasive signal acquisi-
tion techniques, BCI technology has made great contributions
in many fields, including human-robot interaction, rehabili-
tation and neuroscience. In the field of neuroscience, BCI
technology can classify the degree of mental disorders in
patients with depression [1], and detect the degree of mental
fatigue of drivers to prevent traffic accidents [2]. Affective
computing is an important branch of BCI field, emotion is a
complex psychological state or process of people. As a subjec-
tive experience of the human body, emotion can directly affect
various aspects such as individual survival and development,
interpersonal communication, and mental health.

Psychologists carried out the discrete model and dimen-
sional model to describe the emotional states. Ekman et al. [3]
proposed the concept of “basic emotions” as fear, anger,
surprise, disgust, joy, sadness. The dimensional emotional
model [4] turns the change of emotion into two-dimension,
which represents emotional states in valence-arousal. Valence
ranges from negative to positive, and arousal ranges from
passive to active. Since then, many researchers have started
to explore the field of affective computing based on discrete
emotional model or dimensional emotional model.

At present, the methods of emotion recognition are mainly
divided into two aspects. One is to recognize emotions through
non-physiological signals such as facial expressions [5],
speech [6], and body gestures [7], which can reflect the
individuals’ external emotional expression. Non-physiological
signals are easy to collect and closely related to our daily life.
Another is to identify emotions through physiological signals,
such as Electroencephalogram (EEG) [8], Electromyogram
(EMG) [9], Electrocardiogram (ECG) [10] and Galvanic Skin
Response (GSR) [11]. Among them, the EEG signals are
spontaneously electric activity of the neurons in human brain
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that can reflect the truthful and plentiful emotional information
within the individuals.

Because of the complementarity of different modalities dur-
ing the process of emotion recognition [12]. Nowadays, many
researchers begin to integrate different modalities to classify
emotional states. Zheng et al. [13] proposed a multimodal
emotion recognition framework called EmotionMeter, which
combined the EEG signals and eye movements. Liu et al. [14]
used a Deep Belief Network (DBN) to fuse speech signals and
facial expressions. The emotion recognition methods based on
fusing EEG signals and facial expressions have been studied
in recent years. Hassouneh et al. [15] classified disabled
people and Autism children’s emotional states based on facial
landmarks and EEG signals. Meanwhile, a classifier which
combined Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) models was used for classi-
fication. Zhang et al. [16] used a bimodal deep automatic
encoder (BDAE) method to combine facial expressions with
EEG signals. In our previous study [17], we selected the
facial key points to construct texture features and extracted
Power Spectral Density (PSD) features from EEG signals. The
LSTM decision layer fusion strategy was utilized. Although
the proposed decision level fusion method achieved better
performance than single modality, but the complementarity
between different modalities was ignored. Hence, in this work,
we converted EEG signals into EEG topographic maps (ETM)
and proposed an image-based multimodal fusion method on
feature-level.

Due to the loss of a key channel during the process of emo-
tion communication, the individuals with hearing impairment
can only compensate for changes in the outside world through
senses such as vision and touch. Therefore, the individuals
with hearing impairment are more sensitive to emotional
perception, and may have differences in recognition of emotion
from healthy controls [18], [19], [20].

In this paper, in order to explore the emotional changes of
individuals with hearing impairment, we designed an emotion
induction experiment based on affective video clips and invited
15 participants with hearing impairment to participate in the
experiment. Meanwhile, we labeled the affective video clips
with discrete emotional states into the following four kinds:
fear, happiness, calmness, sadness, and recorded the partic-
ipates’ facial expressions and EEG signals simultaneously.
For signal processing, we preprocessed the collected EEG
signals and facial expressions, extracted DE features of the
EEG signals and converted them into the corresponding ETM.
Moreover, the multichannel feature fusion method was used
to fuse ETM and facial expressions, and CBAM_ResNet34
classifier was utilized to extract high-level features between
different modalities and complete emotion recognition.

The layout of this article is as follows. Section II mainly
introduces the related works of emotion recognition based on
facial expressions and EEG signals. The whole process of the
signal acquisition experiment is introduced in Section III. The
feature extraction and classification model are introduced in
Section IV. We carry out experimental results in Section V.
We discuss this paper in Section VI. Finally, Section VII
displays the conclusions.

II. RELATED WORKS

A. Emotion Recognition With Facial Expressions

Facial expressions are the most intuitive way to express
human emotions. With the rapid development of deep learning
in the field of image processing, researchers focus on emo-
tion recognition based on facial expressions. Sen et al. [21]
connected key facial feature points as textural features, and
concatenated geometric and textural features for emotion
recognition. Talele et al. [22] created a feature extraction
framework called digital signature to obtain features by pro-
jecting edge pixels vertically and horizontally. Fan et al. [23]
fused discriminative features extracted by CNN model with
features containing shape and appearance extracted by hand.
Pan et al. [24] designed a Deep Temporal–Spatial Network
based on facial expressions to extract the spatiotemporal
features. Chen et al. [25] proposed a facial feature called deep
peak–calmness difference (DPND), which can characterize
facial regions that change from calmness to expressive face,
and achieved high-quality results in both unsupervised cluster-
ing and semi-supervised classification methods. In view of the
superiority of deep learning methods in emotion recognition
based on facial expressions, we utilize CBAM_ResNet34 to
effectively extract emotion-related pixel-level features of facial
expressions for emotion classification.

B. Emotion Recognition With EEG Signals

For EEG signals, researchers extracted different features and
used them for emotion recognition, such as Fourier Transform
(FT), Wavelet Transform (WT), PSD, Autoregressive (AR).
Duan et al. [26] proposed Differential Entropy (DE) feature to
characterize emotional information related to emotional states.
Aydin et al. [27] proposed a new method to combine Principal
Component Analysis (PCA) with Phase Space Trajectory
Matrix (PSTM) for estimation of emotional features. Extract-
ing the PCPSTM of the EEG series for short segment of 6 s.
Kilic et al. [28] combined Graph Theory (GT) with short-range
statistical dependency estimations for EEG analysis. Pearson
Correlation (PC) was applied longer (12 sec) non-overlapped
EEG segments in accordance with particular threshold as the
mean. Deep learning-based algorithms have been developing
in recent years, and researchers have gradually begun to extract
features and complete emotion analysis based on deep learning
methods. Hu et al. [29] proposed a novel convolutional layer
named Scalinglayer, which can adaptively extract effective
spectral features from raw EEG signals. Kawano et al. [30]
used the NeuCube spiking neural network (SNN) for modeling
EEG brain data related to perceiving versus mimicking facial
expressions. Chao et al. [31] proposed a Capsule Network
(CapsNet) model, and used the multi-feature matrix for emo-
tion recognition. Gao et al. [32] designed a deep learning
framework called channel-fused dense convolutional network,
which used one-dimensional (1D) convolutional layers to
extract contextual features of EEG signals. Liang et al. [33]
proposed a deep convolutional recurrent generative adversarial
network called EEGFuseNet to automatically extract temporal
and spatial features from EEG signals. Inspired by researchers’
methods on EEG signals feature extraction and classification,
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we extracted representative DE features and innovatively con-
verted DE features into ETM. CBAM_ResNet34 can capture
the deeper-level features of ETM for classification.

III. EXPERIMENTAL MATERIALS

In the experiment, subjects with hearing impairment were
elicited with four target emotions (fear, happiness, calmness,
sadness) by watching affective video clips. During the stim-
ulation of the experimental clips, the EEG signals and facial
expressions of subjects were recorded simultaneously.

A. Video Clips Selection

There are lots of manners of stimuli manner, including video
clips, static pictures, and music videos. The emotion induction
method based on video clips combines visual, auditory, and
other sensory induction materials. The stimulation lasts a long
time, which is the most effective way to induce emotions. The
Queen Mary University of London used music videos to elicit
emotions and proposed the DEAP [34] emotional database.
Zheng et al. selected video clips as stimuli and presented
emotion datasets including SEED [35], and SEED-IV [13].
However, the above databases are all based on healthy con-
trols, not individuals with hearing impairment. In this work,
we selected video clips as stimuli to induce the target emotion.
The selection of happiness, sadness, and calmness clips are
following the SEED database. For the selection of fearful clips,
we recruited 40 postgraduates who majored in psychology.
To ensure the subjects fully understood the selected video
clips, each of which included subtitles. Postgraduates were
asked to rate 25 fearful clips in a quiet environment, and the
five highest-rated clips were finally selected. Table I presents
a detailed description of the selected 20 affective video clips,
each has a playback time of around 200 seconds.

B. Subjects

Fifteen undergraduates with hearing impairment were
invited to participate in this experiment. The age of the
subjects was between 18 and 25, with an average age of 22,
which included 12 males and 3 females. All of the subjects
lost hearing in both ears, therefore, each subject was allowed
to wear hearing aids during the experiment. Meanwhile, this
experiment was approved by the Ethics Committee of Tianjin
University of Technology.

C. Experiment Procedure

Before the experiment started, the subjects will be asked
to sign an informed consent form, and make out a question-
naire for basic information, including age, specialty, cause of
hearing loss, degree of hearing loss, etc. The Self-Assessment
Manikin (SAM) [36] was used to rate video clips from 1 to 9,
and subjects learned how to use the SAM system for self-
assessment after reading the instructions and requirements of
the experimental procedure.

The whole process of the experiment was shown in Fig. 1.
Before formally obtaining the experiment data, the subjects
were allowed to adjust to a comfortable sitting position and

TABLE I
THE DESCRIPTION OF VIDEO FILM CLIPS

Fig. 1. The experimental stimulation procedure.

remain fixed. The video clips were played in sequence accord-
ing to the order shown in Table I. There was a 5 seconds hint
before the start of each video clip. The subject was given
45 seconds to evaluate the clip using the three dimensions
of arousal, valence, and dominance. After the assessment,
subjects would have a rest for 15 seconds before the next
trial.

IV. FEATURE EXTRACTION AND FEATURE

CLASSIFICATION

In this section, we preprocessed the EEG signals and facial
expressions collected in the experiment. In addition, a deep
learning-based classifier was proposed for multimodal fusion
and emotion recognition. The framework diagram was shown
in Fig. 2.

A. EEG Preprocessing and Feature Extraction

We used SymAmps2 (Neuroscan, Australia) to collect the
EEG signals with 64 channels according to the international
10-20 system. The raw EEG signals were preprocessed by the
EEGLAB toolbox [37]. To prevent feature redundancy, the
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Fig. 2. The classification model framework based on combining facial expressions with ETM.

sampling frequency was reduced from 1000 Hz to 200 Hz,
and we set the bilateral mastoid electrodes TP9 and TP10 as
re-references to enhance the signal. The quantity of remaining
electrodes is 62. Band-pass filtering from 1 to 75 Hz was used
to obtain the main frequency bands related to emotions, and
the power frequency interference was removed by band-pass
filtering from 49 to 51 Hz. Signal artifacts were subsequently
removed by Independent Component Analysis (ICA). The pre-
processed EEG signals were divided into five main frequency
bands (Delta: 1–3 Hz, Theta: 4–7 Hz, Alpha: 8–12 Hz, Beta:
13–30 Hz, Gamma: 31–50 Hz).

As the most commonly used frequency-domain feature,
DE feature can effectively characterize emotional change. The
formula for calculating the DE feature was as follows:

h (X) = −
∫

X
f (x) log ( f (x)) dx (1)

where X was a random variable and f (x) was the probability
density function of X . When the time series X obeys Gaussian
distribution N (μ, σ2), its DE feature can be defined as
follows:

h (X) = 1

2
log

(
2πeσ 2

)
(2)

DE features were extracted by a 1-second sliding window
with non-overlapping. Therefore, the total number of samples
was 4407 for each subject.

ETM can use waveform and color changes to reflect the
activity of different brain regions during the stimulation. The
extracted DE features were converted into the corresponding
ETM by the EEGLAB toolbox (image size: 875 × 656). And
that was 4407 ETM for each subject. Fig. 3 shows the ETM
generated by the EEGLAB toolbox, and the color map shows
the intensity of brain activation, ranging from −1 to 1.

B. Facial Expression Preprocessing

During the experiment, a laptop camera (Lenovo Legion
Y7000) was used to record the facial expression videos when
the subjects watching the video clips at a frame rate of
25 fps. Then the videos were converted into images (image
size: 1920 × 1080) by extracting the first frame per second.
Furthermore, we used DLIB [38] face recognition model to

Fig. 3. EEG topographic map generated by EEGLAB toolbox.

Fig. 4. Visualization of the transformed facial expression image (size:
224 × 224).

remove irrelevant background images. Finally, 4407 facial
expression images were obtained, which correspond with ETM
on the timeline.

C. Classification With CBAM_ResNet34

The RGB images of ETM and facial expressions were
resized to 256 × 256 pixels, and central-cropped to
224 × 224 pixels, then they were converted to a tensor
format for normalization. Fig. 4 shows the transformed facial
expressions.

The proposed CBAM_ResNet34 classifier was used for
emotion classification. Convolutional Block Attention Module
(CBAM) [39] emphasizes meaningful features through two
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Fig. 5. The structure of the CBAM_ResNet34 classification model.

separate submodules: the channel attention module (CAM) and
the spatial attention module (SAM), and sequentially obtained
attention map along two independent submodules. Residual
Network (ResNet) [40] was used as the backbone of the
network. The residual block structure made the network not
degenerate as the depth increases. The CBAM was added to
every residual block of the ResNet34, the attention map was
multiplied by the input feature map for adaptive refinement.
The Batch Normalization (BN) layer was adopted after each
convolution layer to solve the problems of gradient disappear-
ance and gradient explosion. Fig. 5 shows the framework of
the CBAM_ResNet34 model.

First, two types of feature information were obtained
through the global average pooling layer and the global max
pooling layer. Then, two types of feature information were fed
into a multi-layer perceptron (MLP) with one hidden layer.
Finally, the outputs were fused by element-wise summation,
and then get channel attention value through a sigmoid acti-
vation function. We defined the channel attention value C as
follows:

C = σ&(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1

(
W0

(
Fc

max

)))
(3)

where W0 and W1 were MLP weights, and the RELU activa-
tion function was applied on W0. Moreover, σ represented the
sigmoid function, which formula was as follows:

σ (x) = 1

1 − e−x
(4)

The features with channel attention value output from the
CAM, and then the spatial attention value was extracted by the
SAM. We applied average pooling and max pooling operations
on the input features to highlight valid information along
the channel axis. Then, the information was forwarded by
a convolutional layer (kernel of size is 7 × 7). The spatial
attention feature value named S can be expressed as follows:

S = σ ( f {[Avg Pool (F) ; Max Pool (F)]}) (5)

where f represented a convolutional operation.
The most pivotal information was extracted by CBAM with

CAM and SAM. Ultimately, the process of obtaining the
attention feature map F2 through the attention module can
be expressed as follows:

F1 = C ⊗ F

F2 = S ⊗ F1 (6)

where ⊗ represented element-wise multiplication. In the
process of multiplication, the channel and spatial attention
values were broadcasted. The combination of two modules
allowed the neural network to know which channel and
which region in the channel should be focused on during the
classification process.

V. EXPERIMENTAL RESULTS

A. EEG-Based Emotion Recognition

We evaluated the proposed method on a subject-dependent
experiment, and the laptop Lenovo Legion Y-7000 (CPU:
i5-10200H, RAM: 16G, GPU: GTX 1650Ti 4G) was used
to perform programs on feature extraction and emotion clas-
sification. The experimental data of each subject was divided
into training data and test data, of which the first 16 trials
(3520 samples) were training data, and the last 4 trials (one
for each emotion, a total of 887 samples) were test data.
In the process of emotion classification based on EEG signals,
8 classifiers, which include SVM, K Nearest Neighbor (KNN),
Gaussian Naive Bayesian (GNB), Random Forest (RF), Linear
Discriminant Analysis (LDA), adaptive boosting (Adaboost),
Logistic Regression(LR), and ResNet34, were used to compare
with the proposed method. DE features of all frequency bands
were used as input. For ResNet34 and CBAM_ResNet34,
we put DE features of 62 channels into a 9 × 9 feature matrix,
recognized as the input of the classifier. 64 was the number of
the batch size, and the AdamW was used as the optimizer to
speed up the convergence of the classifier. Besides, we used
the Cross-Entropy as a loss function. RELU was selected
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TABLE II
THE PARAMETER SELECTION FOR DIFFERENT CLASSIFIERS

TABLE III
PERFORMANCE ANALYSIS OF DE FEATURES USING STATISTICAL

PARAMETERS WITH SVM, KNN, GNB, RF, LDA, LR,
RESNET34 AND CBAM_RESNET34

as the activation function to further avoid the problems of
gradient saturation and gradient disappearance. The number
of the epoch is 50. To avoid getting stuck in a local optimum
during the verification process, we used cosine annealing to
control the learning rate and set the original learning rate
to 0.001 as well as decreasing once every iteration. Table II
showed the parameters of different classifiers.

Table III showed the performance of different classifiers.
It can be seen that the classification accuracy, F1-score, Pre-
cision and Sensitivity metrics of CBAM_ResNet34 classifier
have reached better results, which were significantly improved
compared with traditional machine learning classifiers. The
proposed CBAM_ResNet34 classifier get an outstanding per-
formance of 58.86% for four emotions classification. At the
same time, it also demonstrated that the deep learning method
can better capture the emotion-related feature, and the recog-
nition was more efficient and accurate.

To further explore the classification accuracy of different
classifiers on the all-frequency band, Fig. 6 shows the result
of fifteen subjects using all 9 classifiers. Compared with other
classifiers, the CBAM_ResNet34 classifier always maintains
the best recognition accuracy, and the accuracy of subject
5 can achieve more than 80%. Meanwhile, it can be seen from
the results that there are large differences in the classification

Fig. 6. The different classifier performance of fifteen subjects with
hearing impairment on all-frequency band.

Fig. 7. Classification accuracy on ETM of fifteen subjects using the
CBAM_ResNet34 classifier.

results of different subjects using the DE features for clas-
sification whether it is a machine learning or deep learning
classifier.

After emotion analysis on all band DE features, we con-
verted the DE features into corresponding ETM and used
CBAM_ResNet34 to learn EEG topographical representations.
Fig. 7 showed the classification accuracy on the ETM of
fifteen subjects. The highest recognition accuracy of subject
6 is 75.99%, and the lowest recognition accuracy of subject
8 is 66.85%. Compared with using DE features for emotion
classification, ETM not only has better recognition perfor-
mance but also has less variability among all subjects.

B. Facial Expression Emotion Recognition

The deep learning method integrates feature extraction and
emotion classification, using convolution kernels of different
sizes to capture emotion-related feature, optimizing the error
through backpropagation to improve the accuracy. In this
work, the raw facial expressions were used as input to the
classifier. Fig. 8 shows the classification results of fifteen
subjects based on facial expressions, the highest performance
was subject 6 (71.48%), and the lowest performance was
subject 2 (63.61%). Fig. 8 took subject 7 as an example to
show the feature map of different layers output, (a), (b), (c),
and (d) represented of layer1 to layer4. From Fig. 9 (b), it can
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Fig. 8. Classification accuracy on facial expressions of fifteen subjects
using the CBAM_ResNet34 classifier.

Fig. 9. The feature map of different layers output of subject 7, (a) layer 1
outputs, (b) layer 2 outputs, (c) layer 3 outputs, (d) layer 4 outputs.

be seen that the emotion-related regions concerned by the
classification network were more extensive and comprehensive
than the traditional facial landmark localization, and it can
further lock the regions related to emotions through deeper
convolutional layers.

C. Fusion of ETM and Facial Expressions

We converted the DE features into ETM and fused the facial
expressions of the corresponding segment. Finally, the ETM
and the facial expressions, both 2-dimensional (2D) feature
matrices, were fused and fed into the CBAM_ResNet34 clas-
sifier for emotion recognition. Fig. 10 showed the recognition
performance based on multimodal fusion. In the case of emo-
tion recognition using fusion features, the average accuracy
on the database of subjects with hearing impairment was
achieved at 78.32%. Compared with facial expression, the
accuracy increased by 10.42%, and compared with ETM, the
accuracy increased by 8.89%. The classification accuracy of

Fig. 10. Classification accuracy of fifteen subjects fused by ETM and
facial expressions.

TABLE IV
COMPARISON OF THE MEAN ACCURACY BASED ON THREE SINGLE

MODALITY AND TWO MULTIMODAL

each subject after multimodal fusion was higher than that
of any single modality. These results showed that combined
facial expressions and ETM can significantly improve the
recognition performance.

VI. DISCUSSION

To obtain emotional representational features between dif-
ferent modalities, we proposed a feature-level fusion strategy
that combined ETM and facial expressions. Table IV shows
the average recognition accuracy based on facial expressions,
DE features, ETM, fused DE features with facial expressions,
and fused ETM with facial expressions. The results showed
that the proposed method of using ETM for emotion recog-
nition was better than DE features, and the performance of
combining facial expressions with ETM was higher than that
of combining facial expressions with DE features.

To further explore the complementary characteristics of
facial expressions and ETM during the process of classi-
fication, we analyzed the confusion matrix to explore the
performance of different modalities in recognizing different
emotions. Here we listed the confusion matrix of subject 7 as
an example. Fig. 11 (a, b, c) showed the confusion matrix of
subject 7’s facial expressions, ETM, and multimodal fusion.
The confusion matrix showed that ETM had the best perfor-
mance in recognizing fear emotions, and facial expressions
had more advantages in recognizing happiness and sadness
emotions. In the recognition process based on two single
modality, there were many cases of misclassification. However,
after fusing facial expressions and ETM, the misclassification
was reduced and the robustness of recognition was improved.
Meanwhile, after multimodal fusion, the recognition perfor-
mance of calmness was significantly improved. To further
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TABLE V
COMPARISON OF THE PROPOSED SCHEME WITH STATE OF THE ART METHODS FOR HUMAN EMOTION RECOGNITION

Fig. 11. Confusion matrices of subject 7 including two single modality
and multimodal fusion. Each row of the confusion matrix represents the
true kind of the sample, and each column represents the predicted kind.
(a) ETM, (b) Facial expressions, (c) Multimodal fusion.

Fig. 12. Five different time slices ETM of subject 7 were randomly
selected in chronological order to construct the Grad-CAM.

explore the key regions of the brain that affect the emo-
tion of subjects with hearing impairment, we constructed
the Gradient-weighted Class Activation Mapping (Grad-CAM)
[47] for analyzing. Fig. 12 showed subject 7’s Grad-CAM con-
structed by five-time slices of four target emotions randomly
selected in chronological order. The brain regions influenced
by emotion were primarily located in the prefrontal, temporal,
and occipital lobes.

We have compared our proposed method with state-of-
the-art techniques, Table V summarizes the main studies that

classify human emotions. The proposed method that combined
ETM and facial expressions was computationally efficient and
also achieves an outstanding accuracy of 78.32% for four
emotions classification.

VII. CONCLUSION

In this paper, a multimodal emotion recognition framework
was proposed to classify four kinds of emotion (fear, happi-
ness, calmness, sadness) of subjects with hearing impairment.
In order to solve the disadvantage of EEG signals’ nonlin-
earity and nonstationary characteristics during the multimodal
fusion process. For EEG signals, DE features were converted
into ETM. We fused the ETM and facial expressions, and
the CBAM_ResNet34 was present to extract and classify
emotional representational information. The subject-dependent
experimental results showed that the classification accuracy
of the proposed strategy achieved the 78.32%, which was
better than the single modality (DE, 58.86%, ETM, 69.43%,
and facial expressions, 67.90%) and combined DE with facial
expressions (68.49%). This may indicate that the fusion of
ETM with facial expressions can effectively explore the com-
plementarity between different modalities during the process
of emotion recognition. We also demonstrated the validity of
the proposed method by comparing the method with state-of-
the-art works. In the future, we will optimize the classification
algorithm and preprocessing process to develop a cross-subject
classification model.
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